clmpcc.c revision 1.17.2.1 1 /* $NetBSD: clmpcc.c,v 1.17.2.1 2001/10/10 11:56:53 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Steve C. Woodford.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
41 */
42
43 #include "opt_ddb.h"
44
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/ioctl.h>
49 #include <sys/select.h>
50 #include <sys/tty.h>
51 #include <sys/proc.h>
52 #include <sys/user.h>
53 #include <sys/conf.h>
54 #include <sys/file.h>
55 #include <sys/uio.h>
56 #include <sys/kernel.h>
57 #include <sys/syslog.h>
58 #include <sys/device.h>
59 #include <sys/malloc.h>
60 #include <sys/vnode.h>
61
62 #include <machine/bus.h>
63 #include <machine/intr.h>
64 #include <machine/param.h>
65
66 #include <dev/ic/clmpccreg.h>
67 #include <dev/ic/clmpccvar.h>
68 #include <dev/cons.h>
69
70
71 #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
72 #error "CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
73 #endif
74
75
76 static int clmpcc_init __P((struct clmpcc_softc *sc));
77 static void clmpcc_shutdown __P((struct clmpcc_chan *));
78 static int clmpcc_speed __P((struct clmpcc_softc *, speed_t,
79 int *, int *));
80 static int clmpcc_param __P((struct tty *, struct termios *));
81 static void clmpcc_set_params __P((struct clmpcc_chan *));
82 static void clmpcc_start __P((struct tty *));
83 static int clmpcc_modem_control __P((struct clmpcc_chan *, int, int));
84
85
86 cdev_decl(clmpcc);
87
88 #define CLMPCCUNIT(x) (minor(x) & 0x7fffc)
89 #define CLMPCCCHAN(x) (minor(x) & 0x00003)
90 #define CLMPCCDIALOUT(x) (minor(x) & 0x80000)
91
92 /*
93 * These should be in a header file somewhere...
94 */
95 #define ISSET(v, f) (((v) & (f)) != 0)
96 #define ISCLR(v, f) (((v) & (f)) == 0)
97 #define SET(v, f) (v) |= (f)
98 #define CLR(v, f) (v) &= ~(f)
99
100
101 extern struct cfdriver clmpcc_cd;
102
103
104 /*
105 * Make this an option variable one can patch.
106 */
107 u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
108
109
110 /*
111 * Things needed when the device is used as a console
112 */
113 static struct clmpcc_softc *cons_sc = NULL;
114 static int cons_chan;
115 static int cons_rate;
116
117 static int clmpcc_common_getc __P((struct clmpcc_softc *, int));
118 static void clmpcc_common_putc __P((struct clmpcc_softc *, int, int));
119 int clmpcccngetc __P((dev_t));
120 void clmpcccnputc __P((dev_t, int));
121
122
123 /*
124 * Convenience functions, inlined for speed
125 */
126 #define integrate static inline
127 integrate u_int8_t clmpcc_rdreg __P((struct clmpcc_softc *, u_int));
128 integrate void clmpcc_wrreg __P((struct clmpcc_softc *, u_int, u_int));
129 integrate u_int8_t clmpcc_rdreg_odd __P((struct clmpcc_softc *, u_int));
130 integrate void clmpcc_wrreg_odd __P((struct clmpcc_softc *, u_int, u_int));
131 integrate void clmpcc_wrtx_multi __P((struct clmpcc_softc *, u_int8_t *,
132 u_int));
133 integrate u_int8_t clmpcc_select_channel __P((struct clmpcc_softc *, u_int));
134 integrate void clmpcc_channel_cmd __P((struct clmpcc_softc *,int,int));
135 integrate void clmpcc_enable_transmitter __P((struct clmpcc_chan *));
136
137 #define clmpcc_rd_msvr(s) clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
138 #define clmpcc_wr_msvr(s,r,v) clmpcc_wrreg_odd(s,r,v)
139 #define clmpcc_wr_pilr(s,r,v) clmpcc_wrreg_odd(s,r,v)
140 #define clmpcc_rd_rxdata(s) clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
141 #define clmpcc_wr_txdata(s,v) clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
142
143
144 integrate u_int8_t
145 clmpcc_rdreg(sc, offset)
146 struct clmpcc_softc *sc;
147 u_int offset;
148 {
149 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
150 offset ^= sc->sc_byteswap;
151 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
152 offset ^= CLMPCC_BYTESWAP_HIGH;
153 #endif
154 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
155 }
156
157 integrate void
158 clmpcc_wrreg(sc, offset, val)
159 struct clmpcc_softc *sc;
160 u_int offset;
161 u_int val;
162 {
163 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
164 offset ^= sc->sc_byteswap;
165 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
166 offset ^= CLMPCC_BYTESWAP_HIGH;
167 #endif
168 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
169 }
170
171 integrate u_int8_t
172 clmpcc_rdreg_odd(sc, offset)
173 struct clmpcc_softc *sc;
174 u_int offset;
175 {
176 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
177 offset ^= (sc->sc_byteswap & 2);
178 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
179 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
180 #endif
181 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
182 }
183
184 integrate void
185 clmpcc_wrreg_odd(sc, offset, val)
186 struct clmpcc_softc *sc;
187 u_int offset;
188 u_int val;
189 {
190 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
191 offset ^= (sc->sc_byteswap & 2);
192 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
193 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
194 #endif
195 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
196 }
197
198 integrate void
199 clmpcc_wrtx_multi(sc, buff, count)
