cs89x0.c revision 1.3 1 /* $NetBSD: cs89x0.c,v 1.3 2002/02/10 11:48:56 pooka Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 ** FACILITY
39 **
40 ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
41 **
42 ** ABSTRACT
43 **
44 ** This module provides standard ethernet access for INET protocols
45 ** only.
46 **
47 ** AUTHORS
48 **
49 ** Peter Dettori SEA - Software Engineering.
50 **
51 ** CREATION DATE:
52 **
53 ** 13-Feb-1997.
54 **
55 ** MODIFICATION HISTORY (Digital):
56 **
57 ** Revision 1.27 1998/01/20 17:59:40 cgd
58 ** update for moved headers
59 **
60 ** Revision 1.26 1998/01/12 19:29:36 cgd
61 ** use arm32/isa versions of isadma code.
62 **
63 ** Revision 1.25 1997/12/12 01:35:27 cgd
64 ** convert to use new arp code (from Brini)
65 **
66 ** Revision 1.24 1997/12/10 22:31:56 cgd
67 ** trim some fat (get rid of ability to explicitly supply enet addr, since
68 ** it was never used and added a bunch of code which really doesn't belong in
69 ** an enet driver), and clean up slightly.
70 **
71 ** Revision 1.23 1997/10/06 16:42:12 cgd
72 ** copyright notices
73 **
74 ** Revision 1.22 1997/06/20 19:38:01 chaiken
75 ** fixes some smartcard problems
76 **
77 ** Revision 1.21 1997/06/10 02:56:20 grohn
78 ** Added call to ledNetActive
79 **
80 ** Revision 1.20 1997/06/05 00:47:06 dettori
81 ** Changed cs_process_rx_dma to reset and re-initialise the
82 ** ethernet chip when DMA gets out of sync, or mbufs
83 ** can't be allocated.
84 **
85 ** Revision 1.19 1997/06/03 03:09:58 dettori
86 ** Turn off sc_txbusy flag when a transmit underrun
87 ** occurs.
88 **
89 ** Revision 1.18 1997/06/02 00:04:35 dettori
90 ** redefined the transmit table to get around the nfs_timer bug while we are
91 ** looking into it further.
92 **
93 ** Also changed interrupts from EDGE to LEVEL.
94 **
95 ** Revision 1.17 1997/05/27 23:31:01 dettori
96 ** Pulled out changes to DMAMODE defines.
97 **
98 ** Revision 1.16 1997/05/23 04:25:16 cgd
99 ** reformat log so it fits in 80cols
100 **
101 ** Revision 1.15 1997/05/23 04:22:18 cgd
102 ** remove the existing copyright notice (which Peter Dettori indicated
103 ** was incorrect, copied from an existing NetBSD file only so that the
104 ** file would have a copyright notice on it, and which he'd intended to
105 ** replace). Replace it with a Digital copyright notice, cloned from
106 ** ess.c. It's not really correct either (it indicates that the source
107 ** is Digital confidential!), but is better than nothing and more
108 ** correct than what was there before.
109 **
110 ** Revision 1.14 1997/05/23 04:12:50 cgd
111 ** use an adaptive transmit start algorithm: start by telling the chip
112 ** to start transmitting after 381 bytes have been fed to it. if that
113 ** gets transmit underruns, ramp down to 1021 bytes then "whole
114 ** packet." If successful at a given level for a while, try the next
115 ** more agressive level. This code doesn't ever try to start
116 ** transmitting after 5 bytes have been sent to the NIC, because
117 ** that underruns rather regularly. The back-off and ramp-up mechanism
118 ** could probably be tuned a little bit, but this works well enough to
119 ** support > 1MB/s transmit rates on a clear ethernet (which is about
120 ** 20-25% better than the driver had previously been getting).
121 **
122 ** Revision 1.13 1997/05/22 21:06:54 cgd
123 ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
124 ** casting from u_int8_t * to u_int16_t * without worrying about alignment
125 ** issues. This would cause bogus data to be spit out for mbufs with
126 ** misaligned data. For instance, it caused the following bits to appear
127 ** on the wire:
128 ** ... etBND 1S2C .SHA(K) R ...
