clmpcc.c revision 1.26 1 /* $NetBSD: clmpcc.c,v 1.26 2005/12/11 12:21:26 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Steve C. Woodford.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: clmpcc.c,v 1.26 2005/12/11 12:21:26 christos Exp $");
45
46 #include "opt_ddb.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/ioctl.h>
51 #include <sys/select.h>
52 #include <sys/tty.h>
53 #include <sys/proc.h>
54 #include <sys/user.h>
55 #include <sys/conf.h>
56 #include <sys/file.h>
57 #include <sys/uio.h>
58 #include <sys/kernel.h>
59 #include <sys/syslog.h>
60 #include <sys/device.h>
61 #include <sys/malloc.h>
62
63 #include <machine/bus.h>
64 #include <machine/intr.h>
65 #include <machine/param.h>
66
67 #include <dev/ic/clmpccreg.h>
68 #include <dev/ic/clmpccvar.h>
69 #include <dev/cons.h>
70
71
72 #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
73 #error "CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
74 #endif
75
76
77 static int clmpcc_init(struct clmpcc_softc *sc);
78 static void clmpcc_shutdown(struct clmpcc_chan *);
79 static int clmpcc_speed(struct clmpcc_softc *, speed_t, int *, int *);
80 static int clmpcc_param(struct tty *, struct termios *);
81 static void clmpcc_set_params(struct clmpcc_chan *);
82 static void clmpcc_start(struct tty *);
83 static int clmpcc_modem_control(struct clmpcc_chan *, int, int);
84
85 #define CLMPCCUNIT(x) (minor(x) & 0x7fffc)
86 #define CLMPCCCHAN(x) (minor(x) & 0x00003)
87 #define CLMPCCDIALOUT(x) (minor(x) & 0x80000)
88
89 /*
90 * These should be in a header file somewhere...
91 */
92 #define ISSET(v, f) (((v) & (f)) != 0)
93 #define ISCLR(v, f) (((v) & (f)) == 0)
94 #define SET(v, f) (v) |= (f)
95 #define CLR(v, f) (v) &= ~(f)
96
97
98 extern struct cfdriver clmpcc_cd;
99
100 dev_type_open(clmpccopen);
101 dev_type_close(clmpccclose);
102 dev_type_read(clmpccread);
103 dev_type_write(clmpccwrite);
104 dev_type_ioctl(clmpccioctl);
105 dev_type_stop(clmpccstop);
106 dev_type_tty(clmpcctty);
107 dev_type_poll(clmpccpoll);
108
109 const struct cdevsw clmpcc_cdevsw = {
110 clmpccopen, clmpccclose, clmpccread, clmpccwrite, clmpccioctl,
111 clmpccstop, clmpcctty, clmpccpoll, nommap, ttykqfilter, D_TTY
112 };
113
114 /*
115 * Make this an option variable one can patch.
116 */
117 u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
118
119
120 /*
121 * Things needed when the device is used as a console
122 */
123 static struct clmpcc_softc *cons_sc = NULL;
124 static int cons_chan;
125 static int cons_rate;
126
127 static int clmpcc_common_getc(struct clmpcc_softc *, int);
128 static void clmpcc_common_putc(struct clmpcc_softc *, int, int);
129 int clmpcccngetc(dev_t);
130 void clmpcccnputc(dev_t, int);
131
132
133 /*
134 * Convenience functions, inlined for speed
135 */
136 #define integrate static inline
137 integrate u_int8_t clmpcc_rdreg(struct clmpcc_softc *, u_int);
138 integrate void clmpcc_wrreg(struct clmpcc_softc *, u_int, u_int);
139 integrate u_int8_t clmpcc_rdreg_odd(struct clmpcc_softc *, u_int);
140 integrate void clmpcc_wrreg_odd(struct clmpcc_softc *, u_int, u_int);
141 integrate void clmpcc_wrtx_multi(struct clmpcc_softc *, u_int8_t *,
142 u_int);
143 integrate u_int8_t clmpcc_select_channel(struct clmpcc_softc *, u_int);
144 integrate void clmpcc_channel_cmd(struct clmpcc_softc *,int,int);
145 integrate void clmpcc_enable_transmitter(struct clmpcc_chan *);
146
147 #define clmpcc_rd_msvr(s) clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
148 #define clmpcc_wr_msvr(s,r,v) clmpcc_wrreg_odd(s,r,v)
149 #define clmpcc_wr_pilr(s,r,v) clmpcc_wrreg_odd(s,r,v)
150 #define clmpcc_rd_rxdata(s) clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
151 #define clmpcc_wr_txdata(s,v) clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
152
153
154 integrate u_int8_t
155 clmpcc_rdreg(sc, offset)
156 struct clmpcc_softc *sc;
157 u_int offset;
158 {
159 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
160 offset ^= sc->sc_byteswap;
161 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
162 offset ^= CLMPCC_BYTESWAP_HIGH;
163 #endif
164 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
165 }
166
167 integrate void
168 clmpcc_wrreg(sc, offset, val)
169 struct clmpcc_softc *sc;
170 u_int offset;
171 u_int val;
172 {
173 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
174 offset ^= sc->sc_byteswap;
175 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
176 offset ^= CLMPCC_BYTESWAP_HIGH;
177 #endif
178 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
179 }
180
181 integrate u_int8_t
182 clmpcc_rdreg_odd(sc, offset)
183 struct clmpcc_softc *sc;
184 u_int offset;
185 {
186 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
187 offset ^= (sc->sc_byteswap & 2);
188 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
189 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
190 #endif
191 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
192 }
193
194 integrate void
195 clmpcc_wrreg_odd(sc, offset, val)
196 struct clmpcc_softc *sc;
197 u_int offset;
198 u_int val;
199 {
200 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
201 offset ^= (sc->sc_byteswap & 2);
202 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
203 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