200 struct clmpcc_softc *sc;
201 u_int8_t *buff;
202 u_int count;
203 {
204 u_int offset = CLMPCC_REG_TDR;
205
206 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
207 offset ^= (sc->sc_byteswap & 2);
208 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
209 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
210 #endif
211 bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, offset, buff, count);
212 }
213
214 integrate u_int8_t
215 clmpcc_select_channel(sc, new_chan)
216 struct clmpcc_softc *sc;
217 u_int new_chan;
218 {
219 u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
220
221 clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
222
223 return old_chan;
224 }
225
226 integrate void
227 clmpcc_channel_cmd(sc, chan, cmd)
228 struct clmpcc_softc *sc;
229 int chan;
230 int cmd;
231 {
232 int i;
233
234 for (i = 5000; i; i--) {
235 if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
236 break;
237 delay(1);
238 }
239
240 if ( i == 0 )
241 printf("%s: channel %d command timeout (idle)\n",
242 sc->sc_dev.dv_xname, chan);
243
244 clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
245 }
246
247 integrate void
248 clmpcc_enable_transmitter(ch)
249 struct clmpcc_chan *ch;
250 {
251 u_int old;
252 int s;
253
254 old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
255
256 s = splserial();
257 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
258 clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
259 SET(ch->ch_tty->t_state, TS_BUSY);
260 splx(s);
261
262 clmpcc_select_channel(ch->ch_sc, old);
263 }
264
265 static int
266 clmpcc_speed(sc, speed, cor, bpr)
267 struct clmpcc_softc *sc;
268 speed_t speed;
269 int *cor, *bpr;
270 {
271 int c, co, br;
272
273 for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
274 br = ((sc->sc_clk / c) / speed) - 1;
275 if ( br < 0x100 ) {
276 *cor = co;
277 *bpr = br;
278 return 0;
279 }
280 }
281
282 return -1;
283 }
284
285 void
286 clmpcc_attach(sc)
287 struct clmpcc_softc *sc;
288 {
289 struct clmpcc_chan *ch;
290 struct tty *tp;
291 int chan;
292
293 if ( cons_sc != NULL &&
294 sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
295 cons_sc = sc;
296
297 /* Initialise the chip */
298 clmpcc_init(sc);
299
300 printf(": Cirrus Logic CD240%c Serial Controller\n",
301 (clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
302
303 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
304 sc->sc_soft_running = 0;
305 #else
306 sc->sc_softintr_cookie =
307 softintr_establish(IPL_SOFTSERIAL, clmpcc_softintr, sc);
308 #ifdef DEBUG
309 if (sc->sc_softintr_cookie == NULL)
310 panic("clmpcc_attach: softintr_establish");
311 #endif
312 #endif
313 memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
314
315 for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
316 ch = &sc->sc_chans[chan];
317
318 ch->ch_sc = sc;
319 ch->ch_car = chan;
320
321 tp = ttymalloc();
322 tp->t_oproc = clmpcc_start;
323 tp->t_param = clmpcc_param;
324
325 ch->ch_tty = tp;
326
327 ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
328 if ( ch->ch_ibuf == NULL ) {
329 printf("%s(%d): unable to allocate ring buffer\n",
330 sc->sc_dev.dv_xname, chan);
331 return;
332 }
333
334 ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
335 ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
336
337 tty_attach(tp);
338 }
339
340 printf("%s: %d channels available", sc->sc_dev.dv_xname,
341 CLMPCC_NUM_CHANS);
342 if ( cons_sc == sc ) {
343 printf(", console on channel %d.\n", cons_chan);
344 SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
345 SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
346 } else
347 printf(".\n");
348 }
349
350 static int
351 clmpcc_init(sc)
352 struct clmpcc_softc *sc;
353 {
354 u_int tcor, tbpr;
355 u_int rcor, rbpr;
356 u_int msvr_rts, msvr_dtr;
357 u_int ccr;
358 int is_console;
359 int i;
360
361 /*
362 * All we're really concerned about here is putting the chip
363 * into a quiescent state so that it won't do anything until
364 * clmpccopen() is called. (Except the console channel.)
365 */
366
367 /*
368 * If the chip is acting as console, set all channels to the supplied
369 * console baud rate. Otherwise, plump for 9600.
370 */
371 if ( cons_sc &&
372 sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
373 clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
374 clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
375 is_console = 1;
376 } else {
377 clmpcc_speed(sc, 9600, &tcor, &tbpr);
378 clmpcc_speed(sc, 9600, &rcor, &rbpr);
379 is_console = 0;
380 }
381
382 /* Allow any pending output to be sent */
383 delay(10000);
384
385 /* Send the Reset All command to channel 0 (resets all channels!) */
386 clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
387
388 delay(1000);
389
390 /*
391 * The chip will set it's firmware revision register to a non-zero
392 * value to indicate completion of reset.
393 */
394 for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
395 delay(1);
396
397 if ( i == 0 ) {
398 /*
399 * Watch out... If this chip is console, the message
400 * probably won't be sent since we just reset it!
