clmpcc.c revision 1.5 1 /* $NetBSD: clmpcc.c,v 1.5 1999/04/03 13:13:19 scw Exp $ */
2
3 /*-
4 * Copyright (c) 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Steve C. Woodford.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Cirrus Logic CD2400/CD2401 Four Channel Multi-Protocol Comms. Controller.
41 */
42
43 #include "opt_ddb.h"
44
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/ioctl.h>
49 #include <sys/select.h>
50 #include <sys/tty.h>
51 #include <sys/proc.h>
52 #include <sys/user.h>
53 #include <sys/conf.h>
54 #include <sys/file.h>
55 #include <sys/uio.h>
56 #include <sys/kernel.h>
57 #include <sys/syslog.h>
58 #include <sys/device.h>
59 #include <sys/malloc.h>
60
61 #include <machine/bus.h>
62 #include <machine/param.h>
63
64 #include <dev/ic/clmpccreg.h>
65 #include <dev/ic/clmpccvar.h>
66 #include <dev/cons.h>
67
68
69 #if defined(CLMPCC_ONLY_BYTESWAP_LOW) && defined(CLMPCC_ONLY_BYTESWAP_HIGH)
70 #error "CLMPCC_ONLY_BYTESWAP_LOW and CLMPCC_ONLY_BYTESWAP_HIGH are mutually exclusive."
71 #endif
72
73
74 static int clmpcc_init __P((struct clmpcc_softc *sc));
75 static void clmpcc_shutdown __P((struct clmpcc_chan *));
76 static int clmpcc_speed __P((struct clmpcc_softc *, speed_t,
77 int *, int *));
78 static int clmpcc_param __P((struct tty *, struct termios *));
79 static void clmpcc_set_params __P((struct clmpcc_chan *));
80 static void clmpcc_start __P((struct tty *));
81 static int clmpcc_modem_control __P((struct clmpcc_chan *, int, int));
82
83
84 cdev_decl(clmpcc);
85
86 #define CLMPCCUNIT(x) (minor(x) & 0x7fffc)
87 #define CLMPCCCHAN(x) (minor(x) & 0x00003)
88 #define CLMPCCDIALOUT(x) (minor(x) & 0x80000)
89
90 /*
91 * These should be in a header file somewhere...
92 */
93 #define ISSET(v, f) (((v) & (f)) != 0)
94 #define ISCLR(v, f) (((v) & (f)) == 0)
95 #define SET(v, f) (v) |= (f)
96 #define CLR(v, f) (v) &= ~(f)
97
98
99 extern struct cfdriver clmpcc_cd;
100
101
102 /*
103 * Make this an option variable one can patch.
104 */
105 u_int clmpcc_ibuf_size = CLMPCC_RING_SIZE;
106
107
108 /*
109 * Things needed when the device is used as a console
110 */
111 static struct clmpcc_softc *cons_sc = NULL;
112 static int cons_chan;
113 static int cons_rate;
114
115 static int clmpcc_common_getc __P((struct clmpcc_softc *, int));
116 static void clmpcc_common_putc __P((struct clmpcc_softc *, int, int));
117 int clmpcccngetc __P((dev_t));
118 void clmpcccnputc __P((dev_t, int));
119
120
121 /*
122 * Convenience functions, inlined for speed
123 */
124 #define integrate static inline
125 integrate u_int8_t clmpcc_rdreg __P((struct clmpcc_softc *, u_int));
126 integrate void clmpcc_wrreg __P((struct clmpcc_softc *, u_int, u_int));
127 integrate u_int8_t clmpcc_rdreg_odd __P((struct clmpcc_softc *, u_int));
128 integrate void clmpcc_wrreg_odd __P((struct clmpcc_softc *, u_int, u_int));
129 integrate u_int8_t clmpcc_select_channel __P((struct clmpcc_softc *, u_int));
130 integrate void clmpcc_channel_cmd __P((struct clmpcc_softc *,int,int));
131 integrate void clmpcc_enable_transmitter __P((struct clmpcc_chan *));
132
133 #define clmpcc_rd_msvr(s) clmpcc_rdreg_odd(s,CLMPCC_REG_MSVR)
134 #define clmpcc_wr_msvr(s,r,v) clmpcc_wrreg_odd(s,r,v)
135 #define clmpcc_wr_pilr(s,r,v) clmpcc_wrreg_odd(s,r,v)
136 #define clmpcc_rd_rxdata(s) clmpcc_rdreg_odd(s,CLMPCC_REG_RDR)
137 #define clmpcc_wr_txdata(s,v) clmpcc_wrreg_odd(s,CLMPCC_REG_TDR,v)
138
139
140 integrate u_int8_t
141 clmpcc_rdreg(sc, offset)
142 struct clmpcc_softc *sc;
143 u_int offset;
144 {
145 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
146 offset ^= sc->sc_byteswap;
147 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
148 offset ^= CLMPCC_BYTESWAP_HIGH;
149 #endif
150 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
151 }
152
153 integrate void
154 clmpcc_wrreg(sc, offset, val)
155 struct clmpcc_softc *sc;
156 u_int offset;
157 u_int val;
158 {
159 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
160 offset ^= sc->sc_byteswap;
161 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
162 offset ^= CLMPCC_BYTESWAP_HIGH;
163 #endif
164 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
165 }
166
167 integrate u_int8_t
168 clmpcc_rdreg_odd(sc, offset)
169 struct clmpcc_softc *sc;
170 u_int offset;
171 {
172 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
173 offset ^= (sc->sc_byteswap & 2);
174 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
175 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
176 #endif
177 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset);
178 }
179
180 integrate void
181 clmpcc_wrreg_odd(sc, offset, val)
182 struct clmpcc_softc *sc;
183 u_int offset;
184 u_int val;
185 {