129 ** 11112222333344445555
130 ** which should have appeared as:
131 ** ... NetBSD 1.2C (SHARK) ...
132 ** 11112222333344445555
133 ** Note the apparent 'rotate' of the bytes in the word, which was due to
134 ** incorrect unaligned accesses. This data corruption was the cause of
135 ** incoming telnet/rlogin hangs.
136 **
137 ** Revision 1.12 1997/05/22 01:55:32 cgd
138 ** reformat log so it fits in 80cols
139 **
140 ** Revision 1.11 1997/05/22 01:50:27 cgd
141 ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
142 ** so packets aimed at other hosts don't get sent to ether_input().
143 ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
144 ** you can easily tell (`strings`) what version of the driver is in your
145 ** kernel binary.
146 ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
147 ** safe, and not really a performance win anyway. (It was only used when
148 ** setting up the multicast logical address filter, which is an
149 ** infrequent event. It could have been used in the IFF_PROMISCUOUS
150 ** address check above, but the benefit of it vs. memcmp would be
151 ** inconsequential, there.) Use memcmp() instead.
152 ** * restructure csStartOuput to avoid the following bugs in the case where
153 ** txWait was being set:
154 ** * it would accidentally drop the outgoing packet if told to wait
155 ** but the outgoing packet queue was empty.
156 ** * it would bpf_mtap() the outgoing packet multiple times (once for
157 ** each time it was told to wait), and would also recalculate
158 ** the length of the outgoing packet each time it was told to
159 ** wait.
160 ** While there, rename txWait to txLoop, since with the new structure of
161 ** the code, the latter name makes more sense.
162 **
163 ** Revision 1.10 1997/05/19 02:03:20 cgd
164 ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
165 ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
166 ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
167 ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
168 ** as before.
169 **
170 ** Revision 1.9 1997/05/19 01:45:37 cgd
171 ** create a new function, cs_ether_input(), which does received-packet
172 ** BPF and ether_input processing. This code used to be in three places,
173 ** and centralizing it will make adding IFF_PROMISC support much easier.
174 ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
175 ** do copies with bus_space_write_region_2(). It's more correct, and
176 ** potentially more efficient. That function needs to be gutted (to
177 ** deal properly with alignment issues, which it currently does wrong),
178 ** however, and the change doesn't gain much, so there's no point in
179 ** enabling it now.
180 **
181 ** Revision 1.8 1997/05/19 01:17:10 cgd
182 ** fix a comment re: the setting of the TxConfig register. Clean up
183 ** interface counter maintenance (make it use standard idiom).
184 **
185 **--
186 */
187
188 #include <sys/cdefs.h>
189 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.3 2002/02/10 11:48:56 pooka Exp $");
190
191 #include "opt_inet.h"
192
193 #include <sys/param.h>
194 #include <sys/systm.h>
195 #include <sys/mbuf.h>
196 #include <sys/syslog.h>
197 #include <sys/socket.h>
198 #include <sys/device.h>
199 #include <sys/malloc.h>
200 #include <sys/ioctl.h>
201 #include <sys/errno.h>
202
203 #include "rnd.h"
204 #if NRND > 0
205 #include <sys/rnd.h>
206 #endif
207
208 #include <net/if.h>
209 #include <net/if_ether.h>
210 #include <net/if_media.h>
211 #ifdef INET
212 #include <netinet/in.h>
213 #include <netinet/if_inarp.h>
214 #endif
215
216 #include "bpfilter.h"
217 #if NBPFILTER > 0
218 #include <net/bpf.h>
219 #include <net/bpfdesc.h>
220 #endif
221
222 #include <uvm/uvm_extern.h>
223
224 #include <machine/bus.h>
225 #include <machine/intr.h>
226
227 #include <dev/ic/cs89x0reg.h>
228 #include <dev/ic/cs89x0var.h>
229
230 #ifdef SHARK
231 #include <shark/shark/sequoia.h>
232 #endif
233
234 /*