401 */
402 printf("%s: Failed to reset chip\n", sc->sc_dev.dv_xname);
403 return -1;
404 }
405
406 for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
407 clmpcc_select_channel(sc, i);
408
409 /* All interrupts are disabled to begin with */
410 clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
411
412 /* Make sure the channel interrupts on the correct vectors */
413 clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
414 clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
415 clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
416 clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
417
418 /* Receive timer prescaler set to 1ms */
419 clmpcc_wrreg(sc, CLMPCC_REG_TPR,
420 CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
421
422 /* We support Async mode only */
423 clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
424
425 /* Set the required baud rate */
426 clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
427 clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
428 clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
429 clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
430
431 /* Always default to 8N1 (XXX what about console?) */
432 clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
433 CLMPCC_COR1_NO_PARITY |
434 CLMPCC_COR1_IGNORE_PAR);
435
436 clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
437
438 clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
439
440 clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
441 CLMPCC_COR4_CDzd |
442 CLMPCC_COR4_CTSzd);
443
444 clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
445 CLMPCC_COR5_CDod |
446 CLMPCC_COR5_CTSod |
447 CLMPCC_COR5_FLOW_NORM);
448
449 clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
450 clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
451
452 /* Set the receive FIFO timeout */
453 clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
454 clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
455
456 /* At this point, we set up the console differently */
457 if ( is_console && i == cons_chan ) {
458 msvr_rts = CLMPCC_MSVR_RTS;
459 msvr_dtr = CLMPCC_MSVR_DTR;
460 ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
461 } else {
462 msvr_rts = 0;
463 msvr_dtr = 0;
464 ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
465 }
466
467 clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
468 clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
469 clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
470 delay(100);
471 }
472
473 return 0;
474 }
475
476 static void
477 clmpcc_shutdown(ch)
478 struct clmpcc_chan *ch;
479 {
480 int oldch;
481
482 oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
483
484 /* Turn off interrupts. */
485 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
486
487 if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
488 /* Disable the transmitter and receiver */
489 clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
490 CLMPCC_CCR_T0_TX_DIS);
491
492 /* Drop RTS and DTR */
493 clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
494 }
495
496 clmpcc_select_channel(ch->ch_sc, oldch);
497 }
498
499 int
500 clmpccopen(devvp, flag, mode, p)
501 struct vnode *devvp;
502 int flag, mode;
503 struct proc *p;
504 {
505 dev_t dev;
506 struct clmpcc_softc *sc;
507 struct clmpcc_chan *ch;
508 struct tty *tp;
509 int oldch;
510 int error;
511
512 dev = vdev_rdev(devvp);
513 sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
514 if (sc == NULL)
515 return (ENXIO);
516
517 ch = &sc->sc_chans[CLMPCCCHAN(dev)];
518
519 tp = ch->ch_tty;
520
521 if ( ISSET(tp->t_state, TS_ISOPEN) &&
522 ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
523 return EBUSY;
524
525 /*
526 * Do the following iff this is a first open.
527 */
528 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
529
530 ttychars(tp);
531
532 tp->t_devvp = devvp;
533 tp->t_iflag = TTYDEF_IFLAG;
534 tp->t_oflag = TTYDEF_OFLAG;
535 tp->t_lflag = TTYDEF_LFLAG;
536 tp->t_cflag = TTYDEF_CFLAG;
537 tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
538
539 if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
540 SET(tp->t_cflag, CLOCAL);
541 if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
542 SET(tp->t_cflag, CRTSCTS);
543 if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
544 SET(tp->t_cflag, MDMBUF);
545
546 /*
547 * Override some settings if the channel is being
548 * used as the console.
549 */
550 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
551 tp->t_ospeed = tp->t_ispeed = cons_rate;
552 SET(tp->t_cflag, CLOCAL);
553 CLR(tp->t_cflag, CRTSCTS);
554 CLR(tp->t_cflag, HUPCL);
555 }
556
557 ch->ch_control = 0;
558
559 clmpcc_param(tp, &tp->t_termios);
560 ttsetwater(tp);
561
562 /* Clear the input ring */
563 ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
564
565 /* Select the channel */
566 oldch = clmpcc_select_channel(sc, ch->ch_car);
567
568 /* Reset it */
569 clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
570 CLMPCC_CCR_T0_RX_EN |
571 CLMPCC_CCR_T0_TX_EN);
572
573 /* Enable receiver and modem change interrupts. */
574 clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
575 CLMPCC_IER_RET |
576 CLMPCC_IER_RX_FIFO);
577
578 /* Raise RTS and DTR */
579 clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
580
581 clmpcc_select_channel(sc, oldch);
582 } else
583 if ( ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
584 return EBUSY;
585
586 error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
587 if (error)
588 goto bad;
589
590 error = (*tp->t_linesw->l_open)(devvp, tp);
591 if (error)
592 goto bad;
593
594 return 0;
595
596 bad:
597 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
598 /*
599 * We failed to open the device, and nobody else had it opened.
600 * Clean up the state as appropriate.
601 */
602 clmpcc_shutdown(ch);
603 }
604
605 return error;
606 }
607
608 int
609 clmpccclose(devvp, flag, mode, p)
610 struct vnode *devvp;
611 int flag, mode;
612 struct proc *p;
613 {
614 dev_t dev = vdev_rdev(devvp);
615 struct clmpcc_softc *sc =
616 device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
617 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
618 struct tty *tp = ch->ch_tty;
619 int s;
620
621 if ( ISCLR(tp->t_state, TS_ISOPEN) )
622 return 0;
623
624 (*tp->t_linesw->l_close)(tp, flag);
625
626 s = spltty();
627
628 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
629 /*
630 * Although we got a last close, the device may still be in
631 * use; e.g. if this was the dialout node, and there are still
632 * processes waiting for carrier on the non-dialout node.