186 #if !defined(CLMPCC_ONLY_BYTESWAP_LOW) && !defined(CLMPCC_ONLY_BYTESWAP_HIGH)
187 offset ^= (sc->sc_byteswap & 2);
188 #elif defined(CLMPCC_ONLY_BYTESWAP_HIGH)
189 offset ^= (CLMPCC_BYTESWAP_HIGH & 2);
190 #endif
191 bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset, val);
192 }
193
194 integrate u_int8_t
195 clmpcc_select_channel(sc, new_chan)
196 struct clmpcc_softc *sc;
197 u_int new_chan;
198 {
199 u_int old_chan = clmpcc_rdreg_odd(sc, CLMPCC_REG_CAR);
200
201 clmpcc_wrreg_odd(sc, CLMPCC_REG_CAR, new_chan);
202
203 return old_chan;
204 }
205
206 integrate void
207 clmpcc_channel_cmd(sc, chan, cmd)
208 struct clmpcc_softc *sc;
209 int chan;
210 int cmd;
211 {
212 int i;
213
214 for (i = 5000; i; i--) {
215 if ( clmpcc_rdreg(sc, CLMPCC_REG_CCR) == 0 )
216 break;
217 delay(1);
218 }
219
220 if ( i == 0 )
221 printf("%s: channel %d command timeout (idle)\n",
222 sc->sc_dev.dv_xname, chan);
223
224 clmpcc_wrreg(sc, CLMPCC_REG_CCR, cmd);
225 }
226
227 integrate void
228 clmpcc_enable_transmitter(ch)
229 struct clmpcc_chan *ch;
230 {
231 u_int old;
232 int s;
233
234 old = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
235
236 s = splserial();
237
238 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
239 clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) | CLMPCC_IER_TX_EMPTY);
240
241 CLR(ch->ch_flags, CLMPCC_FLG_START);
242 SET(ch->ch_tty->t_state, TS_BUSY);
243
244 splx(s);
245
246 clmpcc_select_channel(ch->ch_sc, old);
247 }
248
249 static int
250 clmpcc_speed(sc, speed, cor, bpr)
251 struct clmpcc_softc *sc;
252 speed_t speed;
253 int *cor, *bpr;
254 {
255 int c, co, br;
256
257 for (co = 0, c = 8; c <= 2048; co++, c *= 4) {
258 br = ((sc->sc_clk / c) / speed) - 1;
259 if ( br < 0x100 ) {
260 *cor = co;
261 *bpr = br;
262 return 0;
263 }
264 }
265
266 return -1;
267 }
268
269 void
270 clmpcc_attach(sc)
271 struct clmpcc_softc *sc;
272 {
273 struct clmpcc_chan *ch;
274 struct tty *tp;
275 int chan;
276
277 if ( cons_sc != NULL &&
278 sc->sc_iot == cons_sc->sc_iot && sc->sc_ioh == cons_sc->sc_ioh )
279 cons_sc = sc;
280
281 /* Initialise the chip */
282 clmpcc_init(sc);
283
284 printf(": Cirrus Logic CD240%c Serial Controller\n",
285 (clmpcc_rd_msvr(sc) & CLMPCC_MSVR_PORT_ID) ? '0' : '1');
286
287 sc->sc_soft_running = 0;
288 memset(&(sc->sc_chans[0]), 0, sizeof(sc->sc_chans));
289
290 for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
291 ch = &sc->sc_chans[chan];
292
293 ch->ch_sc = sc;
294 ch->ch_car = chan;
295
296 tp = ttymalloc();
297 tp->t_oproc = clmpcc_start;
298 tp->t_param = clmpcc_param;
299
300 ch->ch_tty = tp;
301
302 ch->ch_ibuf = malloc(clmpcc_ibuf_size * 2, M_DEVBUF, M_NOWAIT);
303 if ( ch->ch_ibuf == NULL ) {
304 printf("%s(%d): unable to allocate ring buffer\n",
305 sc->sc_dev.dv_xname, chan);
306 return;
307 }
308
309 ch->ch_ibuf_end = &(ch->ch_ibuf[clmpcc_ibuf_size * 2]);
310 ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
311
312 tty_attach(tp);
313 }
314
315 printf("%s: %d channels available", sc->sc_dev.dv_xname,
316 CLMPCC_NUM_CHANS);
317 if ( cons_sc == sc ) {
318 printf(", console on channel %d.\n", cons_chan);
319 SET(sc->sc_chans[cons_chan].ch_flags, CLMPCC_FLG_IS_CONSOLE);
320 SET(sc->sc_chans[cons_chan].ch_openflags, TIOCFLAG_SOFTCAR);
321 } else
322 printf(".\n");
323 }
324
325 static int
326 clmpcc_init(sc)
327 struct clmpcc_softc *sc;
328 {
329 u_int tcor, tbpr;
330 u_int rcor, rbpr;
331 u_int msvr_rts, msvr_dtr;
332 u_int ccr;
333 int is_console;
334 int i;
335
336 /*
337 * All we're really concerned about here is putting the chip
338 * into a quiescent state so that it won't do anything until
339 * clmpccopen() is called. (Except the console channel.)
340 */
341
342 /*
343 * If the chip is acting as console, set all channels to the supplied
344 * console baud rate. Otherwise, plump for 9600.
345 */
346 if ( cons_sc &&
347 sc->sc_ioh == cons_sc->sc_ioh && sc->sc_iot == cons_sc->sc_iot ) {
348 clmpcc_speed(sc, cons_rate, &tcor, &tbpr);
349 clmpcc_speed(sc, cons_rate, &rcor, &rbpr);
350 is_console = 1;
351 } else {
352 clmpcc_speed(sc, 9600, &tcor, &tbpr);
353 clmpcc_speed(sc, 9600, &rcor, &rbpr);
354 is_console = 0;
355 }
356
357 /* Allow any pending output to be sent */
358 delay(10000);
359
360 /* Send the Reset All command to channel 0 (resets all channels!) */
361 clmpcc_channel_cmd(sc, 0, CLMPCC_CCR_T0_RESET_ALL);
362
363 delay(1000);
364
365 /*
366 * The chip will set it's firmware revision register to a non-zero
367 * value to indicate completion of reset.
368 */
369 for (i = 10000; clmpcc_rdreg(sc, CLMPCC_REG_GFRCR) == 0 && i; i--)
370 delay(1);
371
372 if ( i == 0 ) {
373 /*
374 * Watch out... If this chip is console, the message
375 * probably won't be sent since we just reset it!