235 * MACRO DEFINITIONS
236 */
237 #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
238
239 /*
240 * FUNCTION PROTOTYPES
241 */
242 void cs_get_default_media __P((struct cs_softc *));
243 int cs_get_params __P((struct cs_softc *));
244 int cs_get_enaddr __P((struct cs_softc *));
245 int cs_reset_chip __P((struct cs_softc *));
246 void cs_reset __P((void *));
247 int cs_ioctl __P((struct ifnet *, u_long, caddr_t));
248 void cs_initChip __P((struct cs_softc *));
249 void cs_buffer_event __P((struct cs_softc *, u_int16_t));
250 void cs_transmit_event __P((struct cs_softc *, u_int16_t));
251 void cs_receive_event __P((struct cs_softc *, u_int16_t));
252 void cs_process_receive __P((struct cs_softc *));
253 void cs_process_rx_early __P((struct cs_softc *));
254 void cs_start_output __P((struct ifnet *));
255 void cs_copy_tx_frame __P((struct cs_softc *, struct mbuf *));
256 void cs_set_ladr_filt __P((struct cs_softc *, struct ethercom *));
257 u_int16_t cs_hash_index __P((char *));
258 void cs_counter_event __P((struct cs_softc *, u_int16_t));
259
260 int cs_mediachange __P((struct ifnet *));
261 void cs_mediastatus __P((struct ifnet *, struct ifmediareq *));
262
263 static int cs_enable __P((struct cs_softc *));
264 static void cs_disable __P((struct cs_softc *));
265 static void cs_stop __P((struct ifnet *, int));
266 static void cs_power __P((int, void *));
267
268 /*
269 * GLOBAL DECLARATIONS
270 */
271
272 /*
273 * Xmit-early table.
274 *
275 * To get better performance, we tell the chip to start packet
276 * transmission before the whole packet is copied to the chip.
277 * However, this can fail under load. When it fails, we back off
278 * to a safer setting for a little while.
279 *
280 * txcmd is the value of txcmd used to indicate when to start transmission.
281 * better is the next 'better' state in the table.
282 * better_count is the number of output packets before transition to the
283 * better state.
284 * worse is the next 'worse' state in the table.
285 *
286 * Transition to the next worse state happens automatically when a
287 * transmittion underrun occurs.
288 */
289 struct cs_xmit_early {
290 u_int16_t txcmd;
291 int better;
292 int better_count;
293 int worse;
294 } cs_xmit_early_table[3] = {
295 { TX_CMD_START_381, 0, INT_MAX, 1, },
296 { TX_CMD_START_1021, 0, 50000, 2, },
297 { TX_CMD_START_ALL, 1, 5000, 2, },
298 };
299
300 int cs_default_media[] = {
301 IFM_ETHER|IFM_10_2,
302 IFM_ETHER|IFM_10_5,
303 IFM_ETHER|IFM_10_T,
304 IFM_ETHER|IFM_10_T|IFM_FDX,
305 };
306 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
307
308 int
309 cs_attach(sc, enaddr, media, nmedia, defmedia)
310 struct cs_softc *sc;
311 u_int8_t *enaddr;
312 int *media, nmedia, defmedia;
313 {
314 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
315 const char *chipname, *medname;
316 u_int16_t reg;
317 int i;
318
319 /* Start out in IO mode */
320 sc->sc_memorymode = FALSE;
321
322 /* make sure we're right */
323 for (i = 0; i < 10000; i++) {
324 reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
325 if (reg == EISA_NUM_CRYSTAL) {
326 break;
327 }
328 }
329 if (i == 10000) {
330 printf("%s: wrong id(0x%x)\n", sc->sc_dev.dv_xname, reg);
331 return 1; /* XXX should panic? */
332 }
333
334 reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
335 sc->sc_prodid = reg & PROD_ID_MASK;
336 sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
337
338 switch (sc->sc_prodid) {
339 case PROD_ID_CS8900:
340 chipname = "CS8900";
341 break;
342 case PROD_ID_CS8920:
343 chipname = "CS8920";
344 break;
345 case PROD_ID_CS8920M:
346 chipname = "CS8920M";
347 break;
348 default:
349 panic("cs_attach: impossible");
350 }
351
352 /*
353 * the first thing to do is check that the mbuf cluster size is
354 * greater than the MTU for an ethernet frame. The code depends on
355 * this and to port this to a OS where this was not the case would
356 * not be straightforward.
