clmpcc.c revision 1.36 1 /* $NetBSD: clmpcc.c,v 1.36 2007/11/19 18:51:47 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Steve C. Woodford.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: clmpcc.c,v 1.36 2007/11/19 18:51:47 ad Exp $");
45
46 #include "opt_ddb.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/ioctl.h>
51 #include <sys/select.h>
52 #include <sys/tty.h>
53 #include <sys/proc.h>
54 #include <sys/user.h>
55 #include <sys/conf.h>
56 #include <sys/file.h>
57 #include <sys/uio.h>
58 #include <sys/kernel.h>
59 #include <sys/syslog.h>
60 #include <sys/device.h>
61 #include <sys/malloc.h>
62 #include <sys/kauth.h>
63 #include <sys/intr.h>
64
65 #include <sys/bus.h>
66 #include <machine/param.h>
67
68 #include <dev/ic/clmpccreg.h>
69 #include <dev/ic/clmpccvar.h>
70 #include <dev/cons.h>
71
72
73 #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
74 #error "CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
75 #endif
76
77
78 static int clmpcc_init(struct clmpcc_softc *sc);
79 static void clmpcc_shutdown(struct clmpcc_chan *);
80 static int clmpcc_speed(struct clmpcc_softc *, speed_t, int *, int *);
81 static int clmpcc_param(struct tty *, struct termios *);
82 static void clmpcc_set_params(struct clmpcc_chan *);
83 static void clmpcc_start(struct tty *);
84 static int clmpcc_modem_control(struct clmpcc_chan *, int, int);
85
86 #define CLMPCCUNIT(x) (minor(x) & 0x7fffc)
87 #define CLMPCCCHAN(x) (minor(x) & 0x00003)
88 #define CLMPCCDIALOUT(x) (minor(x) & 0x80000)
89
90 /*
91 * These should be in a header file somewhere...
92 */
93 #define ISCLR(v, f) (((v) & (f)) == 0)
94
95 extern struct cfdriver clmpcc_cd;
96
97 dev_type_open(clmpccopen);
98 dev_type_close(clmpccclose);
99 dev_type_read(clmpccread);
100 dev_type_write(clmpccwrite);
101 dev_type_ioctl(clmpccioctl);
102 dev_type_stop(clmpccstop);
103 dev_type_tty(clmpcctty);
104 dev_type_poll(clmpccpoll);
105
106 const struct cdevsw clmpcc_cdevsw = {
107 clmpccopen, clmpccclose, clmpccread, clmpccwrite, clmpccioctl,
108 clmpccstop, clmpcctty, clmpccpoll, nommap, ttykqfilter, D_TTY
109 };
110
111 /*
112 * Make this an option variable one can patch.
113 */
114 u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
115
116
117 /*
118 * Things needed when the device is used as a console
119 */
120 static struct clmpcc_softc *cons_sc = NULL;
121 static int cons_chan;
122 static int cons_rate;
123
124 static int clmpcc_common_getc(struct clmpcc_softc *, int);
125 static void clmpcc_common_putc(struct clmpcc_softc *, int, int);
126 int clmpcccngetc(dev_t);
127 void clmpcccnputc(dev_t, int);
128
129
130 /*
131 * Convenience functions, inlined for speed
132 */
133 #define integrate static inline
134 integrate u_int8_t clmpcc_rdreg(struct clmpcc_softc *, u_int);
135 integrate void clmpcc_wrreg(struct clmpcc_softc *, u_int, u_int);
136 integrate u_int8_t clmpcc_rdreg_odd(struct clmpcc_softc *, u_int);
137 integrate void clmpcc_wrreg_odd(struct clmpcc_softc *, u_int, u_int);
138 integrate void clmpcc_wrtx_multi(struct clmpcc_softc *, u_int8_t *,
139 u_int);
140 integrate u_int8_t clmpcc_select_channel(struct clmpcc_softc *, u_int);
141 integrate void clmpcc_channel_cmd(struct clmpcc_softc *,int,int);
142 integrate void clmpcc_enable_transmitter(struct clmpcc_chan *);
143
144 #define clmpcc_rd_msvr(s) clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
145 #define clmpcc_wr_msvr(s,r,v) clmpcc_wrreg_odd(s,r,v)
146 #define clmpcc_wr_pilr(s,r,v) clmpcc_wrreg_odd(s,r,v)
147 #define clmpcc_rd_rxdata(s) clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
148 #define clmpcc_wr_txdata(s,v) clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
149
150
151 integrate u_int8_t
152 clmpcc_rdreg(sc, offset)
153 struct clmpcc_softc *sc;
154 u_int offset;
155 {
156 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
157 offset ^= sc->sc_byteswap;
158 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
159 offset ^= CLMPCC_BYTESWAP_HIGH;
160 #endif
161 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
162 }
163
164 integrate void
165 clmpcc_wrreg(sc, offset, val)
166 struct clmpcc_softc *sc;
167 u_int offset;
168 u_int val;
169 {
170 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
171 offset ^= sc->sc_byteswap;
172 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
173 offset ^= CLMPCC_BYTESWAP_HIGH;
174 #endif
175 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
176 }
177
178 integrate u_int8_t
179 clmpcc_rdreg_odd(sc, offset)
180 struct clmpcc_softc *sc;
181 u_int offset;
182 {
183 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
184 offset ^= (sc->sc_byteswap & 2);
185 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
186 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
187 #endif
188 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
189 }
190
191 integrate void
192 clmpcc_wrreg_odd(sc, offset, val)
193 struct clmpcc_softc *sc;
194 u_int offset;
195 u_int val;
196 {
197 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