204 #endif
205 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
206 }
207
208 integrate void
209 clmpcc_wrtx_multi(sc, buff, count)
210 struct clmpcc_softc *sc;
211 u_int8_t *buff;
212 u_int count;
213 {
214 u_int offset = CLMPCC_REG_TDR;
215
216 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
217 offset ^= (sc->sc_byteswap & 2);
218 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
219 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
220 #endif
221 bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, offset, buff, count);
222 }
223
224 integrate u_int8_t
225 clmpcc_select_channel(sc, new_chan)
226 struct clmpcc_softc *sc;
227 u_int new_chan;
228 {
229 u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
230
231 clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
232
233 return old_chan;
234 }
235
236 integrate void
237 clmpcc_channel_cmd(sc, chan, cmd)
238 struct clmpcc_softc *sc;
239 int chan;
240 int cmd;
241 {
242 int i;
243
244 for (i = 5000; i; i--) {
245 if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
246 break;
247 delay(1);
248 }
249
250 if ( i == 0 )
251 printf("%s: channel %d command timeout (idle)\n",
252 sc->sc_dev.dv_xname, chan);
253
254 clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
255 }
256
257 integrate void
258 clmpcc_enable_transmitter(ch)
259 struct clmpcc_chan *ch;
260 {
261 u_int old;
262 int s;
263
264 old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
265
266 s = splserial();
267 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
268 clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
269 SET(ch->ch_tty->t_state, TS_BUSY);
270 splx(s);
271
272 clmpcc_select_channel(ch->ch_sc, old);
273 }
274
275 static int
276 clmpcc_speed(sc, speed, cor, bpr)
277 struct clmpcc_softc *sc;
278 speed_t speed;
279 int *cor, *bpr;
280 {
281 int c, co, br;
282
283 for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
284 br = ((sc->sc_clk / c) / speed) - 1;
285 if ( br < 0x100 ) {
286 *cor = co;
287 *bpr = br;
288 return 0;
289 }
290 }
291
292 return -1;
293 }
294
295 void
296 clmpcc_attach(sc)
297 struct clmpcc_softc *sc;
298 {
299 struct clmpcc_chan *ch;
300 struct tty *tp;
301 int chan;
302
303 if ( cons_sc != NULL &&
304 sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
305 cons_sc = sc;
306
307 /* Initialise the chip */
308 clmpcc_init(sc);
309
310 printf(": Cirrus Logic CD240%c Serial Controller\n",
311 (clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
312
313 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
314 sc->sc_soft_running = 0;
315 #else
316 sc->sc_softintr_cookie =
317 softintr_establish(IPL_SOFTSERIAL, clmpcc_softintr, sc);
318 #ifdef DEBUG
319 if (sc->sc_softintr_cookie == NULL)
320 panic("clmpcc_attach: softintr_establish");
321 #endif
322 #endif
323 memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
324
325 for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
326 ch = &sc->sc_chans[chan];
327
328 ch->ch_sc = sc;
329 ch->ch_car = chan;
330
331 tp = ttymalloc();
332 tp->t_oproc = clmpcc_start;
333 tp->t_param = clmpcc_param;
334
335 ch->ch_tty = tp;
336
337 ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
338 if ( ch->ch_ibuf == NULL ) {
339 printf("%s(%d): unable to allocate ring buffer\n",
340 sc->sc_dev.dv_xname, chan);
341 return;
342 }
343
344 ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
345 ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
346
347 tty_attach(tp);
348 }
349
350 printf("%s: %d channels available", sc->sc_dev.dv_xname,
351 CLMPCC_NUM_CHANS);
352 if ( cons_sc == sc ) {
353 printf(", console on channel %d.\n", cons_chan);
354 SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
355 SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
356 } else
357 printf(".\n");
358 }
359
360 static int
361 clmpcc_init(sc)
362 struct clmpcc_softc *sc;
363 {
364 u_int tcor, tbpr;
365 u_int rcor, rbpr;
366 u_int msvr_rts, msvr_dtr;
367 u_int ccr;
368 int is_console;
369 int i;
370
371 /*
372 * All we're really concerned about here is putting the chip
373 * into a quiescent state so that it won't do anything until
374 * clmpccopen() is called. (Except the console channel.)
375 */
376
377 /*
378 * If the chip is acting as console, set all channels to the supplied
379 * console baud rate. Otherwise, plump for 9600.
380 */
381 if ( cons_sc &&
382 sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
383 clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
384 clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
385 is_console = 1;
386 } else {
387 clmpcc_speed(sc, 9600, &tcor, &tbpr);
388 clmpcc_speed(sc, 9600, &rcor, &rbpr);
389 is_console = 0;
390 }
391
392 /* Allow any pending output to be sent */
393 delay(10000);
394
395 /* Send the Reset All command to channel 0 (resets all channels!) */
396 clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
397
398 delay(1000);
399
400 /*
401 * The chip will set it's firmware revision register to a non-zero
402 * value to indicate completion of reset.
403 */
404 for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
405 delay(1);
406
407 if ( i == 0 ) {
408 /*
409 * Watch out... If this chip is console, the message
410 * probably won't be sent since we just reset it!
