cs89x0.c revision 1.1 1 /* $NetBSD: cs89x0.c,v 1.1 2001/11/26 19:17:08 yamt Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 ** FACILITY
39 **
40 ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
41 **
42 ** ABSTRACT
43 **
44 ** This module provides standard ethernet access for INET protocols
45 ** only.
46 **
47 ** AUTHORS
48 **
49 ** Peter Dettori SEA - Software Engineering.
50 **
51 ** CREATION DATE:
52 **
53 ** 13-Feb-1997.
54 **
55 ** MODIFICATION HISTORY (Digital):
56 **
57 ** Revision 1.27 1998/01/20 17:59:40 cgd
58 ** update for moved headers
59 **
60 ** Revision 1.26 1998/01/12 19:29:36 cgd
61 ** use arm32/isa versions of isadma code.
62 **
63 ** Revision 1.25 1997/12/12 01:35:27 cgd
64 ** convert to use new arp code (from Brini)
65 **
66 ** Revision 1.24 1997/12/10 22:31:56 cgd
67 ** trim some fat (get rid of ability to explicitly supply enet addr, since
68 ** it was never used and added a bunch of code which really doesn't belong in
69 ** an enet driver), and clean up slightly.
70 **
71 ** Revision 1.23 1997/10/06 16:42:12 cgd
72 ** copyright notices
73 **
74 ** Revision 1.22 1997/06/20 19:38:01 chaiken
75 ** fixes some smartcard problems
76 **
77 ** Revision 1.21 1997/06/10 02:56:20 grohn
78 ** Added call to ledNetActive
79 **
80 ** Revision 1.20 1997/06/05 00:47:06 dettori
81 ** Changed cs_process_rx_dma to reset and re-initialise the
82 ** ethernet chip when DMA gets out of sync, or mbufs
83 ** can't be allocated.
84 **
85 ** Revision 1.19 1997/06/03 03:09:58 dettori
86 ** Turn off sc_txbusy flag when a transmit underrun
87 ** occurs.
88 **
89 ** Revision 1.18 1997/06/02 00:04:35 dettori
90 ** redefined the transmit table to get around the nfs_timer bug while we are
91 ** looking into it further.
92 **
93 ** Also changed interrupts from EDGE to LEVEL.
94 **
95 ** Revision 1.17 1997/05/27 23:31:01 dettori
96 ** Pulled out changes to DMAMODE defines.
97 **
98 ** Revision 1.16 1997/05/23 04:25:16 cgd
99 ** reformat log so it fits in 80cols
100 **
101 ** Revision 1.15 1997/05/23 04:22:18 cgd
102 ** remove the existing copyright notice (which Peter Dettori indicated
103 ** was incorrect, copied from an existing NetBSD file only so that the
104 ** file would have a copyright notice on it, and which he'd intended to
105 ** replace). Replace it with a Digital copyright notice, cloned from
106 ** ess.c. It's not really correct either (it indicates that the source
107 ** is Digital confidential!), but is better than nothing and more
108 ** correct than what was there before.
109 **
110 ** Revision 1.14 1997/05/23 04:12:50 cgd
111 ** use an adaptive transmit start algorithm: start by telling the chip
112 ** to start transmitting after 381 bytes have been fed to it. if that
113 ** gets transmit underruns, ramp down to 1021 bytes then "whole
114 ** packet." If successful at a given level for a while, try the next
115 ** more agressive level. This code doesn't ever try to start
116 ** transmitting after 5 bytes have been sent to the NIC, because
117 ** that underruns rather regularly. The back-off and ramp-up mechanism
118 ** could probably be tuned a little bit, but this works well enough to
119 ** support > 1MB/s transmit rates on a clear ethernet (which is about
120 ** 20-25% better than the driver had previously been getting).
121 **
122 ** Revision 1.13 1997/05/22 21:06:54 cgd
123 ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
124 ** casting from u_int8_t * to u_int16_t * without worrying about alignment
125 ** issues. This would cause bogus data to be spit out for mbufs with
126 ** misaligned data. For instance, it caused the following bits to appear
127 ** on the wire:
128 ** ... etBND 1S2C .SHA(K) R ...
129 ** 11112222333344445555
130 ** which should have appeared as:
131 ** ... NetBSD 1.2C (SHARK) ...
132 ** 11112222333344445555
133 ** Note the apparent 'rotate' of the bytes in the word, which was due to
134 ** incorrect unaligned accesses. This data corruption was the cause of
135 ** incoming telnet/rlogin hangs.
136 **
137 ** Revision 1.12 1997/05/22 01:55:32 cgd
138 ** reformat log so it fits in 80cols
139 **
140 ** Revision 1.11 1997/05/22 01:50:27 cgd
141 ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
142 ** so packets aimed at other hosts don't get sent to ether_input().
143 ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
144 ** you can easily tell (`strings`) what version of the driver is in your
145 ** kernel binary.
146 ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
147 ** safe, and not really a performance win anyway. (It was only used when
148 ** setting up the multicast logical address filter, which is an
149 ** infrequent event. It could have been used in the IFF_PROMISCUOUS
150 ** address check above, but the benefit of it vs. memcmp would be
151 ** inconsequential, there.) Use memcmp() instead.
152 ** * restructure csStartOuput to avoid the following bugs in the case where
153 ** txWait was being set:
154 ** * it would accidentally drop the outgoing packet if told to wait
155 ** but the outgoing packet queue was empty.
156 ** * it would bpf_mtap() the outgoing packet multiple times (once for
157 ** each time it was told to wait), and would also recalculate
158 ** the length of the outgoing packet each time it was told to
159 ** wait.
160 ** While there, rename txWait to txLoop, since with the new structure of
161 ** the code, the latter name makes more sense.
162 **
163 ** Revision 1.10 1997/05/19 02:03:20 cgd
164 ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
165 ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
166 ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
167 ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
168 ** as before.
169 **
170 ** Revision 1.9 1997/05/19 01:45:37 cgd
171 ** create a new function, cs_ether_input(), which does received-packet
172 ** BPF and ether_input processing. This code used to be in three places,
173 ** and centralizing it will make adding IFF_PROMISC support much easier.
174 ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
175 ** do copies with bus_space_write_region_2(). It's more correct, and
176 ** potentially more efficient. That function needs to be gutted (to
177 ** deal properly with alignment issues, which it currently does wrong),
178 ** however, and the change doesn't gain much, so there's no point in
179 ** enabling it now.
180 **
181 ** Revision 1.8 1997/05/19 01:17:10 cgd
182 ** fix a comment re: the setting of the TxConfig register. Clean up
183 ** interface counter maintenance (make it use standard idiom).