198 offset ^= (sc->sc_byteswap & 2);
199 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
200 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
201 #endif
202 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
203 }
204
205 integrate void
206 clmpcc_wrtx_multi(sc, buff, count)
207 struct clmpcc_softc *sc;
208 u_int8_t *buff;
209 u_int count;
210 {
211 u_int offset = CLMPCC_REG_TDR;
212
213 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
214 offset ^= (sc->sc_byteswap & 2);
215 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
216 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
217 #endif
218 bus_space_write_multi_1(sc->sc_iot, sc->sc_ioh, offset, buff, count);
219 }
220
221 integrate u_int8_t
222 clmpcc_select_channel(sc, new_chan)
223 struct clmpcc_softc *sc;
224 u_int new_chan;
225 {
226 u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
227
228 clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
229
230 return old_chan;
231 }
232
233 integrate void
234 clmpcc_channel_cmd(sc, chan, cmd)
235 struct clmpcc_softc *sc;
236 int chan;
237 int cmd;
238 {
239 int i;
240
241 for (i = 5000; i; i--) {
242 if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
243 break;
244 delay(1);
245 }
246
247 if ( i == 0 )
248 printf("%s: channel %d command timeout (idle)\n",
249 sc->sc_dev.dv_xname, chan);
250
251 clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
252 }
253
254 integrate void
255 clmpcc_enable_transmitter(ch)
256 struct clmpcc_chan *ch;
257 {
258 u_int old;
259 int s;
260
261 old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
262
263 s = splserial();
264 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
265 clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
266 SET(ch->ch_tty->t_state, TS_BUSY);
267 splx(s);
268
269 clmpcc_select_channel(ch->ch_sc, old);
270 }
271
272 static int
273 clmpcc_speed(sc, speed, cor, bpr)
274 struct clmpcc_softc *sc;
275 speed_t speed;
276 int *cor, *bpr;
277 {
278 int c, co, br;
279
280 for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
281 br = ((sc->sc_clk / c) / speed) - 1;
282 if ( br < 0x100 ) {
283 *cor = co;
284 *bpr = br;
285 return 0;
286 }
287 }
288
289 return -1;
290 }
291
292 void
293 clmpcc_attach(sc)
294 struct clmpcc_softc *sc;
295 {
296 struct clmpcc_chan *ch;
297 struct tty *tp;
298 int chan;
299
300 if ( cons_sc != NULL &&
301 sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
302 cons_sc = sc;
303
304 /* Initialise the chip */
305 clmpcc_init(sc);
306
307 printf(": Cirrus Logic CD240%c Serial Controller\n",
308 (clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
309
310 sc->sc_softintr_cookie =
311 softint_establish(SOFTINT_SERIAL, clmpcc_softintr, sc);
312 if (sc->sc_softintr_cookie == NULL)
313 panic("clmpcc_attach: softintr_establish");
314 memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
315
316 for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
317 ch = &sc->sc_chans[chan];
318
319 ch->ch_sc = sc;
320 ch->ch_car = chan;
321
322 tp = ttymalloc();
323 tp->t_oproc = clmpcc_start;
324 tp->t_param = clmpcc_param;
325
326 ch->ch_tty = tp;
327
328 ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
329 if ( ch->ch_ibuf == NULL ) {
330 printf("%s(%d): unable to allocate ring buffer\n",
331 sc->sc_dev.dv_xname, chan);
332 return;
333 }
334
335 ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
336 ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
337
338 tty_attach(tp);
339 }
340
341 printf("%s: %d channels available", sc->sc_dev.dv_xname,
342 CLMPCC_NUM_CHANS);
343 if ( cons_sc == sc ) {
344 printf(", console on channel %d.\n", cons_chan);
345 SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
346 SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
347 } else
348 printf(".\n");
349 }
350
351 static int
352 clmpcc_init(sc)
353 struct clmpcc_softc *sc;
354 {
355 u_int tcor, tbpr;
356 u_int rcor, rbpr;
357 u_int msvr_rts, msvr_dtr;
358 u_int ccr;
359 int is_console;
360 int i;
361
362 /*
363 * All we're really concerned about here is putting the chip
364 * into a quiescent state so that it won't do anything until
365 * clmpccopen() is called. (Except the console channel.)
366 */
367
368 /*
369 * If the chip is acting as console, set all channels to the supplied
370 * console baud rate. Otherwise, plump for 9600.
371 */
372 if ( cons_sc &&
373 sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
374 clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
375 clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
376 is_console = 1;
377 } else {
378 clmpcc_speed(sc, 9600, &tcor, &tbpr);
379 clmpcc_speed(sc, 9600, &rcor, &rbpr);
380 is_console = 0;
381 }
382
383 /* Allow any pending output to be sent */
384 delay(10000);
385
386 /* Send the Reset All command to channel 0 (resets all channels!) */
387 clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
388
389 delay(1000);
390
391 /*
392 * The chip will set it's firmware revision register to a non-zero
393 * value to indicate completion of reset.