411 */
412 printf("%s: Failed to reset chip\n", sc->sc_dev.dv_xname);
413 return -1;
414 }
415
416 for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
417 clmpcc_select_channel(sc, i);
418
419 /* All interrupts are disabled to begin with */
420 clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
421
422 /* Make sure the channel interrupts on the correct vectors */
423 clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
424 clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
425 clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
426 clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
427
428 /* Receive timer prescaler set to 1ms */
429 clmpcc_wrreg(sc, CLMPCC_REG_TPR,
430 CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
431
432 /* We support Async mode only */
433 clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
434
435 /* Set the required baud rate */
436 clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
437 clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
438 clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
439 clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
440
441 /* Always default to 8N1 (XXX what about console?) */
442 clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
443 CLMPCC_COR1_NO_PARITY |
444 CLMPCC_COR1_IGNORE_PAR);
445
446 clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
447
448 clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
449
450 clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
451 CLMPCC_COR4_CDzd |
452 CLMPCC_COR4_CTSzd);
453
454 clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
455 CLMPCC_COR5_CDod |
456 CLMPCC_COR5_CTSod |
457 CLMPCC_COR5_FLOW_NORM);
458
459 clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
460 clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
461
462 /* Set the receive FIFO timeout */
463 clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
464 clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
465
466 /* At this point, we set up the console differently */
467 if ( is_console && i == cons_chan ) {
468 msvr_rts = CLMPCC_MSVR_RTS;
469 msvr_dtr = CLMPCC_MSVR_DTR;
470 ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
471 } else {
472 msvr_rts = 0;
473 msvr_dtr = 0;
474 ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
475 }
476
477 clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
478 clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
479 clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
480 delay(100);
481 }
482
483 return 0;
484 }
485
486 static void
487 clmpcc_shutdown(ch)
488 struct clmpcc_chan *ch;
489 {
490 int oldch;
491
492 oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
493
494 /* Turn off interrupts. */
495 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
496
497 if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
498 /* Disable the transmitter and receiver */
499 clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
500 CLMPCC_CCR_T0_TX_DIS);
501
502 /* Drop RTS and DTR */
503 clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
504 }
505
506 clmpcc_select_channel(ch->ch_sc, oldch);
507 }
508
509 int
510 clmpccopen(dev, flag, mode, l)
511 dev_t dev;
512 int flag, mode;
513 struct lwp *l;
514 {
515 struct clmpcc_softc *sc;
516 struct clmpcc_chan *ch;
517 struct tty *tp;
518 int oldch;
519 int error;
520
521 sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
522 if (sc == NULL)
523 return (ENXIO);
524
525 ch = &sc->sc_chans[CLMPCCCHAN(dev)];
526
527 tp = ch->ch_tty;
528
529 if ( ISSET(tp->t_state, TS_ISOPEN) &&
530 ISSET(tp->t_state, TS_XCLUDE) &&
531 suser(l->l_proc->p_ucred, &l->l_proc->p_acflag) != 0 )
532 return EBUSY;
533
534 /*
535 * Do the following iff this is a first open.
536 */
537 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
538
539 ttychars(tp);
540
541 tp->t_dev = dev;
542 tp->t_iflag = TTYDEF_IFLAG;
543 tp->t_oflag = TTYDEF_OFLAG;
544 tp->t_lflag = TTYDEF_LFLAG;
545 tp->t_cflag = TTYDEF_CFLAG;
546 tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
547
548 if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
549 SET(tp->t_cflag, CLOCAL);
550 if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
551 SET(tp->t_cflag, CRTSCTS);
552 if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
553 SET(tp->t_cflag, MDMBUF);
554
555 /*
556 * Override some settings if the channel is being
557 * used as the console.
558 */
559 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
560 tp->t_ospeed = tp->t_ispeed = cons_rate;
561 SET(tp->t_cflag, CLOCAL);
562 CLR(tp->t_cflag, CRTSCTS);
563 CLR(tp->t_cflag, HUPCL);
564 }
565
566 ch->ch_control = 0;
567
568 clmpcc_param(tp, &tp->t_termios);
569 ttsetwater(tp);
570
571 /* Clear the input ring */
572 ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
573
574 /* Select the channel */
575 oldch = clmpcc_select_channel(sc, ch->ch_car);
576
577 /* Reset it */
578 clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
579 CLMPCC_CCR_T0_RX_EN |
580 CLMPCC_CCR_T0_TX_EN);
581
582 /* Enable receiver and modem change interrupts. */
583 clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
584 CLMPCC_IER_RET |
585 CLMPCC_IER_RX_FIFO);
586
587 /* Raise RTS and DTR */
588 clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
589
590 clmpcc_select_channel(sc, oldch);
591 }
592
593 error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
594 if (error)
595 goto bad;
596
597 error = (*tp->t_linesw->l_open)(dev, tp);
598 if (error)
599 goto bad;
600
601 return 0;
602
603 bad:
604 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
605 /*
606 * We failed to open the device, and nobody else had it opened.
607 * Clean up the state as appropriate.
