cs89x0.c revision 1.39 1 1.39 ozaki /* $NetBSD: cs89x0.c,v 1.39 2017/03/07 01:28:37 ozaki-r Exp $ */
2 1.14 chris
3 1.14 chris /*
4 1.14 chris * Copyright (c) 2004 Christopher Gilbert
5 1.14 chris * All rights reserved.
6 1.14 chris *
7 1.14 chris * 1. Redistributions of source code must retain the above copyright
8 1.14 chris * notice, this list of conditions and the following disclaimer.
9 1.14 chris * 2. Redistributions in binary form must reproduce the above copyright
10 1.14 chris * notice, this list of conditions and the following disclaimer in the
11 1.14 chris * documentation and/or other materials provided with the distribution.
12 1.14 chris * 3. The name of the company nor the name of the author may be used to
13 1.14 chris * endorse or promote products derived from this software without specific
14 1.14 chris * prior written permission.
15 1.14 chris *
16 1.14 chris * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 1.14 chris * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 1.14 chris * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.14 chris * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 1.14 chris * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 1.14 chris * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 1.14 chris * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.14 chris * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.14 chris * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.14 chris * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.14 chris * SUCH DAMAGE.
27 1.14 chris */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * Copyright 1997
31 1.1 yamt * Digital Equipment Corporation. All rights reserved.
32 1.1 yamt *
33 1.1 yamt * This software is furnished under license and may be used and
34 1.1 yamt * copied only in accordance with the following terms and conditions.
35 1.1 yamt * Subject to these conditions, you may download, copy, install,
36 1.1 yamt * use, modify and distribute this software in source and/or binary
37 1.1 yamt * form. No title or ownership is transferred hereby.
38 1.1 yamt *
39 1.1 yamt * 1) Any source code used, modified or distributed must reproduce
40 1.1 yamt * and retain this copyright notice and list of conditions as
41 1.1 yamt * they appear in the source file.
42 1.1 yamt *
43 1.1 yamt * 2) No right is granted to use any trade name, trademark, or logo of
44 1.1 yamt * Digital Equipment Corporation. Neither the "Digital Equipment
45 1.1 yamt * Corporation" name nor any trademark or logo of Digital Equipment
46 1.1 yamt * Corporation may be used to endorse or promote products derived
47 1.1 yamt * from this software without the prior written permission of
48 1.1 yamt * Digital Equipment Corporation.
49 1.1 yamt *
50 1.1 yamt * 3) This software is provided "AS-IS" and any express or implied
51 1.1 yamt * warranties, including but not limited to, any implied warranties
52 1.1 yamt * of merchantability, fitness for a particular purpose, or
53 1.1 yamt * non-infringement are disclaimed. In no event shall DIGITAL be
54 1.1 yamt * liable for any damages whatsoever, and in particular, DIGITAL
55 1.1 yamt * shall not be liable for special, indirect, consequential, or
56 1.1 yamt * incidental damages or damages for lost profits, loss of
57 1.1 yamt * revenue or loss of use, whether such damages arise in contract,
58 1.1 yamt * negligence, tort, under statute, in equity, at law or otherwise,
59 1.1 yamt * even if advised of the possibility of such damage.
60 1.1 yamt */
61 1.1 yamt
62 1.1 yamt /*
63 1.1 yamt **++
64 1.1 yamt ** FACILITY
65 1.1 yamt **
66 1.1 yamt ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 1.1 yamt **
68 1.1 yamt ** ABSTRACT
69 1.1 yamt **
70 1.1 yamt ** This module provides standard ethernet access for INET protocols
71 1.1 yamt ** only.
72 1.1 yamt **
73 1.1 yamt ** AUTHORS
74 1.1 yamt **
75 1.1 yamt ** Peter Dettori SEA - Software Engineering.
76 1.1 yamt **
77 1.1 yamt ** CREATION DATE:
78 1.1 yamt **
79 1.1 yamt ** 13-Feb-1997.
80 1.1 yamt **
81 1.1 yamt ** MODIFICATION HISTORY (Digital):
82 1.1 yamt **
83 1.1 yamt ** Revision 1.27 1998/01/20 17:59:40 cgd
84 1.1 yamt ** update for moved headers
85 1.1 yamt **
86 1.1 yamt ** Revision 1.26 1998/01/12 19:29:36 cgd
87 1.1 yamt ** use arm32/isa versions of isadma code.
88 1.1 yamt **
89 1.1 yamt ** Revision 1.25 1997/12/12 01:35:27 cgd
90 1.1 yamt ** convert to use new arp code (from Brini)
91 1.1 yamt **
92 1.1 yamt ** Revision 1.24 1997/12/10 22:31:56 cgd
93 1.1 yamt ** trim some fat (get rid of ability to explicitly supply enet addr, since
94 1.1 yamt ** it was never used and added a bunch of code which really doesn't belong in
95 1.1 yamt ** an enet driver), and clean up slightly.
96 1.1 yamt **
97 1.1 yamt ** Revision 1.23 1997/10/06 16:42:12 cgd
98 1.1 yamt ** copyright notices
99 1.1 yamt **
100 1.1 yamt ** Revision 1.22 1997/06/20 19:38:01 chaiken
101 1.1 yamt ** fixes some smartcard problems
102 1.1 yamt **
103 1.1 yamt ** Revision 1.21 1997/06/10 02:56:20 grohn
104 1.1 yamt ** Added call to ledNetActive
105 1.1 yamt **
106 1.1 yamt ** Revision 1.20 1997/06/05 00:47:06 dettori
107 1.1 yamt ** Changed cs_process_rx_dma to reset and re-initialise the
108 1.1 yamt ** ethernet chip when DMA gets out of sync, or mbufs
109 1.1 yamt ** can't be allocated.
110 1.1 yamt **
111 1.1 yamt ** Revision 1.19 1997/06/03 03:09:58 dettori
112 1.1 yamt ** Turn off sc_txbusy flag when a transmit underrun
113 1.1 yamt ** occurs.
114 1.1 yamt **
115 1.1 yamt ** Revision 1.18 1997/06/02 00:04:35 dettori
116 1.1 yamt ** redefined the transmit table to get around the nfs_timer bug while we are
117 1.1 yamt ** looking into it further.
118 1.1 yamt **
119 1.1 yamt ** Also changed interrupts from EDGE to LEVEL.
120 1.1 yamt **
121 1.1 yamt ** Revision 1.17 1997/05/27 23:31:01 dettori
122 1.1 yamt ** Pulled out changes to DMAMODE defines.
123 1.1 yamt **
124 1.1 yamt ** Revision 1.16 1997/05/23 04:25:16 cgd
125 1.1 yamt ** reformat log so it fits in 80cols
126 1.1 yamt **
127 1.1 yamt ** Revision 1.15 1997/05/23 04:22:18 cgd
128 1.1 yamt ** remove the existing copyright notice (which Peter Dettori indicated
129 1.1 yamt ** was incorrect, copied from an existing NetBSD file only so that the
130 1.1 yamt ** file would have a copyright notice on it, and which he'd intended to
131 1.1 yamt ** replace). Replace it with a Digital copyright notice, cloned from
132 1.1 yamt ** ess.c. It's not really correct either (it indicates that the source
133 1.1 yamt ** is Digital confidential!), but is better than nothing and more
134 1.1 yamt ** correct than what was there before.
135 1.1 yamt **
136 1.1 yamt ** Revision 1.14 1997/05/23 04:12:50 cgd
137 1.1 yamt ** use an adaptive transmit start algorithm: start by telling the chip
138 1.1 yamt ** to start transmitting after 381 bytes have been fed to it. if that
139 1.1 yamt ** gets transmit underruns, ramp down to 1021 bytes then "whole
140 1.1 yamt ** packet." If successful at a given level for a while, try the next
141 1.1 yamt ** more agressive level. This code doesn't ever try to start
142 1.1 yamt ** transmitting after 5 bytes have been sent to the NIC, because
143 1.1 yamt ** that underruns rather regularly. The back-off and ramp-up mechanism
144 1.1 yamt ** could probably be tuned a little bit, but this works well enough to
145 1.1 yamt ** support > 1MB/s transmit rates on a clear ethernet (which is about
146 1.1 yamt ** 20-25% better than the driver had previously been getting).
147 1.1 yamt **
148 1.1 yamt ** Revision 1.13 1997/05/22 21:06:54 cgd
149 1.1 yamt ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
150 1.1 yamt ** casting from u_int8_t * to u_int16_t * without worrying about alignment
151 1.1 yamt ** issues. This would cause bogus data to be spit out for mbufs with
152 1.1 yamt ** misaligned data. For instance, it caused the following bits to appear
153 1.1 yamt ** on the wire:
154 1.1 yamt ** ... etBND 1S2C .SHA(K) R ...
155 1.1 yamt ** 11112222333344445555
156 1.1 yamt ** which should have appeared as:
157 1.1 yamt ** ... NetBSD 1.2C (SHARK) ...
158 1.1 yamt ** 11112222333344445555
159 1.1 yamt ** Note the apparent 'rotate' of the bytes in the word, which was due to
160 1.1 yamt ** incorrect unaligned accesses. This data corruption was the cause of
161 1.1 yamt ** incoming telnet/rlogin hangs.
162 1.1 yamt **
163 1.1 yamt ** Revision 1.12 1997/05/22 01:55:32 cgd
164 1.1 yamt ** reformat log so it fits in 80cols
165 1.1 yamt **
166 1.1 yamt ** Revision 1.11 1997/05/22 01:50:27 cgd
167 1.1 yamt ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 1.1 yamt ** so packets aimed at other hosts don't get sent to ether_input().
169 1.1 yamt ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 1.1 yamt ** you can easily tell (`strings`) what version of the driver is in your
171 1.1 yamt ** kernel binary.
172 1.1 yamt ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
173 1.1 yamt ** safe, and not really a performance win anyway. (It was only used when
174 1.1 yamt ** setting up the multicast logical address filter, which is an
175 1.1 yamt ** infrequent event. It could have been used in the IFF_PROMISCUOUS
176 1.1 yamt ** address check above, but the benefit of it vs. memcmp would be
177 1.1 yamt ** inconsequential, there.) Use memcmp() instead.
178 1.1 yamt ** * restructure csStartOuput to avoid the following bugs in the case where
179 1.1 yamt ** txWait was being set:
180 1.1 yamt ** * it would accidentally drop the outgoing packet if told to wait
181 1.1 yamt ** but the outgoing packet queue was empty.
182 1.1 yamt ** * it would bpf_mtap() the outgoing packet multiple times (once for
183 1.1 yamt ** each time it was told to wait), and would also recalculate
184 1.1 yamt ** the length of the outgoing packet each time it was told to
185 1.1 yamt ** wait.
186 1.1 yamt ** While there, rename txWait to txLoop, since with the new structure of
187 1.1 yamt ** the code, the latter name makes more sense.
188 1.1 yamt **
189 1.1 yamt ** Revision 1.10 1997/05/19 02:03:20 cgd
190 1.1 yamt ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
191 1.1 yamt ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 1.1 yamt ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
193 1.1 yamt ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 1.1 yamt ** as before.
195 1.1 yamt **
196 1.1 yamt ** Revision 1.9 1997/05/19 01:45:37 cgd
197 1.1 yamt ** create a new function, cs_ether_input(), which does received-packet
198 1.1 yamt ** BPF and ether_input processing. This code used to be in three places,
199 1.1 yamt ** and centralizing it will make adding IFF_PROMISC support much easier.
200 1.1 yamt ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 1.1 yamt ** do copies with bus_space_write_region_2(). It's more correct, and
202 1.1 yamt ** potentially more efficient. That function needs to be gutted (to
203 1.1 yamt ** deal properly with alignment issues, which it currently does wrong),
204 1.1 yamt ** however, and the change doesn't gain much, so there's no point in
205 1.1 yamt ** enabling it now.
206 1.1 yamt **
207 1.1 yamt ** Revision 1.8 1997/05/19 01:17:10 cgd
208 1.1 yamt ** fix a comment re: the setting of the TxConfig register. Clean up
209 1.1 yamt ** interface counter maintenance (make it use standard idiom).