376 */
377 printf("%s: Failed to reset chip\n", sc->sc_dev.dv_xname);
378 return -1;
379 }
380
381 for (i = 0; i < CLMPCC_NUM_CHANS; i++) {
382 clmpcc_select_channel(sc, i);
383
384 /* All interrupts are disabled to begin with */
385 clmpcc_wrreg(sc, CLMPCC_REG_IER, 0);
386
387 /* Make sure the channel interrupts on the correct vectors */
388 clmpcc_wrreg(sc, CLMPCC_REG_LIVR, sc->sc_vector_base);
389 clmpcc_wr_pilr(sc, CLMPCC_REG_RPILR, sc->sc_rpilr);
390 clmpcc_wr_pilr(sc, CLMPCC_REG_TPILR, sc->sc_tpilr);
391 clmpcc_wr_pilr(sc, CLMPCC_REG_MPILR, sc->sc_mpilr);
392
393 /* Receive timer prescaler set to 1ms */
394 clmpcc_wrreg(sc, CLMPCC_REG_TPR,
395 CLMPCC_MSEC_TO_TPR(sc->sc_clk, 1));
396
397 /* We support Async mode only */
398 clmpcc_wrreg(sc, CLMPCC_REG_CMR, CLMPCC_CMR_ASYNC);
399
400 /* Set the required baud rate */
401 clmpcc_wrreg(sc, CLMPCC_REG_TCOR, CLMPCC_TCOR_CLK(tcor));
402 clmpcc_wrreg(sc, CLMPCC_REG_TBPR, tbpr);
403 clmpcc_wrreg(sc, CLMPCC_REG_RCOR, CLMPCC_RCOR_CLK(rcor));
404 clmpcc_wrreg(sc, CLMPCC_REG_RBPR, rbpr);
405
406 /* Always default to 8N1 (XXX what about console?) */
407 clmpcc_wrreg(sc, CLMPCC_REG_COR1, CLMPCC_COR1_CHAR_8BITS |
408 CLMPCC_COR1_NO_PARITY |
409 CLMPCC_COR1_IGNORE_PAR);
410
411 clmpcc_wrreg(sc, CLMPCC_REG_COR2, 0);
412
413 clmpcc_wrreg(sc, CLMPCC_REG_COR3, CLMPCC_COR3_STOP_1);
414
415 clmpcc_wrreg(sc, CLMPCC_REG_COR4, CLMPCC_COR4_DSRzd |
416 CLMPCC_COR4_CDzd |
417 CLMPCC_COR4_CTSzd);
418
419 clmpcc_wrreg(sc, CLMPCC_REG_COR5, CLMPCC_COR5_DSRod |
420 CLMPCC_COR5_CDod |
421 CLMPCC_COR5_CTSod |
422 CLMPCC_COR5_FLOW_NORM);
423
424 clmpcc_wrreg(sc, CLMPCC_REG_COR6, 0);
425 clmpcc_wrreg(sc, CLMPCC_REG_COR7, 0);
426
427 /* Set the receive FIFO timeout */
428 clmpcc_wrreg(sc, CLMPCC_REG_RTPRl, CLMPCC_RTPR_DEFAULT);
429 clmpcc_wrreg(sc, CLMPCC_REG_RTPRh, 0);
430
431 /* At this point, we set up the console differently */
432 if ( is_console && i == cons_chan ) {
433 msvr_rts = CLMPCC_MSVR_RTS;
434 msvr_dtr = CLMPCC_MSVR_DTR;
435 ccr = CLMPCC_CCR_T0_RX_EN | CLMPCC_CCR_T0_TX_EN;
436 } else {
437 msvr_rts = 0;
438 msvr_dtr = 0;
439 ccr = CLMPCC_CCR_T0_RX_DIS | CLMPCC_CCR_T0_TX_DIS;
440 }
441
442 clmpcc_wrreg(sc, CLMPCC_REG_MSVR_RTS, msvr_rts);
443 clmpcc_wrreg(sc, CLMPCC_REG_MSVR_DTR, msvr_dtr);
444 clmpcc_channel_cmd(sc, i, CLMPCC_CCR_T0_INIT | ccr);
445 delay(100);
446 }
447
448 return 0;
449 }
450
451 static void
452 clmpcc_shutdown(ch)
453 struct clmpcc_chan *ch;
454 {
455 int oldch;
456
457 oldch = clmpcc_select_channel(ch->ch_sc, ch->ch_car);
458
459 /* Turn off interrupts. */
460 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER, 0);
461
462 if ( ISCLR(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
463 /* Disable the transmitter and receiver */
464 clmpcc_channel_cmd(ch->ch_sc, ch->ch_car, CLMPCC_CCR_T0_RX_DIS |
465 CLMPCC_CCR_T0_TX_DIS);
466
467 /* Drop RTS and DTR */
468 clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
469 }
470
471 clmpcc_select_channel(ch->ch_sc, oldch);
472 }
473
474 int
475 clmpccopen(dev, flag, mode, p)
476 dev_t dev;
477 int flag, mode;
478 struct proc *p;
479 {
480 struct clmpcc_softc *sc;
481 struct clmpcc_chan *ch;
482 struct tty *tp;
483 int oldch;
484 int error;
485 int unit;
486
487 if ( (unit = CLMPCCUNIT(dev)) >= clmpcc_cd.cd_ndevs ||
488 (sc = clmpcc_cd.cd_devs[unit]) == NULL ) {
489 return ENXIO;
490 }
491
492 ch = &sc->sc_chans[CLMPCCCHAN(dev)];
493
494 tp = ch->ch_tty;
495
496 if ( ISSET(tp->t_state, TS_ISOPEN) &&
497 ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
498 return EBUSY;
499
500 /*
501 * Do the following iff this is a first open.
502 */
503 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
504
505 ttychars(tp);
506
507 tp->t_dev = dev;
508 tp->t_iflag = TTYDEF_IFLAG;
509 tp->t_oflag = TTYDEF_OFLAG;
510 tp->t_lflag = TTYDEF_LFLAG;
511 tp->t_cflag = TTYDEF_CFLAG;
512 tp->t_ospeed = tp->t_ispeed = TTYDEF_SPEED;
513
514 if ( ISSET(ch->ch_openflags, TIOCFLAG_CLOCAL) )
515 SET(tp->t_cflag, CLOCAL);
516 if ( ISSET(ch->ch_openflags, TIOCFLAG_CRTSCTS) )
517 SET(tp->t_cflag, CRTSCTS);
518 if ( ISSET(ch->ch_openflags, TIOCFLAG_MDMBUF) )
519 SET(tp->t_cflag, MDMBUF);
520
521 /*
522 * Override some settings if the channel is being
523 * used as the console.
524 */
525 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
526 tp->t_ospeed = tp->t_ispeed = cons_rate;
527 SET(tp->t_cflag, CLOCAL);
528 CLR(tp->t_cflag, CRTSCTS);
529 CLR(tp->t_cflag, HUPCL);
530 }
531
532 ch->ch_control = 0;
533
534 clmpcc_param(tp, &tp->t_termios);
535 ttsetwater(tp);
536
537 /* Clear the input ring */
538 ch->ch_ibuf_rd = ch->ch_ibuf_wr = ch->ch_ibuf;
539
540 /* Select the channel */
541 oldch = clmpcc_select_channel(sc, ch->ch_car);
542
543 /* Reset it */
544 clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_CLEAR |
545 CLMPCC_CCR_T0_RX_EN |
546 CLMPCC_CCR_T0_TX_EN);
547
548 /* Enable receiver and modem change interrupts. */
549 clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_MODEM |
550 CLMPCC_IER_RET |
551 CLMPCC_IER_RX_FIFO);
552
553 /* Raise RTS and DTR */
554 clmpcc_modem_control(ch, TIOCM_RTS | TIOCM_DTR, DMBIS);
555
556 clmpcc_select_channel(sc, oldch);
557 } else
558 if ( ISSET(tp->t_state, TS_XCLUDE) && p->p_ucred->cr_uid != 0 )
559 return EBUSY;
560
561 error = ttyopen(tp, CLMPCCDIALOUT(dev), ISSET(flag, O_NONBLOCK));
562 if (error)
563 goto bad;
564
565 error = (*linesw[tp->t_line].l_open)(dev, tp);
566 if (error)
567 goto bad;
568
569 return 0;
570
571 bad:
572 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
573 /*
574 * We failed to open the device, and nobody else had it opened.
575 * Clean up the state as appropriate.
576 */
577 clmpcc_shutdown(ch);
578 }
579
580 return error;
581 }
582
583 int
584 clmpccclose(dev, flag, mode, p)
585 dev_t dev;
586 int flag, mode;
587 struct proc *p;
588 {
589 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
590 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
591 struct tty *tp = ch->ch_tty;
592 int s;
593
594 if ( ISCLR(tp->t_state, TS_ISOPEN) )
595 return 0;
596
597 (*linesw[tp->t_line].l_close)(tp, flag);
598
599 s = spltty();
600
601 if ( ISCLR(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0 ) {
602 /*
603 * Although we got a last close, the device may still be in
604 * use; e.g. if this was the dialout node, and there are still
605 * processes waiting for carrier on the non-dialout node.