184 **
185 **--
186 */
187
188 #include <sys/cdefs.h>
189 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.1 2001/11/26 19:17:08 yamt Exp $");
190
191 #include "opt_inet.h"
192
193 #include <sys/param.h>
194 #include <sys/systm.h>
195 #include <sys/mbuf.h>
196 #include <sys/syslog.h>
197 #include <sys/socket.h>
198 #include <sys/device.h>
199 #include <sys/malloc.h>
200 #include <sys/ioctl.h>
201 #include <sys/errno.h>
202
203 #include "rnd.h"
204 #if NRND > 0
205 #include <sys/rnd.h>
206 #endif
207
208 #include <net/if.h>
209 #include <net/if_ether.h>
210 #include <net/if_media.h>
211 #ifdef INET
212 #include <netinet/in.h>
213 #include <netinet/if_inarp.h>
214 #endif
215
216 #include "bpfilter.h"
217 #if NBPFILTER > 0
218 #include <net/bpf.h>
219 #include <net/bpfdesc.h>
220 #endif
221
222 #include <uvm/uvm_extern.h>
223
224 #include <machine/bus.h>
225 #include <machine/intr.h>
226
227 #include <dev/ic/cs89x0reg.h>
228 #include <dev/ic/cs89x0var.h>
229
230 #ifdef SHARK
231 #include <arm32/shark/sequoia.h>
232 #endif
233
234 /*
235 * MACRO DEFINITIONS
236 */
237 #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
238
239 /*
240 * FUNCTION PROTOTYPES
241 */
242 void cs_get_default_media __P((struct cs_softc *));
243 int cs_get_params __P((struct cs_softc *));
244 int cs_get_enaddr __P((struct cs_softc *));
245 int cs_reset_chip __P((struct cs_softc *));
246 void cs_reset __P((void *));
247 int cs_ioctl __P((struct ifnet *, u_long, caddr_t));
248 void cs_initChip __P((struct cs_softc *));
249 void cs_buffer_event __P((struct cs_softc *, u_int16_t));
250 void cs_transmit_event __P((struct cs_softc *, u_int16_t));
251 void cs_receive_event __P((struct cs_softc *, u_int16_t));
252 void cs_process_receive __P((struct cs_softc *));
253 void cs_process_rx_early __P((struct cs_softc *));
254 void cs_start_output __P((struct ifnet *));
255 void cs_copy_tx_frame __P((struct cs_softc *, struct mbuf *));
256 void cs_set_ladr_filt __P((struct cs_softc *, struct ethercom *));
257 u_int16_t cs_hash_index __P((char *));
258 void cs_counter_event __P((struct cs_softc *, u_int16_t));
259
260 int cs_mediachange __P((struct ifnet *));
261 void cs_mediastatus __P((struct ifnet *, struct ifmediareq *));
262
263 static int cs_enable __P((struct cs_softc *));
264 static void cs_disable __P((struct cs_softc *));
265 static void cs_stop __P((struct ifnet *, int));
266 static void cs_power __P((int, void *));
267
268 /*
269 * GLOBAL DECLARATIONS
270 */
271
272 /*
273 * Xmit-early table.
274 *
275 * To get better performance, we tell the chip to start packet
276 * transmission before the whole packet is copied to the chip.
277 * However, this can fail under load. When it fails, we back off
278 * to a safer setting for a little while.
279 *
280 * txcmd is the value of txcmd used to indicate when to start transmission.
281 * better is the next 'better' state in the table.
282 * better_count is the number of output packets before transition to the
283 * better state.
284 * worse is the next 'worse' state in the table.
285 *
286 * Transition to the next worse state happens automatically when a
287 * transmittion underrun occurs.
288 */
289 struct cs_xmit_early {
290 u_int16_t txcmd;
291 int better;
292 int better_count;
293 int worse;
294 } cs_xmit_early_table[3] = {
295 { TX_CMD_START_381, 0, INT_MAX, 1, },
296 { TX_CMD_START_1021, 0, 50000, 2, },
297 { TX_CMD_START_ALL, 1, 5000, 2, },
298 };
299
300 int cs_default_media[] = {
301 IFM_ETHER|IFM_10_2,
302 IFM_ETHER|IFM_10_5,
303 IFM_ETHER|IFM_10_T,
304 IFM_ETHER|IFM_10_T|IFM_FDX,
305 };
306 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
307
308 int
309 cs_attach(sc, enaddr, media, nmedia, defmedia)
310 struct cs_softc *sc;
311 u_int8_t *enaddr;
312 int *media, nmedia, defmedia;
313 {
314 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
315 const char *chipname, *medname;
316 u_int16_t reg;
317 int i;
318
319 /* Start out in IO mode */
320 sc->sc_memorymode = FALSE;
321
322 /* make sure we're right */
323 for (i = 0; i < 10000; i++) {
324 reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
325 if (reg == EISA_NUM_CRYSTAL) {
326 break;
327 }
328 }
329 if (i == 10000) {
330 printf("%s: wrong id(0x%x)\n", sc->sc_dev.dv_xname, reg);
331 return 1; /* XXX should panic? */
332 }
333
334 reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
335 sc->sc_prodid = reg & PROD_ID_MASK;
336 sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
337
338 switch (sc->sc_prodid) {
339 case PROD_ID_CS8900:
340 chipname = "CS8900";
341 break;
342 case PROD_ID_CS8920:
343 chipname = "CS8920";
344 break;
345 case PROD_ID_CS8920M:
346 chipname = "CS8920M";
347 break;
348 default:
349 panic("cs_attach: impossible");
350 }
351
352 /*
353 * the first thing to do is check that the mbuf cluster size is
354 * greater than the MTU for an ethernet frame. The code depends on
355 * this and to port this to a OS where this was not the case would
356 * not be straightforward.
357 */
358 if (MCLBYTES < ETHER_MAX_LEN) {
359 printf("%s: MCLBYTES too small for Ethernet frame\n",
360 sc->sc_dev.dv_xname);
361 return 1;
362 }
363
364 /* Start out not transmitting */
365 sc->sc_txbusy = FALSE;
366
367 /* Set up early transmit threshhold */
368 sc->sc_xe_ent = 0;
369 sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
370
371 /* Initialize ifnet structure. */
372 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
373 ifp->if_softc = sc;
374 ifp->if_start = cs_start_output;
375 ifp->if_init = cs_init;
376 ifp->if_ioctl = cs_ioctl;
377 ifp->if_stop = cs_stop;
378 ifp->if_watchdog = NULL; /* no watchdog at this stage */
379 ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
380 IFF_BROADCAST | IFF_MULTICAST;
381 IFQ_SET_READY(&ifp->if_snd);
382
383 /* Initialize ifmedia structures. */
384 ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
385
386 if (media != NULL) {
387 for (i = 0; i < nmedia; i++)
388 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
389 ifmedia_set(&sc->sc_media, defmedia);
390 } else {
391 for (i = 0; i < cs_default_nmedia; i++)
392 ifmedia_add(&sc->sc_media, cs_default_media[i],
393 0, NULL);
394 cs_get_default_media(sc);
395 }
396
397 if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
398 /* Get parameters from the EEPROM */
399 if (cs_get_params(sc) == CS_ERROR) {
400 printf("%s: unable to get settings from EEPROM\n",
401 sc->sc_dev.dv_xname);
402 return 1;
403 }
404 }
405
406 if (enaddr != NULL)
407 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
408 else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
409 /* Get and store the Ethernet address */
410 if (cs_get_enaddr(sc) == CS_ERROR) {
411 printf("%s: unable to read Ethernet address\n",
412 sc->sc_dev.dv_xname);
413 return 1;
414 }
415 } else {
416 printf("%s: no Ethernet address!\n", sc->sc_dev.dv_xname);