394 */
395 for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
396 delay(1);
397
398 if ( i == 0 ) {
399 /*
400 * Watch out... If this chip is console, the message
401 * probably won't be sent since we just reset it!
402 */
403 printf("%s: Failed to reset chip\n", sc->sc_dev.dv_xname);
404 return -1;
405 }
406
407 for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
408 clmpcc_select_channel(sc, i);
409
410 /* All interrupts are disabled to begin with */
411 clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
412
413 /* Make sure the channel interrupts on the correct vectors */
414 clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
415 clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
416 clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
417 clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
418
419 /* Receive timer prescaler set to 1ms */
420 clmpcc_wrreg(sc, CLMPCC_REG_TPR,
421 CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
422
423 /* We support Async mode only */
424 clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
425
426 /* Set the required baud rate */
427 clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
428 clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
429 clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
430 clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
431
432 /* Always default to 8N1 (XXX what about console?) */
433 clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
434 CLMPCC_COR1_NO_PARITY |
435 CLMPCC_COR1_IGNORE_PAR);
436
437 clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
438
439 clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
440
441 clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
442 CLMPCC_COR4_CDzd |
443 CLMPCC_COR4_CTSzd);
444
445 clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
446 CLMPCC_COR5_CDod |
447 CLMPCC_COR5_CTSod |
448 CLMPCC_COR5_FLOW_NORM);
449
450 clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
451 clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
452
453 /* Set the receive FIFO timeout */
454 clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
455 clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
456
457 /* At this point, we set up the console differently */
458 if ( is_console && i == cons_chan ) {
459 msvr_rts = CLMPCC_MSVR_RTS;
460 msvr_dtr = CLMPCC_MSVR_DTR;
461 ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
462 } else {
463 msvr_rts = 0;
464 msvr_dtr = 0;
465 ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
466 }
467
468 clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
469 clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
470 clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
471 delay(100);
472 }
473
474 return 0;
475 }
476
477 static void
478 clmpcc_shutdown(ch)
479 struct clmpcc_chan *ch;
480 {
481 int oldch;
482
483 oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
484
485 /* Turn off interrupts. */
486 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
487
488 if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
489 /* Disable the transmitter and receiver */
490 clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
491 CLMPCC_CCR_T0_TX_DIS);
492
493 /* Drop RTS and DTR */
494 clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
495 }
496
497 clmpcc_select_channel(ch->ch_sc, oldch);
498 }
499
500 int
501 clmpccopen(dev, flag, mode, l)
502 dev_t dev;
503 int flag, mode;
504 struct lwp *l;
505 {
506 struct clmpcc_softc *sc;
507 struct clmpcc_chan *ch;
508 struct tty *tp;
509 int oldch;
510 int error;
511
512 sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
513 if (sc == NULL)
514 return (ENXIO);
515
516 ch = &sc->sc_chans[CLMPCCCHAN(dev)];
517
518 tp = ch->ch_tty;
519
520 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
521 return EBUSY;
522
523 /*
524 * Do the following iff this is a first open.
525 */
526 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
527
528 ttychars(tp);
529
530 tp->t_dev = dev;
531 tp->t_iflag = TTYDEF_IFLAG;
532 tp->t_oflag = TTYDEF_OFLAG;
533 tp->t_lflag = TTYDEF_LFLAG;
534 tp->t_cflag = TTYDEF_CFLAG;
535 tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
536
537 if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
538 SET(tp->t_cflag, CLOCAL);
539 if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
540 SET(tp->t_cflag, CRTSCTS);
541 if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
542 SET(tp->t_cflag, MDMBUF);
543
544 /*
545 * Override some settings if the channel is being
546 * used as the console.
547 */
548 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
549 tp->t_ospeed = tp->t_ispeed = cons_rate;
550 SET(tp->t_cflag, CLOCAL);
551 CLR(tp->t_cflag, CRTSCTS);
552 CLR(tp->t_cflag, HUPCL);
553 }
554
555 ch->ch_control = 0;
556
557 clmpcc_param(tp, &tp->t_termios);
558 ttsetwater(tp);
559
560 /* Clear the input ring */
561 ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
562
563 /* Select the channel */
564 oldch = clmpcc_select_channel(sc, ch->ch_car);
565
566 /* Reset it */
567 clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
568 CLMPCC_CCR_T0_RX_EN |
569 CLMPCC_CCR_T0_TX_EN);
570
571 /* Enable receiver and modem change interrupts. */
572 clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
573 CLMPCC_IER_RET |
574 CLMPCC_IER_RX_FIFO);
575
576 /* Raise RTS and DTR */
577 clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
578
579 clmpcc_select_channel(sc, oldch);
580 }
581
582 error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
583 if (error)
584 goto bad;
585
586 error = (*tp->t_linesw->l_open)(dev, tp);
587 if (error)
588 goto bad;
589
590 return 0;
591
592 bad:
593 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
594 /*
595 * We failed to open the device, and nobody else had it opened.
596 * Clean up the state as appropriate.