606 */
607 clmpcc_shutdown(ch);
608 }
609
610 ttyclose(tp);
611
612 splx(s);
613
614 return 0;
615 }
616
617 int
618 clmpccread(dev, uio, flag)
619 dev_t dev;
620 struct uio *uio;
621 int flag;
622 {
623 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
624 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
625
626 return ((*linesw[tp->t_line].l_read)(tp, uio, flag));
627 }
628
629 int
630 clmpccwrite(dev, uio, flag)
631 dev_t dev;
632 struct uio *uio;
633 int flag;
634 {
635 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
636 struct tty *tp = sc->sc_chans[CLMPCCCHAN(dev)].ch_tty;
637
638 return ((*linesw[tp->t_line].l_write)(tp, uio, flag));
639 }
640
641 struct tty *
642 clmpcctty(dev)
643 dev_t dev;
644 {
645 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
646
647 return (sc->sc_chans[CLMPCCCHAN(dev)].ch_tty);
648 }
649
650 int
651 clmpccioctl(dev, cmd, data, flag, p)
652 dev_t dev;
653 u_long cmd;
654 caddr_t data;
655 int flag;
656 struct proc *p;
657 {
658 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(dev)];
659 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(dev)];
660 struct tty *tp = ch->ch_tty;
661 int error;
662
663 error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p);
664 if (error >= 0)
665 return error;
666
667 error = ttioctl(tp, cmd, data, flag, p);
668 if (error >= 0)
669 return error;
670
671 error = 0;
672
673 switch (cmd) {
674 case TIOCSBRK:
675 SET(ch->ch_flags, CLMPCC_FLG_START_BREAK);
676 clmpcc_enable_transmitter(ch);
677 break;
678
679 case TIOCCBRK:
680 SET(ch->ch_flags, CLMPCC_FLG_END_BREAK);
681 clmpcc_enable_transmitter(ch);
682 break;
683
684 case TIOCSDTR:
685 clmpcc_modem_control(ch, TIOCM_DTR, DMBIS);
686 break;
687
688 case TIOCCDTR:
689 clmpcc_modem_control(ch, TIOCM_DTR, DMBIC);
690 break;
691
692 case TIOCMSET:
693 clmpcc_modem_control(ch, *((int *)data), DMSET);
694 break;
695
696 case TIOCMBIS:
697 clmpcc_modem_control(ch, *((int *)data), DMBIS);
698 break;
699
700 case TIOCMBIC:
701 clmpcc_modem_control(ch, *((int *)data), DMBIC);
702 break;
703
704 case TIOCMGET:
705 *((int *)data) = clmpcc_modem_control(ch, 0, DMGET);
706 break;
707
708 case TIOCGFLAGS:
709 *((int *)data) = ch->ch_openflags;
710 break;
711
712 case TIOCSFLAGS:
713 error = suser(p->p_ucred, &p->p_acflag);
714 if ( error )
715 break;
716 ch->ch_openflags = *((int *)data) &
717 (TIOCFLAG_SOFTCAR | TIOCFLAG_CLOCAL |
718 TIOCFLAG_CRTSCTS | TIOCFLAG_MDMBUF);
719 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) )
720 SET(ch->ch_openflags, TIOCFLAG_SOFTCAR);
721 break;
722
723 default:
724 error = ENOTTY;
725 break;
726 }
727
728 return error;
729 }
730
731 int
732 clmpcc_modem_control(ch, bits, howto)
733 struct clmpcc_chan *ch;
734 int bits;
735 int howto;
736 {
737 struct clmpcc_softc *sc = ch->ch_sc;
738 struct tty *tp = ch->ch_tty;
739 int oldch;
740 int msvr;
741 int rbits = 0;
742
743 oldch = clmpcc_select_channel(sc, ch->ch_car);
744
745 switch ( howto ) {
746 case DMGET:
747 msvr = clmpcc_rd_msvr(sc);
748
749 if ( sc->sc_swaprtsdtr ) {
750 rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_DTR : 0;
751 rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_RTS : 0;
752 } else {
753 rbits |= (msvr & CLMPCC_MSVR_RTS) ? TIOCM_RTS : 0;
754 rbits |= (msvr & CLMPCC_MSVR_DTR) ? TIOCM_DTR : 0;
755 }
756
757 rbits |= (msvr & CLMPCC_MSVR_CTS) ? TIOCM_CTS : 0;
758 rbits |= (msvr & CLMPCC_MSVR_CD) ? TIOCM_CD : 0;
759 rbits |= (msvr & CLMPCC_MSVR_DSR) ? TIOCM_DSR : 0;
760 break;
761
762 case DMSET:
763 if ( sc->sc_swaprtsdtr ) {
764 if ( ISCLR(tp->t_cflag, CRTSCTS) )
765 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
766 bits & TIOCM_RTS ? CLMPCC_MSVR_DTR : 0);
767 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
768 bits & TIOCM_DTR ? CLMPCC_MSVR_RTS : 0);
769 } else {
770 if ( ISCLR(tp->t_cflag, CRTSCTS) )
771 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS,
772 bits & TIOCM_RTS ? CLMPCC_MSVR_RTS : 0);
773 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR,
774 bits & TIOCM_DTR ? CLMPCC_MSVR_DTR : 0);
775 }
776 break;
777
778 case DMBIS:
779 if ( sc->sc_swaprtsdtr ) {
780 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
781 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
782 if ( ISSET(bits, TIOCM_DTR) )
783 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
784 } else {
785 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISSET(bits, TIOCM_RTS) )
786 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_RTS, CLMPCC_MSVR_RTS);
787 if ( ISSET(bits, TIOCM_DTR) )
788 clmpcc_wr_msvr(sc,CLMPCC_REG_MSVR_DTR, CLMPCC_MSVR_DTR);
789 }
790 break;
791
792 case DMBIC:
793 if ( sc->sc_swaprtsdtr ) {
794 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
795 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
796 if ( ISCLR(bits, TIOCM_DTR) )
797 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
798 } else {
799 if ( ISCLR(tp->t_cflag, CRTSCTS) && ISCLR(bits, TIOCM_RTS) )
800 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_RTS, 0);
801 if ( ISCLR(bits, TIOCM_DTR) )
802 clmpcc_wr_msvr(sc, CLMPCC_REG_MSVR_DTR, 0);
803 }
804 break;
805 }
806
807 clmpcc_select_channel(sc, oldch);
808
809 return rbits;
810 }
811
812 static int
813 clmpcc_param(tp, t)
814 struct tty *tp;
815 struct termios *t;
816 {
817 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
818 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
819 u_char cor;
820 u_char oldch;
821 int oclk, obpr;
822 int iclk, ibpr;
823 int s;
824
825 /* Check requested parameters. */
826 if ( t->c_ospeed && clmpcc_speed(sc, t->c_ospeed, &oclk, &obpr) < 0 )
827 return EINVAL;
828
829 if ( t->c_ispeed && clmpcc_speed(sc, t->c_ispeed, &iclk, &ibpr) < 0 )
830 return EINVAL;
831
832 /*
833 * For the console, always force CLOCAL and !HUPCL, so that the port
834 * is always active.