417 return 1;
418 }
419
420 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
421 case IFM_10_2:
422 medname = "BNC";
423 break;
424 case IFM_10_5:
425 medname = "AUI";
426 break;
427 case IFM_10_T:
428 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
429 medname = "UTP <full-duplex>";
430 else
431 medname = "UTP";
432 break;
433 default:
434 panic("cs_attach: impossible");
435 }
436 printf("%s: %s rev. %c, address %s, media %s\n", sc->sc_dev.dv_xname,
437 chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
438 medname);
439
440 if (sc->sc_dma_attach)
441 (*sc->sc_dma_attach)(sc);
442
443 sc->sc_sh = shutdownhook_establish(cs_reset, sc);
444 if (sc->sc_sh == NULL) {
445 printf("%s: unable to establish shutdownhook\n",
446 sc->sc_dev.dv_xname);
447 cs_detach(sc);
448 return 1;
449 }
450
451 /* Attach the interface. */
452 if_attach(ifp);
453 ether_ifattach(ifp, sc->sc_enaddr);
454
455 #if NRND > 0
456 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
457 RND_TYPE_NET, 0);
458 #endif
459 sc->sc_cfgflags |= CFGFLG_ATTACHED;
460
461 /* Reset the chip */
462 if (cs_reset_chip(sc) == CS_ERROR) {
463 printf("%s: reset failed\n", sc->sc_dev.dv_xname);
464 cs_detach(sc);
465 return 1;
466 }
467
468 sc->sc_powerhook = powerhook_establish(cs_power, sc);
469 if (sc->sc_powerhook == 0)
470 printf("%s: warning: powerhook_establish failed\n",
471 sc->sc_dev.dv_xname);
472
473 return 0;
474 }
475
476 int
477 cs_detach(sc)
478 struct cs_softc *sc;
479 {
480 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
481
482 if (sc->sc_powerhook) {
483 powerhook_disestablish(sc->sc_powerhook);
484 sc->sc_powerhook = 0;
485 }
486
487 if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
488 #if NRND > 0
489 rnd_detach_source(&sc->rnd_source);
490 #endif
491 ether_ifdetach(ifp);
492 if_detach(ifp);
493 sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
494 }
495
496 if (sc->sc_sh != NULL)
497 shutdownhook_disestablish(sc->sc_sh);
498
499 #if 0
500 /*
501 * XXX not necessary
502 */
503 if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
504 isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
505 isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
506 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
507 sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
508 }
509 #endif
510
511 return 0;
512 }
513
514 void
515 cs_get_default_media(sc)
516 struct cs_softc *sc;
517 {
518 u_int16_t adp_cfg, xmit_ctl;
519
520 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
521 printf("%s: cs_get_default_media: EEPROM missing or bad\n",
522 sc->sc_dev.dv_xname);
523 goto fakeit;
524 }
525
526 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
527 &adp_cfg) == CS_ERROR) {
528 printf("%s: unable to read adapter config from EEPROM\n",
529 sc->sc_dev.dv_xname);
530 goto fakeit;
531 }
532
533 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_XMIT_CTL,
534 &xmit_ctl) == CS_ERROR) {
535 printf("%s: unable to read transmit control from EEPROM\n",
536 sc->sc_dev.dv_xname);
537 goto fakeit;
538 }
539
540 switch (adp_cfg & ADPTR_CFG_MEDIA) {
541 case ADPTR_CFG_AUI:
542 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
543 break;
544 case ADPTR_CFG_10BASE2:
545 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
546 break;
547 case ADPTR_CFG_10BASET:
548 default:
549 if (xmit_ctl & XMIT_CTL_FDX)
550 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
551 else
552 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
553 break;
554 }
555 return;
556
557 fakeit:
558 printf("%s: WARNING: default media setting may be inaccurate\n",
559 sc->sc_dev.dv_xname);
560 /* XXX Arbitrary... */
561 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
562 }
563
564 int
565 cs_get_params(sc)
566 struct cs_softc *sc;
567 {
568 u_int16_t isaConfig;
569 u_int16_t adapterConfig;
570
571 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
572 printf("%s: cs_get_params: EEPROM missing or bad\n",
573 sc->sc_dev.dv_xname);
574 return (CS_ERROR);
575 }
576
577 /* Get ISA configuration from the EEPROM */
578 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ISA_CFG,
579 &isaConfig) == CS_ERROR)
580 goto eeprom_bad;
581
582 /* Get adapter configuration from the EEPROM */
583 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
584 &adapterConfig) == CS_ERROR)
585 goto eeprom_bad;
586
587 /* Copy the USE_SA flag */
588 if (isaConfig & ISA_CFG_USE_SA)
589 sc->sc_cfgflags |= CFGFLG_USE_SA;
590
591 /* Copy the IO Channel Ready flag */
592 if (isaConfig & ISA_CFG_IOCHRDY)
593 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
594
595 /* Copy the DC/DC Polarity flag */
596 if (adapterConfig & ADPTR_CFG_DCDC_POL)
597 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
598
599 return (CS_OK);
600
601 eeprom_bad:
602 printf("%s: cs_get_params: unable to read from EEPROM\n",
603 sc->sc_dev.dv_xname);
604 return (CS_ERROR);
605 }
606
607 int
608 cs_get_enaddr(sc)
609 struct cs_softc *sc;
610 {
611 u_int16_t *myea;
612
613 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
614 printf("%s: cs_get_enaddr: EEPROM missing or bad\n",
615 sc->sc_dev.dv_xname);
616 return (CS_ERROR);
617 }
618
619 myea = (u_int16_t *)sc->sc_enaddr;
620
621 /* Get Ethernet address from the EEPROM */
622 /* XXX this will likely lose on a big-endian machine. -- cgd */
623 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_H,
624 &myea[0]) == CS_ERROR)
625 goto eeprom_bad;
626 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_M,
627 &myea[1]) == CS_ERROR)
628 goto eeprom_bad;
629 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_L,
630 &myea[2]) == CS_ERROR)
631 goto eeprom_bad;
632
633 return (CS_OK);
634
635 eeprom_bad:
636 printf("%s: cs_get_enaddr: unable to read from EEPROM\n",
637 sc->sc_dev.dv_xname);
638 return (CS_ERROR);
639 }
640
641 int
642 cs_reset_chip(sc)
643 struct cs_softc *sc;
644 {
645 int intState;
646 int x;
647
648 /* Disable interrupts at the CPU so reset command is atomic */
649 intState = splnet();
650
651 /*
652 * We are now resetting the chip
653 *
654 * A spurious interrupt is generated by the chip when it is reset. This
655 * variable informs the interrupt handler to ignore this interrupt.
656 */
657 sc->sc_resetting = TRUE;
658
659 /* Issue a reset command to the chip */
660 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
661
662 /* Re-enable interrupts at the CPU */
663 splx(intState);
664
665 /* The chip is always in IO mode after a reset */
666 sc->sc_memorymode = FALSE;
667
668 /* If transmission was in progress, it is not now */
669 sc->sc_txbusy = FALSE;
670
671 /*
672 * there was a delay(125); here, but it seems uneccesary 125 usec is
673 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
674 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
675 * should be sufficient.