597 */
598 clmpcc_shutdown(ch);
599 }
600
601 return error;
602 }
603
604 int
605 clmpccclose(dev, flag, mode, l)
606 dev_t dev;
607 int flag, mode;
608 struct lwp *l;
609 {
610 struct clmpcc_softc *sc =
611 device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
612 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
613 struct tty *tp = ch->ch_tty;
614 int s;
615
616 if ( ISCLR(tp->t_state, TS_ISOPEN) )
617 return 0;
618
619 (*tp->t_linesw->l_close)(tp, flag);
620
621 s = spltty();
622
623 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
624 /*
625 * Although we got a last close, the device may still be in
626 * use; e.g. if this was the dialout node, and there are still
627 * processes waiting for carrier on the non-dialout node.
628 */
629 clmpcc_shutdown(ch);
630 }
631
632 ttyclose(tp);
633
634 splx(s);
635
636 return 0;
637 }
638
639 int
640 clmpccread(dev, uio, flag)
641 dev_t dev;
642 struct uio *uio;
643 int flag;
644 {
645 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
646 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
647
648 return ((*tp->t_linesw->l_read)(tp, uio, flag));
649 }
650
651 int
652 clmpccwrite(dev, uio, flag)
653 dev_t dev;
654 struct uio *uio;
655 int flag;
656 {
657 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
658 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
659
660 return ((*tp->t_linesw->l_write)(tp, uio, flag));
661 }
662
663 int
664 clmpccpoll(dev, events, l)
665 dev_t dev;
666 int events;
667 struct lwp *l;
668 {
669 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
670 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
671
672 return ((*tp->t_linesw->l_poll)(tp, events, l));
673 }
674
675 struct tty *
676 clmpcctty(dev)
677 dev_t dev;
678 {
679 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
680
681 return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
682 }
683
684 int
685 clmpccioctl(dev, cmd, data, flag, l)
686 dev_t dev;
687 u_long cmd;
688 void *data;
689 int flag;
690 struct lwp *l;
691 {
692 struct clmpcc_softc *sc = device_lookup(&clmpcc_cd, CLMPCCUNIT(dev));
693 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
694 struct tty *tp = ch->ch_tty;
695 int error;
696
697 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
698 if (error != EPASSTHROUGH)
699 return error;
700
701 error = ttioctl(tp, cmd, data, flag, l);
702 if (error != EPASSTHROUGH)
703 return error;
704
705 error = 0;
706
707 switch (cmd) {
708 case TIOCSBRK:
709 SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
710 clmpcc_enable_transmitter(ch);
711 break;
712
713 case TIOCCBRK:
714 SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
715 clmpcc_enable_transmitter(ch);
716 break;
717
718 case TIOCSDTR:
719 clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
720 break;
721
722 case TIOCCDTR:
723 clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
724 break;
725
726 case TIOCMSET:
727 clmpcc_modem_control(ch, *((int *)data), DMSET);
728 break;
729
730 case TIOCMBIS:
731 clmpcc_modem_control(ch, *((int *)data), DMBIS);
732 break;
733
734 case TIOCMBIC:
735 clmpcc_modem_control(ch, *((int *)data), DMBIC);
736 break;
737
738 case TIOCMGET:
739 *((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
740 break;
741
742 case TIOCGFLAGS:
743 *((int *)data) = ch->ch_openflags;
744 break;
745
746 case TIOCSFLAGS:
747 error = kauth_authorize_device_tty(l->l_cred,
748 KAUTH_DEVICE_TTY_PRIVSET, tp);
749 if ( error )
750 break;
751 ch->ch_openflags = *((int *)data) &
752 (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
753 TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
754 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
755 SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
756 break;
757
758 default:
759 error = EPASSTHROUGH;
760 break;
761 }
762
763 return error;
764 }
765
766 int
767 clmpcc_modem_control(ch, bits, howto)
768 struct clmpcc_chan *ch;
769 int bits;
770 int howto;
771 {
772 struct clmpcc_softc *sc = ch->ch_sc;
773 struct tty *tp = ch->ch_tty;
774 int oldch;
775 int msvr;
776 int rbits = 0;
777
778 oldch = clmpcc_select_channel(sc, ch->ch_car);
779
780 switch ( howto ) {
781 case DMGET:
782 msvr = clmpcc_rd_msvr(sc);
783
784 if ( sc->sc_swaprtsdtr ) {
785 rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
786 rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
787 } else {
788 rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
789 rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
790 }
791
792 rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
793 rbits |= (msvr & CLMPCC_MSVR_CD) ? TIOCM_CD : 0;
794 rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
795 break;
796
797 case DMSET:
798 if ( sc->sc_swaprtsdtr ) {
799 if ( ISCLR(tp->t_cflag, CRTSCTS) )
800 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
801 bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
802 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
803 bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
804 } else {
805 if ( ISCLR(tp->t_cflag, CRTSCTS) )
806 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
807 bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
808 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
809 bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
810 }
811 break;
812
813 case DMBIS:
814 if ( sc->sc_swaprtsdtr ) {
815 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
816 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
817 if ( ISSET(bits, TIOCM_DTR) )
818 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
819 } else {
820 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
821 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
822 if ( ISSET(bits, TIOCM_DTR) )
823 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
824 }
825 break;
826
827 case DMBIC:
828 if ( sc->sc_swaprtsdtr ) {
829 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
830 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
831 if ( ISCLR(bits, TIOCM_DTR) )
832 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
833 } else {
834 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
835 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
836 if ( ISCLR(bits, TIOCM_DTR) )
837 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
838 }
839 break;
840 }
841
842 clmpcc_select_channel(sc, oldch);
843
844 return rbits;
845 }
846
847 static int
848 clmpcc_param(tp, t)
849 struct tty *tp;
850 struct termios *t;
851 {
852 struct clmpcc_softc *sc =
853 device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
854 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
855 u_char cor;
856 u_char oldch;
857 int oclk, obpr;
858 int iclk, ibpr;
859 int s;
860
861 /* Check requested parameters. */
862 if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
863 return EINVAL;
864
865 if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
866 return EINVAL;
867
868 /*
869 * For the console, always force CLOCAL and !HUPCL, so that the port
870 * is always active.