357 *
358 * we need 1 byte spare because our
359 * packet read loop can overrun.
360 * and we may need pad bytes to align ip header.
361 */
362 if (MCLBYTES < ETHER_MAX_LEN + 1 +
363 ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
364 printf("%s: MCLBYTES too small for Ethernet frame\n",
365 sc->sc_dev.dv_xname);
366 return 1;
367 }
368
369 /* Start out not transmitting */
370 sc->sc_txbusy = FALSE;
371
372 /* Set up early transmit threshhold */
373 sc->sc_xe_ent = 0;
374 sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
375
376 /* Initialize ifnet structure. */
377 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
378 ifp->if_softc = sc;
379 ifp->if_start = cs_start_output;
380 ifp->if_init = cs_init;
381 ifp->if_ioctl = cs_ioctl;
382 ifp->if_stop = cs_stop;
383 ifp->if_watchdog = NULL; /* no watchdog at this stage */
384 ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
385 IFF_BROADCAST | IFF_MULTICAST;
386 IFQ_SET_READY(&ifp->if_snd);
387
388 /* Initialize ifmedia structures. */
389 ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
390
391 if (media != NULL) {
392 for (i = 0; i < nmedia; i++)
393 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
394 ifmedia_set(&sc->sc_media, defmedia);
395 } else {
396 for (i = 0; i < cs_default_nmedia; i++)
397 ifmedia_add(&sc->sc_media, cs_default_media[i],
398 0, NULL);
399 cs_get_default_media(sc);
400 }
401
402 if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
403 /* Get parameters from the EEPROM */
404 if (cs_get_params(sc) == CS_ERROR) {
405 printf("%s: unable to get settings from EEPROM\n",
406 sc->sc_dev.dv_xname);
407 return 1;
408 }
409 }
410
411 if (enaddr != NULL)
412 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
413 else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
414 /* Get and store the Ethernet address */
415 if (cs_get_enaddr(sc) == CS_ERROR) {
416 printf("%s: unable to read Ethernet address\n",
417 sc->sc_dev.dv_xname);
418 return 1;
419 }
420 } else {
421 printf("%s: no Ethernet address!\n", sc->sc_dev.dv_xname);
422 return 1;
423 }
424
425 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
426 case IFM_10_2:
427 medname = "BNC";
428 break;
429 case IFM_10_5:
430 medname = "AUI";
431 break;
432 case IFM_10_T:
433 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
434 medname = "UTP <full-duplex>";
435 else
436 medname = "UTP";
437 break;
438 default:
439 panic("cs_attach: impossible");
440 }
441 printf("%s: %s rev. %c, address %s, media %s\n", sc->sc_dev.dv_xname,
442 chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
443 medname);
444
445 if (sc->sc_dma_attach)
446 (*sc->sc_dma_attach)(sc);
447
448 sc->sc_sh = shutdownhook_establish(cs_reset, sc);
449 if (sc->sc_sh == NULL) {
450 printf("%s: unable to establish shutdownhook\n",
451 sc->sc_dev.dv_xname);
452 cs_detach(sc);
453 return 1;
454 }
455
456 /* Attach the interface. */
457 if_attach(ifp);
458 ether_ifattach(ifp, sc->sc_enaddr);
459
460 #if NRND > 0
461 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
462 RND_TYPE_NET, 0);
463 #endif
464 sc->sc_cfgflags |= CFGFLG_ATTACHED;
465
466 /* Reset the chip */
467 if (cs_reset_chip(sc) == CS_ERROR) {
468 printf("%s: reset failed\n", sc->sc_dev.dv_xname);
469 cs_detach(sc);
470 return 1;
471 }
472
473 sc->sc_powerhook = powerhook_establish(cs_power, sc);
474 if (sc->sc_powerhook == 0)
475 printf("%s: warning: powerhook_establish failed\n",
476 sc->sc_dev.dv_xname);
477
478 return 0;
479 }
480
481 int
482 cs_detach(sc)
483 struct cs_softc *sc;
484 {
485 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
486
487 if (sc->sc_powerhook) {
488 powerhook_disestablish(sc->sc_powerhook);
489 sc->sc_powerhook = 0;
490 }
491
492 if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
493 #if NRND > 0
494 rnd_detach_source(&sc->rnd_source);
495 #endif
496 ether_ifdetach(ifp);
497 if_detach(ifp);
498 sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
499 }
500
501 if (sc->sc_sh != NULL)
502 shutdownhook_disestablish(sc->sc_sh);
503
504 #if 0
505 /*
506 * XXX not necessary
507 */
508 if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
