Home | History | Annotate | Line # | Download | only in ic
cs89x0.c revision 1.2.4.3
      1 /*	$NetBSD: cs89x0.c,v 1.2.4.3 2002/03/16 16:00:53 jdolecek Exp $	*/
      2 
      3 /*
      4  * Copyright 1997
      5  * Digital Equipment Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and
      8  * copied only in accordance with the following terms and conditions.
      9  * Subject to these conditions, you may download, copy, install,
     10  * use, modify and distribute this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce
     14  *    and retain this copyright notice and list of conditions as
     15  *    they appear in the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Digital Equipment Corporation. Neither the "Digital Equipment
     19  *    Corporation" name nor any trademark or logo of Digital Equipment
     20  *    Corporation may be used to endorse or promote products derived
     21  *    from this software without the prior written permission of
     22  *    Digital Equipment Corporation.
     23  *
     24  * 3) This software is provided "AS-IS" and any express or implied
     25  *    warranties, including but not limited to, any implied warranties
     26  *    of merchantability, fitness for a particular purpose, or
     27  *    non-infringement are disclaimed. In no event shall DIGITAL be
     28  *    liable for any damages whatsoever, and in particular, DIGITAL
     29  *    shall not be liable for special, indirect, consequential, or
     30  *    incidental damages or damages for lost profits, loss of
     31  *    revenue or loss of use, whether such damages arise in contract,
     32  *    negligence, tort, under statute, in equity, at law or otherwise,
     33  *    even if advised of the possibility of such damage.
     34  */
     35 
     36 /*
     37 **++
     38 **  FACILITY
     39 **
     40 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
     41 **
     42 **  ABSTRACT
     43 **
     44 **     This module provides standard ethernet access for INET protocols
     45 **     only.
     46 **
     47 **  AUTHORS
     48 **
     49 **     Peter Dettori     SEA - Software Engineering.
     50 **
     51 **  CREATION DATE:
     52 **
     53 **     13-Feb-1997.
     54 **
     55 **  MODIFICATION HISTORY (Digital):
     56 **
     57 **     Revision 1.27  1998/01/20  17:59:40  cgd
     58 **     update for moved headers
     59 **
     60 **     Revision 1.26  1998/01/12  19:29:36  cgd
     61 **     use arm32/isa versions of isadma code.
     62 **
     63 **     Revision 1.25  1997/12/12  01:35:27  cgd
     64 **     convert to use new arp code (from Brini)
     65 **
     66 **     Revision 1.24  1997/12/10  22:31:56  cgd
     67 **     trim some fat (get rid of ability to explicitly supply enet addr, since
     68 **     it was never used and added a bunch of code which really doesn't belong in
     69 **     an enet driver), and clean up slightly.
     70 **
     71 **     Revision 1.23  1997/10/06  16:42:12  cgd
     72 **     copyright notices
     73 **
     74 **     Revision 1.22  1997/06/20  19:38:01  chaiken
     75 **     fixes some smartcard problems
     76 **
     77 **     Revision 1.21  1997/06/10 02:56:20  grohn
     78 **     Added call to ledNetActive
     79 **
     80 **     Revision 1.20  1997/06/05 00:47:06  dettori
     81 **     Changed cs_process_rx_dma to reset and re-initialise the
     82 **     ethernet chip when DMA gets out of sync, or mbufs
     83 **     can't be allocated.
     84 **
     85 **     Revision 1.19  1997/06/03 03:09:58  dettori
     86 **     Turn off sc_txbusy flag when a transmit underrun
     87 **     occurs.
     88 **
     89 **     Revision 1.18  1997/06/02 00:04:35  dettori
     90 **     redefined the transmit table to get around the nfs_timer bug while we are
     91 **     looking into it further.
     92 **
     93 **     Also changed interrupts from EDGE to LEVEL.
     94 **
     95 **     Revision 1.17  1997/05/27 23:31:01  dettori
     96 **     Pulled out changes to DMAMODE defines.
     97 **
     98 **     Revision 1.16  1997/05/23 04:25:16  cgd
     99 **     reformat log so it fits in 80cols
    100 **
    101 **     Revision 1.15  1997/05/23  04:22:18  cgd
    102 **     remove the existing copyright notice (which Peter Dettori indicated
    103 **     was incorrect, copied from an existing NetBSD file only so that the
    104 **     file would have a copyright notice on it, and which he'd intended to
    105 **     replace).  Replace it with a Digital copyright notice, cloned from
    106 **     ess.c.  It's not really correct either (it indicates that the source
    107 **     is Digital confidential!), but is better than nothing and more
    108 **     correct than what was there before.
    109 **
    110 **     Revision 1.14  1997/05/23  04:12:50  cgd
    111 **     use an adaptive transmit start algorithm: start by telling the chip
    112 **     to start transmitting after 381 bytes have been fed to it.  if that
    113 **     gets transmit underruns, ramp down to 1021 bytes then "whole
    114 **     packet."  If successful at a given level for a while, try the next
    115 **     more agressive level.  This code doesn't ever try to start
    116 **     transmitting after 5 bytes have been sent to the NIC, because
    117 **     that underruns rather regularly.  The back-off and ramp-up mechanism
    118 **     could probably be tuned a little bit, but this works well enough to
    119 **     support > 1MB/s transmit rates on a clear ethernet (which is about
    120 **     20-25% better than the driver had previously been getting).
    121 **
    122 **     Revision 1.13  1997/05/22  21:06:54  cgd
    123 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
    124 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
    125 **     issues.  This would cause bogus data to be spit out for mbufs with
    126 **     misaligned data.  For instance, it caused the following bits to appear
    127 **     on the wire:
    128 **     	... etBND 1S2C .SHA(K) R ...
    129 **     	    11112222333344445555
    130 **     which should have appeared as:
    131 **     	... NetBSD 1.2C (SHARK) ...
    132 **     	    11112222333344445555
    133 **     Note the apparent 'rotate' of the bytes in the word, which was due to
    134 **     incorrect unaligned accesses.  This data corruption was the cause of
    135 **     incoming telnet/rlogin hangs.
    136 **
    137 **     Revision 1.12  1997/05/22  01:55:32  cgd
    138 **     reformat log so it fits in 80cols
    139 **
    140 **     Revision 1.11  1997/05/22  01:50:27  cgd
    141 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
    142 **       so packets aimed at other hosts don't get sent to ether_input().
    143 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
    144 **       you can easily tell (`strings`) what version of the driver is in your
    145 **       kernel binary.
    146 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
    147 **       safe, and not really a performance win anyway.  (It was only used when
    148 **       setting up the multicast logical address filter, which is an
    149 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
    150 **       address check above, but the benefit of it vs. memcmp would be
    151 **       inconsequential, there.)  Use memcmp() instead.
    152 **     * restructure csStartOuput to avoid the following bugs in the case where
    153 **       txWait was being set:
    154 **         * it would accidentally drop the outgoing packet if told to wait
    155 **           but the outgoing packet queue was empty.
    156 **         * it would bpf_mtap() the outgoing packet multiple times (once for
    157 **           each time it was told to wait), and would also recalculate
    158 **           the length of the outgoing packet each time it was told to
    159 **           wait.
    160 **       While there, rename txWait to txLoop, since with the new structure of
    161 **       the code, the latter name makes more sense.
    162 **
    163 **     Revision 1.10  1997/05/19  02:03:20  cgd
    164 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
    165 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
    166 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
    167 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
    168 **     as before.
    169 **
    170 **     Revision 1.9  1997/05/19  01:45:37  cgd
    171 **     create a new function, cs_ether_input(), which does received-packet
    172 **     BPF and ether_input processing.  This code used to be in three places,
    173 **     and centralizing it will make adding IFF_PROMISC support much easier.
    174 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
    175 **     do copies with bus_space_write_region_2().  It's more correct, and
    176 **     potentially more efficient.  That function needs to be gutted (to
    177 **     deal properly with alignment issues, which it currently does wrong),
    178 **     however, and the change doesn't gain much, so there's no point in
    179 **     enabling it now.
    180 **
    181 **     Revision 1.8  1997/05/19  01:17:10  cgd
    182 **     fix a comment re: the setting of the TxConfig register.  Clean up
    183 **     interface counter maintenance (make it use standard idiom).