871 */
872 if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
873 ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
874 SET(t->c_cflag, CLOCAL);
875 CLR(t->c_cflag, HUPCL);
876 }
877
878 CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
879
880 /* If ospeed it zero, hangup the line */
881 clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
882
883 if ( t->c_ospeed ) {
884 ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
885 ch->ch_tbpr = obpr;
886 } else {
887 ch->ch_tcor = 0;
888 ch->ch_tbpr = 0;
889 }
890
891 if ( t->c_ispeed ) {
892 ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
893 ch->ch_rbpr = ibpr;
894 } else {
895 ch->ch_rcor = 0;
896 ch->ch_rbpr = 0;
897 }
898
899 /* Work out value to use for COR1 */
900 cor = 0;
901 if ( ISSET(t->c_cflag, PARENB) ) {
902 cor |= CLMPCC_COR1_NORM_PARITY;
903 if ( ISSET(t->c_cflag, PARODD) )
904 cor |= CLMPCC_COR1_ODD_PARITY;
905 }
906
907 if ( ISCLR(t->c_cflag, INPCK) )
908 cor |= CLMPCC_COR1_IGNORE_PAR;
909
910 switch ( t->c_cflag & CSIZE ) {
911 case CS5:
912 cor |= CLMPCC_COR1_CHAR_5BITS;
913 break;
914
915 case CS6:
916 cor |= CLMPCC_COR1_CHAR_6BITS;
917 break;
918
919 case CS7:
920 cor |= CLMPCC_COR1_CHAR_7BITS;
921 break;
922
923 case CS8:
924 cor |= CLMPCC_COR1_CHAR_8BITS;
925 break;
926 }
927
928 ch->ch_cor1 = cor;
929
930 /*
931 * The only interesting bit in COR2 is 'CTS Automatic Enable'
932 * when hardware flow control is in effect.
933 */
934 ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
935
936 /* COR3 needs to be set to the number of stop bits... */
937 ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
938 CLMPCC_COR3_STOP_1;
939
940 /*
941 * COR4 contains the FIFO threshold setting.
942 * We adjust the threshold depending on the input speed...
943 */
944 if ( t->c_ispeed <= 1200 )
945 ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
946 else if ( t->c_ispeed <= 19200 )
947 ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
948 else
949 ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
950
951 /*
952 * If chip is used with CTS and DTR swapped, we can enable
953 * automatic hardware flow control.
954 */
955 if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
956 ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
957 else
958 ch->ch_cor5 = 0;
959
960 s = splserial();
961 oldch = clmpcc_select_channel(sc, ch->ch_car);
962
963 /*
964 * COR2 needs to be set immediately otherwise we might never get
965 * a Tx EMPTY interrupt to change the other parameters.
966 */
967 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
968 clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
969
970 if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
971 clmpcc_set_params(ch);
972 else
973 SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
974
975 clmpcc_select_channel(sc, oldch);
976
977 splx(s);
978
979 return 0;
980 }
981
982 static void
983 clmpcc_set_params(ch)
984 struct clmpcc_chan *ch;
985 {
986 struct clmpcc_softc *sc = ch->ch_sc;
987 u_char r1;
988 u_char r2;
989
990 if ( ch->ch_tcor || ch->ch_tbpr ) {
991 r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
992 r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
993 /* Only write Tx rate if it really has changed */
994 if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
995 clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
996 clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
997 }
998 }
999
1000 if ( ch->ch_rcor || ch->ch_rbpr ) {
1001 r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
1002 r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
1003 /* Only write Rx rate if it really has changed */
1004 if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
1005 clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
1006 clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
1007 }
1008 }
1009
1010 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
1011 clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
1012 /* Any change to COR1 requires an INIT command */
1013 SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1014 }
1015
1016 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
1017 clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
1018
1019 r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1020 if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
1021 /*
1022 * Note: If the FIFO has changed, we always set it to
1023 * zero here and disable the Receive Timeout interrupt.
1024 * It's up to the Rx Interrupt handler to pick the
1025 * appropriate moment to write the new FIFO length.
1026 */
1027 clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
1028 r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1029 clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
1030 SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1031 }
1032
1033 r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
1034 if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
1035 r1 &= ~CLMPCC_COR5_FLOW_MASK;
1036 clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
1037 }
1038 }
1039
1040 static void
1041 clmpcc_start(tp)
1042 struct tty *tp;
1043 {
1044 struct clmpcc_softc *sc =
1045 device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1046 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1047 u_int oldch;
1048 int s;
1049
1050 s = spltty();
1051
1052 if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) ) {
1053 ttypull(tp);
1054 if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1055 CLMPCC_FLG_END_BREAK) ||
1056 tp->t_outq.c_cc > 0 ) {
1057
1058 if ( ISCLR(ch->ch_flags, CLMPCC_FLG_START_BREAK |
1059 CLMPCC_FLG_END_BREAK) ) {
1060 ch->ch_obuf_addr = tp->t_outq.c_cf;
1061 ch->ch_obuf_size = ndqb(&tp->t_outq, 0);
1062 }
1063
1064 /* Enable TX empty interrupts */
1065 oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
1066 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1067 clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) |
1068 CLMPCC_IER_TX_EMPTY);
1069 clmpcc_select_channel(ch->ch_sc, oldch);
1070 SET(tp->t_state, TS_BUSY);
1071 }
1072 }
1073
1074 splx(s);
1075 }
1076
1077 /*
1078 * Stop output on a line.