633 */
634 clmpcc_shutdown(ch);
635 }
636
637 ttyclose(tp);
638
639 splx(s);
640
641 return 0;
642 }
643
644 int
645 clmpccread(devvp, uio, flag)
646 struct vnode *devvp;
647 struct uio *uio;
648 int flag;
649 {
650 dev_t dev = vdev_rdev(devvp);
651 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
652 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
653
654 return ((*tp->t_linesw->l_read)(tp, uio, flag));
655 }
656
657 int
658 clmpccwrite(devvp, uio, flag)
659 struct vnode *devvp;
660 struct uio *uio;
661 int flag;
662 {
663 dev_t dev = vdev_rdev(devvp);
664 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
665 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
666
667 return ((*tp->t_linesw->l_write)(tp, uio, flag));
668 }
669
670 int
671 clmpccpoll(devvp, events, p)
672 struct vnode *devvp;
673 int events;
674 struct proc *p;
675 {
676 dev_t dev = vdev_rdev(devvp);
677 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
678 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
679
680 return ((*tp->t_linesw->l_poll)(tp, events, p));
681 }
682
683 struct tty *
684 clmpcctty(devvp)
685 struct vnode *devvp;
686 {
687 dev_t dev = vdev_rdev(devvp);
688 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
689
690 return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
691 }
692
693 int
694 clmpccioctl(devvp, cmd, data, flag, p)
695 struct vnode *devvp;
696 u_long cmd;
697 caddr_t data;
698 int flag;
699 struct proc *p;
700 {
701 dev_t dev = vdev_rdev(devvp);
702 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
703 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
704 struct tty *tp = ch->ch_tty;
705 int error;
706
707 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
708 if (error >= 0)
709 return error;
710
711 error = ttioctl(tp, cmd, data, flag, p);
712 if (error >= 0)
713 return error;
714
715 error = 0;
716
717 switch (cmd) {
718 case TIOCSBRK:
719 SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
720 clmpcc_enable_transmitter(ch);
721 break;
722
723 case TIOCCBRK:
724 SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
725 clmpcc_enable_transmitter(ch);
726 break;
727
728 case TIOCSDTR:
729 clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
730 break;
731
732 case TIOCCDTR:
733 clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
734 break;
735
736 case TIOCMSET:
737 clmpcc_modem_control(ch, *((int *)data), DMSET);
738 break;
739
740 case TIOCMBIS:
741 clmpcc_modem_control(ch, *((int *)data), DMBIS);
742 break;
743
744 case TIOCMBIC:
745 clmpcc_modem_control(ch, *((int *)data), DMBIC);
746 break;
747
748 case TIOCMGET:
749 *((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
750 break;
751
752 case TIOCGFLAGS:
753 *((int *)data) = ch->ch_openflags;
754 break;
755
756 case TIOCSFLAGS:
757 error = suser(p->p_ucred, &p->p_acflag);
758 if ( error )
759 break;
760 ch->ch_openflags = *((int *)data) &
761 (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
762 TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
763 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
764 SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
765 break;
766
767 default:
768 error = ENOTTY;
769 break;
770 }
771
772 return error;
773 }
774
775 int
776 clmpcc_modem_control(ch, bits, howto)
777 struct clmpcc_chan *ch;
778 int bits;
779 int howto;
780 {
781 struct clmpcc_softc *sc = ch->ch_sc;
782 struct tty *tp = ch->ch_tty;
783 int oldch;
784 int msvr;
785 int rbits = 0;
786
787 oldch = clmpcc_select_channel(sc, ch->ch_car);
788
789 switch ( howto ) {
790 case DMGET:
791 msvr = clmpcc_rd_msvr(sc);
792
793 if ( sc->sc_swaprtsdtr ) {
794 rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
795 rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
796 } else {
797 rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
798 rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
799 }
800
801 rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
802 rbits |= (msvr & CLMPCC_MSVR_CD) ? TIOCM_CD : 0;
803 rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
804 break;
805
806 case DMSET:
807 if ( sc->sc_swaprtsdtr ) {
808 if ( ISCLR(tp->t_cflag, CRTSCTS) )
809 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
810 bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
811 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
812 bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
813 } else {
814 if ( ISCLR(tp->t_cflag, CRTSCTS) )
815 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
816 bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
817 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
818 bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
819 }
820 break;
821
822 case DMBIS:
823 if ( sc->sc_swaprtsdtr ) {
824 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
825 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
826 if ( ISSET(bits, TIOCM_DTR) )
827 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
828 } else {
829 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
830 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
831 if ( ISSET(bits, TIOCM_DTR) )
832 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
833 }
834 break;
835
836 case DMBIC:
837 if ( sc->sc_swaprtsdtr ) {
838 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
839 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
840 if ( ISCLR(bits, TIOCM_DTR) )
841 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
842 } else {
843 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
844 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
845 if ( ISCLR(bits, TIOCM_DTR) )
846 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
847 }
848 break;
849 }
850
851 clmpcc_select_channel(sc, oldch);
852
853 return rbits;
854 }
855
856 static int
857 clmpcc_param(tp, t)
858 struct tty *tp;
859 struct termios *t;
860 {
861 dev_t dev = vdev_rdev(tp->t_devvp);
862 struct clmpcc_softc *sc =
863 device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
864 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
865 u_char cor;
866 u_char oldch;
867 int oclk, obpr;
868 int iclk, ibpr;
869 int s;
870
871 /* Check requested parameters. */
872 if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
873 return EINVAL;
874
875 if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
876 return EINVAL;
877
878 /*
879 * For the console, always force CLOCAL and !HUPCL, so that the port
880 * is always active.