    184 **
    185 **--
    186 */
    187 
    188 #include <sys/cdefs.h>
    189 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.2.4.3 2002/03/16 16:00:53 jdolecek Exp $");
    190 
    191 #include "opt_inet.h"
    192 
    193 #include <sys/param.h>
    194 #include <sys/systm.h>
    195 #include <sys/mbuf.h>
    196 #include <sys/syslog.h>
    197 #include <sys/socket.h>
    198 #include <sys/device.h>
    199 #include <sys/malloc.h>
    200 #include <sys/ioctl.h>
    201 #include <sys/errno.h>
    202 
    203 #include "rnd.h"
    204 #if NRND > 0
    205 #include <sys/rnd.h>
    206 #endif
    207 
    208 #include <net/if.h>
    209 #include <net/if_ether.h>
    210 #include <net/if_media.h>
    211 #ifdef INET
    212 #include <netinet/in.h>
    213 #include <netinet/if_inarp.h>
    214 #endif
    215 
    216 #include "bpfilter.h"
    217 #if NBPFILTER > 0
    218 #include <net/bpf.h>
    219 #include <net/bpfdesc.h>
    220 #endif
    221 
    222 #include <uvm/uvm_extern.h>
    223 
    224 #include <machine/bus.h>
    225 #include <machine/intr.h>
    226 
    227 #include <dev/ic/cs89x0reg.h>
    228 #include <dev/ic/cs89x0var.h>
    229 
    230 #ifdef SHARK
    231 #include <shark/shark/sequoia.h>
    232 #endif
    233 
    234 /*
    235  * MACRO DEFINITIONS
    236  */
    237 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
    238 
    239 /*
    240  * FUNCTION PROTOTYPES
    241  */
    242 void	cs_get_default_media __P((struct cs_softc *));
    243 int	cs_get_params __P((struct cs_softc *));
    244 int	cs_get_enaddr __P((struct cs_softc *));
    245 int	cs_reset_chip __P((struct cs_softc *));
    246 void	cs_reset __P((void *));
    247 int	cs_ioctl __P((struct ifnet *, u_long, caddr_t));
    248 void	cs_initChip __P((struct cs_softc *));
    249 void	cs_buffer_event __P((struct cs_softc *, u_int16_t));
    250 void	cs_transmit_event __P((struct cs_softc *, u_int16_t));
    251 void	cs_receive_event __P((struct cs_softc *, u_int16_t));
    252 void	cs_process_receive __P((struct cs_softc *));
    253 void	cs_process_rx_early __P((struct cs_softc *));
    254 void	cs_start_output __P((struct ifnet *));
    255 void	cs_copy_tx_frame __P((struct cs_softc *, struct mbuf *));
    256 void	cs_set_ladr_filt __P((struct cs_softc *, struct ethercom *));
    257 u_int16_t cs_hash_index __P((char *));
    258 void	cs_counter_event __P((struct cs_softc *, u_int16_t));
    259 
    260 int	cs_mediachange __P((struct ifnet *));
    261 void	cs_mediastatus __P((struct ifnet *, struct ifmediareq *));
    262 
    263 static int cs_enable __P((struct cs_softc *));
    264 static void cs_disable __P((struct cs_softc *));
    265 static void cs_stop __P((struct ifnet *, int));
    266 static void cs_power __P((int, void *));
    267 
    268 /*
    269  * GLOBAL DECLARATIONS
    270  */
    271 
    272 /*
    273  * Xmit-early table.
    274  *
    275  * To get better performance, we tell the chip to start packet
    276  * transmission before the whole packet is copied to the chip.
    277  * However, this can fail under load.  When it fails, we back off
    278  * to a safer setting for a little while.
    279  *
    280  * txcmd is the value of txcmd used to indicate when to start transmission.
    281  * better is the next 'better' state in the table.
    282  * better_count is the number of output packets before transition to the
    283  *   better state.
    284  * worse is the next 'worse' state in the table.
    285  *
    286  * Transition to the next worse state happens automatically when a
    287  * transmittion underrun occurs.
    288  */
    289 struct cs_xmit_early {
    290 	u_int16_t       txcmd;
    291 	int             better;
    292 	int             better_count;
    293 	int             worse;
    294 } cs_xmit_early_table[3] = {
    295 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
    296 	{ TX_CMD_START_1021,	0,	50000,		2, },
    297 	{ TX_CMD_START_ALL,	1,	5000,		2, },
    298 };
    299 
    300 int cs_default_media[] = {
    301 	IFM_ETHER|IFM_10_2,
    302 	IFM_ETHER|IFM_10_5,
    303 	IFM_ETHER|IFM_10_T,
    304 	IFM_ETHER|IFM_10_T|IFM_FDX,
    305 };
    306 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
    307 
    308 int
    309 cs_attach(sc, enaddr, media, nmedia, defmedia)
    310 	struct cs_softc *sc;
    311 	u_int8_t *enaddr;
    312 	int *media, nmedia, defmedia;
    313 {
    314 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    315 	const char *chipname, *medname;
    316 	u_int16_t reg;
    317 	int i;
    318 
    319 	/* Start out in IO mode */
    320 	sc->sc_memorymode = FALSE;
    321 
    322 	/* make sure we're right */
    323 	for (i = 0; i < 10000; i++) {
    324 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
    325 		if (reg == EISA_NUM_CRYSTAL) {
    326 			break;
    327 		}
    328 	}
    329 	if (i == 10000) {
    330 		printf("%s: wrong id(0x%x)\n", sc->sc_dev.dv_xname, reg);
    331 		return 1; /* XXX should panic? */
    332 	}
    333 
    334 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
    335 	sc->sc_prodid = reg & PROD_ID_MASK;
    336 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
    337 
    338 	switch (sc->sc_prodid) {
    339 	case PROD_ID_CS8900:
    340 		chipname = "CS8900";
    341 		break;
    342 	case PROD_ID_CS8920:
    343 		chipname = "CS8920";
    344 		break;
    345 	case PROD_ID_CS8920M:
    346 		chipname = "CS8920M";
    347 		break;
    348 	default:
    349 		panic("cs_attach: impossible");
    350 	}
    351 
    352 	/*
    353 	 * the first thing to do is check that the mbuf cluster size is
    354 	 * greater than the MTU for an ethernet frame. The code depends on
    355 	 * this and to port this to a OS where this was not the case would
    356 	 * not be straightforward.
    357 	 *
    358 	 * we need 1 byte spare because our
    359 	 * packet read loop can overrun.
    360 	 * and we may need pad bytes to align ip header.
    361 	 */
    362 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
    363 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
    364 		printf("%s: MCLBYTES too small for Ethernet frame\n",
    365 		    sc->sc_dev.dv_xname);
    366 		return 1;
    367 	}
    368 
    369 	/* Start out not transmitting */
    370 	sc->sc_txbusy = FALSE;
    371 
    372 	/* Set up early transmit threshhold */
    373 	sc->sc_xe_ent = 0;
    374 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
    375 
    376 	/* Initialize ifnet structure. */
    377 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    378 	ifp->if_softc = sc;
    379 	ifp->if_start = cs_start_output;
    380 	ifp->if_init = cs_init;
    381 	ifp->if_ioctl = cs_ioctl;
    382 	ifp->if_stop = cs_stop;
    383 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
    384 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
    385 	    IFF_BROADCAST | IFF_MULTICAST;
    386 	IFQ_SET_READY(&ifp->if_snd);
    387 
    388 	/* Initialize ifmedia structures. */
    389 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
    390 
    391 	if (media != NULL) {
    392 		for (i = 0; i < nmedia; i++)
    393 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
    394 		ifmedia_set(&sc->sc_media, defmedia);
    395 	} else {
    396 		for (i = 0; i < cs_default_nmedia; i++)
    397 			ifmedia_add(&sc->sc_media, cs_default_media[i],
    398 			    0, NULL);
    399 		cs_get_default_media(sc);
    400 	}
    401 
    402 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
    403 		/* Get parameters from the EEPROM */
    404 		if (cs_get_params(sc) == CS_ERROR) {
    405 			printf("%s: unable to get settings from EEPROM\n",
    406 			    sc->sc_dev.dv_xname);
    407 			return 1;
    408 		}
    409 	}
    410 
    411 	if (enaddr != NULL)
    412 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
    413 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
    414 		/* Get and store the Ethernet address */
    415 		if (cs_get_enaddr(sc) == CS_ERROR) {
    416 			printf("%s: unable to read Ethernet address\n",
    417 			    sc->sc_dev.dv_xname);
    418 			return 1;
    419 		}
    420 	} else {