1079 */
1080 void
1081 clmpccstop(tp, flag)
1082 struct tty *tp;
1083 int flag;
1084 {
1085 struct clmpcc_softc *sc =
1086 device_lookup(&clmpcc_cd, CLMPCCUNIT(tp->t_dev));
1087 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1088 int s;
1089
1090 s = splserial();
1091
1092 if ( ISSET(tp->t_state, TS_BUSY) ) {
1093 if ( ISCLR(tp->t_state, TS_TTSTOP) )
1094 SET(tp->t_state, TS_FLUSH);
1095 ch->ch_obuf_size = 0;
1096 }
1097 splx(s);
1098 }
1099
1100 /*
1101 * RX interrupt routine
1102 */
1103 int
1104 clmpcc_rxintr(arg)
1105 void *arg;
1106 {
1107 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1108 struct clmpcc_chan *ch;
1109 u_int8_t *put, *end, rxd;
1110 u_char errstat;
1111 u_char fc, tc;
1112 u_char risr;
1113 u_char rir;
1114 #ifdef DDB
1115 int saw_break = 0;
1116 #endif
1117
1118 /* Receive interrupt active? */
1119 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1120
1121 /*
1122 * If we're using auto-vectored interrupts, we have to
1123 * verify if the chip is generating the interrupt.
1124 */
1125 if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1126 return 0;
1127
1128 /* Get pointer to interrupting channel's data structure */
1129 ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1130
1131 /* Get the interrupt status register */
1132 risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1133 if ( risr & CLMPCC_RISR_TIMEOUT ) {
1134 u_char reg;
1135 /*
1136 * Set the FIFO threshold to zero, and disable
1137 * further receive timeout interrupts.
1138 */
1139 reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1140 clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & ~CLMPCC_COR4_FIFO_MASK);
1141 reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1142 clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1143 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1144 SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1145 return 1;
1146 }
1147
1148 /* How many bytes are waiting in the FIFO? */
1149 fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1150
1151 #ifdef DDB
1152 /*
1153 * Allow BREAK on the console to drop to the debugger.
1154 */
1155 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1156 risr & CLMPCC_RISR_BREAK ) {
1157 saw_break = 1;
1158 }
1159 #endif
1160
1161 if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1162 /* Just get rid of the data */
1163 while ( fc-- )
1164 (void) clmpcc_rd_rxdata(sc);
1165 goto rx_done;
1166 }
1167
1168 put = ch->ch_ibuf_wr;
1169 end = ch->ch_ibuf_end;
1170
1171 /*
1172 * Note: The chip is completely hosed WRT these error
1173 * conditions; there seems to be no way to associate
1174 * the error with the correct character in the FIFO.
1175 * We compromise by tagging the first character we read
1176 * with the error. Not perfect, but there's no other way.
1177 */
1178 errstat = 0;
1179 if ( risr & CLMPCC_RISR_PARITY )
1180 errstat |= TTY_PE;
1181 if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1182 errstat |= TTY_FE;
1183
1184 /*
1185 * As long as there are characters in the FIFO, and we
1186 * have space for them...
1187 */
1188 while ( fc > 0 ) {
1189
1190 *put++ = rxd = clmpcc_rd_rxdata(sc);
1191 *put++ = errstat;
1192
1193 if ( put >= end )
1194 put = ch->ch_ibuf;
1195
1196 if ( put == ch->ch_ibuf_rd ) {
1197 put -= 2;
1198 if ( put < ch->ch_ibuf )
1199 put = end - 2;
1200 }
1201
1202 errstat = 0;
1203 fc--;
1204 }
1205
1206 ch->ch_ibuf_wr = put;
1207
1208 #if 0
1209 if ( sc->sc_swaprtsdtr == 0 &&
1210 ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1211 /*
1212 * If RTS/DTR are not physically swapped, we have to
1213 * do hardware flow control manually
1214 */
1215 clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1216 }
1217 #endif
1218
1219 rx_done:
1220 if ( fc != tc ) {
1221 if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1222 u_char reg;
1223 /*
1224 * Set the FIFO threshold to the preset value,
1225 * and enable receive timeout interrupts.
1226 */
1227 reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1228 reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1229 clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1230 reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1231 clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1232 CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1233 }
1234
1235 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1236 softint_schedule(sc->sc_softintr_cookie);
1237 } else
1238 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1239
1240 #ifdef DDB
1241 /*
1242 * Only =after= we write REOIR is it safe to drop to the debugger.