676 */
677
678 /* Transition SBHE to switch chip from 8-bit to 16-bit */
679 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
680 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
681 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
682 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
683
684 /* Wait until the EEPROM is not busy */
685 for (x = 0; x < MAXLOOP; x++) {
686 if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
687 break;
688 }
689
690 if (x == MAXLOOP)
691 return CS_ERROR;
692
693 /* Wait until initialization is done */
694 for (x = 0; x < MAXLOOP; x++) {
695 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
696 break;
697 }
698
699 if (x == MAXLOOP)
700 return CS_ERROR;
701
702 /* Reset is no longer in progress */
703 sc->sc_resetting = FALSE;
704
705 return CS_OK;
706 }
707
708 int
709 cs_verify_eeprom(iot, ioh)
710 bus_space_tag_t iot;
711 bus_space_handle_t ioh;
712 {
713 u_int16_t self_status;
714
715 /* Verify that the EEPROM is present and OK */
716 self_status = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST);
717 if (((self_status & SELF_ST_EEP_PRES) &&
718 (self_status & SELF_ST_EEP_OK)) == 0)
719 return (CS_ERROR);
720
721 return (CS_OK);
722 }
723
724 int
725 cs_read_eeprom(iot, ioh, offset, pValue)
726 bus_space_tag_t iot;
727 bus_space_handle_t ioh;
728 int offset;
729 u_int16_t *pValue;
730 {
731 int x;
732
733 /* Ensure that the EEPROM is not busy */
734 for (x = 0; x < MAXLOOP; x++) {
735 if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
736 SELF_ST_SI_BUSY))
737 break;
738 }
739
740 if (x == MAXLOOP)
741 return (CS_ERROR);
742
743 /* Issue the command to read the offset within the EEPROM */
744 CS_WRITE_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_CMD,
745 offset | EEPROM_CMD_READ);
746
747 /* Wait until the command is completed */
748 for (x = 0; x < MAXLOOP; x++) {
749 if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
750 SELF_ST_SI_BUSY))
751 break;
752 }
753
754 if (x == MAXLOOP)
755 return (CS_ERROR);
756
757 /* Get the EEPROM data from the EEPROM Data register */
758 *pValue = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_DATA);
759
760 return (CS_OK);
761 }
762
763 void
764 cs_initChip(sc)
765 struct cs_softc *sc;
766 {
767 u_int16_t busCtl;
768 u_int16_t selfCtl;
769 u_int16_t *myea;
770 u_int16_t isaId;
771 int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
772
773 /* Disable reception and transmission of frames */
774 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
775 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
776 ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
777
778 /* Disable interrupt at the chip */
779 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
780 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
781
782 /* If IOCHRDY is enabled then clear the bit in the busCtl register */
783 busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
784 if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
785 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
786 busCtl & ~BUS_CTL_IOCHRDY);
787 } else {
788 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
789 busCtl | BUS_CTL_IOCHRDY);
790 }
791
792 /* Set the Line Control register to match the media type */
793 if (media == IFM_10_T)
794 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
795 else
796 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
797
798 /*
799 * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
800 * enable the DC/DC converter
801 */
802 selfCtl = SELF_CTL_HC1E;
803
804 /* If the media type is 10Base2 */
805 if (media == IFM_10_2) {
806 /*
807 * Enable the DC/DC converter if it has a low enable.
808 */
809 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
810 /*
811 * Set the HCB1 bit, which causes the HC1 pin to go
812 * low.
813 */
814 selfCtl |= SELF_CTL_HCB1;
815 } else { /* Media type is 10BaseT or AUI */
816 /*
817 * Disable the DC/DC converter if it has a high enable.
818 */
819 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
820 /*
821 * Set the HCB1 bit, which causes the HC1 pin to go
822 * low.
823 */
824 selfCtl |= SELF_CTL_HCB1;
825 }
826 }
827 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
828
829 /* enable normal link pulse */
830 if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
831 CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
832
833 /* Enable full-duplex, if appropriate */
834 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
835 CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
836
837 /* RX_CTL set in cs_set_ladr_filt(), below */
838
839 /* enable all transmission interrupts */
840 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
841
842 /* Accept all receive interrupts */
843 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
844
845 /*
846 * Configure Operational Modes
847 *
848 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
849 * a better way to do it because the card has a counter which can be
850 * read to update the RX_MISS counter. This saves many interupts.
851 *
852 * I have turned on the tx and rx overflow interupts to counter using
853 * the receive miss interrupt. This is a better estimate of errors
854 * and requires lower system overhead.
855 */
856 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
857 BUF_CFG_RX_DMA_IE);
858
859 if (sc->sc_dma_chipinit)
860 (*sc->sc_dma_chipinit)(sc);
861
862 /* If memory mode is enabled */
863 if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
864 /* If external logic is present for address decoding */
865 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
866 /*
867 * Program the external logic to decode address bits
868 * SA20-SA23
869 */
870 CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
871 ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
872 EEPROM_CMD_ELSEL);
873 }
874
875 /*
876 * Write the packet page base physical address to the memory
877 * base register.
878 */
879 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
880 sc->sc_pktpgaddr & 0xFFFF);
881 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
882 sc->sc_pktpgaddr >> 16);
883 busCtl = BUS_CTL_MEM_MODE;
884
885 /* tell the chip to read the addresses off the SA pins */
886 if (sc->sc_cfgflags & CFGFLG_USE_SA) {
887 busCtl |= BUS_CTL_USE_SA;
888 }
889 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
890 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
891
892 /* We are in memory mode now! */
893 sc->sc_memorymode = TRUE;
894
895 /*
896 * wait here (10ms) for the chip to swap over. this is the
897 * maximum time that this could take.
898 */
899 delay(10000);
900
901 /* Verify that we can read from the chip */
902 isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
903
904 /*
905 * As a last minute sanity check before actually using mapped
906 * memory we verify that we can read the isa number from the
907 * chip in memory mode.
908 */
909 if (isaId != EISA_NUM_CRYSTAL) {
910 printf("%s: failed to enable memory mode\n",
911 sc->sc_dev.dv_xname);
912 sc->sc_memorymode = FALSE;
913 } else {
914 /*
915 * we are in memory mode so if we aren't using DMA,
916 * then program the chip to interrupt early.
917 */
918 if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
919 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
920 BUF_CFG_RX_DEST_IE |
921 BUF_CFG_RX_MISS_OVER_IE |
922 BUF_CFG_TX_COL_OVER_IE);
923 }
924 }
925
926 }
927
928 /* Put Ethernet address into the Individual Address register */
929 myea = (u_int16_t *)sc->sc_enaddr;
930 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 0, myea[0]);
931 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 2, myea[1]);
932 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 4, myea[2]);
933
934 if (sc->sc_irq != -1) {
935 /* Set the interrupt level in the chip */
936 if (sc->sc_prodid == PROD_ID_CS8900) {
937 if (sc->sc_irq == 5) {
938 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
939 } else {
940 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
941 }
942 }
943 else { /* CS8920 */
944 CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
945 }
946 }
947
948 /* write the multicast mask to the address filter register */
949 cs_set_ladr_filt(sc, &sc->sc_ethercom);
950
951 /* Enable reception and transmission of frames */
952 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
953 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
954 LINE_CTL_RX_ON | LINE_CTL_TX_ON);
955
956 /* Enable interrupt at the chip */
957 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
958 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
959 }
960
961 int
962 cs_init(ifp)
963 struct ifnet *ifp;
964 {
965 int intState;
966 int error = CS_OK;
967 struct cs_softc *sc = ifp->if_softc;
968
969 if (cs_enable(sc))
970 goto out;
971
972 cs_stop(ifp, 0);
973
974 intState = splnet();
975
976 #if 0
977 /* Mark the interface as down */
978 sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
979 #endif
980
981 #ifdef CS_DEBUG
982 /* Enable debugging */
983 sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
984 #endif
985
986 /* Reset the chip */
987 if ((error = cs_reset_chip(sc)) == CS_OK) {
988 /* Initialize the chip */
989 cs_initChip(sc);
990
991 /* Mark the interface as running */
992 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
993 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
994 sc->sc_ethercom.ec_if.if_timer = 0;
995
996 /* Assume we have carrier until we are told otherwise. */
997 sc->sc_carrier = 1;
998 } else {
999 printf("%s: unable to reset chip\n", sc->sc_dev.dv_xname);
1000 }
1001
1002 splx(intState);
1003 out:
1004 if (error == CS_OK)
1005 return 0;
1006 return EIO;
1007 }
1008
1009 void
1010 cs_set_ladr_filt(sc, ec)
1011 struct cs_softc *sc;
1012 struct ethercom *ec;
1013 {
1014 struct ifnet *ifp = &ec->ec_if;
1015 struct ether_multi *enm;
1016 struct ether_multistep step;
1017 u_int16_t af[4];
1018 u_int16_t port, mask, index;
1019
1020 /*
1021 * Set up multicast address filter by passing all multicast addresses
1022 * through a crc generator, and then using the high order 6 bits as an
1023 * index into the 64 bit logical address filter. The high order bit
1024 * selects the word, while the rest of the bits select the bit within
1025 * the word.