210 1.1 yamt **
211 1.1 yamt **--
212 1.1 yamt */
213 1.1 yamt
214 1.1 yamt #include <sys/cdefs.h>
215 1.39 ozaki __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.39 2017/03/07 01:28:37 ozaki-r Exp $");
216 1.1 yamt
217 1.1 yamt #include "opt_inet.h"
218 1.1 yamt
219 1.1 yamt #include <sys/param.h>
220 1.1 yamt #include <sys/systm.h>
221 1.1 yamt #include <sys/mbuf.h>
222 1.1 yamt #include <sys/syslog.h>
223 1.1 yamt #include <sys/socket.h>
224 1.1 yamt #include <sys/device.h>
225 1.1 yamt #include <sys/malloc.h>
226 1.1 yamt #include <sys/ioctl.h>
227 1.1 yamt #include <sys/errno.h>
228 1.1 yamt
229 1.35 riastrad #include <sys/rndsource.h>
230 1.1 yamt
231 1.1 yamt #include <net/if.h>
232 1.1 yamt #include <net/if_ether.h>
233 1.1 yamt #include <net/if_media.h>
234 1.1 yamt #ifdef INET
235 1.1 yamt #include <netinet/in.h>
236 1.1 yamt #include <netinet/if_inarp.h>
237 1.1 yamt #endif
238 1.1 yamt
239 1.1 yamt #include <net/bpf.h>
240 1.1 yamt #include <net/bpfdesc.h>
241 1.1 yamt
242 1.22 ad #include <sys/bus.h>
243 1.22 ad #include <sys/intr.h>
244 1.1 yamt
245 1.1 yamt #include <dev/ic/cs89x0reg.h>
246 1.1 yamt #include <dev/ic/cs89x0var.h>
247 1.1 yamt
248 1.1 yamt #ifdef SHARK
249 1.3 pooka #include <shark/shark/sequoia.h>
250 1.1 yamt #endif
251 1.1 yamt
252 1.1 yamt /*
253 1.1 yamt * MACRO DEFINITIONS
254 1.1 yamt */
255 1.1 yamt #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
256 1.1 yamt
257 1.1 yamt /*
258 1.1 yamt * FUNCTION PROTOTYPES
259 1.1 yamt */
260 1.28 tsutsui static void cs_get_default_media(struct cs_softc *);
261 1.28 tsutsui static int cs_get_params(struct cs_softc *);
262 1.28 tsutsui static int cs_get_enaddr(struct cs_softc *);
263 1.28 tsutsui static int cs_reset_chip(struct cs_softc *);
264 1.28 tsutsui static void cs_reset(struct cs_softc *);
265 1.28 tsutsui static int cs_ioctl(struct ifnet *, u_long, void *);
266 1.28 tsutsui static void cs_initChip(struct cs_softc *);
267 1.28 tsutsui static void cs_buffer_event(struct cs_softc *, u_int16_t);
268 1.28 tsutsui static void cs_transmit_event(struct cs_softc *, u_int16_t);
269 1.28 tsutsui static void cs_receive_event(struct cs_softc *, u_int16_t);
270 1.28 tsutsui static void cs_process_receive(struct cs_softc *);
271 1.28 tsutsui static void cs_process_rx_early(struct cs_softc *);
272 1.28 tsutsui static void cs_start_output(struct ifnet *);
273 1.28 tsutsui static void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
274 1.28 tsutsui static void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
275 1.28 tsutsui static u_int16_t cs_hash_index(char *);
276 1.28 tsutsui static void cs_counter_event(struct cs_softc *, u_int16_t);
277 1.5 augustss
278 1.28 tsutsui static int cs_mediachange(struct ifnet *);
279 1.28 tsutsui static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
280 1.5 augustss
281 1.25 tsutsui static bool cs_shutdown(device_t, int);
282 1.5 augustss static int cs_enable(struct cs_softc *);
283 1.5 augustss static void cs_disable(struct cs_softc *);
284 1.5 augustss static void cs_stop(struct ifnet *, int);
285 1.14 chris static int cs_scan_eeprom(struct cs_softc *);
286 1.14 chris static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
287 1.14 chris
288 1.1 yamt
289 1.1 yamt /*
290 1.1 yamt * GLOBAL DECLARATIONS
291 1.1 yamt */
292 1.1 yamt
293 1.1 yamt /*
294 1.1 yamt * Xmit-early table.
295 1.1 yamt *
296 1.1 yamt * To get better performance, we tell the chip to start packet
297 1.1 yamt * transmission before the whole packet is copied to the chip.
298 1.1 yamt * However, this can fail under load. When it fails, we back off
299 1.1 yamt * to a safer setting for a little while.
300 1.1 yamt *
301 1.1 yamt * txcmd is the value of txcmd used to indicate when to start transmission.
302 1.1 yamt * better is the next 'better' state in the table.
303 1.1 yamt * better_count is the number of output packets before transition to the
304 1.1 yamt * better state.
305 1.1 yamt * worse is the next 'worse' state in the table.
306 1.1 yamt *
307 1.1 yamt * Transition to the next worse state happens automatically when a
308 1.1 yamt * transmittion underrun occurs.
309 1.1 yamt */
310 1.1 yamt struct cs_xmit_early {
311 1.1 yamt u_int16_t txcmd;
312 1.1 yamt int better;
313 1.1 yamt int better_count;
314 1.1 yamt int worse;
315 1.1 yamt } cs_xmit_early_table[3] = {
316 1.1 yamt { TX_CMD_START_381, 0, INT_MAX, 1, },
317 1.1 yamt { TX_CMD_START_1021, 0, 50000, 2, },
318 1.1 yamt { TX_CMD_START_ALL, 1, 5000, 2, },
319 1.1 yamt };
320 1.1 yamt
321 1.1 yamt int cs_default_media[] = {
322 1.1 yamt IFM_ETHER|IFM_10_2,
323 1.1 yamt IFM_ETHER|IFM_10_5,
324 1.1 yamt IFM_ETHER|IFM_10_T,
325 1.1 yamt IFM_ETHER|IFM_10_T|IFM_FDX,
326 1.1 yamt };
327 1.1 yamt int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
328 1.1 yamt
329 1.16 perry int
330 1.16 perry cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
331 1.5 augustss int nmedia, int defmedia)
332 1.1 yamt {
333 1.1 yamt struct ifnet *ifp = &sc->sc_ethercom.ec_if;
334 1.1 yamt const char *chipname, *medname;
335 1.1 yamt u_int16_t reg;
336 1.1 yamt int i;
337 1.1 yamt
338 1.1 yamt /* Start out in IO mode */
339 1.1 yamt sc->sc_memorymode = FALSE;
340 1.1 yamt
341 1.1 yamt /* make sure we're right */
342 1.1 yamt for (i = 0; i < 10000; i++) {
343 1.1 yamt reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
344 1.1 yamt if (reg == EISA_NUM_CRYSTAL) {
345 1.1 yamt break;
346 1.1 yamt }
347 1.1 yamt }
348 1.1 yamt if (i == 10000) {
349 1.26 tsutsui aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
350 1.1 yamt return 1; /* XXX should panic? */
351 1.1 yamt }
352 1.1 yamt
353 1.1 yamt reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
354 1.1 yamt sc->sc_prodid = reg & PROD_ID_MASK;
355 1.1 yamt sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
356 1.1 yamt
357 1.1 yamt switch (sc->sc_prodid) {
358 1.1 yamt case PROD_ID_CS8900:
359 1.1 yamt chipname = "CS8900";
360 1.1 yamt break;
361 1.1 yamt case PROD_ID_CS8920:
362 1.1 yamt chipname = "CS8920";
363 1.1 yamt break;
364 1.1 yamt case PROD_ID_CS8920M:
365 1.1 yamt chipname = "CS8920M";
366 1.1 yamt break;
367 1.1 yamt default:
368 1.1 yamt panic("cs_attach: impossible");
369 1.1 yamt }
370 1.1 yamt
371 1.1 yamt /*
372 1.1 yamt * the first thing to do is check that the mbuf cluster size is
373 1.1 yamt * greater than the MTU for an ethernet frame. The code depends on
374 1.1 yamt * this and to port this to a OS where this was not the case would
375 1.1 yamt * not be straightforward.
376 1.2 yamt *
377 1.2 yamt * we need 1 byte spare because our
378 1.2 yamt * packet read loop can overrun.
379 1.2 yamt * and we may need pad bytes to align ip header.
380 1.1 yamt */
381 1.2 yamt if (MCLBYTES < ETHER_MAX_LEN + 1 +
382 1.2 yamt ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
383 1.1 yamt printf("%s: MCLBYTES too small for Ethernet frame\n",
384 1.26 tsutsui device_xname(sc->sc_dev));
385 1.1 yamt return 1;
386 1.1 yamt }
387 1.1 yamt
388 1.1 yamt /* Start out not transmitting */
389 1.1 yamt sc->sc_txbusy = FALSE;
390 1.1 yamt
391 1.1 yamt /* Set up early transmit threshhold */
392 1.1 yamt sc->sc_xe_ent = 0;
393 1.1 yamt sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
394 1.1 yamt
395 1.1 yamt /* Initialize ifnet structure. */
396 1.26 tsutsui strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
397 1.1 yamt ifp->if_softc = sc;
398 1.1 yamt ifp->if_start = cs_start_output;
399 1.1 yamt ifp->if_init = cs_init;
400 1.1 yamt ifp->if_ioctl = cs_ioctl;
401 1.1 yamt ifp->if_stop = cs_stop;
402 1.1 yamt ifp->if_watchdog = NULL; /* no watchdog at this stage */
403 1.1 yamt ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
404 1.1 yamt IFF_BROADCAST | IFF_MULTICAST;
405 1.1 yamt IFQ_SET_READY(&ifp->if_snd);
406 1.1 yamt
407 1.1 yamt /* Initialize ifmedia structures. */
408 1.1 yamt ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
409 1.1 yamt
410 1.1 yamt if (media != NULL) {
411 1.1 yamt for (i = 0; i < nmedia; i++)
412 1.1 yamt ifmedia_add(&sc->sc_media, media[i], 0, NULL);
413 1.1 yamt ifmedia_set(&sc->sc_media, defmedia);
414 1.1 yamt } else {
415 1.1 yamt for (i = 0; i < cs_default_nmedia; i++)
416 1.1 yamt ifmedia_add(&sc->sc_media, cs_default_media[i],
417 1.1 yamt 0, NULL);
418 1.1 yamt cs_get_default_media(sc);
419 1.1 yamt }
420 1.16 perry
421 1.14 chris if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
422 1.14 chris if (cs_scan_eeprom(sc) == CS_ERROR) {
423 1.14 chris /* failed to scan the eeprom, pretend there isn't an eeprom */
424 1.26 tsutsui aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
425 1.14 chris sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
426 1.14 chris }
427 1.16 perry }
428 1.1 yamt
429 1.1 yamt if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
430 1.1 yamt /* Get parameters from the EEPROM */
431 1.1 yamt if (cs_get_params(sc) == CS_ERROR) {
432 1.26 tsutsui aprint_error_dev(sc->sc_dev,
433 1.26 tsutsui "unable to get settings from EEPROM\n");
434 1.1 yamt return 1;
435 1.1 yamt }
436 1.1 yamt }
437 1.1 yamt
438 1.1 yamt if (enaddr != NULL)
439 1.1 yamt memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
440 1.1 yamt else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
441 1.1 yamt /* Get and store the Ethernet address */
442 1.1 yamt if (cs_get_enaddr(sc) == CS_ERROR) {
443 1.26 tsutsui aprint_error_dev(sc->sc_dev,
444 1.26 tsutsui "unable to read Ethernet address\n");
445 1.1 yamt return 1;
446 1.1 yamt }
447 1.1 yamt } else {
448 1.6 augustss #if 1
449 1.17 christos int j;
450 1.6 augustss uint v;
451 1.6 augustss
452 1.17 christos for (j = 0; j < 6; j += 2) {
453 1.17 christos v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
454 1.17 christos sc->sc_enaddr[j + 0] = v;
455 1.17 christos sc->sc_enaddr[j + 1] = v >> 8;
456 1.6 augustss }
457 1.6 augustss #else
458 1.26 tsutsui printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
459 1.1 yamt return 1;
460 1.6 augustss #endif
461 1.1 yamt }
462 1.1 yamt
463 1.1 yamt switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
464 1.1 yamt case IFM_10_2:
465 1.1 yamt medname = "BNC";
466 1.1 yamt break;
467 1.1 yamt case IFM_10_5:
468 1.1 yamt medname = "AUI";
469 1.1 yamt break;
470 1.1 yamt case IFM_10_T:
471 1.1 yamt if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
472 1.1 yamt medname = "UTP <full-duplex>";
473 1.1 yamt else
474 1.1 yamt medname = "UTP";
475 1.1 yamt break;
476 1.1 yamt default:
477 1.1 yamt panic("cs_attach: impossible");
478 1.1 yamt }
479 1.26 tsutsui printf("%s: %s rev. %c, address %s, media %s\n",
480 1.26 tsutsui device_xname(sc->sc_dev),
481 1.1 yamt chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
482 1.1 yamt medname);
483 1.1 yamt