835 */
836 if ( ISSET(ch->ch_openflags, TIOCFLAG_SOFTCAR) ||
837 ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) ) {
838 SET(t->c_cflag, CLOCAL);
839 CLR(t->c_cflag, HUPCL);
840 }
841
842 CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
843
844 /* If ospeed it zero, hangup the line */
845 clmpcc_modem_control(ch, TIOCM_DTR, t->c_ospeed == 0 ? DMBIC : DMBIS);
846
847 if ( t->c_ospeed ) {
848 ch->ch_tcor = CLMPCC_TCOR_CLK(oclk);
849 ch->ch_tbpr = obpr;
850 } else {
851 ch->ch_tcor = 0;
852 ch->ch_tbpr = 0;
853 }
854
855 if ( t->c_ispeed ) {
856 ch->ch_rcor = CLMPCC_RCOR_CLK(iclk);
857 ch->ch_rbpr = ibpr;
858 } else {
859 ch->ch_rcor = 0;
860 ch->ch_rbpr = 0;
861 }
862
863 /* Work out value to use for COR1 */
864 cor = 0;
865 if ( ISSET(t->c_cflag, PARENB) ) {
866 cor |= CLMPCC_COR1_NORM_PARITY;
867 if ( ISSET(t->c_cflag, PARODD) )
868 cor |= CLMPCC_COR1_ODD_PARITY;
869 }
870
871 if ( ISCLR(t->c_cflag, INPCK) )
872 cor |= CLMPCC_COR1_IGNORE_PAR;
873
874 switch ( t->c_cflag & CSIZE ) {
875 case CS5:
876 cor |= CLMPCC_COR1_CHAR_5BITS;
877 break;
878
879 case CS6:
880 cor |= CLMPCC_COR1_CHAR_6BITS;
881 break;
882
883 case CS7:
884 cor |= CLMPCC_COR1_CHAR_7BITS;
885 break;
886
887 case CS8:
888 cor |= CLMPCC_COR1_CHAR_8BITS;
889 break;
890 }
891
892 ch->ch_cor1 = cor;
893
894 /*
895 * The only interesting bit in COR2 is 'CTS Automatic Enable'
896 * when hardware flow control is in effect.
897 */
898 ch->ch_cor2 = ISSET(t->c_cflag, CRTSCTS) ? CLMPCC_COR2_CtsAE : 0;
899
900 /* COR3 needs to be set to the number of stop bits... */
901 ch->ch_cor3 = ISSET(t->c_cflag, CSTOPB) ? CLMPCC_COR3_STOP_2 :
902 CLMPCC_COR3_STOP_1;
903
904 /*
905 * COR4 contains the FIFO threshold setting.
906 * We adjust the threshold depending on the input speed...
907 */
908 if ( t->c_ispeed <= 1200 )
909 ch->ch_cor4 = CLMPCC_COR4_FIFO_LOW;
910 else if ( t->c_ispeed <= 19200 )
911 ch->ch_cor4 = CLMPCC_COR4_FIFO_MED;
912 else
913 ch->ch_cor4 = CLMPCC_COR4_FIFO_HIGH;
914
915 /*
916 * If chip is used with CTS and DTR swapped, we can enable
917 * automatic hardware flow control.
918 */
919 if ( sc->sc_swaprtsdtr && ISSET(t->c_cflag, CRTSCTS) )
920 ch->ch_cor5 = CLMPCC_COR5_FLOW_NORM;
921 else
922 ch->ch_cor5 = 0;
923
924 s = splserial();
925 oldch = clmpcc_select_channel(sc, ch->ch_car);
926
927 /*
928 * COR2 needs to be set immediately otherwise we might never get
929 * a Tx EMPTY interrupt to change the other parameters.
930 */
931 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR2) != ch->ch_cor2 )
932 clmpcc_wrreg(sc, CLMPCC_REG_COR2, ch->ch_cor2);
933
934 if ( ISCLR(ch->ch_tty->t_state, TS_BUSY) )
935 clmpcc_set_params(ch);
936 else
937 SET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
938
939 clmpcc_select_channel(sc, oldch);
940
941 splx(s);
942
943 return 0;
944 }
945
946 static void
947 clmpcc_set_params(ch)
948 struct clmpcc_chan *ch;
949 {
950 struct clmpcc_softc *sc = ch->ch_sc;
951 u_char r1;
952 u_char r2;
953
954 if ( ch->ch_tcor && ch->ch_tbpr ) {
955 r1 = clmpcc_rdreg(sc, CLMPCC_REG_TCOR);
956 r2 = clmpcc_rdreg(sc, CLMPCC_REG_TBPR);
957 /* Only write Tx rate if it really has changed */
958 if ( ch->ch_tcor != r1 || ch->ch_tbpr != r2 ) {
959 clmpcc_wrreg(sc, CLMPCC_REG_TCOR, ch->ch_tcor);
960 clmpcc_wrreg(sc, CLMPCC_REG_TBPR, ch->ch_tbpr);
961 }
962 }
963
964 if ( ch->ch_rcor && ch->ch_rbpr ) {
965 r1 = clmpcc_rdreg(sc, CLMPCC_REG_RCOR);
966 r2 = clmpcc_rdreg(sc, CLMPCC_REG_RBPR);
967 /* Only write Rx rate if it really has changed */
968 if ( ch->ch_rcor != r1 || ch->ch_rbpr != r2 ) {
969 clmpcc_wrreg(sc, CLMPCC_REG_RCOR, ch->ch_rcor);
970 clmpcc_wrreg(sc, CLMPCC_REG_RBPR, ch->ch_rbpr);
971 }
972 }
973
974 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR1) != ch->ch_cor1 ) {
975 clmpcc_wrreg(sc, CLMPCC_REG_COR1, ch->ch_cor1);
976 /* Any change to COR1 requires an INIT command */
977 SET(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
978 }
979
980 if ( clmpcc_rdreg(sc, CLMPCC_REG_COR3) != ch->ch_cor3 )
981 clmpcc_wrreg(sc, CLMPCC_REG_COR3, ch->ch_cor3);
982
983 r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
984 if ( ch->ch_cor4 != (r1 & CLMPCC_COR4_FIFO_MASK) ) {
985 /*
986 * Note: If the Rx FIFO has changed, we always set it to
987 * zero here and disable the Receive Timeout interrupt.
988 * It's up to the Rx Interrupt handler to pick the
989 * appropriate moment to write the Rx FIFO length.