    421 		printf("%s: no Ethernet address!\n", sc->sc_dev.dv_xname);
    422 		return 1;
    423 	}
    424 
    425 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
    426 	case IFM_10_2:
    427 		medname = "BNC";
    428 		break;
    429 	case IFM_10_5:
    430 		medname = "AUI";
    431 		break;
    432 	case IFM_10_T:
    433 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
    434 			medname = "UTP <full-duplex>";
    435 		else
    436 			medname = "UTP";
    437 		break;
    438 	default:
    439 		panic("cs_attach: impossible");
    440 	}
    441 	printf("%s: %s rev. %c, address %s, media %s\n", sc->sc_dev.dv_xname,
    442 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
    443 	    medname);
    444 
    445 	if (sc->sc_dma_attach)
    446 		(*sc->sc_dma_attach)(sc);
    447 
    448 	sc->sc_sh = shutdownhook_establish(cs_reset, sc);
    449 	if (sc->sc_sh == NULL) {
    450 		printf("%s: unable to establish shutdownhook\n",
    451 		    sc->sc_dev.dv_xname);
    452 		cs_detach(sc);
    453 		return 1;
    454 	}
    455 
    456 	/* Attach the interface. */
    457 	if_attach(ifp);
    458 	ether_ifattach(ifp, sc->sc_enaddr);
    459 
    460 #if NRND > 0
    461 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    462 			  RND_TYPE_NET, 0);
    463 #endif
    464 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
    465 
    466 	/* Reset the chip */
    467 	if (cs_reset_chip(sc) == CS_ERROR) {
    468 		printf("%s: reset failed\n", sc->sc_dev.dv_xname);
    469 		cs_detach(sc);
    470 		return 1;
    471 	}
    472 
    473 	sc->sc_powerhook = powerhook_establish(cs_power, sc);
    474 	if (sc->sc_powerhook == 0)
    475 		printf("%s: warning: powerhook_establish failed\n",
    476 			sc->sc_dev.dv_xname);
    477 
    478 	return 0;
    479 }
    480 
    481 int
    482 cs_detach(sc)
    483 	struct cs_softc *sc;
    484 {
    485 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    486 
    487 	if (sc->sc_powerhook) {
    488 		powerhook_disestablish(sc->sc_powerhook);
    489 		sc->sc_powerhook = 0;
    490 	}
    491 
    492 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
    493 #if NRND > 0
    494 		rnd_detach_source(&sc->rnd_source);
    495 #endif
    496 		ether_ifdetach(ifp);
    497 		if_detach(ifp);
    498 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
    499 	}
    500 
    501 	if (sc->sc_sh != NULL)
    502 		shutdownhook_disestablish(sc->sc_sh);
    503 
    504 #if 0
    505 	/*
    506 	 * XXX not necessary
    507 	 */
    508 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
    509 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
    510 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
    511 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
    512 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
    513 	}
    514 #endif
    515 
    516 	return 0;
    517 }
    518 
    519 void
    520 cs_get_default_media(sc)
    521 	struct cs_softc *sc;
    522 {
    523 	u_int16_t adp_cfg, xmit_ctl;
    524 
    525 	if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
    526 		printf("%s: cs_get_default_media: EEPROM missing or bad\n",
    527 		    sc->sc_dev.dv_xname);
    528 		goto fakeit;
    529 	}
    530 
    531 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
    532 	    &adp_cfg) == CS_ERROR) {
    533 		printf("%s: unable to read adapter config from EEPROM\n",
    534 		    sc->sc_dev.dv_xname);
    535 		goto fakeit;
    536 	}
    537 
    538 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_XMIT_CTL,
    539 	    &xmit_ctl) == CS_ERROR) {
    540 		printf("%s: unable to read transmit control from EEPROM\n",
    541 		    sc->sc_dev.dv_xname);
    542 		goto fakeit;
    543 	}
    544 
    545 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
    546 	case ADPTR_CFG_AUI:
    547 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
    548 		break;
    549 	case ADPTR_CFG_10BASE2:
    550 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
    551 		break;
    552 	case ADPTR_CFG_10BASET:
    553 	default:
    554 		if (xmit_ctl & XMIT_CTL_FDX)
    555 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
    556 		else
    557 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
    558 		break;
    559 	}
    560 	return;
    561 
    562  fakeit:
    563 	printf("%s: WARNING: default media setting may be inaccurate\n",
    564 	    sc->sc_dev.dv_xname);
    565 	/* XXX Arbitrary... */
    566 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
    567 }
    568 
    569 int
    570 cs_get_params(sc)
    571 	struct cs_softc *sc;
    572 {
    573 	u_int16_t isaConfig;
    574 	u_int16_t adapterConfig;
    575 
    576 	if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
    577 		printf("%s: cs_get_params: EEPROM missing or bad\n",
    578 		    sc->sc_dev.dv_xname);
    579 		return (CS_ERROR);
    580 	}
    581 
    582 	/* Get ISA configuration from the EEPROM */
    583 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ISA_CFG,
    584 	    &isaConfig) == CS_ERROR)
    585 		goto eeprom_bad;
    586 
    587 	/* Get adapter configuration from the EEPROM */
    588 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
    589 	    &adapterConfig) == CS_ERROR)
    590 		goto eeprom_bad;
    591 
    592 	/* Copy the USE_SA flag */
    593 	if (isaConfig & ISA_CFG_USE_SA)
    594 		sc->sc_cfgflags |= CFGFLG_USE_SA;
    595 
    596 	/* Copy the IO Channel Ready flag */
    597 	if (isaConfig & ISA_CFG_IOCHRDY)
    598 		sc->sc_cfgflags |= CFGFLG_IOCHRDY;
    599 
    600 	/* Copy the DC/DC Polarity flag */
    601 	if (adapterConfig & ADPTR_CFG_DCDC_POL)
    602 		sc->sc_cfgflags |= CFGFLG_DCDC_POL;
    603 
    604 	return (CS_OK);
    605 
    606  eeprom_bad:
    607 	printf("%s: cs_get_params: unable to read from EEPROM\n",
    608 	    sc->sc_dev.dv_xname);
    609 	return (CS_ERROR);
    610 }
    611 
    612 int
    613 cs_get_enaddr(sc)
    614 	struct cs_softc *sc;
    615 {
    616 	u_int16_t *myea;
    617 
    618 	if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
    619 		printf("%s: cs_get_enaddr: EEPROM missing or bad\n",
    620 		    sc->sc_dev.dv_xname);
    621 		return (CS_ERROR);
    622 	}
    623 
    624 	myea = (u_int16_t *)sc->sc_enaddr;
    625 
    626 	/* Get Ethernet address from the EEPROM */
    627 	/* XXX this will likely lose on a big-endian machine. -- cgd */
    628 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_H,
    629 	    &myea[0]) == CS_ERROR)
    630 		goto eeprom_bad;
    631 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_M,
    632 	    &myea[1]) == CS_ERROR)
    633 		goto eeprom_bad;
    634 	if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_L,
    635 	    &myea[2]) == CS_ERROR)
    636 		goto eeprom_bad;
    637 
    638 	return (CS_OK);
    639 
    640  eeprom_bad:
    641 	printf("%s: cs_get_enaddr: unable to read from EEPROM\n",
    642 	    sc->sc_dev.dv_xname);
    643 	return (CS_ERROR);
    644 }
    645 
    646 int
    647 cs_reset_chip(sc)
    648 	struct cs_softc *sc;
    649 {
    650 	int intState;
    651 	int x;
    652 
    653 	/* Disable interrupts at the CPU so reset command is atomic */
    654 	intState = splnet();
    655 
    656 	/*
    657 	 * We are now resetting the chip
    658 	 *
    659 	 * A spurious interrupt is generated by the chip when it is reset. This
    660 	 * variable informs the interrupt handler to ignore this interrupt.
    661 	 */
    662 	sc->sc_resetting = TRUE;
    663 
    664 	/* Issue a reset command to the chip */
    665 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
    666 
    667 	/* Re-enable interrupts at the CPU */
    668 	splx(intState);
    669 
    670 	/* The chip is always in IO mode after a reset */
    671 	sc->sc_memorymode = FALSE;
    672 
    673 	/* If transmission was in progress, it is not now */
    674 	sc->sc_txbusy = FALSE;
    675 
    676 	/*
    677 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
    678 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
    679 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
    680 	 * should be sufficient.