484 1.1 yamt if (sc->sc_dma_attach)
485 1.1 yamt (*sc->sc_dma_attach)(sc);
486 1.1 yamt
487 1.1 yamt /* Attach the interface. */
488 1.1 yamt if_attach(ifp);
489 1.39 ozaki if_deferred_start_init(ifp, NULL);
490 1.1 yamt ether_ifattach(ifp, sc->sc_enaddr);
491 1.1 yamt
492 1.26 tsutsui rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
493 1.34 tls RND_TYPE_NET, RND_FLAG_DEFAULT);
494 1.1 yamt sc->sc_cfgflags |= CFGFLG_ATTACHED;
495 1.1 yamt
496 1.26 tsutsui if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
497 1.26 tsutsui pmf_class_network_register(sc->sc_dev, ifp);
498 1.25 tsutsui else
499 1.26 tsutsui aprint_error_dev(sc->sc_dev,
500 1.25 tsutsui "couldn't establish power handler\n");
501 1.25 tsutsui
502 1.1 yamt /* Reset the chip */
503 1.1 yamt if (cs_reset_chip(sc) == CS_ERROR) {
504 1.26 tsutsui aprint_error_dev(sc->sc_dev, "reset failed\n");
505 1.1 yamt cs_detach(sc);
506 1.1 yamt return 1;
507 1.1 yamt }
508 1.1 yamt
509 1.1 yamt return 0;
510 1.1 yamt }
511 1.1 yamt
512 1.1 yamt int
513 1.5 augustss cs_detach(struct cs_softc *sc)
514 1.1 yamt {
515 1.1 yamt struct ifnet *ifp = &sc->sc_ethercom.ec_if;
516 1.1 yamt
517 1.1 yamt if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
518 1.1 yamt rnd_detach_source(&sc->rnd_source);
519 1.1 yamt ether_ifdetach(ifp);
520 1.1 yamt if_detach(ifp);
521 1.1 yamt sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
522 1.1 yamt }
523 1.16 perry
524 1.1 yamt #if 0
525 1.1 yamt /*
526 1.1 yamt * XXX not necessary
527 1.1 yamt */
528 1.1 yamt if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
529 1.1 yamt isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
530 1.1 yamt isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
531 1.1 yamt isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
532 1.1 yamt sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
533 1.1 yamt }
534 1.1 yamt #endif
535 1.1 yamt
536 1.26 tsutsui pmf_device_deregister(sc->sc_dev);
537 1.25 tsutsui
538 1.1 yamt return 0;
539 1.1 yamt }
540 1.1 yamt
541 1.25 tsutsui bool
542 1.25 tsutsui cs_shutdown(device_t self, int howto)
543 1.25 tsutsui {
544 1.25 tsutsui struct cs_softc *sc;
545 1.25 tsutsui
546 1.25 tsutsui sc = device_private(self);
547 1.25 tsutsui cs_reset(sc);
548 1.25 tsutsui
549 1.25 tsutsui return true;
550 1.25 tsutsui }
551 1.25 tsutsui
552 1.1 yamt void
553 1.5 augustss cs_get_default_media(struct cs_softc *sc)
554 1.1 yamt {
555 1.1 yamt u_int16_t adp_cfg, xmit_ctl;
556 1.1 yamt
557 1.6 augustss if (cs_verify_eeprom(sc) == CS_ERROR) {
558 1.26 tsutsui aprint_error_dev(sc->sc_dev,
559 1.26 tsutsui "cs_get_default_media: EEPROM missing or bad\n");
560 1.1 yamt goto fakeit;
561 1.1 yamt }
562 1.1 yamt
563 1.6 augustss if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
564 1.26 tsutsui aprint_error_dev(sc->sc_dev,
565 1.26 tsutsui "unable to read adapter config from EEPROM\n");
566 1.1 yamt goto fakeit;
567 1.1 yamt }
568 1.1 yamt
569 1.6 augustss if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
570 1.26 tsutsui aprint_error_dev(sc->sc_dev,
571 1.26 tsutsui "unable to read transmit control from EEPROM\n");
572 1.1 yamt goto fakeit;
573 1.1 yamt }
574 1.1 yamt
575 1.1 yamt switch (adp_cfg & ADPTR_CFG_MEDIA) {
576 1.1 yamt case ADPTR_CFG_AUI:
577 1.1 yamt ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
578 1.1 yamt break;
579 1.1 yamt case ADPTR_CFG_10BASE2:
580 1.1 yamt ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
581 1.1 yamt break;
582 1.1 yamt case ADPTR_CFG_10BASET:
583 1.1 yamt default:
584 1.1 yamt if (xmit_ctl & XMIT_CTL_FDX)
585 1.1 yamt ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
586 1.1 yamt else
587 1.1 yamt ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
588 1.1 yamt break;
589 1.1 yamt }
590 1.1 yamt return;
591 1.1 yamt
592 1.1 yamt fakeit:
593 1.26 tsutsui aprint_error_dev(sc->sc_dev,
594 1.26 tsutsui "WARNING: default media setting may be inaccurate\n");
595 1.1 yamt /* XXX Arbitrary... */
596 1.1 yamt ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
597 1.1 yamt }
598 1.1 yamt
599 1.14 chris /*
600 1.14 chris * cs_scan_eeprom
601 1.14 chris *
602 1.14 chris * Attempt to take a complete copy of the eeprom into main memory.
603 1.14 chris * this will allow faster parsing of the eeprom data.
604 1.14 chris *
605 1.14 chris * Only tested against a 8920M's eeprom, but the data sheet for the
606 1.14 chris * 8920A indicates that is uses the same layout.
607 1.14 chris */
608 1.16 perry int
609 1.14 chris cs_scan_eeprom(struct cs_softc *sc)
610 1.14 chris {
611 1.14 chris u_int16_t result;
612 1.14 chris int i;
613 1.14 chris int eeprom_size;
614 1.14 chris u_int8_t checksum = 0;
615 1.14 chris
616 1.14 chris if (cs_verify_eeprom(sc) == CS_ERROR) {
617 1.26 tsutsui aprint_error_dev(sc->sc_dev,
618 1.26 tsutsui "cs_scan_params: EEPROM missing or bad\n");
619 1.14 chris return (CS_ERROR);
620 1.14 chris }
621 1.14 chris
622 1.16 perry /*
623 1.14 chris * read the 0th word from the eeprom, it will tell us the length
624 1.14 chris * and if the eeprom is valid
625 1.14 chris */
626 1.14 chris cs_read_eeprom(sc, 0, &result);
627 1.14 chris
628 1.14 chris /* check the eeprom signature */
629 1.14 chris if ((result & 0xE000) != 0xA000) {
630 1.14 chris /* empty eeprom */
631 1.14 chris return (CS_ERROR);
632 1.14 chris }
633 1.14 chris
634 1.16 perry /*
635 1.14 chris * take the eeprom size (note the read value doesn't include the header
636 1.14 chris * word)
637 1.14 chris */
638 1.14 chris eeprom_size = (result & 0xff) + 2;
639 1.14 chris
640 1.14 chris sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
641 1.14 chris if (sc->eeprom_data == NULL) {
642 1.14 chris /* no memory, treat this as if there's no eeprom */
643 1.14 chris return (CS_ERROR);
644 1.14 chris }
645 1.16 perry
646 1.14 chris sc->eeprom_size = eeprom_size;
647 1.14 chris
648 1.14 chris /* read the eeprom into the buffer, also calculate the checksum */
649 1.14 chris for (i = 0; i < (eeprom_size >> 1); i++) {
650 1.14 chris cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
651 1.14 chris checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
652 1.14 chris checksum += (sc->eeprom_data[i] & 0x00ff);
653 1.14 chris }
654 1.14 chris
655 1.16 perry /*
656 1.14 chris * validate checksum calculation, the sum of all the bytes should be 0,
657 1.14 chris * as the high byte of the last word is the 2's complement of the
658 1.14 chris * sum to that point.
659 1.14 chris */
660 1.14 chris if (checksum != 0) {
661 1.26 tsutsui aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
662 1.14 chris return (CS_ERROR);
663 1.14 chris }
664 1.14 chris
665 1.14 chris return (CS_OK);
666 1.14 chris }
667 1.14 chris
668 1.16 perry static int
669 1.14 chris cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
670 1.14 chris {
671 1.14 chris int x, maxword;
672 1.14 chris
673 1.14 chris /* Check that we have eeprom data */
674 1.19 chris if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
675 1.14 chris return (CS_ERROR);
676 1.14 chris
677 1.14 chris /*
678 1.14 chris * We only want to read the data words, the last word contains the
679 1.14 chris * checksum
680 1.14 chris */
681 1.14 chris maxword = (sc->eeprom_size - 2) >> 1;
682 1.14 chris
683 1.14 chris /* start 1 word in, as the first word is the length and signature */
684 1.14 chris x = 1;
685 1.14 chris
686 1.14 chris while ( x < (maxword)) {
687 1.14 chris u_int16_t header;
688 1.14 chris int group_size;
689 1.14 chris int offset;
690 1.14 chris int offset_max;
691 1.14 chris
692 1.14 chris /* read in the group header word */
693 1.14 chris header = sc->eeprom_data[x];
694 1.14 chris x++; /* skip group header */
695 1.14 chris
696 1.16 perry /*
697 1.14 chris * size of group in words is in the top 4 bits, note that it
698 1.14 chris * is one less than the number of words
699 1.14 chris */
700 1.14 chris group_size = header & 0xF000;
701 1.14 chris
702 1.16 perry /*
703 1.14 chris * CS8900 Data sheet says this should be 0x01ff,
704 1.16 perry * but my cs8920 eeprom has higher offsets,
705 1.16 perry * perhaps the 8920 allows higher offsets, otherwise
706 1.14 chris * it's writing to places that it shouldn't
707 1.14 chris */
708 1.14 chris /* work out the offsets this group covers */
709 1.14 chris offset = header & 0x0FFF;
710 1.14 chris offset_max = offset + (group_size << 1);
711 1.14 chris
712 1.14 chris /* check if the pkgpg we're after is in this group */
713 1.14 chris if ((offset <= pktpg) && (pktpg <= offset_max)) {
714 1.14 chris /* the pkgpg value we want is in here */
715 1.14 chris int eeprom_location;
716 1.16 perry
717 1.14 chris eeprom_location = ((pktpg - offset) >> 1) ;
718 1.16 perry
719 1.16 perry *pValue = sc->eeprom_data[x + eeprom_location];
720 1.14 chris return (CS_OK);
721 1.14 chris } else {
722 1.14 chris /* skip this group (+ 1 for first entry) */
723 1.14 chris x += group_size + 1;
724 1.14 chris }
725 1.14 chris }
726 1.14 chris
727 1.14 chris /*
728 1.14 chris * if we've fallen out here then we don't have a value in the EEPROM
729 1.16 perry * for this pktpg so return an error
730 1.14 chris */
731 1.14 chris return (CS_ERROR);
732 1.14 chris }
733 1.14 chris
734 1.16 perry int
735 1.5 augustss cs_get_params(struct cs_softc *sc)
736 1.1 yamt {
737 1.1 yamt u_int16_t isaConfig;
738 1.1 yamt u_int16_t adapterConfig;
739 1.1 yamt
740 1.6 augustss if (cs_verify_eeprom(sc) == CS_ERROR) {
741 1.26 tsutsui aprint_error_dev(sc->sc_dev,
742 1.26 tsutsui "cs_get_params: EEPROM missing or bad\n");
743 1.1 yamt return (CS_ERROR);
744 1.1 yamt }
745 1.1 yamt
746 1.14 chris if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
747 1.14 chris /* Get ISA configuration from the EEPROM */
748 1.14 chris if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
749 1.14 chris == CS_ERROR) {
750 1.14 chris /* eeprom doesn't have this value, use data sheet default */
751 1.14 chris isaConfig = 0x0017;
752 1.14 chris }
753 1.14 chris
754 1.14 chris /* Get adapter configuration from the EEPROM */
755 1.14 chris if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
756 1.14 chris == CS_ERROR) {
757 1.14 chris /* eeprom doesn't have this value, use data sheet default */
758 1.14 chris adapterConfig = 0x0015;
759 1.14 chris }
760 1.14 chris
761 1.14 chris /* Copy the USE_SA flag */
762 1.14 chris if (isaConfig & BUS_CTL_USE_SA)
763 1.14 chris sc->sc_cfgflags |= CFGFLG_USE_SA;
764 1.14 chris
765 1.14 chris /* Copy the IO Channel Ready flag */
766 1.14 chris if (isaConfig & BUS_CTL_IOCHRDY)
767 1.14 chris sc->sc_cfgflags |= CFGFLG_IOCHRDY;
768 1.14 chris
769 1.14 chris /* Copy the DC/DC Polarity flag */
770 1.14 chris if (adapterConfig & SELF_CTL_HCB1)
771 1.14 chris sc->sc_cfgflags |= CFGFLG_DCDC_POL;
772 1.14 chris } else {