881 */
882 if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
883 ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
884 SET(t->c_cflag, CLOCAL);
885 CLR(t->c_cflag, HUPCL);
886 }
887
888 CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
889
890 /* If ospeed it zero, hangup the line */
891 clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
892
893 if ( t->c_ospeed ) {
894 ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
895 ch->ch_tbpr = obpr;
896 } else {
897 ch->ch_tcor = 0;
898 ch->ch_tbpr = 0;
899 }
900
901 if ( t->c_ispeed ) {
902 ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
903 ch->ch_rbpr = ibpr;
904 } else {
905 ch->ch_rcor = 0;
906 ch->ch_rbpr = 0;
907 }
908
909 /* Work out value to use for COR1 */
910 cor = 0;
911 if ( ISSET(t->c_cflag, PARENB) ) {
912 cor |= CLMPCC_COR1_NORM_PARITY;
913 if ( ISSET(t->c_cflag, PARODD) )
914 cor |= CLMPCC_COR1_ODD_PARITY;
915 }
916
917 if ( ISCLR(t->c_cflag, INPCK) )
918 cor |= CLMPCC_COR1_IGNORE_PAR;
919
920 switch ( t->c_cflag & CSIZE ) {
921 case CS5:
922 cor |= CLMPCC_COR1_CHAR_5BITS;
923 break;
924
925 case CS6:
926 cor |= CLMPCC_COR1_CHAR_6BITS;
927 break;
928
929 case CS7:
930 cor |= CLMPCC_COR1_CHAR_7BITS;
931 break;
932
933 case CS8:
934 cor |= CLMPCC_COR1_CHAR_8BITS;
935 break;
936 }
937
938 ch->ch_cor1 = cor;
939
940 /*
941 * The only interesting bit in COR2 is 'CTS Automatic Enable'
942 * when hardware flow control is in effect.
943 */
944 ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
945
946 /* COR3 needs to be set to the number of stop bits... */
947 ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
948 CLMPCC_COR3_STOP_1;
949
950 /*
951 * COR4 contains the FIFO threshold setting.
952 * We adjust the threshold depending on the input speed...
953 */
954 if ( t->c_ispeed <= 1200 )
955 ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
956 else if ( t->c_ispeed <= 19200 )
957 ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
958 else
959 ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
960
961 /*
962 * If chip is used with CTS and DTR swapped, we can enable
963 * automatic hardware flow control.
964 */
965 if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
966 ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
967 else
968 ch->ch_cor5 = 0;
969
970 s = splserial();
971 oldch = clmpcc_select_channel(sc, ch->ch_car);
972
973 /*
974 * COR2 needs to be set immediately otherwise we might never get
975 * a Tx EMPTY interrupt to change the other parameters.
976 */
977 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
978 clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
979
980 if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
981 clmpcc_set_params(ch);
982 else
983 SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
984
985 clmpcc_select_channel(sc, oldch);
986
987 splx(s);
988
989 return 0;
990 }
991
992 static void
993 clmpcc_set_params(ch)
994 struct clmpcc_chan *ch;
995 {
996 struct clmpcc_softc *sc = ch->ch_sc;
997 u_char r1;
998 u_char r2;
999
1000 if ( ch->ch_tcor || ch->ch_tbpr ) {
1001 r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
1002 r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
1003 /* Only write Tx rate if it really has changed */
1004 if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
1005 clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
1006 clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
1007 }
1008 }
1009
1010 if ( ch->ch_rcor || ch->ch_rbpr ) {
1011 r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
1012 r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
1013 /* Only write Rx rate if it really has changed */
1014 if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
1015 clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
1016 clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
1017 }
1018 }
1019
1020 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
1021 clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
1022 /* Any change to COR1 requires an INIT command */
1023 SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1024 }
1025
1026 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
1027 clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
1028
1029 r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1030 if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
1031 /*
1032 * Note: If the FIFO has changed, we always set it to
1033 * zero here and disable the Receive Timeout interrupt.
1034 * It's up to the Rx Interrupt handler to pick the
1035 * appropriate moment to write the new FIFO length.
1036 */
1037 clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
1038 r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1039 clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
1040 SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1041 }
1042
1043 r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
1044 if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
1045 r1 &= ~CLMPCC_COR5_FLOW_MASK;
1046 clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
1047 }
1048 }
1049
1050 static void
1051 clmpcc_start(tp)
1052 struct tty *tp;
1053 {
1054 dev_t dev = vdev_rdev(tp->t_devvp);
1055 struct clmpcc_softc *sc =
1056 device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
1057 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
1058 u_int oldch;
1059 int s;
1060
1061 s = spltty();
1062
1063 if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1064 if ( tp->t_outq.c_cc <= tp->t_lowat ) {
1065 if ( ISSET(tp->t_state, TS_ASLEEP) ) {
1066 CLR(tp->t_state, TS_ASLEEP);
1067 wakeup(&tp->t_outq);
1068 }
1069 selwakeup(&tp->t_wsel);
1070 }
1071
1072 if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1073 CLMPCC_FLG_END_BREAK) ||
1074 tp->t_outq.c_cc > 0 ) {
1075
1076 if ( ISCLR(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1077 CLMPCC_FLG_END_BREAK) ) {
1078 ch->ch_obuf_addr = tp->t_outq.c_cf;
1079 ch->ch_obuf_size = ndqb(&tp->t_outq, 0);
1080 }
1081
1082 /* Enable TX empty interrupts */
1083 oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
1084 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1085 clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) |
1086 CLMPCC_IER_TX_EMPTY);
1087 clmpcc_select_channel(ch->ch_sc, oldch);
1088 SET(tp->t_state, TS_BUSY);
1089 }
1090 }
1091
1092 splx(s);
1093 }
1094
1095 /*
1096 * Stop output on a line.