    681 	 */
    682 
    683 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
    684 	bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
    685 	bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
    686 	bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
    687 	bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
    688 
    689 	/* Wait until the EEPROM is not busy */
    690 	for (x = 0; x < MAXLOOP; x++) {
    691 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
    692 			break;
    693 	}
    694 
    695 	if (x == MAXLOOP)
    696 		return CS_ERROR;
    697 
    698 	/* Wait until initialization is done */
    699 	for (x = 0; x < MAXLOOP; x++) {
    700 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
    701 			break;
    702 	}
    703 
    704 	if (x == MAXLOOP)
    705 		return CS_ERROR;
    706 
    707 	/* Reset is no longer in progress */
    708 	sc->sc_resetting = FALSE;
    709 
    710 	return CS_OK;
    711 }
    712 
    713 int
    714 cs_verify_eeprom(iot, ioh)
    715 	bus_space_tag_t iot;
    716 	bus_space_handle_t ioh;
    717 {
    718 	u_int16_t self_status;
    719 
    720 	/* Verify that the EEPROM is present and OK */
    721 	self_status = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST);
    722 	if (((self_status & SELF_ST_EEP_PRES) &&
    723 	     (self_status & SELF_ST_EEP_OK)) == 0)
    724 		return (CS_ERROR);
    725 
    726 	return (CS_OK);
    727 }
    728 
    729 int
    730 cs_read_eeprom(iot, ioh, offset, pValue)
    731 	bus_space_tag_t iot;
    732 	bus_space_handle_t ioh;
    733 	int offset;
    734 	u_int16_t *pValue;
    735 {
    736 	int x;
    737 
    738 	/* Ensure that the EEPROM is not busy */
    739 	for (x = 0; x < MAXLOOP; x++) {
    740 		if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
    741 		      SELF_ST_SI_BUSY))
    742 			break;
    743 	}
    744 
    745 	if (x == MAXLOOP)
    746 		return (CS_ERROR);
    747 
    748 	/* Issue the command to read the offset within the EEPROM */
    749 	CS_WRITE_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_CMD,
    750 	    offset | EEPROM_CMD_READ);
    751 
    752 	/* Wait until the command is completed */
    753 	for (x = 0; x < MAXLOOP; x++) {
    754 		if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
    755 		      SELF_ST_SI_BUSY))
    756 			break;
    757 	}
    758 
    759 	if (x == MAXLOOP)
    760 		return (CS_ERROR);
    761 
    762 	/* Get the EEPROM data from the EEPROM Data register */
    763 	*pValue = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_DATA);
    764 
    765 	return (CS_OK);
    766 }
    767 
    768 void
    769 cs_initChip(sc)
    770 	struct cs_softc *sc;
    771 {
    772 	u_int16_t busCtl;
    773 	u_int16_t selfCtl;
    774 	u_int16_t *myea;
    775 	u_int16_t isaId;
    776 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
    777 
    778 	/* Disable reception and transmission of frames */
    779 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
    780 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
    781 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
    782 
    783 	/* Disable interrupt at the chip */
    784 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    785 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
    786 
    787 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
    788 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
    789 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
    790 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    791 		    busCtl & ~BUS_CTL_IOCHRDY);
    792 	} else {
    793 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    794 		    busCtl | BUS_CTL_IOCHRDY);
    795 	}
    796 
    797 	/* Set the Line Control register to match the media type */
    798 	if (media == IFM_10_T)
    799 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
    800 	else
    801 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
    802 
    803 	/*
    804 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
    805 	 * enable the DC/DC converter
    806 	 */
    807 	selfCtl = SELF_CTL_HC1E;
    808 
    809 	/* If the media type is 10Base2 */
    810 	if (media == IFM_10_2) {
    811 		/*
    812 		 * Enable the DC/DC converter if it has a low enable.
    813 		 */
    814 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
    815 			/*
    816 			 * Set the HCB1 bit, which causes the HC1 pin to go
    817 			 * low.
    818 			 */
    819 			selfCtl |= SELF_CTL_HCB1;
    820 	} else { /* Media type is 10BaseT or AUI */
    821 		/*
    822 		 * Disable the DC/DC converter if it has a high enable.
    823 		 */
    824 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
    825 			/*
    826 			 * Set the HCB1 bit, which causes the HC1 pin to go
    827 			 * low.
    828 			 */
    829 			selfCtl |= SELF_CTL_HCB1;
    830 		}
    831 	}
    832 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
    833 
    834 	/* enable normal link pulse */
    835 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
    836 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
    837 
    838 	/* Enable full-duplex, if appropriate */
    839 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
    840 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
    841 
    842 	/* RX_CTL set in cs_set_ladr_filt(), below */
    843 
    844 	/* enable all transmission interrupts */
    845 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
    846 
    847 	/* Accept all receive interrupts */
    848 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
    849 
    850 	/*
    851 	 * Configure Operational Modes
    852 	 *
    853 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
    854 	 * a better way to do it because the card has a counter which can be
    855 	 * read to update the RX_MISS counter. This saves many interupts.
    856 	 *
    857 	 * I have turned on the tx and rx overflow interupts to counter using
    858 	 * the receive miss interrupt. This is a better estimate of errors
    859 	 * and requires lower system overhead.
    860 	 */
    861 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
    862 			  BUF_CFG_RX_DMA_IE);
    863 
    864 	if (sc->sc_dma_chipinit)
    865 		(*sc->sc_dma_chipinit)(sc);
    866 
    867 	/* If memory mode is enabled */
    868 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
    869 		/* If external logic is present for address decoding */
    870 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
    871 			/*
    872 			 * Program the external logic to decode address bits
    873 			 * SA20-SA23
    874 			 */
    875 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
    876 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
    877 			    EEPROM_CMD_ELSEL);
    878 		}
    879 
    880 		/*
    881 		 * Write the packet page base physical address to the memory
    882 		 * base register.
    883 		 */
    884 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
    885 		    sc->sc_pktpgaddr & 0xFFFF);
    886 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
    887 		    sc->sc_pktpgaddr >> 16);
    888 		busCtl = BUS_CTL_MEM_MODE;
    889 
    890 		/* tell the chip to read the addresses off the SA pins */
    891 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
    892 			busCtl |= BUS_CTL_USE_SA;
    893 		}
    894 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    895 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
    896 
    897 		/* We are in memory mode now! */
    898 		sc->sc_memorymode = TRUE;
    899 
    900 		/*
    901 		 * wait here (10ms) for the chip to swap over. this is the
    902 		 * maximum time that this could take.
    903 		 */
    904 		delay(10000);
    905 
    906 		/* Verify that we can read from the chip */
    907 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
    908 
    909 		/*
    910 		 * As a last minute sanity check before actually using mapped
    911 		 * memory we verify that we can read the isa number from the
    912 		 * chip in memory mode.
    913 		 */
    914 		if (isaId != EISA_NUM_CRYSTAL) {
    915 			printf("%s: failed to enable memory mode\n",
    916 			    sc->sc_dev.dv_xname);
    917 			sc->sc_memorymode = FALSE;
    918 		} else {
    919 			/*
    920 			 * we are in memory mode so if we aren't using DMA,
    921 			 * then program the chip to interrupt early.
    922 			 */
    923 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
    924 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
    925 				    BUF_CFG_RX_DEST_IE |
    926 				    BUF_CFG_RX_MISS_OVER_IE |
    927 				    BUF_CFG_TX_COL_OVER_IE);
    928 			}
    929 		}
    930 
    931 	}
    932 
    933 	/* Put Ethernet address into the Individual Address register */
    934 	myea = (u_int16_t *)sc->sc_enaddr;
    935 	CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 0, myea[0]);
    936 	CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 2, myea[1]);
    937 	CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 4, myea[2]);
    938 
    939 	if (sc->sc_irq != -1) {
    940 		/* Set the interrupt level in the chip */
    941 		if (sc->sc_prodid == PROD_ID_CS8900) {
    942 			if (sc->sc_irq == 5) {
    943 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
    944 			} else {
    945 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
    946 			}
    947 		}
    948 		else { /* CS8920 */
    949 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
    950 		}
    951 	}
    952 
    953 	/* write the multicast mask to the address filter register */
    954 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
    955 
    956 	/* Enable reception and transmission of frames */
    957 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
    958 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
    959 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
    960 
    961 	/* Enable interrupt at the chip */
    962 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    963 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
    964 }
    965 
    966 int
    967 cs_init(ifp)
    968 	struct ifnet *ifp;
    969 {
    970 	int intState;
    971 	int error = CS_OK;
    972 	struct cs_softc *sc = ifp->if_softc;
    973 
    974 	if (cs_enable(sc))
    975 		goto out;
    976 
    977 	cs_stop(ifp, 0);
    978 
    979 	intState = splnet();
    980 
    981 #if 0
    982 	/* Mark the interface as down */
    983 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
    984 #endif
    985 
    986 #ifdef CS_DEBUG
    987 	/* Enable debugging */
    988 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
    989 #endif
    990 
    991 	/* Reset the chip */
    992 	if ((error = cs_reset_chip(sc)) == CS_OK) {
    993 		/* Initialize the chip */
    994 		cs_initChip(sc);
    995 
    996 		/* Mark the interface as running */
    997 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
    998 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
    999 		sc->sc_ethercom.ec_if.if_timer = 0;
   1000 
   1001 		/* Assume we have carrier until we are told otherwise. */
   1002 		sc->sc_carrier = 1;
   1003 	} else {
   1004 		printf("%s: unable to reset chip\n", sc->sc_dev.dv_xname);
   1005 	}
   1006 
   1007 	splx(intState);
   1008 out:
   1009 	if (error == CS_OK)
   1010 		return 0;
   1011 	return EIO;
   1012 }
   1013 
   1014 void
   1015 cs_set_ladr_filt(sc, ec)
   1016 	struct cs_softc *sc;
   1017 	struct ethercom *ec;
   1018 {
   1019 	struct ifnet *ifp = &ec->ec_if;
   1020 	struct ether_multi *enm;
   1021 	struct ether_multistep step;
   1022 	u_int16_t af[4];
   1023 	u_int16_t port, mask, index;
   1024 
   1025 	/*
   1026          * Set up multicast address filter by passing all multicast addresses
   1027          * through a crc generator, and then using the high order 6 bits as an
   1028          * index into the 64 bit logical address filter.  The high order bit
   1029          * selects the word, while the rest of the bits select the bit within
   1030          * the word.
   1031          */
   1032 	if (ifp->if_flags & IFF_PROMISC) {
   1033 		/* accept all valid frames. */
   1034 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
   1035 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
   1036 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
   1037 		ifp->if_flags |= IFF_ALLMULTI;
   1038 		return;
   1039 	}
   1040 
   1041 	/*
   1042 	 * accept frames if a. crc valid, b. individual address match c.