1243 */
1244 if ( saw_break )
1245 Debugger();
1246 #endif
1247
1248 return 1;
1249 }
1250
1251 /*
1252 * Tx interrupt routine
1253 */
1254 int
1255 clmpcc_txintr(arg)
1256 void *arg;
1257 {
1258 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1259 struct clmpcc_chan *ch;
1260 struct tty *tp;
1261 u_char ftc, oftc;
1262 u_char tir, teoir;
1263 int etcmode = 0;
1264
1265 /* Tx interrupt active? */
1266 tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1267
1268 /*
1269 * If we're using auto-vectored interrupts, we have to
1270 * verify if the chip is generating the interrupt.
1271 */
1272 if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1273 return 0;
1274
1275 /* Get pointer to interrupting channel's data structure */
1276 ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1277 tp = ch->ch_tty;
1278
1279 /* Dummy read of the interrupt status register */
1280 (void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1281
1282 /* Make sure embedded transmit commands are disabled */
1283 clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
1284
1285 ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1286
1287 /* Handle a delayed parameter change */
1288 if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1289 CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1290 clmpcc_set_params(ch);
1291 }
1292
1293 if ( ch->ch_obuf_size > 0 ) {
1294 u_int n = min(ch->ch_obuf_size, ftc);
1295
1296 clmpcc_wrtx_multi(sc, ch->ch_obuf_addr, n);
1297
1298 ftc -= n;
1299 ch->ch_obuf_size -= n;
1300 ch->ch_obuf_addr += n;
1301
1302 } else {
1303 /*
1304 * Check if we should start/stop a break
1305 */
1306 if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1307 CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1308 /* Enable embedded transmit commands */
1309 clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1310 ch->ch_cor2 | CLMPCC_COR2_ETC);
1311 clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1312 clmpcc_wr_txdata(sc, CLMPCC_ETC_SEND_BREAK);
1313 ftc -= 2;
1314 etcmode = 1;
1315 }
1316
1317 if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1318 CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1319 /* Enable embedded transmit commands */
1320 clmpcc_wrreg(sc, CLMPCC_REG_COR2,
1321 ch->ch_cor2 | CLMPCC_COR2_ETC);
1322 clmpcc_wr_txdata(sc, CLMPCC_ETC_MAGIC);
1323 clmpcc_wr_txdata(sc, CLMPCC_ETC_STOP_BREAK);
1324 ftc -= 2;
1325 etcmode = 1;
1326 }
1327 }
1328
1329 tir = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1330
1331 if ( ftc != oftc ) {
1332 /*
1333 * Enable/disable the Tx FIFO threshold interrupt
1334 * according to how much data is in the FIFO.
1335 * However, always disable the FIFO threshold if
1336 * we've left the channel in 'Embedded Transmit
1337 * Command' mode.
1338 */
1339 if ( etcmode || ftc >= ch->ch_cor4 )
1340 tir &= ~CLMPCC_IER_TX_FIFO;
1341 else
1342 tir |= CLMPCC_IER_TX_FIFO;
1343 teoir = 0;
1344 } else {
1345 /*
1346 * No data was sent.
1347 * Disable transmit interrupt.
1348 */
1349 tir &= ~(CLMPCC_IER_TX_EMPTY|CLMPCC_IER_TX_FIFO);
1350 teoir = CLMPCC_TEOIR_NO_TRANS;
1351
1352 /*
1353 * Request Tx processing in the soft interrupt handler
1354 */
1355 ch->ch_tx_done = 1;
1356 softint_schedule(sc->sc_softintr_cookie);
1357 }
1358
1359 clmpcc_wrreg(sc, CLMPCC_REG_IER, tir);
1360 clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, teoir);
1361
1362 return 1;
1363 }
1364
1365 /*
1366 * Modem change interrupt routine
1367 */
1368 int
1369 clmpcc_mdintr(arg)
1370 void *arg;
1371 {
1372 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1373 u_char mir;
1374
1375 /* Modem status interrupt active? */
1376 mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1377
1378 /*
1379 * If we're using auto-vectored interrupts, we have to
1380 * verify if the chip is generating the interrupt.
1381 */
1382 if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1383 return 0;
1384
1385 /* Dummy read of the interrupt status register */
1386 (void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1387
1388 /* Retrieve current status of modem lines. */
1389 sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1390 clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1391
1392 clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1393 softint_schedule(sc->sc_softintr_cookie);
1394
1395 return 1;
1396 }
1397
1398 void
1399 clmpcc_softintr(arg)
1400 void *arg;
1401 {
1402 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1403 struct clmpcc_chan *ch;
1404 struct tty *tp;
1405 int (*rint)(int, struct tty *);
1406 u_char *get;
1407 u_char reg;
1408 u_int c;
1409 int chan;
1410
1411 /* Handle Modem state changes too... */
1412
1413 for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1414 ch = &sc->sc_chans[chan];
1415 tp = ch->ch_tty;
1416
1417 get = ch->ch_ibuf_rd;
1418 rint = tp->t_linesw->l_rint;
1419
1420 /* Squirt buffered incoming data into the tty layer */
1421 while ( get != ch->ch_ibuf_wr ) {
1422 c = get[0];
1423 c |= ((u_int)get[1]) << 8;
1424 if ( (rint)(c, tp) == -1 ) {
1425 ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1426 break;
1427 }
1428
1429 get += 2;
1430 if ( get == ch->ch_ibuf_end )
1431 get = ch->ch_ibuf;
1432
1433 ch->ch_ibuf_rd = get;
1434 }
1435
1436 /*
1437 * Is the transmitter idle and in need of attention?