608 */
609 clmpcc_shutdown(ch);
610 }
611
612 return error;
613 }
614
615 int
616 clmpccclose(dev, flag, mode, l)
617 dev_t dev;
618 int flag, mode;
619 struct lwp *l;
620 {
621 struct clmpcc_softc *sc =
622 device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
623 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
624 struct tty *tp = ch->ch_tty;
625 int s;
626
627 if ( ISCLR(tp->t_state, TS_ISOPEN) )
628 return 0;
629
630 (*tp->t_linesw->l_close)(tp, flag);
631
632 s = spltty();
633
634 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
635 /*
636 * Although we got a last close, the device may still be in
637 * use; e.g. if this was the dialout node, and there are still
638 * processes waiting for carrier on the non-dialout node.
639 */
640 clmpcc_shutdown(ch);
641 }
642
643 ttyclose(tp);
644
645 splx(s);
646
647 return 0;
648 }
649
650 int
651 clmpccread(dev, uio, flag)
652 dev_t dev;
653 struct uio *uio;
654 int flag;
655 {
656 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
657 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
658
659 return ((*tp->t_linesw->l_read)(tp, uio, flag));
660 }
661
662 int
663 clmpccwrite(dev, uio, flag)
664 dev_t dev;
665 struct uio *uio;
666 int flag;
667 {
668 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
669 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
670
671 return ((*tp->t_linesw->l_write)(tp, uio, flag));
672 }
673
674 int
675 clmpccpoll(dev, events, l)
676 dev_t dev;
677 int events;
678 struct lwp *l;
679 {
680 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
681 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
682
683 return ((*tp->t_linesw->l_poll)(tp, events, l));
684 }
685
686 struct tty *
687 clmpcctty(dev)
688 dev_t dev;
689 {
690 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
691
692 return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
693 }
694
695 int
696 clmpccioctl(dev, cmd, data, flag, l)
697 dev_t dev;
698 u_long cmd;
699 caddr_t data;
700 int flag;
701 struct lwp *l;
702 {
703 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
704 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
705 struct tty *tp = ch->ch_tty;
706 int error;
707
708 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
709 if (error != EPASSTHROUGH)
710 return error;
711
712 error = ttioctl(tp, cmd, data, flag, l);
713 if (error != EPASSTHROUGH)
714 return error;
715
716 error = 0;
717
718 switch (cmd) {
719 case TIOCSBRK:
720 SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
721 clmpcc_enable_transmitter(ch);
722 break;
723
724 case TIOCCBRK:
725 SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
726 clmpcc_enable_transmitter(ch);
727 break;
728
729 case TIOCSDTR:
730 clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
731 break;
732
733 case TIOCCDTR:
734 clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
735 break;
736
737 case TIOCMSET:
738 clmpcc_modem_control(ch, *((int *)data), DMSET);
739 break;
740
741 case TIOCMBIS:
742 clmpcc_modem_control(ch, *((int *)data), DMBIS);
743 break;
744
745 case TIOCMBIC:
746 clmpcc_modem_control(ch, *((int *)data), DMBIC);
747 break;
748
749 case TIOCMGET:
750 *((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
751 break;
752
753 case TIOCGFLAGS:
754 *((int *)data) = ch->ch_openflags;
755 break;
756
757 case TIOCSFLAGS:
758 error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag);
759 if ( error )
760 break;
761 ch->ch_openflags = *((int *)data) &
762 (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
763 TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
764 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
765 SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
766 break;
767
768 default:
769 error = EPASSTHROUGH;
770 break;
771 }
772
773 return error;
774 }
775
776 int
777 clmpcc_modem_control(ch, bits, howto)
778 struct clmpcc_chan *ch;
779 int bits;
780 int howto;
781 {
782 struct clmpcc_softc *sc = ch->ch_sc;
783 struct tty *tp = ch->ch_tty;
784 int oldch;
785 int msvr;
786 int rbits = 0;
787
788 oldch = clmpcc_select_channel(sc, ch->ch_car);
789
790 switch ( howto ) {
791 case DMGET:
792 msvr = clmpcc_rd_msvr(sc);
793
794 if ( sc->sc_swaprtsdtr ) {
795 rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
796 rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
797 } else {
798 rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
799 rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
800 }
801
802 rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
803 rbits |= (msvr & CLMPCC_MSVR_CD) ? TIOCM_CD : 0;
804 rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
805 break;
806
807 case DMSET:
808 if ( sc->sc_swaprtsdtr ) {
809 if ( ISCLR(tp->t_cflag, CRTSCTS) )
810 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
811 bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
812 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
813 bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
814 } else {
815 if ( ISCLR(tp->t_cflag, CRTSCTS) )
816 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
817 bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
818 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
819 bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
820 }
821 break;
822
823 case DMBIS:
824 if ( sc->sc_swaprtsdtr ) {
825 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
826 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
827 if ( ISSET(bits, TIOCM_DTR) )
828 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
829 } else {
830 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
831 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
832 if ( ISSET(bits, TIOCM_DTR) )
833 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
834 }
835 break;
836
837 case DMBIC:
838 if ( sc->sc_swaprtsdtr ) {
839 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
840 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
841 if ( ISCLR(bits, TIOCM_DTR) )
842 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
843 } else {
844 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
845 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
846 if ( ISCLR(bits, TIOCM_DTR) )
847 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
848 }
849 break;
850 }
851
852 clmpcc_select_channel(sc, oldch);
853
854 return rbits;
855 }
856
857 static int
858 clmpcc_param(tp, t)
859 struct tty *tp;
860 struct termios *t;
861 {
862 struct clmpcc_softc *sc =
863 device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
864 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
865 u_char cor;
866 u_char oldch;
867 int oclk, obpr;
868 int iclk, ibpr;
869 int s;
870
871 /* Check requested parameters. */
872 if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
873 return EINVAL;
874
875 if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
876 return EINVAL;
877
878 /*
879 * For the console, always force CLOCAL and !HUPCL, so that the port
880 * is always active.