   1043 	 * broadcast address,and d. multicast addresses matched in the hash
   1044 	 * filter
   1045 	 */
   1046 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
   1047 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
   1048 
   1049 
   1050 	/*
   1051 	 * start off with all multicast flag clear, set it if we need to
   1052 	 * later, otherwise we will leave it.
   1053 	 */
   1054 	ifp->if_flags &= ~IFF_ALLMULTI;
   1055 	af[0] = af[1] = af[2] = af[3] = 0x0000;
   1056 
   1057 	/*
   1058 	 * Loop through all the multicast addresses unless we get a range of
   1059 	 * addresses, in which case we will just accept all packets.
   1060 	 * Justification for this is given in the next comment.
   1061 	 */
   1062 	ETHER_FIRST_MULTI(step, ec, enm);
   1063 	while (enm != NULL) {
   1064 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1065 		    sizeof enm->enm_addrlo)) {
   1066 			/*
   1067 	                 * We must listen to a range of multicast addresses.
   1068 	                 * For now, just accept all multicasts, rather than
   1069 	                 * trying to set only those filter bits needed to match
   1070 	                 * the range.  (At this time, the only use of address
   1071 	                 * ranges is for IP multicast routing, for which the
   1072 	                 * range is big enough to require all bits set.)
   1073 	                 */
   1074 			ifp->if_flags |= IFF_ALLMULTI;
   1075 			af[0] = af[1] = af[2] = af[3] = 0xffff;
   1076 			break;
   1077 		} else {
   1078 			/*
   1079 	                 * we have got an individual address so just set that
   1080 	                 * bit.
   1081 	                 */
   1082 			index = cs_hash_index(enm->enm_addrlo);
   1083 
   1084 			/* Set the bit the Logical address filter. */
   1085 			port = (u_int16_t) (index >> 4);
   1086 			mask = (u_int16_t) (1 << (index & 0xf));
   1087 			af[port] |= mask;
   1088 
   1089 			ETHER_NEXT_MULTI(step, enm);
   1090 		}
   1091 	}
   1092 
   1093 	/* now program the chip with the addresses */
   1094 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
   1095 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
   1096 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
   1097 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
   1098 	return;
   1099 }
   1100 
   1101 u_int16_t
   1102 cs_hash_index(addr)
   1103 	char *addr;
   1104 {
   1105 	u_int POLY = 0x04c11db6;
   1106 	u_int crc_value = 0xffffffff;
   1107 	u_int16_t hash_code = 0;
   1108 	int i;
   1109 	u_int current_bit;
   1110 	char current_byte = *addr;
   1111 	u_int cur_crc_high;
   1112 
   1113 	for (i = 0; i < 6; i++) {
   1114 		current_byte = *addr;
   1115 		addr++;
   1116 
   1117 		for (current_bit = 8; current_bit; current_bit--) {
   1118 			cur_crc_high = crc_value >> 31;
   1119 			crc_value <<= 1;
   1120 			if (cur_crc_high ^ (current_byte & 0x01)) {
   1121 				crc_value ^= POLY;
   1122 				crc_value |= 0x00000001;
   1123 			}
   1124 			current_byte >>= 1;
   1125 		}
   1126 	}
   1127 
   1128 	/*
   1129          * The hash code is the 6 least significant bits of the CRC
   1130          * in the reverse order: CRC[0] = hash[5],CRC[1] = hash[4],etc.
   1131          */
   1132 	for (i = 0; i < 6; i++) {
   1133 		hash_code = (u_int16_t) ((hash_code << 1) |
   1134 		    (u_int16_t) ((crc_value >> i) & 0x00000001));
   1135 	}
   1136 
   1137 	return hash_code;
   1138 }
   1139 
   1140 void
   1141 cs_reset(arg)
   1142 	void *arg;
   1143 {
   1144 	struct cs_softc *sc = arg;
   1145 
   1146 	/* Mark the interface as down */
   1147 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1148 
   1149 	/* Reset the chip */
   1150 	cs_reset_chip(sc);
   1151 }
   1152 
   1153 int
   1154 cs_ioctl(ifp, cmd, data)
   1155 	struct ifnet *ifp;
   1156 	u_long cmd;
   1157 	caddr_t data;
   1158 {
   1159 	struct cs_softc *sc = ifp->if_softc;
   1160 	struct ifreq *ifr = (struct ifreq *) data;
   1161 	int state;
   1162 	int result;
   1163 
   1164 	state = splnet();
   1165 
   1166 	result = 0;		/* only set if something goes wrong */
   1167 
   1168 	switch (cmd) {
   1169 	case SIOCGIFMEDIA:
   1170 	case SIOCSIFMEDIA:
   1171 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1172 		break;
   1173 
   1174 	default:
   1175 		result = ether_ioctl(ifp, cmd, data);
   1176 		if (result == ENETRESET) {
   1177 			if (CS_IS_ENABLED(sc)) {
   1178 				/*
   1179 				 * Multicast list has changed.  Set the
   1180 				 * hardware filter accordingly.
   1181 				 */
   1182 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
   1183 			}
   1184 			result = 0;
   1185 		}
   1186 		break;
   1187 	}
   1188 
   1189 	splx(state);
   1190 
   1191 	return result;
   1192 }
   1193 
   1194 int
   1195 cs_mediachange(ifp)
   1196 	struct ifnet *ifp;
   1197 {
   1198 
   1199 	/*
   1200 	 * Current media is already set up.  Just reset the interface
   1201 	 * to let the new value take hold.
   1202 	 */
   1203 	cs_init(ifp);
   1204 	return (0);
   1205 }
   1206 
   1207 void
   1208 cs_mediastatus(ifp, ifmr)
   1209 	struct ifnet *ifp;
   1210 	struct ifmediareq *ifmr;
   1211 {
   1212 	struct cs_softc *sc = ifp->if_softc;
   1213 
   1214 	/*
   1215 	 * The currently selected media is always the active media.
   1216 	 */
   1217 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
   1218 
   1219 	if (ifp->if_flags & IFF_UP) {
   1220 		/* Interface up, status is valid. */
   1221 		ifmr->ifm_status = IFM_AVALID |
   1222 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
   1223 	}
   1224 		else ifmr->ifm_status = 0;
   1225 }
   1226 
   1227 int
   1228 cs_intr(arg)
   1229 	void *arg;
   1230 {
   1231 	struct cs_softc *sc = arg;
   1232 	u_int16_t Event;
   1233 #if NRND > 0
   1234 	u_int16_t rndEvent;
   1235 #endif
   1236 
   1237 	/* Ignore any interrupts that happen while the chip is being reset */
   1238 	if (sc->sc_resetting) {
   1239 		printf("%s: cs_intr: reset in progress\n",
   1240 		    sc->sc_dev.dv_xname);
   1241 		return 1;
   1242 	}
   1243 
   1244 	/* Read an event from the Interrupt Status Queue */
   1245 	if (sc->sc_memorymode)
   1246 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
   1247 	else
   1248 		Event = CS_READ_PORT(sc, PORT_ISQ);
   1249 
   1250 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
   1251 		return 0;	/* not ours */
   1252 
   1253 #if NRND > 0
   1254 	rndEvent = Event;
   1255 #endif
   1256 
   1257 	/* Process all the events in the Interrupt Status Queue */
   1258 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
   1259 		/* Dispatch to an event handler based on the register number */
   1260 		switch (Event & REG_NUM_MASK) {
   1261 		case REG_NUM_RX_EVENT:
   1262 			cs_receive_event(sc, Event);
   1263 			break;
   1264 		case REG_NUM_TX_EVENT:
   1265 			cs_transmit_event(sc, Event);
   1266 			break;
   1267 		case REG_NUM_BUF_EVENT:
   1268 			cs_buffer_event(sc, Event);
   1269 			break;
   1270 		case REG_NUM_TX_COL:
   1271 		case REG_NUM_RX_MISS:
   1272 			cs_counter_event(sc, Event);
   1273 			break;
   1274 		default:
   1275 			printf("%s: unknown interrupt event 0x%x\n",
   1276 			    sc->sc_dev.dv_xname, Event);
   1277 			break;
   1278 		}
   1279 
   1280 		/* Read another event from the Interrupt Status Queue */
   1281 		if (sc->sc_memorymode)
   1282 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
   1283 		else
   1284 			Event = CS_READ_PORT(sc, PORT_ISQ);
   1285 	}
   1286 
   1287 	/* have handled the interupt */
   1288 #if NRND > 0
   1289 	rnd_add_uint32(&sc->rnd_source, rndEvent);
   1290 #endif
   1291 	return 1;
   1292 }
   1293 
   1294 void
   1295 cs_counter_event(sc, cntEvent)
   1296 	struct cs_softc *sc;
   1297 	u_int16_t cntEvent;
   1298 {
   1299 	struct ifnet *ifp;
   1300 	u_int16_t errorCount;
   1301 
   1302 	ifp = &sc->sc_ethercom.ec_if;
   1303 
   1304 	switch (cntEvent & REG_NUM_MASK) {
   1305 	case REG_NUM_TX_COL:
   1306 		/*
   1307 		 * the count should be read before an overflow occurs.