1026 */
1027 if (ifp->if_flags & IFF_PROMISC) {
1028 /* accept all valid frames. */
1029 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1030 RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1031 RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1032 ifp->if_flags |= IFF_ALLMULTI;
1033 return;
1034 }
1035
1036 /*
1037 * accept frames if a. crc valid, b. individual address match c.
1038 * broadcast address,and d. multicast addresses matched in the hash
1039 * filter
1040 */
1041 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1042 RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1043
1044
1045 /*
1046 * start off with all multicast flag clear, set it if we need to
1047 * later, otherwise we will leave it.
1048 */
1049 ifp->if_flags &= ~IFF_ALLMULTI;
1050 af[0] = af[1] = af[2] = af[3] = 0x0000;
1051
1052 /*
1053 * Loop through all the multicast addresses unless we get a range of
1054 * addresses, in which case we will just accept all packets.
1055 * Justification for this is given in the next comment.
1056 */
1057 ETHER_FIRST_MULTI(step, ec, enm);
1058 while (enm != NULL) {
1059 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1060 sizeof enm->enm_addrlo)) {
1061 /*
1062 * We must listen to a range of multicast addresses.
1063 * For now, just accept all multicasts, rather than
1064 * trying to set only those filter bits needed to match
1065 * the range. (At this time, the only use of address
1066 * ranges is for IP multicast routing, for which the
1067 * range is big enough to require all bits set.)
1068 */
1069 ifp->if_flags |= IFF_ALLMULTI;
1070 af[0] = af[1] = af[2] = af[3] = 0xffff;
1071 break;
1072 } else {
1073 /*
1074 * we have got an individual address so just set that
1075 * bit.
1076 */
1077 index = cs_hash_index(enm->enm_addrlo);
1078
1079 /* Set the bit the Logical address filter. */
1080 port = (u_int16_t) (index >> 4);
1081 mask = (u_int16_t) (1 << (index & 0xf));
1082 af[port] |= mask;
1083
1084 ETHER_NEXT_MULTI(step, enm);
1085 }
1086 }
1087
1088 /* now program the chip with the addresses */
1089 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1090 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1091 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1092 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1093 return;
1094 }
1095
1096 u_int16_t
1097 cs_hash_index(addr)
1098 char *addr;
1099 {
1100 u_int POLY = 0x04c11db6;
1101 u_int crc_value = 0xffffffff;
1102 u_int16_t hash_code = 0;
1103 int i;
1104 u_int current_bit;
1105 char current_byte = *addr;
1106 u_int cur_crc_high;
1107
1108 for (i = 0; i < 6; i++) {
1109 current_byte = *addr;
1110 addr++;
1111
1112 for (current_bit = 8; current_bit; current_bit--) {
1113 cur_crc_high = crc_value >> 31;
1114 crc_value <<= 1;
1115 if (cur_crc_high ^ (current_byte & 0x01)) {
1116 crc_value ^= POLY;
1117 crc_value |= 0x00000001;
1118 }
1119 current_byte >>= 1;
1120 }
1121 }
1122
1123 /*
1124 * The hash code is the 6 least significant bits of the CRC
1125 * in the reverse order: CRC[0] = hash[5],CRC[1] = hash[4],etc.
1126 */
1127 for (i = 0; i < 6; i++) {
1128 hash_code = (u_int16_t) ((hash_code << 1) |
1129 (u_int16_t) ((crc_value >> i) & 0x00000001));
1130 }
1131
1132 return hash_code;
1133 }
1134
1135 void
1136 cs_reset(arg)
1137 void *arg;
1138 {
1139 struct cs_softc *sc = arg;
1140
1141 /* Mark the interface as down */
1142 sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1143
1144 /* Reset the chip */
1145 cs_reset_chip(sc);
1146 }
1147
1148 int
1149 cs_ioctl(ifp, cmd, data)
1150 struct ifnet *ifp;
1151 u_long cmd;
1152 caddr_t data;
1153 {
1154 struct cs_softc *sc = ifp->if_softc;
1155 struct ifreq *ifr = (struct ifreq *) data;
1156 int state;
1157 int result;
1158
1159 state = splnet();
1160
1161 result = 0; /* only set if something goes wrong */
1162
1163 switch (cmd) {
1164 case SIOCGIFMEDIA:
1165 case SIOCSIFMEDIA:
1166 result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1167 break;
1168
1169 default:
1170 result = ether_ioctl(ifp, cmd, data);
1171 if (result == ENETRESET) {
1172 if (CS_IS_ENABLED(sc)) {
1173 /*
1174 * Multicast list has changed. Set the
1175 * hardware filter accordingly.
1176 */
1177 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1178 }
1179 result = 0;
1180 }
1181 break;
1182 }
1183
1184 splx(state);
1185
1186 return result;
1187 }
1188
1189 int
1190 cs_mediachange(ifp)
1191 struct ifnet *ifp;
1192 {
1193
1194 /*
1195 * Current media is already set up. Just reset the interface
1196 * to let the new value take hold.
1197 */
1198 cs_init(ifp);
1199 return (0);
1200 }
1201
1202 void
1203 cs_mediastatus(ifp, ifmr)
1204 struct ifnet *ifp;
1205 struct ifmediareq *ifmr;
1206 {
1207 struct cs_softc *sc = ifp->if_softc;
1208
1209 /*
1210 * The currently selected media is always the active media.
1211 */
1212 ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1213
1214 if (ifp->if_flags & IFF_UP) {
1215 /* Interface up, status is valid. */
1216 ifmr->ifm_status = IFM_AVALID |
1217 (sc->sc_carrier ? IFM_ACTIVE : 0);
1218 }
1219 else ifmr->ifm_status = 0;
1220 }
1221
1222 int
1223 cs_intr(arg)
1224 void *arg;
1225 {
1226 struct cs_softc *sc = arg;
1227 u_int16_t Event;
1228 #if NRND > 0
1229 u_int16_t rndEvent;
1230 #endif
1231
1232 /* Ignore any interrupts that happen while the chip is being reset */
1233 if (sc->sc_resetting) {
1234 printf("%s: cs_intr: reset in progress\n",
1235 sc->sc_dev.dv_xname);
1236 return 1;
1237 }
1238
1239 /* Read an event from the Interrupt Status Queue */
1240 if (sc->sc_memorymode)
1241 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1242 else
1243 Event = CS_READ_PORT(sc, PORT_ISQ);
1244
1245 if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1246 return 0; /* not ours */
1247
1248 #if NRND > 0
1249 rndEvent = Event;
1250 #endif
1251
1252 /* Process all the events in the Interrupt Status Queue */
1253 while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1254 /* Dispatch to an event handler based on the register number */
1255 switch (Event & REG_NUM_MASK) {
1256 case REG_NUM_RX_EVENT:
1257 cs_receive_event(sc, Event);
1258 break;
1259 case REG_NUM_TX_EVENT:
1260 cs_transmit_event(sc, Event);
1261 break;
1262 case REG_NUM_BUF_EVENT:
1263 cs_buffer_event(sc, Event);
1264 break;
1265 case REG_NUM_TX_COL:
1266 case REG_NUM_RX_MISS:
1267 cs_counter_event(sc, Event);
1268 break;
1269 default:
1270 printf("%s: unknown interrupt event 0x%x\n",
1271 sc->sc_dev.dv_xname, Event);
1272 break;
1273 }
1274
1275 /* Read another event from the Interrupt Status Queue */
1276 if (sc->sc_memorymode)
1277 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1278 else
1279 Event = CS_READ_PORT(sc, PORT_ISQ);
1280 }
1281
1282 /* have handled the interupt */
1283 #if NRND > 0
1284 rnd_add_uint32(&sc->rnd_source, rndEvent);
1285 #endif
1286 return 1;
1287 }
1288
1289 void
1290 cs_counter_event(sc, cntEvent)
1291 struct cs_softc *sc;
1292 u_int16_t cntEvent;
1293 {
1294 struct ifnet *ifp;
1295 u_int16_t errorCount;
1296
1297 ifp = &sc->sc_ethercom.ec_if;
1298
1299 switch (cntEvent & REG_NUM_MASK) {
1300 case REG_NUM_TX_COL:
1301 /*
1302 * the count should be read before an overflow occurs.