1097 */
1098 void
1099 clmpccstop(tp, flag)
1100 struct tty *tp;
1101 int flag;
1102 {
1103 dev_t dev = vdev_rdev(tp->t_devvp);
1104 struct clmpcc_softc *sc =
1105 device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
1106 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
1107 int s;
1108
1109 s = splserial();
1110
1111 if ( ISSET(tp->t_state, TS_BUSY) ) {
1112 if ( ISCLR(tp->t_state, TS_TTSTOP) )
1113 SET(tp->t_state, TS_FLUSH);
1114 ch->ch_obuf_size = 0;
1115 }
1116 splx(s);
1117 }
1118
1119 /*
1120 * RX interrupt routine
1121 */
1122 int
1123 clmpcc_rxintr(arg)
1124 void *arg;
1125 {
1126 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1127 struct clmpcc_chan *ch;
1128 u_int8_t *put, *end, rxd;
1129 u_char errstat;
1130 u_char fc, tc;
1131 u_char risr;
1132 u_char rir;
1133 #ifdef DDB
1134 int saw_break = 0;
1135 #endif
1136
1137 /* Receive interrupt active? */
1138 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1139
1140 /*
1141 * If we're using auto-vectored interrupts, we have to
1142 * verify if the chip is generating the interrupt.
1143 */
1144 if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1145 return 0;
1146
1147 /* Get pointer to interrupting channel's data structure */
1148 ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1149
1150 /* Get the interrupt status register */
1151 risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1152 if ( risr & CLMPCC_RISR_TIMEOUT ) {
1153 u_char reg;
1154 /*
1155 * Set the FIFO threshold to zero, and disable
1156 * further receive timeout interrupts.
1157 */
1158 reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1159 clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & ~CLMPCC_COR4_FIFO_MASK);
1160 reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1161 clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1162 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1163 SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1164 return 1;
1165 }
1166
1167 /* How many bytes are waiting in the FIFO? */
1168 fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1169
1170 #ifdef DDB
1171 /*
1172 * Allow BREAK on the console to drop to the debugger.
1173 */
1174 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1175 risr & CLMPCC_RISR_BREAK ) {
1176 saw_break = 1;
1177 }
1178 #endif
1179
1180 if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1181 /* Just get rid of the data */
1182 while ( fc-- )
1183 (void) clmpcc_rd_rxdata(sc);
1184 goto rx_done;
1185 }
1186
1187 put = ch->ch_ibuf_wr;
1188 end = ch->ch_ibuf_end;
1189
1190 /*
1191 * Note: The chip is completely hosed WRT these error
1192 * conditions; there seems to be no way to associate
1193 * the error with the correct character in the FIFO.
1194 * We compromise by tagging the first character we read
1195 * with the error. Not perfect, but there's no other way.
1196 */
1197 errstat = 0;
1198 if ( risr & CLMPCC_RISR_PARITY )
1199 errstat |= TTY_PE;
1200 if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1201 errstat |= TTY_FE;
1202
1203 /*
1204 * As long as there are characters in the FIFO, and we
1205 * have space for them...
1206 */
1207 while ( fc > 0 ) {
1208
1209 *put++ = rxd = clmpcc_rd_rxdata(sc);
1210 *put++ = errstat;
1211
1212 if ( put >= end )
1213 put = ch->ch_ibuf;
1214
1215 if ( put == ch->ch_ibuf_rd ) {
1216 put -= 2;
1217 if ( put < ch->ch_ibuf )
1218 put = end - 2;
1219 }
1220
1221 errstat = 0;
1222 fc--;
1223 }
1224
1225 ch->ch_ibuf_wr = put;
1226
1227 #if 0
1228 if ( sc->sc_swaprtsdtr == 0 &&
1229 ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1230 /*
1231 * If RTS/DTR are not physically swapped, we have to
1232 * do hardware flow control manually
1233 */
1234 clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1235 }
1236 #endif
1237
1238 rx_done:
1239 if ( fc != tc ) {
1240 if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1241 u_char reg;
1242 /*
1243 * Set the FIFO threshold to the preset value,
1244 * and enable receive timeout interrupts.
1245 */
1246 reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1247 reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1248 clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1249 reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1250 clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1251 CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1252 }
1253
1254 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1255 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1256 if ( sc->sc_soft_running == 0 ) {
1257 sc->sc_soft_running = 1;
1258 (sc->sc_softhook)(sc);
1259 }
1260 #else
1261 softintr_schedule(sc->sc_softintr_cookie);
1262 #endif
1263 } else
1264 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1265
1266 #ifdef DDB
1267 /*
1268 * Only =after= we write REOIR is it safe to drop to the debugger.
1269 */
1270 if ( saw_break )
1271 Debugger();
1272 #endif
1273
1274 return 1;
1275 }
1276
1277 /*
1278 * Tx interrupt routine
1279 */
1280 int
1281 clmpcc_txintr(arg)
1282 void *arg;
1283 {
1284 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1285 struct clmpcc_chan *ch;
1286 struct tty *tp;
1287 u_char ftc, oftc;
1288 u_char tir, teoir;
1289 int etcmode = 0;
1290
1291 /* Tx interrupt active? */
1292 tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1293
1294 /*
1295 * If we're using auto-vectored interrupts, we have to
1296 * verify if the chip is generating the interrupt.