   1308 		 */
   1309 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
   1310 		/*
   1311 		 * the tramsit event routine always checks the number of
   1312 		 * collisions for any packet so we don't increment any
   1313 		 * counters here, as they should already have been
   1314 		 * considered.
   1315 		 */
   1316 		break;
   1317 	case REG_NUM_RX_MISS:
   1318 		/*
   1319 		 * the count should be read before an overflow occurs.
   1320 		 */
   1321 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
   1322 		/*
   1323 		 * Increment the input error count, the first 6bits are the
   1324 		 * register id.
   1325 		 */
   1326 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
   1327 		break;
   1328 	default:
   1329 		/* do nothing */
   1330 		break;
   1331 	}
   1332 }
   1333 
   1334 void
   1335 cs_buffer_event(sc, bufEvent)
   1336 	struct cs_softc *sc;
   1337 	u_int16_t bufEvent;
   1338 {
   1339 	struct ifnet *ifp;
   1340 
   1341 	ifp = &sc->sc_ethercom.ec_if;
   1342 
   1343 	/*
   1344 	 * multiple events can be in the buffer event register at one time so
   1345 	 * a standard switch statement will not suffice, here every event
   1346 	 * must be checked.
   1347 	 */
   1348 
   1349 	/*
   1350 	 * if 128 bits have been rxed by the time we get here, the dest event
   1351 	 * will be cleared and 128 event will be set.
   1352 	 */
   1353 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
   1354 		cs_process_rx_early(sc);
   1355 	}
   1356 
   1357 	if (bufEvent & BUF_EVENT_RX_DMA) {
   1358 		/* process the receive data */
   1359 		if (sc->sc_dma_process_rx)
   1360 			(*sc->sc_dma_process_rx)(sc);
   1361 		else
   1362 			/* should panic? */
   1363 			printf("%s: unexpected dma event\n", sc->sc_dev.dv_xname);
   1364 	}
   1365 
   1366 	if (bufEvent & BUF_EVENT_TX_UNDR) {
   1367 #if 0
   1368 		/*
   1369 		 * This can happen occasionally, and it's not worth worrying
   1370 		 * about.
   1371 		 */
   1372 		printf("%s: transmit underrun (%d -> %d)\n",
   1373 		    sc->sc_dev.dv_xname, sc->sc_xe_ent,
   1374 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
   1375 #endif
   1376 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
   1377 		sc->sc_xe_togo =
   1378 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
   1379 
   1380 		/* had an underrun, transmit is finished */
   1381 		sc->sc_txbusy = FALSE;
   1382 	}
   1383 
   1384 	if (bufEvent & BUF_EVENT_SW_INT) {
   1385 		printf("%s: software initiated interrupt\n",
   1386 		    sc->sc_dev.dv_xname);
   1387 	}
   1388 }
   1389 
   1390 void
   1391 cs_transmit_event(sc, txEvent)
   1392 	struct cs_softc *sc;
   1393 	u_int16_t txEvent;
   1394 {
   1395 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1396 
   1397 	/* If there were any errors transmitting this frame */
   1398 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
   1399 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
   1400 		/* Increment the output error count */
   1401 		ifp->if_oerrors++;
   1402 
   1403 		/* Note carrier loss. */
   1404 		if (txEvent & TX_EVENT_LOSS_CRS)
   1405 			sc->sc_carrier = 0;
   1406 
   1407 		/* If debugging is enabled then log error messages */
   1408 		if (ifp->if_flags & IFF_DEBUG) {
   1409 			if (txEvent & TX_EVENT_LOSS_CRS) {
   1410 				printf("%s: lost carrier\n",
   1411 				    sc->sc_dev.dv_xname);
   1412 			}
   1413 			if (txEvent & TX_EVENT_SQE_ERR) {
   1414 				printf("%s: SQE error\n",
   1415 				    sc->sc_dev.dv_xname);
   1416 			}
   1417 			if (txEvent & TX_EVENT_OUT_WIN) {
   1418 				printf("%s: out-of-window collision\n",
   1419 				    sc->sc_dev.dv_xname);
   1420 			}
   1421 			if (txEvent & TX_EVENT_JABBER) {
   1422 				printf("%s: jabber\n", sc->sc_dev.dv_xname);
   1423 			}
   1424 			if (txEvent & TX_EVENT_16_COLL) {
   1425 				printf("%s: 16 collisions\n",
   1426 				    sc->sc_dev.dv_xname);
   1427 			}
   1428 		}
   1429 	}
   1430 	else {
   1431 		/* Transmission successful, carrier is up. */
   1432 		sc->sc_carrier = 1;
   1433 #ifdef SHARK
   1434 		ledNetActive();
   1435 #endif
   1436 	}
   1437 
   1438 	/* Add the number of collisions for this frame */
   1439 	if (txEvent & TX_EVENT_16_COLL) {
   1440 		ifp->if_collisions += 16;
   1441 	} else {
   1442 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
   1443 	}
   1444 
   1445 	ifp->if_opackets++;
   1446 
   1447 	/* Transmission is no longer in progress */
   1448 	sc->sc_txbusy = FALSE;
   1449 
   1450 	/* If there is more to transmit */
   1451 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
   1452 		/* Start the next transmission */
   1453 		cs_start_output(ifp);
   1454 	}
   1455 }
   1456 
   1457 void
   1458 cs_print_rx_errors(sc, rxEvent)
   1459 	struct cs_softc *sc;
   1460 	u_int16_t rxEvent;
   1461 {
   1462 
   1463 	if (rxEvent & RX_EVENT_RUNT)
   1464 		printf("%s: runt\n", sc->sc_dev.dv_xname);
   1465 
   1466 	if (rxEvent & RX_EVENT_X_DATA)
   1467 		printf("%s: extra data\n", sc->sc_dev.dv_xname);
   1468 
   1469 	if (rxEvent & RX_EVENT_CRC_ERR) {
   1470 		if (rxEvent & RX_EVENT_DRIBBLE)
   1471 			printf("%s: alignment error\n", sc->sc_dev.dv_xname);
   1472 		else
   1473 			printf("%s: CRC error\n", sc->sc_dev.dv_xname);
   1474 	} else {
   1475 		if (rxEvent & RX_EVENT_DRIBBLE)
   1476 			printf("%s: dribble bits\n", sc->sc_dev.dv_xname);
   1477 	}
   1478 }
   1479 
   1480 void
   1481 cs_receive_event(sc, rxEvent)
   1482 	struct cs_softc *sc;
   1483 	u_int16_t rxEvent;
   1484 {
   1485 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1486 
   1487 	/* If the frame was not received OK */
   1488 	if (!(rxEvent & RX_EVENT_RX_OK)) {
   1489 		/* Increment the input error count */
   1490 		ifp->if_ierrors++;
   1491 
   1492 		/*
   1493 		 * If debugging is enabled then log error messages.
   1494 		 */
   1495 		if (ifp->if_flags & IFF_DEBUG) {
   1496 			if (rxEvent != REG_NUM_RX_EVENT) {
   1497 				cs_print_rx_errors(sc, rxEvent);
   1498 
   1499 				/*
   1500 				 * Must read the length of all received
   1501 				 * frames
   1502 				 */
   1503 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
   1504 
   1505 				/* Skip the received frame */
   1506 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1507 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
   1508 						  RX_CFG_SKIP);
   1509 			} else {
   1510 				printf("%s: implied skip\n",
   1511 				    sc->sc_dev.dv_xname);
   1512 			}
   1513 		}
   1514 	} else {
   1515 		/*
   1516 		 * process the received frame and pass it up to the upper
   1517 		 * layers.
   1518 		 */
   1519 		cs_process_receive(sc);
   1520 	}
   1521 }
   1522 
   1523 void
   1524 cs_ether_input(sc, m)
   1525 	struct cs_softc *sc;
   1526 	struct mbuf *m;
   1527 {
   1528 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1529 
   1530 	ifp->if_ipackets++;
   1531 
   1532 #if NBPFILTER > 0
   1533 	/*
   1534 	 * Check if there's a BPF listener on this interface.
   1535 	 * If so, hand off the raw packet to BPF.