773 1.14 chris /* Get ISA configuration from the EEPROM */
774 1.14 chris if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
775 1.14 chris goto eeprom_bad;
776 1.14 chris
777 1.14 chris /* Get adapter configuration from the EEPROM */
778 1.14 chris if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
779 1.14 chris goto eeprom_bad;
780 1.14 chris
781 1.14 chris /* Copy the USE_SA flag */
782 1.14 chris if (isaConfig & ISA_CFG_USE_SA)
783 1.14 chris sc->sc_cfgflags |= CFGFLG_USE_SA;
784 1.14 chris
785 1.14 chris /* Copy the IO Channel Ready flag */
786 1.14 chris if (isaConfig & ISA_CFG_IOCHRDY)
787 1.14 chris sc->sc_cfgflags |= CFGFLG_IOCHRDY;
788 1.14 chris
789 1.14 chris /* Copy the DC/DC Polarity flag */
790 1.14 chris if (adapterConfig & ADPTR_CFG_DCDC_POL)
791 1.14 chris sc->sc_cfgflags |= CFGFLG_DCDC_POL;
792 1.14 chris }
793 1.1 yamt
794 1.1 yamt return (CS_OK);
795 1.14 chris eeprom_bad:
796 1.26 tsutsui aprint_error_dev(sc->sc_dev,
797 1.26 tsutsui "cs_get_params: unable to read from EEPROM\n");
798 1.1 yamt return (CS_ERROR);
799 1.1 yamt }
800 1.1 yamt
801 1.16 perry int
802 1.5 augustss cs_get_enaddr(struct cs_softc *sc)
803 1.1 yamt {
804 1.27 tsutsui uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
805 1.27 tsutsui int i;
806 1.1 yamt
807 1.6 augustss if (cs_verify_eeprom(sc) == CS_ERROR) {
808 1.26 tsutsui aprint_error_dev(sc->sc_dev,
809 1.26 tsutsui "cs_get_enaddr: EEPROM missing or bad\n");
810 1.1 yamt return (CS_ERROR);
811 1.1 yamt }
812 1.1 yamt
813 1.1 yamt /* Get Ethernet address from the EEPROM */
814 1.14 chris if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
815 1.14 chris if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
816 1.14 chris == CS_ERROR)
817 1.14 chris goto eeprom_bad;
818 1.14 chris if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
819 1.14 chris == CS_ERROR)
820 1.14 chris goto eeprom_bad;
821 1.14 chris if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
822 1.14 chris == CS_ERROR)
823 1.14 chris goto eeprom_bad;
824 1.14 chris } else {
825 1.14 chris if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
826 1.14 chris goto eeprom_bad;
827 1.14 chris if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
828 1.14 chris goto eeprom_bad;
829 1.14 chris if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
830 1.14 chris goto eeprom_bad;
831 1.14 chris }
832 1.1 yamt
833 1.27 tsutsui for (i = 0; i < __arraycount(myea); i++) {
834 1.27 tsutsui sc->sc_enaddr[i * 2 + 0] = myea[i];
835 1.27 tsutsui sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
836 1.27 tsutsui }
837 1.27 tsutsui
838 1.1 yamt return (CS_OK);
839 1.1 yamt
840 1.1 yamt eeprom_bad:
841 1.26 tsutsui aprint_error_dev(sc->sc_dev,
842 1.26 tsutsui "cs_get_enaddr: unable to read from EEPROM\n");
843 1.1 yamt return (CS_ERROR);
844 1.1 yamt }
845 1.1 yamt
846 1.16 perry int
847 1.5 augustss cs_reset_chip(struct cs_softc *sc)
848 1.1 yamt {
849 1.1 yamt int intState;
850 1.1 yamt int x;
851 1.1 yamt
852 1.1 yamt /* Disable interrupts at the CPU so reset command is atomic */
853 1.1 yamt intState = splnet();
854 1.1 yamt
855 1.1 yamt /*
856 1.1 yamt * We are now resetting the chip
857 1.16 perry *
858 1.1 yamt * A spurious interrupt is generated by the chip when it is reset. This
859 1.1 yamt * variable informs the interrupt handler to ignore this interrupt.
860 1.1 yamt */
861 1.1 yamt sc->sc_resetting = TRUE;
862 1.1 yamt
863 1.1 yamt /* Issue a reset command to the chip */
864 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
865 1.1 yamt
866 1.1 yamt /* Re-enable interrupts at the CPU */
867 1.1 yamt splx(intState);
868 1.1 yamt
869 1.1 yamt /* The chip is always in IO mode after a reset */
870 1.1 yamt sc->sc_memorymode = FALSE;
871 1.1 yamt
872 1.1 yamt /* If transmission was in progress, it is not now */
873 1.1 yamt sc->sc_txbusy = FALSE;
874 1.1 yamt
875 1.1 yamt /*
876 1.1 yamt * there was a delay(125); here, but it seems uneccesary 125 usec is
877 1.1 yamt * 1/8000 of a second, not 1/8 of a second. the data sheet advises
878 1.1 yamt * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
879 1.1 yamt * should be sufficient.
880 1.1 yamt */
881 1.1 yamt
882 1.1 yamt /* Transition SBHE to switch chip from 8-bit to 16-bit */
883 1.6 augustss IO_READ_1(sc, PORT_PKTPG_PTR + 0);
884 1.6 augustss IO_READ_1(sc, PORT_PKTPG_PTR + 1);
885 1.6 augustss IO_READ_1(sc, PORT_PKTPG_PTR + 0);
886 1.6 augustss IO_READ_1(sc, PORT_PKTPG_PTR + 1);
887 1.1 yamt
888 1.1 yamt /* Wait until the EEPROM is not busy */
889 1.1 yamt for (x = 0; x < MAXLOOP; x++) {
890 1.1 yamt if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
891 1.1 yamt break;
892 1.1 yamt }
893 1.1 yamt
894 1.1 yamt if (x == MAXLOOP)
895 1.1 yamt return CS_ERROR;
896 1.1 yamt
897 1.1 yamt /* Wait until initialization is done */
898 1.1 yamt for (x = 0; x < MAXLOOP; x++) {
899 1.1 yamt if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
900 1.1 yamt break;
901 1.1 yamt }
902 1.1 yamt
903 1.1 yamt if (x == MAXLOOP)
904 1.1 yamt return CS_ERROR;
905 1.1 yamt
906 1.1 yamt /* Reset is no longer in progress */
907 1.1 yamt sc->sc_resetting = FALSE;
908 1.1 yamt
909 1.1 yamt return CS_OK;
910 1.1 yamt }
911 1.1 yamt
912 1.1 yamt int
913 1.6 augustss cs_verify_eeprom(struct cs_softc *sc)
914 1.1 yamt {
915 1.1 yamt u_int16_t self_status;
916 1.1 yamt
917 1.1 yamt /* Verify that the EEPROM is present and OK */
918 1.6 augustss self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
919 1.1 yamt if (((self_status & SELF_ST_EEP_PRES) &&
920 1.1 yamt (self_status & SELF_ST_EEP_OK)) == 0)
921 1.1 yamt return (CS_ERROR);
922 1.1 yamt
923 1.1 yamt return (CS_OK);
924 1.1 yamt }
925 1.1 yamt
926 1.16 perry int
927 1.6 augustss cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
928 1.1 yamt {
929 1.1 yamt int x;
930 1.1 yamt
931 1.1 yamt /* Ensure that the EEPROM is not busy */
932 1.1 yamt for (x = 0; x < MAXLOOP; x++) {
933 1.6 augustss if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
934 1.1 yamt SELF_ST_SI_BUSY))
935 1.1 yamt break;
936 1.1 yamt }
937 1.1 yamt
938 1.1 yamt if (x == MAXLOOP)
939 1.1 yamt return (CS_ERROR);
940 1.1 yamt
941 1.1 yamt /* Issue the command to read the offset within the EEPROM */
942 1.6 augustss CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
943 1.1 yamt offset | EEPROM_CMD_READ);
944 1.1 yamt
945 1.1 yamt /* Wait until the command is completed */
946 1.1 yamt for (x = 0; x < MAXLOOP; x++) {
947 1.6 augustss if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
948 1.1 yamt SELF_ST_SI_BUSY))
949 1.1 yamt break;
950 1.1 yamt }
951 1.1 yamt
952 1.1 yamt if (x == MAXLOOP)
953 1.1 yamt return (CS_ERROR);
954 1.1 yamt
955 1.1 yamt /* Get the EEPROM data from the EEPROM Data register */
956 1.6 augustss *pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
957 1.1 yamt
958 1.1 yamt return (CS_OK);
959 1.1 yamt }
960 1.1 yamt
961 1.16 perry void
962 1.5 augustss cs_initChip(struct cs_softc *sc)
963 1.1 yamt {
964 1.1 yamt u_int16_t busCtl;
965 1.1 yamt u_int16_t selfCtl;
966 1.6 augustss u_int16_t v;
967 1.1 yamt u_int16_t isaId;
968 1.6 augustss int i;
969 1.1 yamt int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
970 1.1 yamt
971 1.1 yamt /* Disable reception and transmission of frames */
972 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
973 1.1 yamt CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
974 1.1 yamt ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
975 1.1 yamt
976 1.1 yamt /* Disable interrupt at the chip */
977 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
978 1.1 yamt CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
979 1.1 yamt
980 1.1 yamt /* If IOCHRDY is enabled then clear the bit in the busCtl register */
981 1.1 yamt busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
982 1.1 yamt if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
983 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
984 1.1 yamt busCtl & ~BUS_CTL_IOCHRDY);
985 1.1 yamt } else {
986 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
987 1.1 yamt busCtl | BUS_CTL_IOCHRDY);
988 1.1 yamt }
989 1.1 yamt
990 1.1 yamt /* Set the Line Control register to match the media type */
991 1.1 yamt if (media == IFM_10_T)
992 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
993 1.1 yamt else
994 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
995 1.1 yamt
996 1.1 yamt /*
997 1.1 yamt * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
998 1.1 yamt * enable the DC/DC converter
999 1.1 yamt */
1000 1.1 yamt selfCtl = SELF_CTL_HC1E;
1001 1.1 yamt
1002 1.1 yamt /* If the media type is 10Base2 */
1003 1.1 yamt if (media == IFM_10_2) {
1004 1.1 yamt /*
1005 1.1 yamt * Enable the DC/DC converter if it has a low enable.
1006 1.1 yamt */
1007 1.1 yamt if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1008 1.1 yamt /*
1009 1.1 yamt * Set the HCB1 bit, which causes the HC1 pin to go
1010 1.1 yamt * low.
1011 1.1 yamt */
1012 1.1 yamt selfCtl |= SELF_CTL_HCB1;
1013 1.1 yamt } else { /* Media type is 10BaseT or AUI */
1014 1.1 yamt /*
1015 1.1 yamt * Disable the DC/DC converter if it has a high enable.
1016 1.1 yamt */
1017 1.1 yamt if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1018 1.1 yamt /*
1019 1.1 yamt * Set the HCB1 bit, which causes the HC1 pin to go
1020 1.1 yamt * low.
1021 1.1 yamt */
1022 1.1 yamt selfCtl |= SELF_CTL_HCB1;
1023 1.1 yamt }
1024 1.1 yamt }
1025 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1026 1.16 perry
1027 1.1 yamt /* enable normal link pulse */
1028 1.1 yamt if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1029 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1030 1.1 yamt
1031 1.1 yamt /* Enable full-duplex, if appropriate */
1032 1.1 yamt if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1033 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1034 1.1 yamt
1035 1.1 yamt /* RX_CTL set in cs_set_ladr_filt(), below */
1036 1.1 yamt
1037 1.1 yamt /* enable all transmission interrupts */
1038 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1039 1.1 yamt
1040 1.1 yamt /* Accept all receive interrupts */
1041 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1042 1.1 yamt
1043 1.1 yamt /*
1044 1.1 yamt * Configure Operational Modes
1045 1.16 perry *
1046 1.1 yamt * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1047 1.1 yamt * a better way to do it because the card has a counter which can be
1048 1.7 wiz * read to update the RX_MISS counter. This saves many interrupts.
1049 1.16 perry *
1050 1.7 wiz * I have turned on the tx and rx overflow interrupts to counter using
1051 1.1 yamt * the receive miss interrupt. This is a better estimate of errors
1052 1.1 yamt * and requires lower system overhead.