1303 */
1304 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1305 /*
1306 * the tramsit event routine always checks the number of
1307 * collisions for any packet so we don't increment any
1308 * counters here, as they should already have been
1309 * considered.
1310 */
1311 break;
1312 case REG_NUM_RX_MISS:
1313 /*
1314 * the count should be read before an overflow occurs.
1315 */
1316 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1317 /*
1318 * Increment the input error count, the first 6bits are the
1319 * register id.
1320 */
1321 ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1322 break;
1323 default:
1324 /* do nothing */
1325 break;
1326 }
1327 }
1328
1329 void
1330 cs_buffer_event(sc, bufEvent)
1331 struct cs_softc *sc;
1332 u_int16_t bufEvent;
1333 {
1334 struct ifnet *ifp;
1335
1336 ifp = &sc->sc_ethercom.ec_if;
1337
1338 /*
1339 * multiple events can be in the buffer event register at one time so
1340 * a standard switch statement will not suffice, here every event
1341 * must be checked.
1342 */
1343
1344 /*
1345 * if 128 bits have been rxed by the time we get here, the dest event
1346 * will be cleared and 128 event will be set.
1347 */
1348 if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1349 cs_process_rx_early(sc);
1350 }
1351
1352 if (bufEvent & BUF_EVENT_RX_DMA) {
1353 /* process the receive data */
1354 if (sc->sc_dma_process_rx)
1355 (*sc->sc_dma_process_rx)(sc);
1356 else
1357 /* should panic? */
1358 printf("%s: unexpected dma event\n", sc->sc_dev.dv_xname);
1359 }
1360
1361 if (bufEvent & BUF_EVENT_TX_UNDR) {
1362 #if 0
1363 /*
1364 * This can happen occasionally, and it's not worth worrying
1365 * about.
1366 */
1367 printf("%s: transmit underrun (%d -> %d)\n",
1368 sc->sc_dev.dv_xname, sc->sc_xe_ent,
1369 cs_xmit_early_table[sc->sc_xe_ent].worse);
1370 #endif
1371 sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1372 sc->sc_xe_togo =
1373 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1374
1375 /* had an underrun, transmit is finished */
1376 sc->sc_txbusy = FALSE;
1377 }
1378
1379 if (bufEvent & BUF_EVENT_SW_INT) {
1380 printf("%s: software initiated interrupt\n",
1381 sc->sc_dev.dv_xname);
1382 }
1383 }
1384
1385 void
1386 cs_transmit_event(sc, txEvent)
1387 struct cs_softc *sc;
1388 u_int16_t txEvent;
1389 {
1390 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1391
1392 /* If there were any errors transmitting this frame */
1393 if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1394 TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1395 /* Increment the output error count */
1396 ifp->if_oerrors++;
1397
1398 /* Note carrier loss. */
1399 if (txEvent & TX_EVENT_LOSS_CRS)
1400 sc->sc_carrier = 0;
1401
1402 /* If debugging is enabled then log error messages */
1403 if (ifp->if_flags & IFF_DEBUG) {
1404 if (txEvent & TX_EVENT_LOSS_CRS) {
1405 printf("%s: lost carrier\n",
1406 sc->sc_dev.dv_xname);
1407 }
1408 if (txEvent & TX_EVENT_SQE_ERR) {
1409 printf("%s: SQE error\n",
1410 sc->sc_dev.dv_xname);
1411 }
1412 if (txEvent & TX_EVENT_OUT_WIN) {
1413 printf("%s: out-of-window collision\n",
1414 sc->sc_dev.dv_xname);
1415 }
1416 if (txEvent & TX_EVENT_JABBER) {
1417 printf("%s: jabber\n", sc->sc_dev.dv_xname);
1418 }
1419 if (txEvent & TX_EVENT_16_COLL) {
1420 printf("%s: 16 collisions\n",
1421 sc->sc_dev.dv_xname);
1422 }
1423 }
1424 }
1425 else {
1426 /* Transmission successful, carrier is up. */
1427 sc->sc_carrier = 1;
1428 #ifdef SHARK
1429 ledNetActive();
1430 #endif
1431 }
1432
1433 /* Add the number of collisions for this frame */
1434 if (txEvent & TX_EVENT_16_COLL) {
1435 ifp->if_collisions += 16;
1436 } else {
1437 ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1438 }
1439
1440 ifp->if_opackets++;
1441
1442 /* Transmission is no longer in progress */
1443 sc->sc_txbusy = FALSE;
1444
1445 /* If there is more to transmit */
1446 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1447 /* Start the next transmission */
1448 cs_start_output(ifp);
1449 }
1450 }
1451
1452 void
1453 cs_print_rx_errors(sc, rxEvent)
1454 struct cs_softc *sc;
1455 u_int16_t rxEvent;
1456 {
1457
1458 if (rxEvent & RX_EVENT_RUNT)
1459 printf("%s: runt\n", sc->sc_dev.dv_xname);
1460
1461 if (rxEvent & RX_EVENT_X_DATA)
1462 printf("%s: extra data\n", sc->sc_dev.dv_xname);
1463
1464 if (rxEvent & RX_EVENT_CRC_ERR) {
1465 if (rxEvent & RX_EVENT_DRIBBLE)
1466 printf("%s: alignment error\n", sc->sc_dev.dv_xname);
1467 else
1468 printf("%s: CRC error\n", sc->sc_dev.dv_xname);
1469 } else {
1470 if (rxEvent & RX_EVENT_DRIBBLE)
1471 printf("%s: dribble bits\n", sc->sc_dev.dv_xname);
1472 }
1473 }
1474
1475 void
1476 cs_receive_event(sc, rxEvent)
1477 struct cs_softc *sc;
1478 u_int16_t rxEvent;
1479 {
1480 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1481
1482 /* If the frame was not received OK */
1483 if (!(rxEvent & RX_EVENT_RX_OK)) {
1484 /* Increment the input error count */
1485 ifp->if_ierrors++;
1486
1487 /*
1488 * If debugging is enabled then log error messages.
1489 */
1490 if (ifp->if_flags & IFF_DEBUG) {
1491 if (rxEvent != REG_NUM_RX_EVENT) {
1492 cs_print_rx_errors(sc, rxEvent);
1493
1494 /*
1495 * Must read the length of all received
1496 * frames
1497 */
1498 CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1499
1500 /* Skip the received frame */
1501 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1502 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1503 RX_CFG_SKIP);
1504 } else {
1505 printf("%s: implied skip\n",
1506 sc->sc_dev.dv_xname);
1507 }
1508 }
1509 } else {
1510 /*
1511 * process the received frame and pass it up to the upper
1512 * layers.
1513 */
1514 cs_process_receive(sc);
1515 }
1516 }
1517
1518 void
1519 cs_ether_input(sc, m)
1520 struct cs_softc *sc;
1521 struct mbuf *m;
1522 {
1523 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1524
1525 ifp->if_ipackets++;
1526
1527 #if NBPFILTER > 0
1528 /*
1529 * Check if there's a BPF listener on this interface.
1530 * If so, hand off the raw packet to BPF.