990 */
991 clmpcc_wrreg(sc, CLMPCC_REG_COR4, r1 & ~CLMPCC_COR4_FIFO_MASK);
992 r1 = clmpcc_rdreg(sc, CLMPCC_REG_IER);
993 clmpcc_wrreg(sc, CLMPCC_REG_IER, r1 & ~CLMPCC_IER_RET);
994 SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
995 }
996
997 r1 = clmpcc_rdreg(sc, CLMPCC_REG_COR5);
998 if ( ch->ch_cor5 != (r1 & CLMPCC_COR5_FLOW_MASK) ) {
999 r1 &= ~CLMPCC_COR5_FLOW_MASK;
1000 clmpcc_wrreg(sc, CLMPCC_REG_COR5, r1 | ch->ch_cor5);
1001 }
1002 }
1003
1004 static void
1005 clmpcc_start(tp)
1006 struct tty *tp;
1007 {
1008 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
1009 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1010 int s;
1011
1012 s = spltty();
1013
1014 if ( ISCLR(tp->t_state, TS_TTSTOP | TS_TIMEOUT | TS_BUSY) &&
1015 ISCLR(ch->ch_flags, CLMPCC_FLG_STOP) ) {
1016 if ( tp->t_outq.c_cc <= tp->t_lowat ) {
1017 if ( ISSET(tp->t_state, TS_ASLEEP) ) {
1018 CLR(tp->t_state, TS_ASLEEP);
1019 wakeup(&tp->t_outq);
1020 }
1021 selwakeup(&tp->t_wsel);
1022
1023 if ( tp->t_outq.c_cc == 0 )
1024 goto out;
1025 }
1026 SET(tp->t_state, TS_BUSY);
1027 clmpcc_enable_transmitter(ch);
1028 }
1029
1030 out:
1031 CLR(ch->ch_flags, CLMPCC_FLG_START);
1032 splx(s);
1033 }
1034
1035 /*
1036 * Stop output on a line.
1037 */
1038 void
1039 clmpccstop(tp, flag)
1040 struct tty *tp;
1041 int flag;
1042 {
1043 struct clmpcc_softc *sc = clmpcc_cd.cd_devs[CLMPCCUNIT(tp->t_dev)];
1044 struct clmpcc_chan *ch = &sc->sc_chans[CLMPCCCHAN(tp->t_dev)];
1045 int s;
1046
1047 s = spltty();
1048
1049 if ( ISSET(tp->t_state, TS_BUSY) ) {
1050 if ( ISCLR(tp->t_state, TS_TTSTOP) )
1051 SET(tp->t_state, TS_FLUSH);
1052
1053 /*
1054 * The transmit interrupt routine will disable transmit when it
1055 * notices that CLMPCC_FLG_STOP has been set.
1056 */
1057 SET(ch->ch_flags, CLMPCC_FLG_STOP);
1058 }
1059 splx(s);
1060 }
1061
1062 /*
1063 * RX interrupt routine
1064 */
1065 int
1066 clmpcc_rxintr(arg)
1067 void *arg;
1068 {
1069 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1070 struct clmpcc_chan *ch;
1071 u_int8_t *put, *end, rxd;
1072 u_char errstat;
1073 u_char fc, tc;
1074 u_char risr;
1075 u_char rir;
1076 #ifdef DDB
1077 int saw_break = 0;
1078 #endif
1079
1080 /* Receive interrupt active? */
1081 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1082
1083 /*
1084 * If we're using auto-vectored interrupts, we have to
1085 * verify if the chip is generating the interrupt.
1086 */
1087 if ( sc->sc_vector_base == 0 && (rir & CLMPCC_RIR_RACT) == 0 )
1088 return 0;
1089
1090 /* Get pointer to interrupting channel's data structure */
1091 ch = &sc->sc_chans[rir & CLMPCC_RIR_RCN_MASK];
1092
1093 /* Get the interrupt status register */
1094 risr = clmpcc_rdreg(sc, CLMPCC_REG_RISRl);
1095 if ( risr & CLMPCC_RISR_TIMEOUT ) {
1096 u_char reg;
1097 /*
1098 * Set the FIFO threshold to zero, and disable
1099 * further receive timeout interrupts.
1100 */
1101 reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1102 clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg & CLMPCC_COR4_FIFO_MASK);
1103 reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1104 clmpcc_wrreg(sc, CLMPCC_REG_IER, reg & ~CLMPCC_IER_RET);
1105 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1106 SET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1107 return 1;
1108 }
1109
1110 /* How many bytes are waiting in the FIFO? */
1111 fc = tc = clmpcc_rdreg(sc, CLMPCC_REG_RFOC) & CLMPCC_RFOC_MASK;
1112
1113 #ifdef DDB
1114 /*
1115 * Allow BREAK on the console to drop to the debugger.
1116 */
1117 if ( ISSET(ch->ch_flags, CLMPCC_FLG_IS_CONSOLE) &&
1118 risr & CLMPCC_RISR_BREAK ) {
1119 saw_break = 1;
1120 }
1121 #endif
1122
1123 if ( ISCLR(ch->ch_tty->t_state, TS_ISOPEN) && fc ) {
1124 /* Just get rid of the data */
1125 while ( fc-- )
1126 (void) clmpcc_rd_rxdata(sc);
1127 goto rx_done;
1128 }
1129
1130 put = ch->ch_ibuf_wr;
1131 end = ch->ch_ibuf_end;
1132
1133 /*
1134 * Note: The chip is completely hosed WRT these error
1135 * conditions; there seems to be no way to associate
1136 * the error with the correct character in the FIFO.
1137 * We compromise by tagging the first character we read
1138 * with the error. Not perfect, but there's no other way.
1139 */
1140 errstat = 0;
1141 if ( risr & CLMPCC_RISR_PARITY )
1142 errstat |= TTY_PE;
1143 if ( risr & (CLMPCC_RISR_FRAMING | CLMPCC_RISR_BREAK) )
1144 errstat |= TTY_FE;
1145
1146 /*
1147 * As long as there are characters in the FIFO, and we
1148 * have space for them...
1149 */
1150 while ( fc > 0 ) {
1151
1152 *put++ = rxd = clmpcc_rd_rxdata(sc);
1153 *put++ = errstat;
1154
1155 if ( put >= end )
1156 put = ch->ch_ibuf;
1157
1158 if ( put == ch->ch_ibuf_rd ) {
1159 put -= 2;
1160 if ( put < ch->ch_ibuf )
1161 put = end - 2;
1162 }
1163
1164 errstat = 0;
1165 fc--;
1166 }
1167
1168 ch->ch_ibuf_wr = put;
1169
1170 #if 0
1171 if ( sc->sc_swaprtsdtr == 0 &&
1172 ISSET(cy->cy_tty->t_cflag, CRTSCTS) && cc < ch->ch_r_hiwat) {
1173 /*
1174 * If RTS/DTR are not physically swapped, we have to
1175 * do hardware flow control manually
1176 */
1177 clmpcc_wr_msvr(sc, CLMPCC_MSVR_RTS, 0);
1178 }
1179 #endif
1180
1181 rx_done:
1182 if ( fc != tc ) {
1183 if ( ISSET(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR) ) {
1184 u_char reg;
1185 /*
1186 * Set the FIFO threshold to the preset value,
1187 * and enable receive timeout interrupts.