1053 1.1 yamt */
1054 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1055 1.1 yamt BUF_CFG_RX_DMA_IE);
1056 1.1 yamt
1057 1.1 yamt if (sc->sc_dma_chipinit)
1058 1.1 yamt (*sc->sc_dma_chipinit)(sc);
1059 1.1 yamt
1060 1.1 yamt /* If memory mode is enabled */
1061 1.1 yamt if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1062 1.1 yamt /* If external logic is present for address decoding */
1063 1.1 yamt if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1064 1.1 yamt /*
1065 1.1 yamt * Program the external logic to decode address bits
1066 1.1 yamt * SA20-SA23
1067 1.1 yamt */
1068 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1069 1.1 yamt ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1070 1.1 yamt EEPROM_CMD_ELSEL);
1071 1.1 yamt }
1072 1.1 yamt
1073 1.1 yamt /*
1074 1.1 yamt * Write the packet page base physical address to the memory
1075 1.1 yamt * base register.
1076 1.1 yamt */
1077 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1078 1.1 yamt sc->sc_pktpgaddr & 0xFFFF);
1079 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1080 1.1 yamt sc->sc_pktpgaddr >> 16);
1081 1.1 yamt busCtl = BUS_CTL_MEM_MODE;
1082 1.1 yamt
1083 1.1 yamt /* tell the chip to read the addresses off the SA pins */
1084 1.1 yamt if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1085 1.1 yamt busCtl |= BUS_CTL_USE_SA;
1086 1.1 yamt }
1087 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1088 1.1 yamt CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1089 1.1 yamt
1090 1.1 yamt /* We are in memory mode now! */
1091 1.1 yamt sc->sc_memorymode = TRUE;
1092 1.1 yamt
1093 1.1 yamt /*
1094 1.1 yamt * wait here (10ms) for the chip to swap over. this is the
1095 1.1 yamt * maximum time that this could take.
1096 1.1 yamt */
1097 1.1 yamt delay(10000);
1098 1.1 yamt
1099 1.1 yamt /* Verify that we can read from the chip */
1100 1.1 yamt isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1101 1.1 yamt
1102 1.1 yamt /*
1103 1.1 yamt * As a last minute sanity check before actually using mapped
1104 1.1 yamt * memory we verify that we can read the isa number from the
1105 1.1 yamt * chip in memory mode.
1106 1.1 yamt */
1107 1.1 yamt if (isaId != EISA_NUM_CRYSTAL) {
1108 1.26 tsutsui aprint_error_dev(sc->sc_dev,
1109 1.26 tsutsui "failed to enable memory mode\n");
1110 1.1 yamt sc->sc_memorymode = FALSE;
1111 1.1 yamt } else {
1112 1.1 yamt /*
1113 1.1 yamt * we are in memory mode so if we aren't using DMA,
1114 1.1 yamt * then program the chip to interrupt early.
1115 1.1 yamt */
1116 1.1 yamt if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1117 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1118 1.1 yamt BUF_CFG_RX_DEST_IE |
1119 1.1 yamt BUF_CFG_RX_MISS_OVER_IE |
1120 1.1 yamt BUF_CFG_TX_COL_OVER_IE);
1121 1.1 yamt }
1122 1.1 yamt }
1123 1.1 yamt
1124 1.1 yamt }
1125 1.1 yamt
1126 1.1 yamt /* Put Ethernet address into the Individual Address register */
1127 1.6 augustss for (i = 0; i < 6; i += 2) {
1128 1.6 augustss v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1129 1.6 augustss CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1130 1.6 augustss }
1131 1.1 yamt
1132 1.1 yamt if (sc->sc_irq != -1) {
1133 1.1 yamt /* Set the interrupt level in the chip */
1134 1.1 yamt if (sc->sc_prodid == PROD_ID_CS8900) {
1135 1.1 yamt if (sc->sc_irq == 5) {
1136 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1137 1.1 yamt } else {
1138 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1139 1.1 yamt }
1140 1.1 yamt }
1141 1.1 yamt else { /* CS8920 */
1142 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1143 1.1 yamt }
1144 1.1 yamt }
1145 1.1 yamt
1146 1.1 yamt /* write the multicast mask to the address filter register */
1147 1.1 yamt cs_set_ladr_filt(sc, &sc->sc_ethercom);
1148 1.1 yamt
1149 1.1 yamt /* Enable reception and transmission of frames */
1150 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1151 1.1 yamt CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1152 1.1 yamt LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1153 1.1 yamt
1154 1.1 yamt /* Enable interrupt at the chip */
1155 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1156 1.1 yamt CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1157 1.1 yamt }
1158 1.1 yamt
1159 1.16 perry int
1160 1.5 augustss cs_init(struct ifnet *ifp)
1161 1.1 yamt {
1162 1.1 yamt int intState;
1163 1.1 yamt int error = CS_OK;
1164 1.1 yamt struct cs_softc *sc = ifp->if_softc;
1165 1.1 yamt
1166 1.1 yamt if (cs_enable(sc))
1167 1.1 yamt goto out;
1168 1.1 yamt
1169 1.1 yamt cs_stop(ifp, 0);
1170 1.1 yamt
1171 1.1 yamt intState = splnet();
1172 1.1 yamt
1173 1.1 yamt #if 0
1174 1.1 yamt /* Mark the interface as down */
1175 1.1 yamt sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1176 1.1 yamt #endif
1177 1.1 yamt
1178 1.1 yamt #ifdef CS_DEBUG
1179 1.1 yamt /* Enable debugging */
1180 1.1 yamt sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1181 1.1 yamt #endif
1182 1.1 yamt
1183 1.1 yamt /* Reset the chip */
1184 1.1 yamt if ((error = cs_reset_chip(sc)) == CS_OK) {
1185 1.1 yamt /* Initialize the chip */
1186 1.1 yamt cs_initChip(sc);
1187 1.1 yamt
1188 1.1 yamt /* Mark the interface as running */
1189 1.1 yamt sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1190 1.1 yamt sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1191 1.1 yamt sc->sc_ethercom.ec_if.if_timer = 0;
1192 1.1 yamt
1193 1.1 yamt /* Assume we have carrier until we are told otherwise. */
1194 1.1 yamt sc->sc_carrier = 1;
1195 1.1 yamt } else {
1196 1.26 tsutsui aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1197 1.1 yamt }
1198 1.1 yamt
1199 1.1 yamt splx(intState);
1200 1.1 yamt out:
1201 1.1 yamt if (error == CS_OK)
1202 1.1 yamt return 0;
1203 1.1 yamt return EIO;
1204 1.1 yamt }
1205 1.1 yamt
1206 1.16 perry void
1207 1.5 augustss cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1208 1.1 yamt {
1209 1.1 yamt struct ifnet *ifp = &ec->ec_if;
1210 1.1 yamt struct ether_multi *enm;
1211 1.1 yamt struct ether_multistep step;
1212 1.1 yamt u_int16_t af[4];
1213 1.1 yamt u_int16_t port, mask, index;
1214 1.1 yamt
1215 1.1 yamt /*
1216 1.1 yamt * Set up multicast address filter by passing all multicast addresses
1217 1.1 yamt * through a crc generator, and then using the high order 6 bits as an
1218 1.1 yamt * index into the 64 bit logical address filter. The high order bit
1219 1.1 yamt * selects the word, while the rest of the bits select the bit within
1220 1.1 yamt * the word.
1221 1.1 yamt */
1222 1.1 yamt if (ifp->if_flags & IFF_PROMISC) {
1223 1.1 yamt /* accept all valid frames. */
1224 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1225 1.1 yamt RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1226 1.1 yamt RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1227 1.1 yamt ifp->if_flags |= IFF_ALLMULTI;
1228 1.1 yamt return;
1229 1.1 yamt }
1230 1.1 yamt
1231 1.1 yamt /*
1232 1.1 yamt * accept frames if a. crc valid, b. individual address match c.
1233 1.1 yamt * broadcast address,and d. multicast addresses matched in the hash
1234 1.1 yamt * filter
1235 1.1 yamt */
1236 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1237 1.1 yamt RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1238 1.1 yamt
1239 1.1 yamt
1240 1.1 yamt /*
1241 1.1 yamt * start off with all multicast flag clear, set it if we need to
1242 1.1 yamt * later, otherwise we will leave it.
1243 1.1 yamt */
1244 1.1 yamt ifp->if_flags &= ~IFF_ALLMULTI;
1245 1.1 yamt af[0] = af[1] = af[2] = af[3] = 0x0000;
1246 1.1 yamt
1247 1.1 yamt /*
1248 1.1 yamt * Loop through all the multicast addresses unless we get a range of
1249 1.1 yamt * addresses, in which case we will just accept all packets.
1250 1.1 yamt * Justification for this is given in the next comment.
1251 1.1 yamt */
1252 1.1 yamt ETHER_FIRST_MULTI(step, ec, enm);
1253 1.1 yamt while (enm != NULL) {
1254 1.1 yamt if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1255 1.1 yamt sizeof enm->enm_addrlo)) {
1256 1.1 yamt /*
1257 1.1 yamt * We must listen to a range of multicast addresses.
1258 1.1 yamt * For now, just accept all multicasts, rather than
1259 1.1 yamt * trying to set only those filter bits needed to match
1260 1.1 yamt * the range. (At this time, the only use of address
1261 1.1 yamt * ranges is for IP multicast routing, for which the
1262 1.1 yamt * range is big enough to require all bits set.)
1263 1.1 yamt */
1264 1.1 yamt ifp->if_flags |= IFF_ALLMULTI;
1265 1.1 yamt af[0] = af[1] = af[2] = af[3] = 0xffff;
1266 1.1 yamt break;
1267 1.1 yamt } else {
1268 1.1 yamt /*
1269 1.1 yamt * we have got an individual address so just set that
1270 1.1 yamt * bit.
1271 1.1 yamt */
1272 1.1 yamt index = cs_hash_index(enm->enm_addrlo);
1273 1.1 yamt
1274 1.1 yamt /* Set the bit the Logical address filter. */
1275 1.1 yamt port = (u_int16_t) (index >> 4);
1276 1.1 yamt mask = (u_int16_t) (1 << (index & 0xf));
1277 1.1 yamt af[port] |= mask;
1278 1.1 yamt
1279 1.1 yamt ETHER_NEXT_MULTI(step, enm);
1280 1.1 yamt }
1281 1.1 yamt }
1282 1.1 yamt
1283 1.1 yamt /* now program the chip with the addresses */
1284 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1285 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1286 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1287 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1288 1.1 yamt return;
1289 1.1 yamt }
1290 1.1 yamt
1291 1.1 yamt u_int16_t
1292 1.5 augustss cs_hash_index(char *addr)
1293 1.1 yamt {
1294 1.4 thorpej uint32_t crc;
1295 1.4 thorpej uint16_t hash_code;
1296 1.1 yamt
1297 1.4 thorpej crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1298 1.1 yamt
1299 1.4 thorpej hash_code = crc >> 26;
1300 1.4 thorpej return (hash_code);
1301 1.1 yamt }
1302 1.1 yamt
1303 1.16 perry void
1304 1.25 tsutsui cs_reset(struct cs_softc *sc)
1305 1.1 yamt {
1306 1.1 yamt
1307 1.1 yamt /* Mark the interface as down */
1308 1.1 yamt sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1309 1.1 yamt
1310 1.1 yamt /* Reset the chip */
1311 1.1 yamt cs_reset_chip(sc);
1312 1.1 yamt }
1313 1.1 yamt
1314 1.16 perry int
1315 1.21 christos cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1316 1.1 yamt {
1317 1.1 yamt struct cs_softc *sc = ifp->if_softc;
1318 1.26 tsutsui struct ifreq *ifr = data;
1319 1.1 yamt int state;
1320 1.1 yamt int result;
1321 1.1 yamt
1322 1.1 yamt state = splnet();
1323 1.1 yamt
1324 1.1 yamt result = 0; /* only set if something goes wrong */
1325 1.1 yamt
1326 1.1 yamt switch (cmd) {
1327 1.1 yamt case SIOCGIFMEDIA:
1328 1.1 yamt case SIOCSIFMEDIA:
1329 1.1 yamt result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1330 1.1 yamt break;
1331 1.1 yamt
1332 1.1 yamt default:
1333 1.1 yamt result = ether_ioctl(ifp, cmd, data);
1334 1.1 yamt if (result == ENETRESET) {
1335 1.15 thorpej if (ifp->if_flags & IFF_RUNNING) {
1336 1.1 yamt /*
1337 1.1 yamt * Multicast list has changed. Set the
1338 1.1 yamt * hardware filter accordingly.