1297 */
1298 if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1299 return 0;
1300
1301 /* Get pointer to interrupting channel's data structure */
1302 ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1303 tp = ch->ch_tty;
1304
1305 /* Dummy read of the interrupt status register */
1306 (void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1307
1308 /* Make sure embedded transmit commands are disabled */
1309 clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
1310
1311 ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1312
1313 /* Handle a delayed parameter change */
1314 if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1315 CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1316 clmpcc_set_params(ch);
1317 }
1318
1319 if ( ch->ch_obuf_size > 0 ) {
1320 u_int n = min(ch->ch_obuf_size, ftc);
1321
1322 clmpcc_wrtx_multi(sc, ch->ch_obuf_addr, n);
1323
1324 ftc -= n;
1325 ch->ch_obuf_size -= n;
1326 ch->ch_obuf_addr += n;
1327
1328 } else {
1329 /*
1330 * Check if we should start/stop a break
1331 */
1332 if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1333 CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1334 /* Enable embedded transmit commands */
1335 clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1336 ch->ch_cor2 | CLMPCC_COR2_ETC);
1337 clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1338 clmpcc_wr_txdata(sc, CLMPCC_ETC_SEND_BREAK);
1339 ftc -= 2;
1340 etcmode = 1;
1341 }
1342
1343 if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1344 CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1345 /* Enable embedded transmit commands */
1346 clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1347 ch->ch_cor2 | CLMPCC_COR2_ETC);
1348 clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1349 clmpcc_wr_txdata(sc, CLMPCC_ETC_STOP_BREAK);
1350 ftc -= 2;
1351 etcmode = 1;
1352 }
1353 }
1354
1355 tir = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1356
1357 if ( ftc != oftc ) {
1358 /*
1359 * Enable/disable the Tx FIFO threshold interrupt
1360 * according to how much data is in the FIFO.
1361 * However, always disable the FIFO threshold if
1362 * we've left the channel in 'Embedded Transmit
1363 * Command' mode.
1364 */
1365 if ( etcmode || ftc >= ch->ch_cor4 )
1366 tir &= ~CLMPCC_IER_TX_FIFO;
1367 else
1368 tir |= CLMPCC_IER_TX_FIFO;
1369 teoir = 0;
1370 } else {
1371 /*
1372 * No data was sent.
1373 * Disable transmit interrupt.
1374 */
1375 tir &= ~(CLMPCC_IER_TX_EMPTY|CLMPCC_IER_TX_FIFO);
1376 teoir = CLMPCC_TEOIR_NO_TRANS;
1377
1378 /*
1379 * Request Tx processing in the soft interrupt handler
1380 */
1381 ch->ch_tx_done = 1;
1382 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1383 if ( sc->sc_soft_running == 0 ) {
1384 sc->sc_soft_running = 1;
1385 (sc->sc_softhook)(sc);
1386 }
1387 #else
1388 softintr_schedule(sc->sc_softintr_cookie);
1389 #endif
1390 }
1391
1392 clmpcc_wrreg(sc, CLMPCC_REG_IER, tir);
1393 clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, teoir);
1394
1395 return 1;
1396 }
1397
1398 /*
1399 * Modem change interrupt routine
1400 */
1401 int
1402 clmpcc_mdintr(arg)
1403 void *arg;
1404 {
1405 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1406 u_char mir;
1407
1408 /* Modem status interrupt active? */
1409 mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1410
1411 /*
1412 * If we're using auto-vectored interrupts, we have to
1413 * verify if the chip is generating the interrupt.
1414 */
1415 if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1416 return 0;
1417
1418 /* Dummy read of the interrupt status register */
1419 (void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1420
1421 /* Retrieve current status of modem lines. */
1422 sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1423 clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1424
1425 clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1426
1427 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1428 if ( sc->sc_soft_running == 0 ) {
1429 sc->sc_soft_running = 1;
1430 (sc->sc_softhook)(sc);
1431 }
1432 #else
1433 softintr_schedule(sc->sc_softintr_cookie);
1434 #endif
1435
1436 return 1;
1437 }
1438
1439 void
1440 clmpcc_softintr(arg)
1441 void *arg;
1442 {
1443 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1444 struct clmpcc_chan *ch;
1445 struct tty *tp;
1446 int (*rint) __P((int, struct tty *));
1447 u_char *get;
1448 u_char reg;
1449 u_int c;
1450 int chan;
1451
1452 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1453 sc->sc_soft_running = 0;
1454 #endif
1455
1456 /* Handle Modem state changes too... */
1457
1458 for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1459 ch = &sc->sc_chans[chan];
1460 tp = ch->ch_tty;
1461
1462 get = ch->ch_ibuf_rd;
1463 rint = tp->t_linesw->l_rint;
1464
1465 /* Squirt buffered incoming data into the tty layer */
1466 while ( get != ch->ch_ibuf_wr ) {
1467 c = get[0];
1468 c |= ((u_int)get[1]) << 8;
1469 if ( (rint)(c, tp) == -1 ) {
1470 ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1471 break;
1472 }
1473
1474 get += 2;
1475 if ( get == ch->ch_ibuf_end )
1476 get = ch->ch_ibuf;
1477
1478 ch->ch_ibuf_rd = get;
1479 }
1480
1481 /*
1482 * Is the transmitter idle and in need of attention?