881 */
882 if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
883 ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
884 SET(t->c_cflag, CLOCAL);
885 CLR(t->c_cflag, HUPCL);
886 }
887
888 CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
889
890 /* If ospeed it zero, hangup the line */
891 clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
892
893 if ( t->c_ospeed ) {
894 ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
895 ch->ch_tbpr = obpr;
896 } else {
897 ch->ch_tcor = 0;
898 ch->ch_tbpr = 0;
899 }
900
901 if ( t->c_ispeed ) {
902 ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
903 ch->ch_rbpr = ibpr;
904 } else {
905 ch->ch_rcor = 0;
906 ch->ch_rbpr = 0;
907 }
908
909 /* Work out value to use for COR1 */
910 cor = 0;
911 if ( ISSET(t->c_cflag, PARENB) ) {
912 cor |= CLMPCC_COR1_NORM_PARITY;
913 if ( ISSET(t->c_cflag, PARODD) )
914 cor |= CLMPCC_COR1_ODD_PARITY;
915 }
916
917 if ( ISCLR(t->c_cflag, INPCK) )
918 cor |= CLMPCC_COR1_IGNORE_PAR;
919
920 switch ( t->c_cflag & CSIZE ) {
921 case CS5:
922 cor |= CLMPCC_COR1_CHAR_5BITS;
923 break;
924
925 case CS6:
926 cor |= CLMPCC_COR1_CHAR_6BITS;
927 break;
928
929 case CS7:
930 cor |= CLMPCC_COR1_CHAR_7BITS;
931 break;
932
933 case CS8:
934 cor |= CLMPCC_COR1_CHAR_8BITS;
935 break;
936 }
937
938 ch->ch_cor1 = cor;
939
940 /*
941 * The only interesting bit in COR2 is 'CTS Automatic Enable'
942 * when hardware flow control is in effect.
943 */
944 ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
945
946 /* COR3 needs to be set to the number of stop bits... */
947 ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
948 CLMPCC_COR3_STOP_1;
949
950 /*
951 * COR4 contains the FIFO threshold setting.
952 * We adjust the threshold depending on the input speed...
953 */
954 if ( t->c_ispeed <= 1200 )
955 ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
956 else if ( t->c_ispeed <= 19200 )
957 ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
958 else
959 ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
960
961 /*
962 * If chip is used with CTS and DTR swapped, we can enable
963 * automatic hardware flow control.
964 */
965 if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
966 ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
967 else
968 ch->ch_cor5 = 0;
969
970 s = splserial();
971 oldch = clmpcc_select_channel(sc, ch->ch_car);
972
973 /*
974 * COR2 needs to be set immediately otherwise we might never get
975 * a Tx EMPTY interrupt to change the other parameters.
976 */
977 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
978 clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
979
980 if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
981 clmpcc_set_params(ch);
982 else
983 SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
984
985 clmpcc_select_channel(sc, oldch);
986
987 splx(s);
988
989 return 0;
990 }
991
992 static void
993 clmpcc_set_params(ch)
994 struct clmpcc_chan *ch;
995 {
996 struct clmpcc_softc *sc = ch->ch_sc;
997 u_char r1;
998 u_char r2;
999
1000 if ( ch->ch_tcor || ch->ch_tbpr ) {
1001 r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
1002 r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
1003 /* Only write Tx rate if it really has changed */
1004 if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
1005 clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
1006 clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
1007 }
1008 }
1009
1010 if ( ch->ch_rcor || ch->ch_rbpr ) {
1011 r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
1012 r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
1013 /* Only write Rx rate if it really has changed */
1014 if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
1015 clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
1016 clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
1017 }
1018 }
1019
1020 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
1021 clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
1022 /* Any change to COR1 requires an INIT command */
1023 SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1024 }
1025
1026 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
1027 clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
1028
1029 r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1030 if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
1031 /*
1032 * Note: If the FIFO has changed, we always set it to
1033 * zero here and disable the Receive Timeout interrupt.
1034 * It's up to the Rx Interrupt handler to pick the
1035 * appropriate moment to write the new FIFO length.
1036 */
1037 clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
1038 r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1039 clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
1040 SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1041 }
1042
1043 r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
1044 if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
1045 r1 &= ~CLMPCC_COR5_FLOW_MASK;
1046 clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
1047 }
1048 }
1049
1050 static void
1051 clmpcc_start(tp)
1052 struct tty *tp;
1053 {
1054 struct clmpcc_softc *sc =
1055 device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1056 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1057 u_int oldch;
1058 int s;
1059
1060 s = spltty();
1061
1062 if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1063 if ( tp->t_outq.c_cc <= tp->t_lowat ) {
1064 if ( ISSET(tp->t_state, TS_ASLEEP) ) {
1065 CLR(tp->t_state, TS_ASLEEP);
1066 wakeup(&tp->t_outq);
1067 }
1068 selwakeup(&tp->t_wsel);
1069 }
1070
1071 if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1072 CLMPCC_FLG_END_BREAK) ||
1073 tp->t_outq.c_cc > 0 ) {
1074
1075 if ( ISCLR(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1076 CLMPCC_FLG_END_BREAK) ) {
1077 ch->ch_obuf_addr = tp->t_outq.c_cf;
1078 ch->ch_obuf_size = ndqb(&tp->t_outq, 0);
1079 }
1080
1081 /* Enable TX empty interrupts */
1082 oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
1083 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1084 clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) |
1085 CLMPCC_IER_TX_EMPTY);
1086 clmpcc_select_channel(ch->ch_sc, oldch);
1087 SET(tp->t_state, TS_BUSY);
1088 }
1089 }
1090
1091 splx(s);
1092 }
1093
1094 /*
1095 * Stop output on a line.