1339 1.1 yamt */
1340 1.1 yamt cs_set_ladr_filt(sc, &sc->sc_ethercom);
1341 1.1 yamt }
1342 1.1 yamt result = 0;
1343 1.1 yamt }
1344 1.1 yamt break;
1345 1.1 yamt }
1346 1.1 yamt
1347 1.1 yamt splx(state);
1348 1.1 yamt
1349 1.1 yamt return result;
1350 1.1 yamt }
1351 1.1 yamt
1352 1.1 yamt int
1353 1.5 augustss cs_mediachange(struct ifnet *ifp)
1354 1.1 yamt {
1355 1.1 yamt
1356 1.1 yamt /*
1357 1.1 yamt * Current media is already set up. Just reset the interface
1358 1.1 yamt * to let the new value take hold.
1359 1.1 yamt */
1360 1.1 yamt cs_init(ifp);
1361 1.1 yamt return (0);
1362 1.1 yamt }
1363 1.1 yamt
1364 1.1 yamt void
1365 1.5 augustss cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1366 1.1 yamt {
1367 1.1 yamt struct cs_softc *sc = ifp->if_softc;
1368 1.1 yamt
1369 1.1 yamt /*
1370 1.1 yamt * The currently selected media is always the active media.
1371 1.1 yamt */
1372 1.1 yamt ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1373 1.1 yamt
1374 1.1 yamt if (ifp->if_flags & IFF_UP) {
1375 1.1 yamt /* Interface up, status is valid. */
1376 1.1 yamt ifmr->ifm_status = IFM_AVALID |
1377 1.1 yamt (sc->sc_carrier ? IFM_ACTIVE : 0);
1378 1.1 yamt }
1379 1.1 yamt else ifmr->ifm_status = 0;
1380 1.1 yamt }
1381 1.1 yamt
1382 1.16 perry int
1383 1.5 augustss cs_intr(void *arg)
1384 1.1 yamt {
1385 1.1 yamt struct cs_softc *sc = arg;
1386 1.1 yamt u_int16_t Event;
1387 1.1 yamt u_int16_t rndEvent;
1388 1.1 yamt
1389 1.6 augustss /*printf("cs_intr %p\n", sc);*/
1390 1.1 yamt /* Ignore any interrupts that happen while the chip is being reset */
1391 1.1 yamt if (sc->sc_resetting) {
1392 1.1 yamt printf("%s: cs_intr: reset in progress\n",
1393 1.26 tsutsui device_xname(sc->sc_dev));
1394 1.1 yamt return 1;
1395 1.1 yamt }
1396 1.1 yamt
1397 1.1 yamt /* Read an event from the Interrupt Status Queue */
1398 1.1 yamt if (sc->sc_memorymode)
1399 1.1 yamt Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1400 1.1 yamt else
1401 1.1 yamt Event = CS_READ_PORT(sc, PORT_ISQ);
1402 1.1 yamt
1403 1.1 yamt if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1404 1.1 yamt return 0; /* not ours */
1405 1.1 yamt
1406 1.1 yamt rndEvent = Event;
1407 1.1 yamt
1408 1.1 yamt /* Process all the events in the Interrupt Status Queue */
1409 1.1 yamt while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1410 1.1 yamt /* Dispatch to an event handler based on the register number */
1411 1.1 yamt switch (Event & REG_NUM_MASK) {
1412 1.1 yamt case REG_NUM_RX_EVENT:
1413 1.1 yamt cs_receive_event(sc, Event);
1414 1.1 yamt break;
1415 1.1 yamt case REG_NUM_TX_EVENT:
1416 1.1 yamt cs_transmit_event(sc, Event);
1417 1.1 yamt break;
1418 1.1 yamt case REG_NUM_BUF_EVENT:
1419 1.1 yamt cs_buffer_event(sc, Event);
1420 1.1 yamt break;
1421 1.1 yamt case REG_NUM_TX_COL:
1422 1.1 yamt case REG_NUM_RX_MISS:
1423 1.1 yamt cs_counter_event(sc, Event);
1424 1.1 yamt break;
1425 1.1 yamt default:
1426 1.1 yamt printf("%s: unknown interrupt event 0x%x\n",
1427 1.26 tsutsui device_xname(sc->sc_dev), Event);
1428 1.1 yamt break;
1429 1.1 yamt }
1430 1.1 yamt
1431 1.1 yamt /* Read another event from the Interrupt Status Queue */
1432 1.1 yamt if (sc->sc_memorymode)
1433 1.1 yamt Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1434 1.1 yamt else
1435 1.1 yamt Event = CS_READ_PORT(sc, PORT_ISQ);
1436 1.1 yamt }
1437 1.1 yamt
1438 1.7 wiz /* have handled the interrupt */
1439 1.1 yamt rnd_add_uint32(&sc->rnd_source, rndEvent);
1440 1.1 yamt return 1;
1441 1.1 yamt }
1442 1.1 yamt
1443 1.16 perry void
1444 1.5 augustss cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1445 1.1 yamt {
1446 1.1 yamt struct ifnet *ifp;
1447 1.1 yamt u_int16_t errorCount;
1448 1.1 yamt
1449 1.1 yamt ifp = &sc->sc_ethercom.ec_if;
1450 1.1 yamt
1451 1.1 yamt switch (cntEvent & REG_NUM_MASK) {
1452 1.1 yamt case REG_NUM_TX_COL:
1453 1.1 yamt /*
1454 1.1 yamt * the count should be read before an overflow occurs.
1455 1.1 yamt */
1456 1.1 yamt errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1457 1.1 yamt /*
1458 1.1 yamt * the tramsit event routine always checks the number of
1459 1.1 yamt * collisions for any packet so we don't increment any
1460 1.1 yamt * counters here, as they should already have been
1461 1.1 yamt * considered.
1462 1.1 yamt */
1463 1.1 yamt break;
1464 1.1 yamt case REG_NUM_RX_MISS:
1465 1.1 yamt /*
1466 1.1 yamt * the count should be read before an overflow occurs.
1467 1.1 yamt */
1468 1.1 yamt errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1469 1.1 yamt /*
1470 1.1 yamt * Increment the input error count, the first 6bits are the
1471 1.1 yamt * register id.
1472 1.1 yamt */
1473 1.1 yamt ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1474 1.1 yamt break;
1475 1.1 yamt default:
1476 1.1 yamt /* do nothing */
1477 1.1 yamt break;
1478 1.1 yamt }
1479 1.1 yamt }
1480 1.1 yamt
1481 1.16 perry void
1482 1.5 augustss cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1483 1.1 yamt {
1484 1.1 yamt
1485 1.1 yamt /*
1486 1.1 yamt * multiple events can be in the buffer event register at one time so
1487 1.1 yamt * a standard switch statement will not suffice, here every event
1488 1.1 yamt * must be checked.
1489 1.1 yamt */
1490 1.1 yamt
1491 1.1 yamt /*
1492 1.1 yamt * if 128 bits have been rxed by the time we get here, the dest event
1493 1.1 yamt * will be cleared and 128 event will be set.
1494 1.1 yamt */
1495 1.1 yamt if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1496 1.1 yamt cs_process_rx_early(sc);
1497 1.1 yamt }
1498 1.1 yamt
1499 1.1 yamt if (bufEvent & BUF_EVENT_RX_DMA) {
1500 1.1 yamt /* process the receive data */
1501 1.1 yamt if (sc->sc_dma_process_rx)
1502 1.1 yamt (*sc->sc_dma_process_rx)(sc);
1503 1.1 yamt else
1504 1.1 yamt /* should panic? */
1505 1.26 tsutsui aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1506 1.1 yamt }
1507 1.1 yamt
1508 1.1 yamt if (bufEvent & BUF_EVENT_TX_UNDR) {
1509 1.1 yamt #if 0
1510 1.1 yamt /*
1511 1.1 yamt * This can happen occasionally, and it's not worth worrying
1512 1.1 yamt * about.
1513 1.1 yamt */
1514 1.1 yamt printf("%s: transmit underrun (%d -> %d)\n",
1515 1.26 tsutsui device_xname(sc->sc_dev), sc->sc_xe_ent,
1516 1.1 yamt cs_xmit_early_table[sc->sc_xe_ent].worse);
1517 1.1 yamt #endif
1518 1.1 yamt sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1519 1.1 yamt sc->sc_xe_togo =
1520 1.1 yamt cs_xmit_early_table[sc->sc_xe_ent].better_count;
1521 1.1 yamt
1522 1.1 yamt /* had an underrun, transmit is finished */
1523 1.1 yamt sc->sc_txbusy = FALSE;
1524 1.1 yamt }
1525 1.1 yamt
1526 1.1 yamt if (bufEvent & BUF_EVENT_SW_INT) {
1527 1.1 yamt printf("%s: software initiated interrupt\n",
1528 1.26 tsutsui device_xname(sc->sc_dev));
1529 1.1 yamt }
1530 1.1 yamt }
1531 1.1 yamt
1532 1.16 perry void
1533 1.5 augustss cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1534 1.1 yamt {
1535 1.1 yamt struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1536 1.1 yamt
1537 1.1 yamt /* If there were any errors transmitting this frame */
1538 1.1 yamt if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1539 1.1 yamt TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1540 1.1 yamt /* Increment the output error count */
1541 1.1 yamt ifp->if_oerrors++;
1542 1.1 yamt
1543 1.1 yamt /* Note carrier loss. */
1544 1.1 yamt if (txEvent & TX_EVENT_LOSS_CRS)
1545 1.1 yamt sc->sc_carrier = 0;
1546 1.1 yamt
1547 1.1 yamt /* If debugging is enabled then log error messages */
1548 1.1 yamt if (ifp->if_flags & IFF_DEBUG) {
1549 1.1 yamt if (txEvent & TX_EVENT_LOSS_CRS) {
1550 1.26 tsutsui aprint_error_dev(sc->sc_dev, "lost carrier\n");
1551 1.1 yamt }
1552 1.1 yamt if (txEvent & TX_EVENT_SQE_ERR) {
1553 1.26 tsutsui aprint_error_dev(sc->sc_dev, "SQE error\n");
1554 1.1 yamt }
1555 1.1 yamt if (txEvent & TX_EVENT_OUT_WIN) {
1556 1.26 tsutsui aprint_error_dev(sc->sc_dev,
1557 1.26 tsutsui "out-of-window collision\n");
1558 1.1 yamt }
1559 1.1 yamt if (txEvent & TX_EVENT_JABBER) {
1560 1.26 tsutsui aprint_error_dev(sc->sc_dev, "jabber\n");
1561 1.1 yamt }
1562 1.1 yamt if (txEvent & TX_EVENT_16_COLL) {
1563 1.26 tsutsui aprint_error_dev(sc->sc_dev, "16 collisions\n");
1564 1.1 yamt }
1565 1.1 yamt }
1566 1.1 yamt }
1567 1.1 yamt else {
1568 1.1 yamt /* Transmission successful, carrier is up. */
1569 1.1 yamt sc->sc_carrier = 1;
1570 1.1 yamt #ifdef SHARK
1571 1.1 yamt ledNetActive();
1572 1.1 yamt #endif
1573 1.1 yamt }
1574 1.1 yamt
1575 1.1 yamt /* Add the number of collisions for this frame */
1576 1.1 yamt if (txEvent & TX_EVENT_16_COLL) {
1577 1.1 yamt ifp->if_collisions += 16;
1578 1.1 yamt } else {
1579 1.1 yamt ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1580 1.1 yamt }
1581 1.1 yamt
1582 1.1 yamt ifp->if_opackets++;
1583 1.1 yamt
1584 1.1 yamt /* Transmission is no longer in progress */
1585 1.1 yamt sc->sc_txbusy = FALSE;
1586 1.1 yamt
1587 1.39 ozaki /* If there is more to transmit, start the next transmission */
1588 1.39 ozaki if_schedule_deferred_start(ifp);
1589 1.1 yamt }
1590 1.1 yamt
1591 1.1 yamt void
1592 1.5 augustss cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1593 1.1 yamt {
1594 1.1 yamt
1595 1.1 yamt if (rxEvent & RX_EVENT_RUNT)
1596 1.26 tsutsui aprint_error_dev(sc->sc_dev, "runt\n");
1597 1.1 yamt
1598 1.1 yamt if (rxEvent & RX_EVENT_X_DATA)
1599 1.26 tsutsui aprint_error_dev(sc->sc_dev, "extra data\n");
1600 1.1 yamt
1601 1.1 yamt if (rxEvent & RX_EVENT_CRC_ERR) {
1602 1.1 yamt if (rxEvent & RX_EVENT_DRIBBLE)
1603 1.26 tsutsui aprint_error_dev(sc->sc_dev, "alignment error\n");
1604 1.1 yamt else
1605 1.26 tsutsui aprint_error_dev(sc->sc_dev, "CRC error\n");
1606 1.1 yamt } else {
1607 1.1 yamt if (rxEvent & RX_EVENT_DRIBBLE)
1608 1.26 tsutsui aprint_error_dev(sc->sc_dev, "dribble bits\n");
1609 1.1 yamt }
1610 1.1 yamt }
1611 1.1 yamt
1612 1.16 perry void
1613 1.5 augustss cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1614 1.1 yamt {
1615 1.1 yamt struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1616 1.1 yamt
1617 1.1 yamt /* If the frame was not received OK */
1618 1.1 yamt if (!(rxEvent & RX_EVENT_RX_OK)) {
1619 1.1 yamt /* Increment the input error count */
1620 1.1 yamt ifp->if_ierrors++;
1621 1.1 yamt
1622 1.1 yamt /*
1623 1.1 yamt * If debugging is enabled then log error messages.