1531 */
1532 if (ifp->if_bpf)
1533 bpf_mtap(ifp->if_bpf, m);
1534 #endif
1535
1536 /* Pass the packet up. */
1537 (*ifp->if_input)(ifp, m);
1538 }
1539
1540 void
1541 cs_process_receive(sc)
1542 struct cs_softc *sc;
1543 {
1544 struct ifnet *ifp;
1545 struct mbuf *m;
1546 int totlen;
1547 int len;
1548 u_int16_t *pBuff, *pBuffLimit;
1549 int pad;
1550 unsigned int frameOffset;
1551
1552 #ifdef SHARK
1553 ledNetActive();
1554 #endif
1555
1556 ifp = &sc->sc_ethercom.ec_if;
1557
1558 /* Received a packet; carrier is up. */
1559 sc->sc_carrier = 1;
1560
1561 if (sc->sc_memorymode) {
1562 /* Initialize the frame offset */
1563 frameOffset = PKTPG_RX_LENGTH;
1564
1565 /* Get the length of the received frame */
1566 totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1567 frameOffset += 2;
1568 }
1569 else {
1570 /* drop status */
1571 CS_READ_PORT(sc, PORT_RXTX_DATA);
1572
1573 /* Get the length of the received frame */
1574 totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1575 }
1576
1577 MGETHDR(m, M_DONTWAIT, MT_DATA);
1578 if (m == 0) {
1579 printf("%s: cs_process_receive: unable to allocate mbuf\n",
1580 sc->sc_dev.dv_xname);
1581 ifp->if_ierrors++;
1582 /*
1583 * couldn't allocate an mbuf so things are not good, may as
1584 * well drop the packet I think.
1585 *
1586 * have already read the length so we should be right to skip
1587 * the packet.
1588 */
1589 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1590 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1591 return;
1592 }
1593 m->m_pkthdr.rcvif = ifp;
1594 m->m_pkthdr.len = totlen;
1595
1596 /*
1597 * save processing by always using a mbuf cluster, guarenteed to fit
1598 * packet, on i386 NetBSD anyway.
1599 */
1600 MCLGET(m, M_DONTWAIT);
1601 if (m->m_flags & M_EXT) {
1602 len = MCLBYTES;
1603 } else {
1604 /* couldn't allocate an mbuf cluster */
1605 printf("%s: cs_process_receive: unable to allocate a cluster\n",
1606 sc->sc_dev.dv_xname);
1607 m_freem(m);
1608
1609 /* skip the received frame */
1610 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1611 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1612 return;
1613 }
1614
1615 /* align ip header on word boundary for ipintr */
1616 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1617 m->m_data += pad;
1618 len -= pad + 1;
1619
1620 m->m_len = len = min(totlen, len);
1621 pBuff = mtod(m, u_int16_t *);
1622
1623 /* now read the data from the chip */
1624 if (sc->sc_memorymode) {
1625 pBuffLimit = pBuff + (len + 1) / 2; /* don't want to go over */
1626 while (pBuff < pBuffLimit) {
1627 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1628 frameOffset += 2;
1629 }
1630 }
1631 else {
1632 bus_space_read_multi_2(sc->sc_iot, sc->sc_ioh, PORT_RXTX_DATA,
1633 pBuff, (len + 1)>>1);
1634 }
1635
1636 cs_ether_input(sc, m);
1637 }
1638
1639 void
1640 cs_process_rx_early(sc)
1641 struct cs_softc *sc;
1642 {
1643 struct ifnet *ifp;
1644 struct mbuf *m;
1645 u_int16_t frameCount, oldFrameCount;
1646 u_int16_t rxEvent;
1647 u_int16_t *pBuff;
1648 int pad;
1649 unsigned int frameOffset;
1650
1651
1652 ifp = &sc->sc_ethercom.ec_if;
1653
1654 /* Initialize the frame offset */
1655 frameOffset = PKTPG_RX_FRAME;
1656 frameCount = 0;
1657
1658 MGETHDR(m, M_DONTWAIT, MT_DATA);
1659 if (m == 0) {
1660 printf("%s: cs_process_rx_early: unable to allocate mbuf\n",
1661 sc->sc_dev.dv_xname);
1662 ifp->if_ierrors++;
1663 /*
1664 * couldn't allocate an mbuf so things are not good, may as
1665 * well drop the packet I think.
1666 *
1667 * have already read the length so we should be right to skip
1668 * the packet.
1669 */
1670 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1671 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1672 return;
1673 }
1674 m->m_pkthdr.rcvif = ifp;
1675 /*
1676 * save processing by always using a mbuf cluster, guarenteed to fit
1677 * packet
1678 */
1679 MCLGET(m, M_DONTWAIT);
1680 if ((m->m_flags & M_EXT) == 0) {
1681 /* couldn't allocate an mbuf cluster */
1682 printf("%s: cs_process_rx_early: unable to allocate a cluster\n",
1683 sc->sc_dev.dv_xname);
1684 m_freem(m);
1685 /* skip the frame */
1686 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1687 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1688 return;
1689 }
1690
1691 /* align ip header on word boundary for ipintr */
1692 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1693 m->m_data += pad;
1694
1695 /* set up the buffer pointer to point to the data area */
1696 pBuff = mtod(m, u_int16_t *);
1697
1698 /*
1699 * now read the frame byte counter until we have finished reading the
1700 * frame
1701 */
1702 oldFrameCount = 0;
1703 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1704 while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1705 for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1706 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1707 frameOffset += 2;
1708 }
1709
1710 /* read the new count from the chip */
1711 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1712 }
1713
1714 /* update the mbuf counts */
1715 m->m_len = oldFrameCount;
1716 m->m_pkthdr.len = oldFrameCount;
1717
1718 /* now check the Rx Event register */
1719 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1720
1721 if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1722 /*
1723 * do an implied skip, it seems to be more reliable than a
1724 * forced skip.
1725 */
1726 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1727 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1728
1729 /*
1730 * now read the RX_EVENT register to perform an implied skip.
1731 */
1732 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1733
1734 cs_ether_input(sc, m);
1735 } else {
1736 m_freem(m);
1737 ifp->if_ierrors++;
1738 }
1739 }
1740
1741 void
1742 cs_start_output(ifp)
1743 struct ifnet *ifp;
1744 {
1745 struct cs_softc *sc;
1746 struct mbuf *pMbuf;
1747 struct mbuf *pMbufChain;
1748 u_int16_t BusStatus;
1749 u_int16_t Length;
1750 int txLoop = 0;
1751 int dropout = 0;
1752
1753 sc = ifp->if_softc;
1754
1755 /* check that the interface is up and running */
1756 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1757 return;
1758 }
1759
1760 /* Don't interrupt a transmission in progress */
1761 if (sc->sc_txbusy) {
1762 return;
1763 }
1764
1765 /* this loop will only run through once if transmission is successful */
1766 /*
1767 * While there are packets to transmit and a transmit is not in
1768 * progress
1769 */
1770 while (sc->sc_txbusy == 0 && dropout == 0) {
1771 IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1772 if (pMbufChain == NULL)
1773 break;
1774
1775 #if NBPFILTER > 0
1776 /*
1777 * If BPF is listening on this interface, let it see the packet
1778 * before we commit it to the wire.
1779 */
1780 if (ifp->if_bpf)
1781 bpf_mtap(ifp->if_bpf, pMbufChain);
1782 #endif
1783
1784 /* Find the total length of the data to transmit */
1785 Length = 0;
1786 for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1787 Length += pMbuf->m_len;
1788
1789 do {
1790 /*
1791 * Request that the transmit be started after all
1792 * data has been copied
1793 *
1794 * In IO mode must write to the IO port not the packet
1795 * page address
1796 *
1797 * If this is changed to start transmission after a
1798 * small amount of data has been copied you tend to
1799 * get packet missed errors i think because the ISA
1800 * bus is too slow. Or possibly the copy routine is
1801 * not streamlined enough.