1096 */
1097 void
1098 clmpccstop(tp, flag)
1099 struct tty *tp;
1100 int flag;
1101 {
1102 struct clmpcc_softc *sc =
1103 device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1104 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1105 int s;
1106
1107 s = splserial();
1108
1109 if ( ISSET(tp->t_state, TS_BUSY) ) {
1110 if ( ISCLR(tp->t_state, TS_TTSTOP) )
1111 SET(tp->t_state, TS_FLUSH);
1112 ch->ch_obuf_size = 0;
1113 }
1114 splx(s);
1115 }
1116
1117 /*
1118 * RX interrupt routine
1119 */
1120 int
1121 clmpcc_rxintr(arg)
1122 void *arg;
1123 {
1124 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1125 struct clmpcc_chan *ch;
1126 u_int8_t *put, *end, rxd;
1127 u_char errstat;
1128 u_char fc, tc;
1129 u_char risr;
1130 u_char rir;
1131 #ifdef DDB
1132 int saw_break = 0;
1133 #endif
1134
1135 /* Receive interrupt active? */
1136 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1137
1138 /*
1139 * If we're using auto-vectored interrupts, we have to
1140 * verify if the chip is generating the interrupt.
1141 */
1142 if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1143 return 0;
1144
1145 /* Get pointer to interrupting channel's data structure */
1146 ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1147
1148 /* Get the interrupt status register */
1149 risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1150 if ( risr & CLMPCC_RISR_TIMEOUT ) {
1151 u_char reg;
1152 /*
1153 * Set the FIFO threshold to zero, and disable
1154 * further receive timeout interrupts.
1155 */
1156 reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1157 clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & ~CLMPCC_COR4_FIFO_MASK);
1158 reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1159 clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1160 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1161 SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1162 return 1;
1163 }
1164
1165 /* How many bytes are waiting in the FIFO? */
1166 fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1167
1168 #ifdef DDB
1169 /*
1170 * Allow BREAK on the console to drop to the debugger.
1171 */
1172 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1173 risr & CLMPCC_RISR_BREAK ) {
1174 saw_break = 1;
1175 }
1176 #endif
1177
1178 if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1179 /* Just get rid of the data */
1180 while ( fc-- )
1181 (void) clmpcc_rd_rxdata(sc);
1182 goto rx_done;
1183 }
1184
1185 put = ch->ch_ibuf_wr;
1186 end = ch->ch_ibuf_end;
1187
1188 /*
1189 * Note: The chip is completely hosed WRT these error
1190 * conditions; there seems to be no way to associate
1191 * the error with the correct character in the FIFO.
1192 * We compromise by tagging the first character we read
1193 * with the error. Not perfect, but there's no other way.
1194 */
1195 errstat = 0;
1196 if ( risr & CLMPCC_RISR_PARITY )
1197 errstat |= TTY_PE;
1198 if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1199 errstat |= TTY_FE;
1200
1201 /*
1202 * As long as there are characters in the FIFO, and we
1203 * have space for them...
1204 */
1205 while ( fc > 0 ) {
1206
1207 *put++ = rxd = clmpcc_rd_rxdata(sc);
1208 *put++ = errstat;
1209
1210 if ( put >= end )
1211 put = ch->ch_ibuf;
1212
1213 if ( put == ch->ch_ibuf_rd ) {
1214 put -= 2;
1215 if ( put < ch->ch_ibuf )
1216 put = end - 2;
1217 }
1218
1219 errstat = 0;
1220 fc--;
1221 }
1222
1223 ch->ch_ibuf_wr = put;
1224
1225 #if 0
1226 if ( sc->sc_swaprtsdtr == 0 &&
1227 ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1228 /*
1229 * If RTS/DTR are not physically swapped, we have to
1230 * do hardware flow control manually
1231 */
1232 clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1233 }
1234 #endif
1235
1236 rx_done:
1237 if ( fc != tc ) {
1238 if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1239 u_char reg;
1240 /*
1241 * Set the FIFO threshold to the preset value,
1242 * and enable receive timeout interrupts.
1243 */
1244 reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1245 reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1246 clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1247 reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1248 clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1249 CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1250 }
1251
1252 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1253 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1254 if ( sc->sc_soft_running == 0 ) {
1255 sc->sc_soft_running = 1;
1256 (sc->sc_softhook)(sc);
1257 }
1258 #else
1259 softintr_schedule(sc->sc_softintr_cookie);
1260 #endif
1261 } else
1262 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1263
1264 #ifdef DDB
1265 /*
1266 * Only =after= we write REOIR is it safe to drop to the debugger.
1267 */
1268 if ( saw_break )
1269 Debugger();
1270 #endif
1271
1272 return 1;
1273 }
1274
1275 /*
1276 * Tx interrupt routine
1277 */
1278 int
1279 clmpcc_txintr(arg)
1280 void *arg;
1281 {
1282 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1283 struct clmpcc_chan *ch;
1284 struct tty *tp;
1285 u_char ftc, oftc;
1286 u_char tir, teoir;
1287 int etcmode = 0;
1288
1289 /* Tx interrupt active? */
1290 tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1291
1292 /*
1293 * If we're using auto-vectored interrupts, we have to
1294 * verify if the chip is generating the interrupt.