509 isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
510 isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
511 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
512 sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
513 }
514 #endif
515
516 return 0;
517 }
518
519 void
520 cs_get_default_media(sc)
521 struct cs_softc *sc;
522 {
523 u_int16_t adp_cfg, xmit_ctl;
524
525 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
526 printf("%s: cs_get_default_media: EEPROM missing or bad\n",
527 sc->sc_dev.dv_xname);
528 goto fakeit;
529 }
530
531 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
532 &adp_cfg) == CS_ERROR) {
533 printf("%s: unable to read adapter config from EEPROM\n",
534 sc->sc_dev.dv_xname);
535 goto fakeit;
536 }
537
538 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_XMIT_CTL,
539 &xmit_ctl) == CS_ERROR) {
540 printf("%s: unable to read transmit control from EEPROM\n",
541 sc->sc_dev.dv_xname);
542 goto fakeit;
543 }
544
545 switch (adp_cfg & ADPTR_CFG_MEDIA) {
546 case ADPTR_CFG_AUI:
547 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
548 break;
549 case ADPTR_CFG_10BASE2:
550 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
551 break;
552 case ADPTR_CFG_10BASET:
553 default:
554 if (xmit_ctl & XMIT_CTL_FDX)
555 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
556 else
557 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
558 break;
559 }
560 return;
561
562 fakeit:
563 printf("%s: WARNING: default media setting may be inaccurate\n",
564 sc->sc_dev.dv_xname);
565 /* XXX Arbitrary... */
566 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
567 }
568
569 int
570 cs_get_params(sc)
571 struct cs_softc *sc;
572 {
573 u_int16_t isaConfig;
574 u_int16_t adapterConfig;
575
576 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
577 printf("%s: cs_get_params: EEPROM missing or bad\n",
578 sc->sc_dev.dv_xname);
579 return (CS_ERROR);
580 }
581
582 /* Get ISA configuration from the EEPROM */
583 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ISA_CFG,
584 &isaConfig) == CS_ERROR)
585 goto eeprom_bad;
586
587 /* Get adapter configuration from the EEPROM */
588 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
589 &adapterConfig) == CS_ERROR)
590 goto eeprom_bad;
591
592 /* Copy the USE_SA flag */
593 if (isaConfig & ISA_CFG_USE_SA)
594 sc->sc_cfgflags |= CFGFLG_USE_SA;
595
596 /* Copy the IO Channel Ready flag */
597 if (isaConfig & ISA_CFG_IOCHRDY)
598 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
599
600 /* Copy the DC/DC Polarity flag */
601 if (adapterConfig & ADPTR_CFG_DCDC_POL)
602 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
603
604 return (CS_OK);
605
606 eeprom_bad:
607 printf("%s: cs_get_params: unable to read from EEPROM\n",
608 sc->sc_dev.dv_xname);
609 return (CS_ERROR);
610 }
611
612 int
613 cs_get_enaddr(sc)
614 struct cs_softc *sc;
615 {
616 u_int16_t *myea;
617
618 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
619 printf("%s: cs_get_enaddr: EEPROM missing or bad\n",
620 sc->sc_dev.dv_xname);
621 return (CS_ERROR);
622 }
623
624 myea = (u_int16_t *)sc->sc_enaddr;
625
626 /* Get Ethernet address from the EEPROM */
627 /* XXX this will likely lose on a big-endian machine. -- cgd */
628 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_H,
629 &myea[0]) == CS_ERROR)
630 goto eeprom_bad;
631 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_M,
632 &myea[1]) == CS_ERROR)
633 goto eeprom_bad;
634 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_L,
635 &myea[2]) == CS_ERROR)
636 goto eeprom_bad;
637
638 return (CS_OK);
639
640 eeprom_bad:
641 printf("%s: cs_get_enaddr: unable to read from EEPROM\n",
642 sc->sc_dev.dv_xname);
643 return (CS_ERROR);
644 }
645
646 int
647 cs_reset_chip(sc)
648 struct cs_softc *sc;
649 {
650 int intState;
651 int x;
652
653 /* Disable interrupts at the CPU so reset command is atomic */
654 intState = splnet();
655
656 /*
657 * We are now resetting the chip
658 *
659 * A spurious interrupt is generated by the chip when it is reset. This
660 * variable informs the interrupt handler to ignore this interrupt.