   1536 	 */
   1537 	if (ifp->if_bpf)
   1538 		bpf_mtap(ifp->if_bpf, m);
   1539 #endif
   1540 
   1541 	/* Pass the packet up. */
   1542 	(*ifp->if_input)(ifp, m);
   1543 }
   1544 
   1545 void
   1546 cs_process_receive(sc)
   1547 	struct cs_softc *sc;
   1548 {
   1549 	struct ifnet *ifp;
   1550 	struct mbuf *m;
   1551 	int totlen;
   1552 	u_int16_t *pBuff, *pBuffLimit;
   1553 	int pad;
   1554 	unsigned int frameOffset;
   1555 
   1556 #ifdef SHARK
   1557 	ledNetActive();
   1558 #endif
   1559 
   1560 	ifp = &sc->sc_ethercom.ec_if;
   1561 
   1562 	/* Received a packet; carrier is up. */
   1563 	sc->sc_carrier = 1;
   1564 
   1565 	if (sc->sc_memorymode) {
   1566 		/* Initialize the frame offset */
   1567 		frameOffset = PKTPG_RX_LENGTH;
   1568 
   1569 		/* Get the length of the received frame */
   1570 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
   1571 		frameOffset += 2;
   1572 	}
   1573 	else {
   1574 		/* drop status */
   1575 		CS_READ_PORT(sc, PORT_RXTX_DATA);
   1576 
   1577 		/* Get the length of the received frame */
   1578 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
   1579 	}
   1580 
   1581 	if (totlen > ETHER_MAX_LEN) {
   1582 		printf("%s: invalid packet length\n", sc->sc_dev.dv_xname);
   1583 
   1584 		/* skip the received frame */
   1585 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1586 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1587 		return;
   1588 	}
   1589 
   1590 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1591 	if (m == 0) {
   1592 		printf("%s: cs_process_receive: unable to allocate mbuf\n",
   1593 		    sc->sc_dev.dv_xname);
   1594 		ifp->if_ierrors++;
   1595 		/*
   1596 		 * couldn't allocate an mbuf so things are not good, may as
   1597 		 * well drop the packet I think.
   1598 		 *
   1599 		 * have already read the length so we should be right to skip
   1600 		 * the packet.
   1601 		 */
   1602 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1603 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1604 		return;
   1605 	}
   1606 	m->m_pkthdr.rcvif = ifp;
   1607 	m->m_pkthdr.len = totlen;
   1608 
   1609 	/* number of bytes to align ip header on word boundary for ipintr */
   1610 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
   1611 
   1612 	/*
   1613 	 * alloc mbuf cluster if we need.
   1614 	 * we need 1 byte spare because following
   1615 	 * packet read loop can overrun.
   1616 	 */
   1617 	if (totlen + pad + 1 > MHLEN) {
   1618 		MCLGET(m, M_DONTWAIT);
   1619 		if ((m->m_flags & M_EXT) == 0) {
   1620 			/* couldn't allocate an mbuf cluster */
   1621 			printf("%s: cs_process_receive: unable to allocate a cluster\n",
   1622 				sc->sc_dev.dv_xname);
   1623 			m_freem(m);
   1624 
   1625 			/* skip the received frame */
   1626 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1627 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1628 			return;
   1629 		}
   1630 	}
   1631 
   1632 	/* align ip header on word boundary for ipintr */
   1633 	m->m_data += pad;
   1634 
   1635 	m->m_len = totlen;
   1636 	pBuff = mtod(m, u_int16_t *);
   1637 
   1638 	/* now read the data from the chip */
   1639 	if (sc->sc_memorymode) {
   1640 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
   1641 		while (pBuff < pBuffLimit) {
   1642 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
   1643 			frameOffset += 2;
   1644 		}
   1645 	}
   1646 	else {
   1647 		bus_space_read_multi_2(sc->sc_iot, sc->sc_ioh, PORT_RXTX_DATA,
   1648 			pBuff, (totlen + 1)>>1);
   1649 	}
   1650 
   1651 	cs_ether_input(sc, m);
   1652 }
   1653 
   1654 void
   1655 cs_process_rx_early(sc)
   1656 	struct cs_softc *sc;
   1657 {
   1658 	struct ifnet *ifp;
   1659 	struct mbuf *m;
   1660 	u_int16_t frameCount, oldFrameCount;
   1661 	u_int16_t rxEvent;
   1662 	u_int16_t *pBuff;
   1663 	int pad;
   1664 	unsigned int frameOffset;
   1665 
   1666 
   1667 	ifp = &sc->sc_ethercom.ec_if;
   1668 
   1669 	/* Initialize the frame offset */
   1670 	frameOffset = PKTPG_RX_FRAME;
   1671 	frameCount = 0;
   1672 
   1673 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1674 	if (m == 0) {
   1675 		printf("%s: cs_process_rx_early: unable to allocate mbuf\n",
   1676 		    sc->sc_dev.dv_xname);
   1677 		ifp->if_ierrors++;
   1678 		/*
   1679 		 * couldn't allocate an mbuf so things are not good, may as
   1680 		 * well drop the packet I think.
   1681 		 *
   1682 		 * have already read the length so we should be right to skip
   1683 		 * the packet.
   1684 		 */
   1685 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1686 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1687 		return;
   1688 	}
   1689 	m->m_pkthdr.rcvif = ifp;
   1690 	/*
   1691 	 * save processing by always using a mbuf cluster, guarenteed to fit
   1692 	 * packet
   1693 	 */
   1694 	MCLGET(m, M_DONTWAIT);
   1695 	if ((m->m_flags & M_EXT) == 0) {
   1696 		/* couldn't allocate an mbuf cluster */
   1697 		printf("%s: cs_process_rx_early: unable to allocate a cluster\n",
   1698 		    sc->sc_dev.dv_xname);
   1699 		m_freem(m);
   1700 		/* skip the frame */
   1701 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1702 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1703 		return;
   1704 	}
   1705 
   1706 	/* align ip header on word boundary for ipintr */
   1707 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
   1708 	m->m_data += pad;
   1709 
   1710 	/* set up the buffer pointer to point to the data area */
   1711 	pBuff = mtod(m, u_int16_t *);
   1712 
   1713 	/*
   1714 	 * now read the frame byte counter until we have finished reading the
   1715 	 * frame
   1716 	 */
   1717 	oldFrameCount = 0;
   1718 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
   1719 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
   1720 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
   1721 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
   1722 			frameOffset += 2;
   1723 		}
   1724 
   1725 		/* read the new count from the chip */
   1726 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
   1727 	}
   1728 
   1729 	/* update the mbuf counts */
   1730 	m->m_len = oldFrameCount;
   1731 	m->m_pkthdr.len = oldFrameCount;
   1732 
   1733 	/* now check the Rx Event register */
   1734 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
   1735 
   1736 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
   1737 		/*
   1738 		 * do an implied skip, it seems to be more reliable than a
   1739 		 * forced skip.
   1740 		 */
   1741 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
   1742 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
   1743 
   1744 		/*
   1745 		 * now read the RX_EVENT register to perform an implied skip.
   1746 		 */
   1747 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
   1748 
   1749 		cs_ether_input(sc, m);
   1750 	} else {
   1751 		m_freem(m);
   1752 		ifp->if_ierrors++;
   1753 	}
   1754 }
   1755 
   1756 void
   1757 cs_start_output(ifp)
   1758 	struct ifnet *ifp;
   1759 {
   1760 	struct cs_softc *sc;
   1761 	struct mbuf *pMbuf;
   1762 	struct mbuf *pMbufChain;
   1763 	u_int16_t BusStatus;
   1764 	u_int16_t Length;
   1765 	int txLoop = 0;
   1766 	int dropout = 0;
   1767 
   1768 	sc = ifp->if_softc;
   1769 
   1770 	/* check that the interface is up and running */
   1771 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
   1772 		return;
   1773 	}
   1774 
   1775 	/* Don't interrupt a transmission in progress */
   1776 	if (sc->sc_txbusy) {
   1777 		return;
   1778 	}
   1779 
   1780 	/* this loop will only run through once if transmission is successful */
   1781 	/*
   1782 	 * While there are packets to transmit and a transmit is not in
   1783 	 * progress
   1784 	 */
   1785 	while (sc->sc_txbusy == 0 && dropout == 0) {
   1786 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
   1787 		if (pMbufChain == NULL)
   1788 			break;
   1789 
   1790 #if NBPFILTER > 0
   1791 		/*
   1792 	         * If BPF is listening on this interface, let it see the packet
   1793 	         * before we commit it to the wire.
   1794 	         */
   1795 		if (ifp->if_bpf)
   1796 			bpf_mtap(ifp->if_bpf, pMbufChain);
   1797 #endif
   1798 
   1799 		/* Find the total length of the data to transmit */
   1800 		Length = 0;
   1801 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
   1802 			Length += pMbuf->m_len;
   1803 
   1804 		do {
   1805 			/*
   1806 			 * Request that the transmit be started after all
   1807 			 * data has been copied
   1808 			 *
   1809 			 * In IO mode must write to the IO port not the packet
   1810 			 * page address
   1811 			 *
   1812 			 * If this is changed to start transmission after a
   1813 			 * small amount of data has been copied you tend to
   1814 			 * get packet missed errors i think because the ISA
   1815 			 * bus is too slow. Or possibly the copy routine is
   1816 			 * not streamlined enough.