1295 */
1296 if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1297 return 0;
1298
1299 /* Get pointer to interrupting channel's data structure */
1300 ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1301 tp = ch->ch_tty;
1302
1303 /* Dummy read of the interrupt status register */
1304 (void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1305
1306 /* Make sure embedded transmit commands are disabled */
1307 clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
1308
1309 ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1310
1311 /* Handle a delayed parameter change */
1312 if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1313 CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1314 clmpcc_set_params(ch);
1315 }
1316
1317 if ( ch->ch_obuf_size > 0 ) {
1318 u_int n = min(ch->ch_obuf_size, ftc);
1319
1320 clmpcc_wrtx_multi(sc, ch->ch_obuf_addr, n);
1321
1322 ftc -= n;
1323 ch->ch_obuf_size -= n;
1324 ch->ch_obuf_addr += n;
1325
1326 } else {
1327 /*
1328 * Check if we should start/stop a break
1329 */
1330 if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1331 CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1332 /* Enable embedded transmit commands */
1333 clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1334 ch->ch_cor2 | CLMPCC_COR2_ETC);
1335 clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1336 clmpcc_wr_txdata(sc, CLMPCC_ETC_SEND_BREAK);
1337 ftc -= 2;
1338 etcmode = 1;
1339 }
1340
1341 if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1342 CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1343 /* Enable embedded transmit commands */
1344 clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1345 ch->ch_cor2 | CLMPCC_COR2_ETC);
1346 clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1347 clmpcc_wr_txdata(sc, CLMPCC_ETC_STOP_BREAK);
1348 ftc -= 2;
1349 etcmode = 1;
1350 }
1351 }
1352
1353 tir = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1354
1355 if ( ftc != oftc ) {
1356 /*
1357 * Enable/disable the Tx FIFO threshold interrupt
1358 * according to how much data is in the FIFO.
1359 * However, always disable the FIFO threshold if
1360 * we've left the channel in 'Embedded Transmit
1361 * Command' mode.
1362 */
1363 if ( etcmode || ftc >= ch->ch_cor4 )
1364 tir &= ~CLMPCC_IER_TX_FIFO;
1365 else
1366 tir |= CLMPCC_IER_TX_FIFO;
1367 teoir = 0;
1368 } else {
1369 /*
1370 * No data was sent.
1371 * Disable transmit interrupt.
1372 */
1373 tir &= ~(CLMPCC_IER_TX_EMPTY|CLMPCC_IER_TX_FIFO);
1374 teoir = CLMPCC_TEOIR_NO_TRANS;
1375
1376 /*
1377 * Request Tx processing in the soft interrupt handler
1378 */
1379 ch->ch_tx_done = 1;
1380 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1381 if ( sc->sc_soft_running == 0 ) {
1382 sc->sc_soft_running = 1;
1383 (sc->sc_softhook)(sc);
1384 }
1385 #else
1386 softintr_schedule(sc->sc_softintr_cookie);
1387 #endif
1388 }
1389
1390 clmpcc_wrreg(sc, CLMPCC_REG_IER, tir);
1391 clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, teoir);
1392
1393 return 1;
1394 }
1395
1396 /*
1397 * Modem change interrupt routine
1398 */
1399 int
1400 clmpcc_mdintr(arg)
1401 void *arg;
1402 {
1403 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1404 u_char mir;
1405
1406 /* Modem status interrupt active? */
1407 mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1408
1409 /*
1410 * If we're using auto-vectored interrupts, we have to
1411 * verify if the chip is generating the interrupt.
1412 */
1413 if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1414 return 0;
1415
1416 /* Dummy read of the interrupt status register */
1417 (void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1418
1419 /* Retrieve current status of modem lines. */
1420 sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1421 clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1422
1423 clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1424
1425 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1426 if ( sc->sc_soft_running == 0 ) {
1427 sc->sc_soft_running = 1;
1428 (sc->sc_softhook)(sc);
1429 }
1430 #else
1431 softintr_schedule(sc->sc_softintr_cookie);
1432 #endif
1433
1434 return 1;
1435 }
1436
1437 void
1438 clmpcc_softintr(arg)
1439 void *arg;
1440 {
1441 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1442 struct clmpcc_chan *ch;
1443 struct tty *tp;
1444 int (*rint)(int, struct tty *);
1445 u_char *get;
1446 u_char reg;
1447 u_int c;
1448 int chan;
1449
1450 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1451 sc->sc_soft_running = 0;
1452 #endif
1453
1454 /* Handle Modem state changes too... */
1455
1456 for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1457 ch = &sc->sc_chans[chan];
1458 tp = ch->ch_tty;
1459
1460 get = ch->ch_ibuf_rd;
1461 rint = tp->t_linesw->l_rint;
1462
1463 /* Squirt buffered incoming data into the tty layer */
1464 while ( get != ch->ch_ibuf_wr ) {
1465 c = get[0];
1466 c |= ((u_int)get[1]) << 8;
1467 if ( (rint)(c, tp) == -1 ) {
1468 ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1469 break;
1470 }
1471
1472 get += 2;
1473 if ( get == ch->ch_ibuf_end )
1474 get = ch->ch_ibuf;
1475
1476 ch->ch_ibuf_rd = get;
1477 }
1478
1479 /*
1480 * Is the transmitter idle and in need of attention?