1802 */
1803 if (sc->sc_memorymode) {
1804 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1805 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1806 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1807 }
1808 else {
1809 CS_WRITE_PORT(sc, PORT_TX_CMD,
1810 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1811 CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1812 }
1813
1814 /*
1815 * Adjust early-transmit machinery.
1816 */
1817 if (--sc->sc_xe_togo == 0) {
1818 sc->sc_xe_ent =
1819 cs_xmit_early_table[sc->sc_xe_ent].better;
1820 sc->sc_xe_togo =
1821 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1822 }
1823 /*
1824 * Read the BusStatus register which indicates
1825 * success of the request
1826 */
1827 BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1828
1829 /*
1830 * If there was an error in the transmit bid free the
1831 * mbuf and go on. This is presuming that mbuf is
1832 * corrupt.
1833 */
1834 if (BusStatus & BUS_ST_TX_BID_ERR) {
1835 printf("%s: transmit bid error (too big)",
1836 sc->sc_dev.dv_xname);
1837
1838 /* Discard the bad mbuf chain */
1839 m_freem(pMbufChain);
1840 sc->sc_ethercom.ec_if.if_oerrors++;
1841
1842 /* Loop up to transmit the next chain */
1843 txLoop = 0;
1844 } else {
1845 if (BusStatus & BUS_ST_RDY4TXNOW) {
1846 /*
1847 * The chip is ready for transmission
1848 * now
1849 */
1850 /*
1851 * Copy the frame to the chip to
1852 * start transmission
1853 */
1854 cs_copy_tx_frame(sc, pMbufChain);
1855
1856 /* Free the mbuf chain */
1857 m_freem(pMbufChain);
1858
1859 /* Transmission is now in progress */
1860 sc->sc_txbusy = TRUE;
1861 txLoop = 0;
1862 } else {
1863 /*
1864 * if we get here we want to try
1865 * again with the same mbuf, until
1866 * the chip lets us transmit.
1867 */
1868 txLoop++;
1869 if (txLoop > CS_OUTPUT_LOOP_MAX) {
1870 /* Free the mbuf chain */
1871 m_freem(pMbufChain);
1872 /*
1873 * Transmission is not in
1874 * progress
1875 */
1876 sc->sc_txbusy = FALSE;
1877 /*
1878 * Increment the output error
1879 * count
1880 */
1881 ifp->if_oerrors++;
1882 /*
1883 * exit the routine and drop
1884 * the packet.
1885 */
1886 txLoop = 0;
1887 dropout = 1;
1888 }
1889 }
1890 }
1891 } while (txLoop);
1892 }
1893 }
1894
1895 void
1896 cs_copy_tx_frame(sc, m0)
1897 struct cs_softc *sc;
1898 struct mbuf *m0;
1899 {
1900 struct mbuf *m;
1901 int len, leftover, frameoff;
1902 u_int16_t dbuf;
1903 u_int8_t *p;
1904 #ifdef DIAGNOSTIC
1905 u_int8_t *lim;
1906 #endif
1907
1908 /* Initialize frame pointer and data port address */
1909 frameoff = PKTPG_TX_FRAME;
1910
1911 /* start out with no leftover data */
1912 leftover = 0;
1913 dbuf = 0;
1914
1915 /* Process the chain of mbufs */
1916 for (m = m0; m != NULL; m = m->m_next) {
1917 /*
1918 * Process all of the data in a single mbuf.
1919 */
1920 p = mtod(m, u_int8_t *);
1921 len = m->m_len;
1922 #ifdef DIAGNOSTIC
1923 lim = p + len;
1924 #endif
1925
1926 while (len > 0) {
1927 if (leftover) {
1928 /*
1929 * Data left over (from mbuf or realignment).
1930 * Buffer the next byte, and write it and
1931 * the leftover data out.
1932 */
1933 dbuf |= *p++ << 8;
1934 len--;
1935 if (sc->sc_memorymode) {
1936 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
1937 frameoff += 2;
1938 }
1939 else {
1940 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
1941 }
1942 leftover = 0;
1943 } else if ((long) p & 1) {
1944 /*
1945 * Misaligned data. Buffer the next byte.
1946 */
1947 dbuf = *p++;
1948 len--;
1949 leftover = 1;
1950 } else {
1951 /*
1952 * Aligned data. This is the case we like.
1953 *
1954 * Write-region out as much as we can, then
1955 * buffer the remaining byte (if any).
1956 */
1957 leftover = len & 1;
1958 len &= ~1;
1959 if (sc->sc_memorymode) {
1960 bus_space_write_region_2(sc->sc_memt, sc->sc_memh, frameoff,
1961 (u_int16_t *) p, len >> 1);
1962 frameoff += len;
1963 }
1964 else {
1965 bus_space_write_multi_2(sc->sc_iot, sc->sc_ioh,
1966 PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
1967 }
1968 p += len;
1969
1970 if (leftover)
1971 dbuf = *p++;
1972 len = 0;
1973 }
1974 }
1975 if (len < 0)
1976 panic("cs_copy_tx_frame: negative len");
1977 #ifdef DIAGNOSTIC
1978 if (p != lim)
1979 panic("cs_copy_tx_frame: p != lim");
1980 #endif
1981 }
1982 if (leftover) {
1983 if (sc->sc_memorymode) {
1984 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
1985 }
1986 else {
1987 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
1988 }
1989 }
1990 }
1991
1992 static int
1993 cs_enable(sc)
1994 struct cs_softc *sc;
1995 {
1996 if (!CS_IS_ENABLED(sc) && sc->sc_enable) {
1997 int error;
1998
1999 error = (*sc->sc_enable)(sc);
2000 if (error)
2001 return error;
2002
2003 sc->sc_cfgflags |= CFGFLG_ENABLED;
2004 }
2005
2006 return 0;
2007 }
2008
2009 static void
2010 cs_disable(sc)
2011 struct cs_softc *sc;
2012 {
2013 if (CS_IS_ENABLED(sc) && sc->sc_disable) {
2014 (*sc->sc_disable)(sc);
2015
2016 sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2017 }
2018 }
2019
2020 static void
2021 cs_stop(ifp, disable)
2022 struct ifnet *ifp;
2023 int disable;
2024 {
2025 struct cs_softc *sc = ifp->if_softc;
2026
2027 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2028 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2029 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2030 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2031
2032 if (disable) {
2033 cs_disable(sc);
2034 }
2035
2036 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2037 }
2038
2039 int
2040 cs_activate(self, act)
2041 struct device *self;
2042 enum devact act;
2043 {
2044 struct cs_softc *sc = (void *)self;
2045 int s, error = 0;
2046
2047 s = splnet();
2048 switch (act) {
2049 case DVACT_ACTIVATE:
2050 error = EOPNOTSUPP;
2051 break;
2052
2053 case DVACT_DEACTIVATE:
2054 if_deactivate(&sc->sc_ethercom.ec_if);
2055 break;
2056 }
2057 splx(s);
2058
2059 return error;
2060 }
2061
2062 static void
2063 cs_power(why, arg)
2064 int why;
2065 void *arg;
2066 {
2067 struct cs_softc *sc = arg;
2068 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2069 int s;
2070
2071 s = splnet();
2072 switch (why) {
2073 case PWR_STANDBY:
2074 case PWR_SUSPEND:
2075 cs_stop(ifp, 0);
2076 break;
2077 case PWR_RESUME:
2078 if (ifp->if_flags & IFF_UP) {
2079 cs_init(ifp);
2080 }
2081 break;
2082 case PWR_SOFTSUSPEND:
2083 case PWR_SOFTSTANDBY:
2084 case PWR_SOFTRESUME:
2085 break;
2086 }
2087 splx(s);
2088 }
2089