661 */
662 sc->sc_resetting = TRUE;
663
664 /* Issue a reset command to the chip */
665 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
666
667 /* Re-enable interrupts at the CPU */
668 splx(intState);
669
670 /* The chip is always in IO mode after a reset */
671 sc->sc_memorymode = FALSE;
672
673 /* If transmission was in progress, it is not now */
674 sc->sc_txbusy = FALSE;
675
676 /*
677 * there was a delay(125); here, but it seems uneccesary 125 usec is
678 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
679 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
680 * should be sufficient.
681 */
682
683 /* Transition SBHE to switch chip from 8-bit to 16-bit */
684 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
685 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
686 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
687 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
688
689 /* Wait until the EEPROM is not busy */
690 for (x = 0; x < MAXLOOP; x++) {
691 if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
692 break;
693 }
694
695 if (x == MAXLOOP)
696 return CS_ERROR;
697
698 /* Wait until initialization is done */
699 for (x = 0; x < MAXLOOP; x++) {
700 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
701 break;
702 }
703
704 if (x == MAXLOOP)
705 return CS_ERROR;
706
707 /* Reset is no longer in progress */
708 sc->sc_resetting = FALSE;
709
710 return CS_OK;
711 }
712
713 int
714 cs_verify_eeprom(iot, ioh)
715 bus_space_tag_t iot;
716 bus_space_handle_t ioh;
717 {
718 u_int16_t self_status;
719
720 /* Verify that the EEPROM is present and OK */
721 self_status = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST);
722 if (((self_status & SELF_ST_EEP_PRES) &&
723 (self_status & SELF_ST_EEP_OK)) == 0)
724 return (CS_ERROR);
725
726 return (CS_OK);
727 }
728
729 int
730 cs_read_eeprom(iot, ioh, offset, pValue)
731 bus_space_tag_t iot;
732 bus_space_handle_t ioh;
733 int offset;
734 u_int16_t *pValue;
735 {
736 int x;
737
738 /* Ensure that the EEPROM is not busy */
739 for (x = 0; x < MAXLOOP; x++) {
740 if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
741 SELF_ST_SI_BUSY))
742 break;
743 }
744
745 if (x == MAXLOOP)
746 return (CS_ERROR);
747
748 /* Issue the command to read the offset within the EEPROM */
749 CS_WRITE_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_CMD,
750 offset | EEPROM_CMD_READ);
751
752 /* Wait until the command is completed */
753 for (x = 0; x < MAXLOOP; x++) {
754 if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
755 SELF_ST_SI_BUSY))
756 break;
757 }
758
759 if (x == MAXLOOP)
760 return (CS_ERROR);
761
762 /* Get the EEPROM data from the EEPROM Data register */
763 *pValue = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_DATA);
764
765 return (CS_OK);
766 }
767
768 void
769 cs_initChip(sc)
770 struct cs_softc *sc;
771 {
772 u_int16_t busCtl;
773 u_int16_t selfCtl;
774 u_int16_t *myea;
775 u_int16_t isaId;
776 int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
777
778 /* Disable reception and transmission of frames */
779 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
780 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
781 ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
782
783 /* Disable interrupt at the chip */
784 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
785 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
786
787 /* If IOCHRDY is enabled then clear the bit in the busCtl register */
788 busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
789 if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
790 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
791 busCtl & ~BUS_CTL_IOCHRDY);
792 } else {
793 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
794 busCtl | BUS_CTL_IOCHRDY);
795 }
796
797 /* Set the Line Control register to match the media type */
798 if (media == IFM_10_T)
799 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
800 else
801 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
802
803 /*
804 * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
805 * enable the DC/DC converter
806 */
807 selfCtl = SELF_CTL_HC1E;
808
809 /* If the media type is 10Base2 */
810 if (media == IFM_10_2) {
811 /*
812 * Enable the DC/DC converter if it has a low enable.