1188 */
1189 reg = clmpcc_rdreg(sc, CLMPCC_REG_COR4);
1190 reg = (reg & ~CLMPCC_COR4_FIFO_MASK) | ch->ch_cor4;
1191 clmpcc_wrreg(sc, CLMPCC_REG_COR4, reg);
1192 reg = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1193 clmpcc_wrreg(sc, CLMPCC_REG_IER, reg | CLMPCC_IER_RET);
1194 CLR(ch->ch_flags, CLMPCC_FLG_FIFO_CLEAR);
1195 }
1196
1197 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1198 if ( sc->sc_soft_running == 0 ) {
1199 sc->sc_soft_running = 1;
1200 (sc->sc_softhook)(sc);
1201 }
1202 } else
1203 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, CLMPCC_REOIR_NO_TRANS);
1204
1205 #ifdef DDB
1206 /*
1207 * Only =after= we write REOIR is it safe to drop to the debugger.
1208 */
1209 if ( saw_break )
1210 Debugger();
1211 #endif
1212
1213 return 1;
1214 }
1215
1216 /*
1217 * Tx interrupt routine
1218 */
1219 int
1220 clmpcc_txintr(arg)
1221 void *arg;
1222 {
1223 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1224 struct clmpcc_chan *ch;
1225 struct tty *tp;
1226 u_char ftc, oftc;
1227 u_char tir;
1228
1229 /* Tx interrupt active? */
1230 tir = clmpcc_rdreg(sc, CLMPCC_REG_TIR);
1231
1232 /*
1233 * If we're using auto-vectored interrupts, we have to
1234 * verify if the chip is generating the interrupt.
1235 */
1236 if ( sc->sc_vector_base == 0 && (tir & CLMPCC_TIR_TACT) == 0 )
1237 return 0;
1238
1239 /* Get pointer to interrupting channel's data structure */
1240 ch = &sc->sc_chans[tir & CLMPCC_TIR_TCN_MASK];
1241 tp = ch->ch_tty;
1242
1243 /* Dummy read of the interrupt status register */
1244 (void) clmpcc_rdreg(sc, CLMPCC_REG_TISR);
1245
1246 ftc = oftc = clmpcc_rdreg(sc, CLMPCC_REG_TFTC);
1247
1248 /* Handle a delayed parameter change */
1249 if ( ISSET(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS) ) {
1250 clmpcc_set_params(ch);
1251 CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1252 SET(ch->ch_flags, CLMPCC_FLG_START);
1253 goto tx_done;
1254 }
1255
1256 /* Stop transmitting if CLMPCC_FLG_STOP is set */
1257 if ( ISSET(ch->ch_flags, CLMPCC_FLG_STOP) )
1258 goto tx_done;
1259
1260 CLR(ch->ch_flags, CLMPCC_FLG_UPDATE_PARMS);
1261
1262 if ( tp->t_outq.c_cc > 0 ) {
1263 SET(tp->t_state, TS_BUSY);
1264 while (tp->t_outq.c_cc > 0 && ftc > 0 ) {
1265 clmpcc_wr_txdata(sc, getc(&tp->t_outq));
1266 ftc--;
1267 }
1268 } else {
1269 /*
1270 * No data to send -- check if we should
1271 * start/stop a break
1272 */
1273 /*
1274 * XXX does this cause too much delay before
1275 * breaks?
1276 */
1277 if ( ISSET(ch->ch_flags, CLMPCC_FLG_START_BREAK) ) {
1278 CLR(ch->ch_flags, CLMPCC_FLG_START_BREAK);
1279 }
1280
1281 if ( ISSET(ch->ch_flags, CLMPCC_FLG_END_BREAK) ) {
1282 CLR(ch->ch_flags, CLMPCC_FLG_END_BREAK);
1283 }
1284 }
1285
1286 if ( tp->t_outq.c_cc == 0 ) {
1287 tx_done:
1288 /*
1289 * No data to send, requested to stop or waiting for
1290 * an INIT following a parameter change.
1291 * Disable transmit interrupt
1292 */
1293 clmpcc_wrreg(ch->ch_sc, CLMPCC_REG_IER,
1294 clmpcc_rdreg(ch->ch_sc, CLMPCC_REG_IER) &
1295 ~CLMPCC_IER_TX_EMPTY);
1296 CLR(ch->ch_flags, CLMPCC_FLG_STOP);
1297 CLR(tp->t_state, TS_BUSY);
1298 }
1299
1300 if ( tp->t_outq.c_cc <= tp->t_lowat )
1301 SET(ch->ch_flags, CLMPCC_FLG_START);
1302
1303 if ( ISSET(ch->ch_flags, CLMPCC_FLG_START) && ! sc->sc_soft_running ) {
1304 sc->sc_soft_running = 1;
1305 (sc->sc_softhook)(sc);
1306 }
1307
1308 if ( ftc != oftc )
1309 clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, 0);
1310 else
1311 clmpcc_wrreg(sc, CLMPCC_REG_TEOIR, CLMPCC_TEOIR_NO_TRANS);
1312
1313 return 1;
1314 }
1315
1316 /*
1317 * Modem change interrupt routine
1318 */
1319 int
1320 clmpcc_mdintr(arg)
1321 void *arg;
1322 {
1323 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1324 u_char mir;
1325
1326 /* Modem status interrupt active? */
1327 mir = clmpcc_rdreg(sc, CLMPCC_REG_MIR);
1328
1329 /*
1330 * If we're using auto-vectored interrupts, we have to
1331 * verify if the chip is generating the interrupt.
1332 */
1333 if ( sc->sc_vector_base == 0 && (mir & CLMPCC_MIR_MACT) == 0 )
1334 return 0;
1335
1336 /* Dummy read of the interrupt status register */
1337 (void) clmpcc_rdreg(sc, CLMPCC_REG_MISR);
1338
1339 /* Retrieve current status of modem lines. */
1340 sc->sc_chans[mir & CLMPCC_MIR_MCN_MASK].ch_control |=
1341 clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1342
1343 clmpcc_wrreg(sc, CLMPCC_REG_MEOIR, 0);
1344
1345 if ( sc->sc_soft_running == 0 ) {
1346 sc->sc_soft_running = 1;
1347 (sc->sc_softhook)(sc);
1348 }
1349
1350 return 1;
1351 }
1352
1353 int
1354 clmpcc_softintr(arg)
1355 void *arg;
1356 {
1357 struct clmpcc_softc *sc = (struct clmpcc_softc *)arg;
1358 struct clmpcc_chan *ch;
1359 struct tty *tp;
1360 int (*rint) __P((int, struct tty *));
1361 u_char *get;
1362 u_char reg;
1363 u_int c;
1364 int chan;
1365
1366 sc->sc_soft_running = 0;
1367
1368
1369 /* Handle Modem state changes too... */
1370
1371 for (chan = 0; chan < CLMPCC_NUM_CHANS; chan++) {
1372 ch = &sc->sc_chans[chan];
1373 tp = ch->ch_tty;
1374
1375 get = ch->ch_ibuf_rd;
1376 rint = linesw[tp->t_line].l_rint;
1377
1378 /* Squirt buffered incoming data into the tty layer */
1379 while ( get != ch->ch_ibuf_wr ) {
1380 c = get[0];
1381 c |= ((u_int)get[1]) << 8;
1382 if ( (rint)(c, tp) == -1 ) {
1383 ch->ch_ibuf_rd = ch->ch_ibuf_wr;
1384 break;
1385 }
1386
1387 get += 2;
1388 if ( get == ch->ch_ibuf_end )
1389 get = ch->ch_ibuf;
1390
1391 ch->ch_ibuf_rd = get;
1392 }
1393
1394 if ( ISSET(ch->ch_flags, CLMPCC_FLG_NEED_INIT) ) {
1395 clmpcc_channel_cmd(sc, ch->ch_car, CLMPCC_CCR_T0_INIT |
1396 CLMPCC_CCR_T0_RX_EN |
1397 CLMPCC_CCR_T0_TX_EN);
1398 CLR(ch->ch_flags, CLMPCC_FLG_NEED_INIT);
1399
1400 /*
1401 * Allow time for the channel to initialise.