1481 */
1482 if ( ch->ch_tx_done ) {
1483 ch->ch_tx_done = 0;
1484
1485 if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1486 clmpcc_channel_cmd(sc, ch->ch_car,
1487 CLMPCC_CCR_T0_INIT |
1488 CLMPCC_CCR_T0_RX_EN |
1489 CLMPCC_CCR_T0_TX_EN);
1490 CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1491
1492 /*
1493 * Allow time for the channel to initialise.
1494 * (Empirically derived duration; there must
1495 * be another way to determine the command
1496 * has completed without busy-waiting...)
1497 */
1498 delay(800);
1499
1500 /*
1501 * Update the tty layer's idea of the carrier
1502 * bit, in case we changed CLOCAL or MDMBUF.
1503 * We don't hang up here; we only do that by
1504 * explicit request.
1505 */
1506 reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1507 (*tp->t_linesw->l_modem)(tp, reg != 0);
1508 }
1509
1510 CLR(tp->t_state, TS_BUSY);
1511 if ( ISSET(tp->t_state, TS_FLUSH) )
1512 CLR(tp->t_state, TS_FLUSH);
1513 else
1514 ndflush(&tp->t_outq,
1515 (int)(ch->ch_obuf_addr - tp->t_outq.c_cf));
1516
1517 (*tp->t_linesw->l_start)(tp);
1518 }
1519 }
1520 }
1521
1522
1523 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1524 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1525 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1526 /*
1527 * Following are all routines needed for a cd240x channel to act as console
1528 */
1529 int
1530 clmpcc_cnattach(sc, chan, rate)
1531 struct clmpcc_softc *sc;
1532 int chan;
1533 int rate;
1534 {
1535 cons_sc = sc;
1536 cons_chan = chan;
1537 cons_rate = rate;
1538
1539 return (clmpcc_init(sc));
1540 }
1541
1542 /*
1543 * The following functions are polled getc and putc routines, for console use.
1544 */
1545 static int
1546 clmpcc_common_getc(sc, chan)
1547 struct clmpcc_softc *sc;
1548 int chan;
1549 {
1550 u_char old_chan;
1551 u_char old_ier;
1552 u_char ch, rir, risr;
1553 int s;
1554
1555 s = splhigh();
1556
1557 /* Save the currently active channel */
1558 old_chan = clmpcc_select_channel(sc, chan);
1559
1560 /*
1561 * We have to put the channel into RX interrupt mode before
1562 * trying to read the Rx data register. So save the previous
1563 * interrupt mode.
1564 */
1565 old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1566 clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1567
1568 /* Loop until we get a character */
1569 for (;;) {
1570 /*
1571 * The REN bit will be set in the Receive Interrupt Register
1572 * when the CD240x has a character to process. Remember,
1573 * the RACT bit won't be set until we generate an interrupt
1574 * acknowledge cycle via the MD front-end.
1575 */
1576 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1577 if ( (rir & CLMPCC_RIR_REN) == 0 )
1578 continue;
1579
1580 /* Acknowledge the request */
1581 if ( sc->sc_iackhook )
1582 (sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1583
1584 /*
1585 * Determine if the interrupt is for the required channel
1586 * and if valid data is available.
1587 */
1588 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1589 risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1590 if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1591 risr != 0 ) {
1592 /* Rx error, or BREAK */
1593 clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1594 CLMPCC_REOIR_NO_TRANS);
1595 } else {
1596 /* Dummy read of the FIFO count register */
1597 (void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1598
1599 /* Fetch the received character */
1600 ch = clmpcc_rd_rxdata(sc);
1601
1602 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1603 break;
1604 }
1605 }
1606
1607 /* Restore the original IER and CAR register contents */
1608 clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1609 clmpcc_select_channel(sc, old_chan);
1610
1611 splx(s);
1612 return ch;
1613 }
1614
1615
1616 static void
1617 clmpcc_common_putc(sc, chan, c)
1618 struct clmpcc_softc *sc;
1619 int chan;
1620 int c;
1621 {
1622 u_char old_chan;
1623 int s = splhigh();
1624
1625 /* Save the currently active channel */
1626 old_chan = clmpcc_select_channel(sc, chan);
1627
1628 /*
1629 * Since we can only access the Tx Data register from within
1630 * the interrupt handler, the easiest way to get console data
1631 * onto the wire is using one of the Special Transmit Character
1632 * registers.
1633 */
1634 clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1635 clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1636 CLMPCC_STCR_SND_SPC);
1637
1638 /* Wait until the "Send Special Character" command is accepted */
1639 while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1640 ;
1641
1642 /* Restore the previous channel selected */
1643 clmpcc_select_channel(sc, old_chan);
1644
1645 splx(s);
1646 }
1647
1648 int
1649 clmpcccngetc(dev)
1650 dev_t dev;
1651 {
1652 return clmpcc_common_getc(cons_sc, cons_chan);
1653 }
1654
1655 /*
1656 * Console kernel output character routine.
1657 */
1658 void
1659 clmpcccnputc(dev, c)
1660 dev_t dev;
1661 int c;
1662 {
1663 if ( c == '\n' )
1664 clmpcc_common_putc(cons_sc, cons_chan, '\r');
1665
1666 clmpcc_common_putc(cons_sc, cons_chan, c);
1667 }
1668