813 */
814 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
815 /*
816 * Set the HCB1 bit, which causes the HC1 pin to go
817 * low.
818 */
819 selfCtl |= SELF_CTL_HCB1;
820 } else { /* Media type is 10BaseT or AUI */
821 /*
822 * Disable the DC/DC converter if it has a high enable.
823 */
824 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
825 /*
826 * Set the HCB1 bit, which causes the HC1 pin to go
827 * low.
828 */
829 selfCtl |= SELF_CTL_HCB1;
830 }
831 }
832 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
833
834 /* enable normal link pulse */
835 if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
836 CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
837
838 /* Enable full-duplex, if appropriate */
839 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
840 CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
841
842 /* RX_CTL set in cs_set_ladr_filt(), below */
843
844 /* enable all transmission interrupts */
845 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
846
847 /* Accept all receive interrupts */
848 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
849
850 /*
851 * Configure Operational Modes
852 *
853 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
854 * a better way to do it because the card has a counter which can be
855 * read to update the RX_MISS counter. This saves many interupts.
856 *
857 * I have turned on the tx and rx overflow interupts to counter using
858 * the receive miss interrupt. This is a better estimate of errors
859 * and requires lower system overhead.
860 */
861 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
862 BUF_CFG_RX_DMA_IE);
863
864 if (sc->sc_dma_chipinit)
865 (*sc->sc_dma_chipinit)(sc);
866
867 /* If memory mode is enabled */
868 if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
869 /* If external logic is present for address decoding */
870 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
871 /*
872 * Program the external logic to decode address bits
873 * SA20-SA23
874 */
875 CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
876 ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
877 EEPROM_CMD_ELSEL);
878 }
879
880 /*
881 * Write the packet page base physical address to the memory
882 * base register.
883 */
884 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
885 sc->sc_pktpgaddr & 0xFFFF);
886 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
887 sc->sc_pktpgaddr >> 16);
888 busCtl = BUS_CTL_MEM_MODE;
889
890 /* tell the chip to read the addresses off the SA pins */
891 if (sc->sc_cfgflags & CFGFLG_USE_SA) {
892 busCtl |= BUS_CTL_USE_SA;
893 }
894 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
895 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
896
897 /* We are in memory mode now! */
898 sc->sc_memorymode = TRUE;
899
900 /*
901 * wait here (10ms) for the chip to swap over. this is the
902 * maximum time that this could take.
903 */
904 delay(10000);
905
906 /* Verify that we can read from the chip */
907 isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
908
909 /*
910 * As a last minute sanity check before actually using mapped
911 * memory we verify that we can read the isa number from the
912 * chip in memory mode.
913 */
914 if (isaId != EISA_NUM_CRYSTAL) {
915 printf("%s: failed to enable memory mode\n",
916 sc->sc_dev.dv_xname);
917 sc->sc_memorymode = FALSE;
918 } else {
919 /*
920 * we are in memory mode so if we aren't using DMA,
921 * then program the chip to interrupt early.