   1817 			 */
   1818 			if (sc->sc_memorymode) {
   1819 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
   1820 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
   1821 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
   1822 			}
   1823 			else {
   1824 				CS_WRITE_PORT(sc, PORT_TX_CMD,
   1825 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
   1826 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
   1827 			}
   1828 
   1829 			/*
   1830 			 * Adjust early-transmit machinery.
   1831 			 */
   1832 			if (--sc->sc_xe_togo == 0) {
   1833 				sc->sc_xe_ent =
   1834 				    cs_xmit_early_table[sc->sc_xe_ent].better;
   1835 				sc->sc_xe_togo =
   1836 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
   1837 			}
   1838 			/*
   1839 			 * Read the BusStatus register which indicates
   1840 			 * success of the request
   1841 			 */
   1842 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
   1843 
   1844 			/*
   1845 			 * If there was an error in the transmit bid free the
   1846 			 * mbuf and go on. This is presuming that mbuf is
   1847 			 * corrupt.
   1848 			 */
   1849 			if (BusStatus & BUS_ST_TX_BID_ERR) {
   1850 				printf("%s: transmit bid error (too big)",
   1851 				    sc->sc_dev.dv_xname);
   1852 
   1853 				/* Discard the bad mbuf chain */
   1854 				m_freem(pMbufChain);
   1855 				sc->sc_ethercom.ec_if.if_oerrors++;
   1856 
   1857 				/* Loop up to transmit the next chain */
   1858 				txLoop = 0;
   1859 			} else {
   1860 				if (BusStatus & BUS_ST_RDY4TXNOW) {
   1861 					/*
   1862 					 * The chip is ready for transmission
   1863 					 * now
   1864 					 */
   1865 					/*
   1866 					 * Copy the frame to the chip to
   1867 					 * start transmission
   1868 					 */
   1869 					cs_copy_tx_frame(sc, pMbufChain);
   1870 
   1871 					/* Free the mbuf chain */
   1872 					m_freem(pMbufChain);
   1873 
   1874 					/* Transmission is now in progress */
   1875 					sc->sc_txbusy = TRUE;
   1876 					txLoop = 0;
   1877 				} else {
   1878 					/*
   1879 					 * if we get here we want to try
   1880 					 * again with the same mbuf, until
   1881 					 * the chip lets us transmit.
   1882 					 */
   1883 					txLoop++;
   1884 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
   1885 						/* Free the mbuf chain */
   1886 						m_freem(pMbufChain);
   1887 						/*
   1888 						 * Transmission is not in
   1889 						 * progress
   1890 						 */
   1891 						sc->sc_txbusy = FALSE;
   1892 						/*
   1893 						 * Increment the output error
   1894 						 * count
   1895 						 */
   1896 						ifp->if_oerrors++;
   1897 						/*
   1898 						 * exit the routine and drop
   1899 						 * the packet.
   1900 						 */
   1901 						txLoop = 0;
   1902 						dropout = 1;
   1903 					}
   1904 				}
   1905 			}
   1906 		} while (txLoop);
   1907 	}
   1908 }
   1909 
   1910 void
   1911 cs_copy_tx_frame(sc, m0)
   1912 	struct cs_softc *sc;
   1913 	struct mbuf *m0;
   1914 {
   1915 	struct mbuf *m;
   1916 	int len, leftover, frameoff;
   1917 	u_int16_t dbuf;
   1918 	u_int8_t *p;
   1919 #ifdef DIAGNOSTIC
   1920 	u_int8_t *lim;
   1921 #endif
   1922 
   1923 	/* Initialize frame pointer and data port address */
   1924 	frameoff = PKTPG_TX_FRAME;
   1925 
   1926 	/* start out with no leftover data */
   1927 	leftover = 0;
   1928 	dbuf = 0;
   1929 
   1930 	/* Process the chain of mbufs */
   1931 	for (m = m0; m != NULL; m = m->m_next) {
   1932 		/*
   1933 		 * Process all of the data in a single mbuf.
   1934 		 */
   1935 		p = mtod(m, u_int8_t *);
   1936 		len = m->m_len;
   1937 #ifdef DIAGNOSTIC
   1938 		lim = p + len;
   1939 #endif
   1940 
   1941 		while (len > 0) {
   1942 			if (leftover) {
   1943 				/*
   1944 				 * Data left over (from mbuf or realignment).
   1945 				 * Buffer the next byte, and write it and
   1946 				 * the leftover data out.
   1947 				 */
   1948 				dbuf |= *p++ << 8;
   1949 				len--;
   1950 				if (sc->sc_memorymode) {
   1951 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
   1952 					frameoff += 2;
   1953 				}
   1954 				else {
   1955 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
   1956 				}
   1957 				leftover = 0;
   1958 			} else if ((long) p & 1) {
   1959 				/*
   1960 				 * Misaligned data.  Buffer the next byte.
   1961 				 */
   1962 				dbuf = *p++;
   1963 				len--;
   1964 				leftover = 1;
   1965 			} else {
   1966 				/*
   1967 				 * Aligned data.  This is the case we like.
   1968 				 *
   1969 				 * Write-region out as much as we can, then
   1970 				 * buffer the remaining byte (if any).
   1971 				 */
   1972 				leftover = len & 1;
   1973 				len &= ~1;
   1974 				if (sc->sc_memorymode) {
   1975 					bus_space_write_region_2(sc->sc_memt, sc->sc_memh, frameoff,
   1976 						(u_int16_t *) p, len >> 1);
   1977 					frameoff += len;
   1978 				}
   1979 				else {
   1980 					bus_space_write_multi_2(sc->sc_iot, sc->sc_ioh,
   1981 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
   1982 				}
   1983 				p += len;
   1984 
   1985 				if (leftover)
   1986 					dbuf = *p++;
   1987 				len = 0;
   1988 			}
   1989 		}
   1990 		if (len < 0)
   1991 			panic("cs_copy_tx_frame: negative len");
   1992 #ifdef DIAGNOSTIC
   1993 		if (p != lim)
   1994 			panic("cs_copy_tx_frame: p != lim");
   1995 #endif
   1996 	}
   1997 	if (leftover) {
   1998 		if (sc->sc_memorymode) {
   1999 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
   2000 		}
   2001 		else {
   2002 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
   2003 		}
   2004 	}
   2005 }
   2006 
   2007 static int
   2008 cs_enable(sc)
   2009 	struct cs_softc *sc;
   2010 {
   2011 	if (!CS_IS_ENABLED(sc) && sc->sc_enable) {
   2012 		int error;
   2013 
   2014 		error = (*sc->sc_enable)(sc);
   2015 		if (error)
   2016 			return error;
   2017 
   2018 		sc->sc_cfgflags |= CFGFLG_ENABLED;
   2019 	}
   2020 
   2021 	return 0;
   2022 }
   2023 
   2024 static void
   2025 cs_disable(sc)
   2026 	struct cs_softc *sc;
   2027 {
   2028 	if (CS_IS_ENABLED(sc) && sc->sc_disable) {
   2029 		(*sc->sc_disable)(sc);
   2030 
   2031 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
   2032 	}
   2033 }
   2034 
   2035 static void
   2036 cs_stop(ifp, disable)
   2037 	struct ifnet *ifp;
   2038 	int disable;
   2039 {
   2040 	struct cs_softc *sc = ifp->if_softc;
   2041 
   2042 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
   2043 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
   2044 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
   2045 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
   2046 
   2047 	if (disable) {
   2048 		cs_disable(sc);
   2049 	}
   2050 
   2051 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2052 }
   2053 
   2054 int
   2055 cs_activate(self, act)
   2056 	struct device *self;
   2057 	enum devact act;
   2058 {
   2059 	struct cs_softc *sc = (void *)self;
   2060 	int s, error = 0;
   2061 
   2062 	s = splnet();
   2063 	switch (act) {
   2064 	case DVACT_ACTIVATE:
   2065 		error = EOPNOTSUPP;
   2066 		break;
   2067 
   2068 	case DVACT_DEACTIVATE:
   2069 		if_deactivate(&sc->sc_ethercom.ec_if);
   2070 		break;
   2071 	}
   2072 	splx(s);
   2073 
   2074 	return error;
   2075 }
   2076 
   2077 static void
   2078 cs_power(why, arg)
   2079 	int why;
   2080 	void *arg;
   2081 {
   2082 	struct cs_softc *sc = arg;
   2083 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2084 	int s;
   2085 
   2086 	s = splnet();
   2087 	switch (why) {
   2088 	case PWR_STANDBY:
   2089 	case PWR_SUSPEND:
   2090 		cs_stop(ifp, 0);
   2091 		break;
   2092 	case PWR_RESUME:
   2093 		if (ifp->if_flags & IFF_UP) {
   2094 			cs_init(ifp);
   2095 		}
   2096 		break;
   2097 	case PWR_SOFTSUSPEND:
   2098 	case PWR_SOFTSTANDBY:
   2099 	case PWR_SOFTRESUME:
   2100 		break;
   2101 	}
   2102 	splx(s);
   2103 }
   2104