1483 */
1484 if ( ch->ch_tx_done ) {
1485 ch->ch_tx_done = 0;
1486
1487 if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1488 clmpcc_channel_cmd(sc, ch->ch_car,
1489 CLMPCC_CCR_T0_INIT |
1490 CLMPCC_CCR_T0_RX_EN |
1491 CLMPCC_CCR_T0_TX_EN);
1492 CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1493
1494 /*
1495 * Allow time for the channel to initialise.
1496 * (Empirically derived duration; there must
1497 * be another way to determine the command
1498 * has completed without busy-waiting...)
1499 */
1500 delay(800);
1501
1502 /*
1503 * Update the tty layer's idea of the carrier
1504 * bit, in case we changed CLOCAL or MDMBUF.
1505 * We don't hang up here; we only do that by
1506 * explicit request.
1507 */
1508 reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1509 (*tp->t_linesw->l_modem)(tp, reg != 0);
1510 }
1511
1512 CLR(tp->t_state, TS_BUSY);
1513 if ( ISSET(tp->t_state, TS_FLUSH) )
1514 CLR(tp->t_state, TS_FLUSH);
1515 else
1516 ndflush(&tp->t_outq,
1517 (int)(ch->ch_obuf_addr - tp->t_outq.c_cf));
1518
1519 (*tp->t_linesw->l_start)(tp);
1520 }
1521 }
1522 }
1523
1524
1525 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1526 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1527 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1528 /*
1529 * Following are all routines needed for a cd240x channel to act as console
1530 */
1531 int
1532 clmpcc_cnattach(sc, chan, rate)
1533 struct clmpcc_softc *sc;
1534 int chan;
1535 int rate;
1536 {
1537 cons_sc = sc;
1538 cons_chan = chan;
1539 cons_rate = rate;
1540
1541 return (clmpcc_init(sc));
1542 }
1543
1544 /*
1545 * The following functions are polled getc and putc routines, for console use.
1546 */
1547 static int
1548 clmpcc_common_getc(sc, chan)
1549 struct clmpcc_softc *sc;
1550 int chan;
1551 {
1552 u_char old_chan;
1553 u_char old_ier;
1554 u_char ch, rir, risr;
1555 int s;
1556
1557 s = splhigh();
1558
1559 /* Save the currently active channel */
1560 old_chan = clmpcc_select_channel(sc, chan);
1561
1562 /*
1563 * We have to put the channel into RX interrupt mode before
1564 * trying to read the Rx data register. So save the previous
1565 * interrupt mode.
1566 */
1567 old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1568 clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1569
1570 /* Loop until we get a character */
1571 for (;;) {
1572 /*
1573 * The REN bit will be set in the Receive Interrupt Register
1574 * when the CD240x has a character to process. Remember,
1575 * the RACT bit won't be set until we generate an interrupt
1576 * acknowledge cycle via the MD front-end.
1577 */
1578 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1579 if ( (rir & CLMPCC_RIR_REN) == 0 )
1580 continue;
1581
1582 /* Acknowledge the request */
1583 if ( sc->sc_iackhook )
1584 (sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1585
1586 /*
1587 * Determine if the interrupt is for the required channel
1588 * and if valid data is available.
1589 */
1590 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1591 risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1592 if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1593 risr != 0 ) {
1594 /* Rx error, or BREAK */
1595 clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1596 CLMPCC_REOIR_NO_TRANS);
1597 } else {
1598 /* Dummy read of the FIFO count register */
1599 (void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1600
1601 /* Fetch the received character */
1602 ch = clmpcc_rd_rxdata(sc);
1603
1604 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1605 break;
1606 }
1607 }
1608
1609 /* Restore the original IER and CAR register contents */
1610 clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1611 clmpcc_select_channel(sc, old_chan);
1612
1613 splx(s);
1614 return ch;
1615 }
1616
1617
1618 static void
1619 clmpcc_common_putc(sc, chan, c)
1620 struct clmpcc_softc *sc;
1621 int chan;
1622 int c;
1623 {
1624 u_char old_chan;
1625 int s = splhigh();
1626
1627 /* Save the currently active channel */
1628 old_chan = clmpcc_select_channel(sc, chan);
1629
1630 /*
1631 * Since we can only access the Tx Data register from within
1632 * the interrupt handler, the easiest way to get console data
1633 * onto the wire is using one of the Special Transmit Character
1634 * registers.
1635 */
1636 clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1637 clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1638 CLMPCC_STCR_SND_SPC);
1639
1640 /* Wait until the "Send Special Character" command is accepted */
1641 while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1642 ;
1643
1644 /* Restore the previous channel selected */
1645 clmpcc_select_channel(sc, old_chan);
1646
1647 splx(s);
1648 }
1649
1650 int
1651 clmpcccngetc(dev)
1652 dev_t dev;
1653 {
1654 return clmpcc_common_getc(cons_sc, cons_chan);
1655 }
1656
1657 /*
1658 * Console kernel output character routine.
1659 */
1660 void
1661 clmpcccnputc(dev, c)
1662 dev_t dev;
1663 int c;
1664 {
1665 if ( c == '\n' )
1666 clmpcc_common_putc(cons_sc, cons_chan, '\r');
1667
1668 clmpcc_common_putc(cons_sc, cons_chan, c);
1669 }
1670