1438 */
1439 if ( ch->ch_tx_done ) {
1440 ch->ch_tx_done = 0;
1441
1442 if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1443 clmpcc_channel_cmd(sc, ch->ch_car,
1444 CLMPCC_CCR_T0_INIT |
1445 CLMPCC_CCR_T0_RX_EN |
1446 CLMPCC_CCR_T0_TX_EN);
1447 CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1448
1449 /*
1450 * Allow time for the channel to initialise.
1451 * (Empirically derived duration; there must
1452 * be another way to determine the command
1453 * has completed without busy-waiting...)
1454 */
1455 delay(800);
1456
1457 /*
1458 * Update the tty layer's idea of the carrier
1459 * bit, in case we changed CLOCAL or MDMBUF.
1460 * We don't hang up here; we only do that by
1461 * explicit request.
1462 */
1463 reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1464 (*tp->t_linesw->l_modem)(tp, reg != 0);
1465 }
1466
1467 CLR(tp->t_state, TS_BUSY);
1468 if ( ISSET(tp->t_state, TS_FLUSH) )
1469 CLR(tp->t_state, TS_FLUSH);
1470 else
1471 ndflush(&tp->t_outq,
1472 (int)(ch->ch_obuf_addr - tp->t_outq.c_cf));
1473
1474 (*tp->t_linesw->l_start)(tp);
1475 }
1476 }
1477 }
1478
1479
1480 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1481 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1482 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1483 /*
1484 * Following are all routines needed for a cd240x channel to act as console
1485 */
1486 int
1487 clmpcc_cnattach(sc, chan, rate)
1488 struct clmpcc_softc *sc;
1489 int chan;
1490 int rate;
1491 {
1492 cons_sc = sc;
1493 cons_chan = chan;
1494 cons_rate = rate;
1495
1496 return (clmpcc_init(sc));
1497 }
1498
1499 /*
1500 * The following functions are polled getc and putc routines, for console use.
1501 */
1502 static int
1503 clmpcc_common_getc(sc, chan)
1504 struct clmpcc_softc *sc;
1505 int chan;
1506 {
1507 u_char old_chan;
1508 u_char old_ier;
1509 u_char ch, rir, risr;
1510 int s;
1511
1512 s = splhigh();
1513
1514 /* Save the currently active channel */
1515 old_chan = clmpcc_select_channel(sc, chan);
1516
1517 /*
1518 * We have to put the channel into RX interrupt mode before
1519 * trying to read the Rx data register. So save the previous
1520 * interrupt mode.
1521 */
1522 old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1523 clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1524
1525 /* Loop until we get a character */
1526 for (;;) {
1527 /*
1528 * The REN bit will be set in the Receive Interrupt Register
1529 * when the CD240x has a character to process. Remember,
1530 * the RACT bit won't be set until we generate an interrupt
1531 * acknowledge cycle via the MD front-end.
1532 */
1533 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1534 if ( (rir & CLMPCC_RIR_REN) == 0 )
1535 continue;
1536
1537 /* Acknowledge the request */
1538 if ( sc->sc_iackhook )
1539 (sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1540
1541 /*
1542 * Determine if the interrupt is for the required channel
1543 * and if valid data is available.
1544 */
1545 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1546 risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1547 if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1548 risr != 0 ) {
1549 /* Rx error, or BREAK */
1550 clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1551 CLMPCC_REOIR_NO_TRANS);
1552 } else {
1553 /* Dummy read of the FIFO count register */
1554 (void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1555
1556 /* Fetch the received character */
1557 ch = clmpcc_rd_rxdata(sc);
1558
1559 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1560 break;
1561 }
1562 }
1563
1564 /* Restore the original IER and CAR register contents */
1565 clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1566 clmpcc_select_channel(sc, old_chan);
1567
1568 splx(s);
1569 return ch;
1570 }
1571
1572
1573 static void
1574 clmpcc_common_putc(sc, chan, c)
1575 struct clmpcc_softc *sc;
1576 int chan;
1577 int c;
1578 {
1579 u_char old_chan;
1580 int s = splhigh();
1581
1582 /* Save the currently active channel */
1583 old_chan = clmpcc_select_channel(sc, chan);
1584
1585 /*
1586 * Since we can only access the Tx Data register from within
1587 * the interrupt handler, the easiest way to get console data
1588 * onto the wire is using one of the Special Transmit Character
1589 * registers.
1590 */
1591 clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1592 clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1593 CLMPCC_STCR_SND_SPC);
1594
1595 /* Wait until the "Send Special Character" command is accepted */
1596 while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1597 ;
1598
1599 /* Restore the previous channel selected */
1600 clmpcc_select_channel(sc, old_chan);
1601
1602 splx(s);
1603 }
1604
1605 int
1606 clmpcccngetc(dev)
1607 dev_t dev;
1608 {
1609 return clmpcc_common_getc(cons_sc, cons_chan);
1610 }
1611
1612 /*
1613 * Console kernel output character routine.
1614 */
1615 void
1616 clmpcccnputc(dev, c)
1617 dev_t dev;
1618 int c;
1619 {
1620 if ( c == '\n' )
1621 clmpcc_common_putc(cons_sc, cons_chan, '\r');
1622
1623 clmpcc_common_putc(cons_sc, cons_chan, c);
1624 }
1625