1624 1.1 yamt */
1625 1.1 yamt if (ifp->if_flags & IFF_DEBUG) {
1626 1.1 yamt if (rxEvent != REG_NUM_RX_EVENT) {
1627 1.1 yamt cs_print_rx_errors(sc, rxEvent);
1628 1.1 yamt
1629 1.1 yamt /*
1630 1.1 yamt * Must read the length of all received
1631 1.1 yamt * frames
1632 1.1 yamt */
1633 1.1 yamt CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1634 1.1 yamt
1635 1.1 yamt /* Skip the received frame */
1636 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1637 1.1 yamt CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1638 1.1 yamt RX_CFG_SKIP);
1639 1.1 yamt } else {
1640 1.26 tsutsui aprint_error_dev(sc->sc_dev, "implied skip\n");
1641 1.1 yamt }
1642 1.1 yamt }
1643 1.1 yamt } else {
1644 1.1 yamt /*
1645 1.1 yamt * process the received frame and pass it up to the upper
1646 1.1 yamt * layers.
1647 1.1 yamt */
1648 1.1 yamt cs_process_receive(sc);
1649 1.1 yamt }
1650 1.1 yamt }
1651 1.1 yamt
1652 1.1 yamt void
1653 1.5 augustss cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1654 1.1 yamt {
1655 1.1 yamt struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1656 1.1 yamt
1657 1.1 yamt /* Pass the packet up. */
1658 1.36 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
1659 1.1 yamt }
1660 1.1 yamt
1661 1.16 perry void
1662 1.5 augustss cs_process_receive(struct cs_softc *sc)
1663 1.1 yamt {
1664 1.1 yamt struct ifnet *ifp;
1665 1.1 yamt struct mbuf *m;
1666 1.1 yamt int totlen;
1667 1.1 yamt u_int16_t *pBuff, *pBuffLimit;
1668 1.1 yamt int pad;
1669 1.10 christos unsigned int frameOffset = 0; /* XXX: gcc */
1670 1.1 yamt
1671 1.1 yamt #ifdef SHARK
1672 1.1 yamt ledNetActive();
1673 1.1 yamt #endif
1674 1.1 yamt
1675 1.1 yamt ifp = &sc->sc_ethercom.ec_if;
1676 1.1 yamt
1677 1.1 yamt /* Received a packet; carrier is up. */
1678 1.1 yamt sc->sc_carrier = 1;
1679 1.1 yamt
1680 1.1 yamt if (sc->sc_memorymode) {
1681 1.1 yamt /* Initialize the frame offset */
1682 1.1 yamt frameOffset = PKTPG_RX_LENGTH;
1683 1.1 yamt
1684 1.1 yamt /* Get the length of the received frame */
1685 1.1 yamt totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1686 1.1 yamt frameOffset += 2;
1687 1.1 yamt }
1688 1.1 yamt else {
1689 1.1 yamt /* drop status */
1690 1.1 yamt CS_READ_PORT(sc, PORT_RXTX_DATA);
1691 1.1 yamt
1692 1.1 yamt /* Get the length of the received frame */
1693 1.1 yamt totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1694 1.1 yamt }
1695 1.1 yamt
1696 1.2 yamt if (totlen > ETHER_MAX_LEN) {
1697 1.26 tsutsui aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1698 1.23 cegger totlen);
1699 1.2 yamt
1700 1.2 yamt /* skip the received frame */
1701 1.2 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1702 1.2 yamt CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1703 1.2 yamt return;
1704 1.2 yamt }
1705 1.2 yamt
1706 1.1 yamt MGETHDR(m, M_DONTWAIT, MT_DATA);
1707 1.1 yamt if (m == 0) {
1708 1.26 tsutsui aprint_error_dev(sc->sc_dev,
1709 1.26 tsutsui "cs_process_receive: unable to allocate mbuf\n");
1710 1.1 yamt ifp->if_ierrors++;
1711 1.1 yamt /*
1712 1.1 yamt * couldn't allocate an mbuf so things are not good, may as
1713 1.1 yamt * well drop the packet I think.
1714 1.16 perry *
1715 1.1 yamt * have already read the length so we should be right to skip
1716 1.1 yamt * the packet.
1717 1.1 yamt */
1718 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1719 1.1 yamt CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1720 1.1 yamt return;
1721 1.1 yamt }
1722 1.37 ozaki m_set_rcvif(m, ifp);
1723 1.1 yamt m->m_pkthdr.len = totlen;
1724 1.1 yamt
1725 1.2 yamt /* number of bytes to align ip header on word boundary for ipintr */
1726 1.2 yamt pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1727 1.2 yamt
1728 1.1 yamt /*
1729 1.2 yamt * alloc mbuf cluster if we need.
1730 1.2 yamt * we need 1 byte spare because following
1731 1.2 yamt * packet read loop can overrun.
1732 1.1 yamt */
1733 1.2 yamt if (totlen + pad + 1 > MHLEN) {
1734 1.2 yamt MCLGET(m, M_DONTWAIT);
1735 1.2 yamt if ((m->m_flags & M_EXT) == 0) {
1736 1.2 yamt /* couldn't allocate an mbuf cluster */
1737 1.26 tsutsui aprint_error_dev(sc->sc_dev,
1738 1.26 tsutsui "cs_process_receive: "
1739 1.26 tsutsui "unable to allocate a cluster\n");
1740 1.2 yamt m_freem(m);
1741 1.2 yamt
1742 1.2 yamt /* skip the received frame */
1743 1.2 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1744 1.2 yamt CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1745 1.2 yamt return;
1746 1.2 yamt }
1747 1.1 yamt }
1748 1.1 yamt
1749 1.1 yamt /* align ip header on word boundary for ipintr */
1750 1.1 yamt m->m_data += pad;
1751 1.1 yamt
1752 1.2 yamt m->m_len = totlen;
1753 1.1 yamt pBuff = mtod(m, u_int16_t *);
1754 1.1 yamt
1755 1.1 yamt /* now read the data from the chip */
1756 1.1 yamt if (sc->sc_memorymode) {
1757 1.2 yamt pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
1758 1.1 yamt while (pBuff < pBuffLimit) {
1759 1.1 yamt *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1760 1.1 yamt frameOffset += 2;
1761 1.1 yamt }
1762 1.1 yamt }
1763 1.1 yamt else {
1764 1.6 augustss IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1765 1.1 yamt }
1766 1.1 yamt
1767 1.1 yamt cs_ether_input(sc, m);
1768 1.1 yamt }
1769 1.1 yamt
1770 1.16 perry void
1771 1.5 augustss cs_process_rx_early(struct cs_softc *sc)
1772 1.1 yamt {
1773 1.1 yamt struct ifnet *ifp;
1774 1.1 yamt struct mbuf *m;
1775 1.1 yamt u_int16_t frameCount, oldFrameCount;
1776 1.1 yamt u_int16_t rxEvent;
1777 1.1 yamt u_int16_t *pBuff;
1778 1.1 yamt int pad;
1779 1.1 yamt unsigned int frameOffset;
1780 1.1 yamt
1781 1.1 yamt
1782 1.1 yamt ifp = &sc->sc_ethercom.ec_if;
1783 1.1 yamt
1784 1.1 yamt /* Initialize the frame offset */
1785 1.1 yamt frameOffset = PKTPG_RX_FRAME;
1786 1.1 yamt frameCount = 0;
1787 1.1 yamt
1788 1.1 yamt MGETHDR(m, M_DONTWAIT, MT_DATA);
1789 1.1 yamt if (m == 0) {
1790 1.26 tsutsui aprint_error_dev(sc->sc_dev,
1791 1.26 tsutsui "cs_process_rx_early: unable to allocate mbuf\n");
1792 1.1 yamt ifp->if_ierrors++;
1793 1.1 yamt /*
1794 1.1 yamt * couldn't allocate an mbuf so things are not good, may as
1795 1.1 yamt * well drop the packet I think.
1796 1.16 perry *
1797 1.1 yamt * have already read the length so we should be right to skip
1798 1.1 yamt * the packet.
1799 1.1 yamt */
1800 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1801 1.1 yamt CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1802 1.1 yamt return;
1803 1.1 yamt }
1804 1.37 ozaki m_set_rcvif(m, ifp);
1805 1.1 yamt /*
1806 1.8 wiz * save processing by always using a mbuf cluster, guaranteed to fit
1807 1.1 yamt * packet
1808 1.1 yamt */
1809 1.1 yamt MCLGET(m, M_DONTWAIT);
1810 1.1 yamt if ((m->m_flags & M_EXT) == 0) {
1811 1.1 yamt /* couldn't allocate an mbuf cluster */
1812 1.26 tsutsui aprint_error_dev(sc->sc_dev,
1813 1.26 tsutsui "cs_process_rx_early: unable to allocate a cluster\n");
1814 1.1 yamt m_freem(m);
1815 1.1 yamt /* skip the frame */
1816 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1817 1.1 yamt CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1818 1.1 yamt return;
1819 1.1 yamt }
1820 1.1 yamt
1821 1.1 yamt /* align ip header on word boundary for ipintr */
1822 1.1 yamt pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1823 1.1 yamt m->m_data += pad;
1824 1.1 yamt
1825 1.1 yamt /* set up the buffer pointer to point to the data area */
1826 1.1 yamt pBuff = mtod(m, u_int16_t *);
1827 1.1 yamt
1828 1.1 yamt /*
1829 1.1 yamt * now read the frame byte counter until we have finished reading the
1830 1.1 yamt * frame
1831 1.1 yamt */
1832 1.1 yamt oldFrameCount = 0;
1833 1.1 yamt frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1834 1.1 yamt while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1835 1.1 yamt for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1836 1.1 yamt *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1837 1.1 yamt frameOffset += 2;
1838 1.1 yamt }
1839 1.1 yamt
1840 1.1 yamt /* read the new count from the chip */
1841 1.1 yamt frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1842 1.1 yamt }
1843 1.1 yamt
1844 1.1 yamt /* update the mbuf counts */
1845 1.1 yamt m->m_len = oldFrameCount;
1846 1.1 yamt m->m_pkthdr.len = oldFrameCount;
1847 1.1 yamt
1848 1.1 yamt /* now check the Rx Event register */
1849 1.1 yamt rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1850 1.1 yamt
1851 1.1 yamt if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1852 1.1 yamt /*
1853 1.1 yamt * do an implied skip, it seems to be more reliable than a
1854 1.1 yamt * forced skip.
1855 1.1 yamt */
1856 1.1 yamt rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1857 1.1 yamt rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1858 1.1 yamt
1859 1.1 yamt /*
1860 1.1 yamt * now read the RX_EVENT register to perform an implied skip.
1861 1.1 yamt */
1862 1.1 yamt rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1863 1.1 yamt
1864 1.1 yamt cs_ether_input(sc, m);
1865 1.1 yamt } else {
1866 1.1 yamt m_freem(m);
1867 1.1 yamt ifp->if_ierrors++;
1868 1.1 yamt }
1869 1.1 yamt }
1870 1.1 yamt
1871 1.16 perry void
1872 1.5 augustss cs_start_output(struct ifnet *ifp)
1873 1.1 yamt {
1874 1.1 yamt struct cs_softc *sc;
1875 1.1 yamt struct mbuf *pMbuf;
1876 1.1 yamt struct mbuf *pMbufChain;
1877 1.1 yamt u_int16_t BusStatus;
1878 1.1 yamt u_int16_t Length;
1879 1.1 yamt int txLoop = 0;
1880 1.1 yamt int dropout = 0;
1881 1.1 yamt
1882 1.1 yamt sc = ifp->if_softc;
1883 1.1 yamt
1884 1.1 yamt /* check that the interface is up and running */
1885 1.1 yamt if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1886 1.1 yamt return;
1887 1.1 yamt }
1888 1.1 yamt
1889 1.1 yamt /* Don't interrupt a transmission in progress */
1890 1.1 yamt if (sc->sc_txbusy) {
1891 1.1 yamt return;
1892 1.1 yamt }
1893 1.1 yamt
1894 1.1 yamt /* this loop will only run through once if transmission is successful */
1895 1.1 yamt /*
1896 1.1 yamt * While there are packets to transmit and a transmit is not in
1897 1.1 yamt * progress
1898 1.1 yamt */
1899 1.1 yamt while (sc->sc_txbusy == 0 && dropout == 0) {
1900 1.1 yamt IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1901 1.1 yamt if (pMbufChain == NULL)
1902 1.1 yamt break;
1903 1.1 yamt
1904 1.1 yamt /*
1905 1.1 yamt * If BPF is listening on this interface, let it see the packet
1906 1.1 yamt * before we commit it to the wire.