1402 * (Empirically derived duration; the must be
1403 * another way to determine the command
1404 * has completed without busy-waiting...)
1405 */
1406 delay(800);
1407
1408 /*
1409 * Update the tty layer's idea of the carrier bit,
1410 * in case we changed CLOCAL or MDMBUF. We don't
1411 * hang up here; we only do that by explicit request.
1412 */
1413 reg = clmpcc_rd_msvr(sc) & CLMPCC_MSVR_CD;
1414 (void) (*linesw[tp->t_line].l_modem)(tp, reg != 0);
1415 }
1416
1417 if ( ISSET(ch->ch_flags, CLMPCC_FLG_START) )
1418 (*linesw[tp->t_line].l_start)(tp);
1419 }
1420
1421 return 0;
1422 }
1423
1424
1425 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1426 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1427 /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX*/
1428 /*
1429 * Following are all routines needed for a cd240x channel to act as console
1430 */
1431 int
1432 clmpcc_cnattach(sc, chan, rate)
1433 struct clmpcc_softc *sc;
1434 int chan;
1435 int rate;
1436 {
1437 cons_sc = sc;
1438 cons_chan = chan;
1439 cons_rate = rate;
1440
1441 return 0;
1442 }
1443
1444 /*
1445 * The following functions are polled getc and putc routines, for console use.
1446 */
1447 static int
1448 clmpcc_common_getc(sc, chan)
1449 struct clmpcc_softc *sc;
1450 int chan;
1451 {
1452 u_char old_chan;
1453 u_char old_ier;
1454 u_char ch, rir, risr;
1455 int s;
1456
1457 s = splhigh();
1458
1459 /* Save the currently active channel */
1460 old_chan = clmpcc_select_channel(sc, chan);
1461
1462 /*
1463 * We have to put the channel into RX interrupt mode before
1464 * trying to read the Rx data register. So save the previous
1465 * interrupt mode.
1466 */
1467 old_ier = clmpcc_rdreg(sc, CLMPCC_REG_IER);
1468 clmpcc_wrreg(sc, CLMPCC_REG_IER, CLMPCC_IER_RX_FIFO);
1469
1470 /* Loop until we get a character */
1471 for (;;) {
1472 /*
1473 * The REN bit will be set in the Receive Interrupt Register
1474 * when the CD240x has a character to process. Remember,
1475 * the RACT bit won't be set until we generate an interrupt
1476 * acknowledge cycle via the MD front-end.
1477 */
1478 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1479 if ( (rir & CLMPCC_RIR_REN) == 0 )
1480 continue;
1481
1482 /* Acknowledge the request */
1483 if ( sc->sc_iackhook )
1484 (sc->sc_iackhook)(sc, CLMPCC_IACK_RX);
1485
1486 /*
1487 * Determine if the interrupt is for the required channel
1488 * and if valid data is available.
1489 */
1490 rir = clmpcc_rdreg(sc, CLMPCC_REG_RIR);
1491 risr = clmpcc_rdreg(sc, CLMPCC_REG_RISR);
1492 if ( (rir & CLMPCC_RIR_RCN_MASK) != chan ||
1493 risr != 0 ) {
1494 /* Rx error, or BREAK */
1495 clmpcc_wrreg(sc, CLMPCC_REG_REOIR,
1496 CLMPCC_REOIR_NO_TRANS);
1497 } else {
1498 /* Dummy read of the FIFO count register */
1499 (void) clmpcc_rdreg(sc, CLMPCC_REG_RFOC);
1500
1501 /* Fetch the received character */
1502 ch = clmpcc_rd_rxdata(sc);
1503
1504 clmpcc_wrreg(sc, CLMPCC_REG_REOIR, 0);
1505 break;
1506 }
1507 }
1508
1509 /* Restore the original IER and CAR register contents */
1510 clmpcc_wrreg(sc, CLMPCC_REG_IER, old_ier);
1511 clmpcc_select_channel(sc, old_chan);
1512
1513 splx(s);
1514 return ch;
1515 }
1516
1517
1518 static void
1519 clmpcc_common_putc(sc, chan, c)
1520 struct clmpcc_softc *sc;
1521 int chan;
1522 int c;
1523 {
1524 u_char old_chan;
1525 int s = splhigh();
1526
1527 /* Save the currently active channel */
1528 old_chan = clmpcc_select_channel(sc, chan);
1529
1530 /*
1531 * We wait here until the Tx FIFO is empty, and
1532 * the chip signifies that the Tx output is idle.
1533 */
1534 while ((clmpcc_rdreg(sc,CLMPCC_REG_TISR) & CLMPCC_TISR_TX_EMPTY) ==0 &&
1535 (clmpcc_rdreg(sc,CLMPCC_REG_TFTC) & CLMPCC_TFTC_MASK) != 0 )
1536 ; /* Do nothing */
1537
1538 /*
1539 * Since we can only access the Tx Data register from within
1540 * the interrupt handler, the easiest way to get console data
1541 * onto the wire is using one of the Special Transmit Character
1542 * registers.
1543 */
1544 clmpcc_wrreg(sc, CLMPCC_REG_SCHR4, c);
1545 clmpcc_wrreg(sc, CLMPCC_REG_STCR, CLMPCC_STCR_SSPC(4) |
1546 CLMPCC_STCR_SND_SPC);
1547
1548 /* Wait until the "Send Special Character" command is accepted */
1549 while ( clmpcc_rdreg(sc, CLMPCC_REG_STCR) != 0 )
1550 ;
1551
1552 /* Restore the previous channel selected */
1553 clmpcc_select_channel(sc, old_chan);
1554
1555 splx(s);
1556 }
1557
1558 int
1559 clmpcccngetc(dev)
1560 dev_t dev;
1561 {
1562 return clmpcc_common_getc(cons_sc, cons_chan);
1563 }
1564
1565 /*
1566 * Console kernel output character routine.
1567 */
1568 void
1569 clmpcccnputc(dev, c)
1570 dev_t dev;
1571 int c;
1572 {
1573 if ( c == '\n' )
1574 clmpcc_common_putc(cons_sc, cons_chan, '\r');
1575
1576 clmpcc_common_putc(cons_sc, cons_chan, c);
1577 }
1578