1907 1.1 yamt */
1908 1.31 joerg bpf_mtap(ifp, pMbufChain);
1909 1.1 yamt
1910 1.1 yamt /* Find the total length of the data to transmit */
1911 1.1 yamt Length = 0;
1912 1.1 yamt for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1913 1.1 yamt Length += pMbuf->m_len;
1914 1.1 yamt
1915 1.1 yamt do {
1916 1.1 yamt /*
1917 1.1 yamt * Request that the transmit be started after all
1918 1.1 yamt * data has been copied
1919 1.16 perry *
1920 1.1 yamt * In IO mode must write to the IO port not the packet
1921 1.1 yamt * page address
1922 1.16 perry *
1923 1.1 yamt * If this is changed to start transmission after a
1924 1.1 yamt * small amount of data has been copied you tend to
1925 1.1 yamt * get packet missed errors i think because the ISA
1926 1.1 yamt * bus is too slow. Or possibly the copy routine is
1927 1.1 yamt * not streamlined enough.
1928 1.1 yamt */
1929 1.1 yamt if (sc->sc_memorymode) {
1930 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1931 1.1 yamt cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1932 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1933 1.1 yamt }
1934 1.1 yamt else {
1935 1.1 yamt CS_WRITE_PORT(sc, PORT_TX_CMD,
1936 1.1 yamt cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1937 1.1 yamt CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1938 1.1 yamt }
1939 1.1 yamt
1940 1.1 yamt /*
1941 1.1 yamt * Adjust early-transmit machinery.
1942 1.1 yamt */
1943 1.1 yamt if (--sc->sc_xe_togo == 0) {
1944 1.1 yamt sc->sc_xe_ent =
1945 1.1 yamt cs_xmit_early_table[sc->sc_xe_ent].better;
1946 1.1 yamt sc->sc_xe_togo =
1947 1.1 yamt cs_xmit_early_table[sc->sc_xe_ent].better_count;
1948 1.1 yamt }
1949 1.1 yamt /*
1950 1.1 yamt * Read the BusStatus register which indicates
1951 1.1 yamt * success of the request
1952 1.1 yamt */
1953 1.1 yamt BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1954 1.1 yamt
1955 1.1 yamt /*
1956 1.1 yamt * If there was an error in the transmit bid free the
1957 1.1 yamt * mbuf and go on. This is presuming that mbuf is
1958 1.1 yamt * corrupt.
1959 1.1 yamt */
1960 1.1 yamt if (BusStatus & BUS_ST_TX_BID_ERR) {
1961 1.26 tsutsui aprint_error_dev(sc->sc_dev,
1962 1.26 tsutsui "transmit bid error (too big)");
1963 1.1 yamt
1964 1.1 yamt /* Discard the bad mbuf chain */
1965 1.1 yamt m_freem(pMbufChain);
1966 1.1 yamt sc->sc_ethercom.ec_if.if_oerrors++;
1967 1.1 yamt
1968 1.1 yamt /* Loop up to transmit the next chain */
1969 1.1 yamt txLoop = 0;
1970 1.1 yamt } else {
1971 1.1 yamt if (BusStatus & BUS_ST_RDY4TXNOW) {
1972 1.1 yamt /*
1973 1.1 yamt * The chip is ready for transmission
1974 1.1 yamt * now
1975 1.1 yamt */
1976 1.1 yamt /*
1977 1.1 yamt * Copy the frame to the chip to
1978 1.1 yamt * start transmission
1979 1.1 yamt */
1980 1.1 yamt cs_copy_tx_frame(sc, pMbufChain);
1981 1.1 yamt
1982 1.1 yamt /* Free the mbuf chain */
1983 1.1 yamt m_freem(pMbufChain);
1984 1.1 yamt
1985 1.1 yamt /* Transmission is now in progress */
1986 1.1 yamt sc->sc_txbusy = TRUE;
1987 1.1 yamt txLoop = 0;
1988 1.1 yamt } else {
1989 1.1 yamt /*
1990 1.1 yamt * if we get here we want to try
1991 1.1 yamt * again with the same mbuf, until
1992 1.1 yamt * the chip lets us transmit.
1993 1.1 yamt */
1994 1.1 yamt txLoop++;
1995 1.1 yamt if (txLoop > CS_OUTPUT_LOOP_MAX) {
1996 1.1 yamt /* Free the mbuf chain */
1997 1.1 yamt m_freem(pMbufChain);
1998 1.1 yamt /*
1999 1.1 yamt * Transmission is not in
2000 1.1 yamt * progress
2001 1.1 yamt */
2002 1.1 yamt sc->sc_txbusy = FALSE;
2003 1.1 yamt /*
2004 1.1 yamt * Increment the output error
2005 1.1 yamt * count
2006 1.1 yamt */
2007 1.1 yamt ifp->if_oerrors++;
2008 1.1 yamt /*
2009 1.1 yamt * exit the routine and drop
2010 1.1 yamt * the packet.
2011 1.1 yamt */
2012 1.1 yamt txLoop = 0;
2013 1.1 yamt dropout = 1;
2014 1.1 yamt }
2015 1.1 yamt }
2016 1.1 yamt }
2017 1.1 yamt } while (txLoop);
2018 1.1 yamt }
2019 1.1 yamt }
2020 1.1 yamt
2021 1.16 perry void
2022 1.5 augustss cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2023 1.1 yamt {
2024 1.1 yamt struct mbuf *m;
2025 1.1 yamt int len, leftover, frameoff;
2026 1.1 yamt u_int16_t dbuf;
2027 1.1 yamt u_int8_t *p;
2028 1.1 yamt #ifdef DIAGNOSTIC
2029 1.1 yamt u_int8_t *lim;
2030 1.1 yamt #endif
2031 1.1 yamt
2032 1.1 yamt /* Initialize frame pointer and data port address */
2033 1.1 yamt frameoff = PKTPG_TX_FRAME;
2034 1.1 yamt
2035 1.1 yamt /* start out with no leftover data */
2036 1.1 yamt leftover = 0;
2037 1.1 yamt dbuf = 0;
2038 1.1 yamt
2039 1.1 yamt /* Process the chain of mbufs */
2040 1.1 yamt for (m = m0; m != NULL; m = m->m_next) {
2041 1.1 yamt /*
2042 1.1 yamt * Process all of the data in a single mbuf.
2043 1.1 yamt */
2044 1.1 yamt p = mtod(m, u_int8_t *);
2045 1.1 yamt len = m->m_len;
2046 1.1 yamt #ifdef DIAGNOSTIC
2047 1.1 yamt lim = p + len;
2048 1.1 yamt #endif
2049 1.1 yamt
2050 1.1 yamt while (len > 0) {
2051 1.1 yamt if (leftover) {
2052 1.1 yamt /*
2053 1.1 yamt * Data left over (from mbuf or realignment).
2054 1.1 yamt * Buffer the next byte, and write it and
2055 1.1 yamt * the leftover data out.
2056 1.1 yamt */
2057 1.1 yamt dbuf |= *p++ << 8;
2058 1.1 yamt len--;
2059 1.1 yamt if (sc->sc_memorymode) {
2060 1.1 yamt CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2061 1.1 yamt frameoff += 2;
2062 1.1 yamt }
2063 1.1 yamt else {
2064 1.1 yamt CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2065 1.1 yamt }
2066 1.1 yamt leftover = 0;
2067 1.1 yamt } else if ((long) p & 1) {
2068 1.1 yamt /*
2069 1.1 yamt * Misaligned data. Buffer the next byte.
2070 1.1 yamt */
2071 1.1 yamt dbuf = *p++;
2072 1.1 yamt len--;
2073 1.1 yamt leftover = 1;
2074 1.1 yamt } else {
2075 1.1 yamt /*
2076 1.1 yamt * Aligned data. This is the case we like.
2077 1.1 yamt *
2078 1.1 yamt * Write-region out as much as we can, then
2079 1.1 yamt * buffer the remaining byte (if any).
2080 1.1 yamt */
2081 1.1 yamt leftover = len & 1;
2082 1.1 yamt len &= ~1;
2083 1.1 yamt if (sc->sc_memorymode) {
2084 1.6 augustss MEM_WRITE_REGION_2(sc, frameoff,
2085 1.1 yamt (u_int16_t *) p, len >> 1);
2086 1.1 yamt frameoff += len;
2087 1.1 yamt }
2088 1.1 yamt else {
2089 1.6 augustss IO_WRITE_MULTI_2(sc,
2090 1.1 yamt PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2091 1.1 yamt }
2092 1.1 yamt p += len;
2093 1.1 yamt
2094 1.1 yamt if (leftover)
2095 1.1 yamt dbuf = *p++;
2096 1.1 yamt len = 0;
2097 1.1 yamt }
2098 1.1 yamt }
2099 1.1 yamt if (len < 0)
2100 1.1 yamt panic("cs_copy_tx_frame: negative len");
2101 1.1 yamt #ifdef DIAGNOSTIC
2102 1.1 yamt if (p != lim)
2103 1.1 yamt panic("cs_copy_tx_frame: p != lim");
2104 1.1 yamt #endif
2105 1.1 yamt }
2106 1.1 yamt if (leftover) {
2107 1.1 yamt if (sc->sc_memorymode) {
2108 1.1 yamt CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2109 1.1 yamt }
2110 1.1 yamt else {
2111 1.1 yamt CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2112 1.1 yamt }
2113 1.1 yamt }
2114 1.1 yamt }
2115 1.1 yamt
2116 1.1 yamt static int
2117 1.5 augustss cs_enable(struct cs_softc *sc)
2118 1.1 yamt {
2119 1.1 yamt
2120 1.4 thorpej if (CS_IS_ENABLED(sc) == 0) {
2121 1.4 thorpej if (sc->sc_enable != NULL) {
2122 1.4 thorpej int error;
2123 1.4 thorpej
2124 1.4 thorpej error = (*sc->sc_enable)(sc);
2125 1.4 thorpej if (error)
2126 1.4 thorpej return (error);
2127 1.4 thorpej }
2128 1.1 yamt sc->sc_cfgflags |= CFGFLG_ENABLED;
2129 1.1 yamt }
2130 1.1 yamt
2131 1.4 thorpej return (0);
2132 1.1 yamt }
2133 1.1 yamt
2134 1.1 yamt static void
2135 1.5 augustss cs_disable(struct cs_softc *sc)
2136 1.1 yamt {
2137 1.4 thorpej
2138 1.4 thorpej if (CS_IS_ENABLED(sc)) {
2139 1.4 thorpej if (sc->sc_disable != NULL)
2140 1.4 thorpej (*sc->sc_disable)(sc);
2141 1.1 yamt
2142 1.1 yamt sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2143 1.1 yamt }
2144 1.1 yamt }
2145 1.1 yamt
2146 1.1 yamt static void
2147 1.5 augustss cs_stop(struct ifnet *ifp, int disable)
2148 1.1 yamt {
2149 1.1 yamt struct cs_softc *sc = ifp->if_softc;
2150 1.1 yamt
2151 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2152 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2153 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2154 1.1 yamt CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2155 1.1 yamt
2156 1.1 yamt if (disable) {
2157 1.1 yamt cs_disable(sc);
2158 1.1 yamt }
2159 1.1 yamt
2160 1.1 yamt ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2161 1.1 yamt }
2162 1.1 yamt
2163 1.1 yamt int
2164 1.24 cegger cs_activate(device_t self, enum devact act)
2165 1.1 yamt {
2166 1.26 tsutsui struct cs_softc *sc = device_private(self);
2167 1.1 yamt
2168 1.1 yamt switch (act) {
2169 1.1 yamt case DVACT_DEACTIVATE:
2170 1.1 yamt if_deactivate(&sc->sc_ethercom.ec_if);
2171 1.29 dyoung return 0;
2172 1.29 dyoung default:
2173 1.29 dyoung return EOPNOTSUPP;
2174 1.1 yamt }
2175 1.1 yamt }
2176