922 */
923 if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
924 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
925 BUF_CFG_RX_DEST_IE |
926 BUF_CFG_RX_MISS_OVER_IE |
927 BUF_CFG_TX_COL_OVER_IE);
928 }
929 }
930
931 }
932
933 /* Put Ethernet address into the Individual Address register */
934 myea = (u_int16_t *)sc->sc_enaddr;
935 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 0, myea[0]);
936 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 2, myea[1]);
937 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 4, myea[2]);
938
939 if (sc->sc_irq != -1) {
940 /* Set the interrupt level in the chip */
941 if (sc->sc_prodid == PROD_ID_CS8900) {
942 if (sc->sc_irq == 5) {
943 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
944 } else {
945 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
946 }
947 }
948 else { /* CS8920 */
949 CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
950 }
951 }
952
953 /* write the multicast mask to the address filter register */
954 cs_set_ladr_filt(sc, &sc->sc_ethercom);
955
956 /* Enable reception and transmission of frames */
957 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
958 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
959 LINE_CTL_RX_ON | LINE_CTL_TX_ON);
960
961 /* Enable interrupt at the chip */
962 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
963 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
964 }
965
966 int
967 cs_init(ifp)
968 struct ifnet *ifp;
969 {
970 int intState;
971 int error = CS_OK;
972 struct cs_softc *sc = ifp->if_softc;
973
974 if (cs_enable(sc))
975 goto out;
976
977 cs_stop(ifp, 0);
978
979 intState = splnet();
980
981 #if 0
982 /* Mark the interface as down */
983 sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
984 #endif
985
986 #ifdef CS_DEBUG
987 /* Enable debugging */
988 sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
989 #endif
990
991 /* Reset the chip */
992 if ((error = cs_reset_chip(sc)) == CS_OK) {
993 /* Initialize the chip */
994 cs_initChip(sc);
995
996 /* Mark the interface as running */
997 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
998 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
999 sc->sc_ethercom.ec_if.if_timer = 0;
1000
1001 /* Assume we have carrier until we are told otherwise. */
1002 sc->sc_carrier = 1;
1003 } else {
1004 printf("%s: unable to reset chip\n", sc->sc_dev.dv_xname);
1005 }
1006
1007 splx(intState);
1008 out:
1009 if (error == CS_OK)
1010 return 0;
1011 return EIO;
1012 }
1013
1014 void
1015 cs_set_ladr_filt(sc, ec)
1016 struct cs_softc *sc;
1017 struct ethercom *ec;
1018 {
1019 struct ifnet *ifp = &ec->ec_if;
1020 struct ether_multi *enm;
1021 struct ether_multistep step;
1022 u_int16_t af[4];
1023 u_int16_t port, mask, index;
1024
1025 /*
1026 * Set up multicast address filter by passing all multicast addresses
1027 * through a crc generator, and then using the high order 6 bits as an
1028 * index into the 64 bit logical address filter. The high order bit
1029 * selects the word, while the rest of the bits select the bit within
1030 * the word.
1031 */
1032 if (ifp->if_flags & IFF_PROMISC) {
1033 /* accept all valid frames. */
1034 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1035 RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1036 RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1037 ifp->if_flags |= IFF_ALLMULTI;
1038 return;
1039 }
1040
1041 /*
1042 * accept frames if a. crc valid, b. individual address match c.
1043 * broadcast address,and d. multicast addresses matched in the hash
1044 * filter
1045 */
1046 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1047 RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1048
1049
1050 /*
1051 * start off with all multicast flag clear, set it if we need to
1052 * later, otherwise we will leave it.
1053 */
1054 ifp->if_flags &= ~IFF_ALLMULTI;
1055 af[0] = af[1] = af[2] = af[3] = 0x0000;
1056
1057 /*
1058 * Loop through all the multicast addresses unless we get a range of
1059 * addresses, in which case we will just accept all packets.
1060 * Justification for this is given in the next comment.
1061 */
1062 ETHER_FIRST_MULTI(step, ec, enm);
1063 while (enm != NULL) {
1064 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1065 sizeof enm->enm_addrlo)) {
1066 /*
1067 * We must listen to a range of multicast addresses.
1068 * For now, just accept all multicasts, rather than
1069 * trying to set only those filter bits needed to match
1070 * the range. (At this time, the only use of address
1071 * ranges is for IP multicast routing, for which the
1072 * range is big enough to require all bits set.)
1073 */
1074 ifp->if_flags |= IFF_ALLMULTI;
1075 af[0] = af[1] = af[2] = af[3] = 0xffff;
1076 break;
1077 } else {
1078 /*
1079 * we have got an individual address so just set that
1080 * bit.
1081 */
1082 index = cs_hash_index(enm->enm_addrlo);
1083
1084 /* Set the bit the Logical address filter. */
1085 port = (u_int16_t) (index >> 4);
1086 mask = (u_int16_t) (1 << (index & 0xf));
1087 af[port] |= mask;
1088
1089 ETHER_NEXT_MULTI(step, enm);
1090 }
1091 }
1092
1093 /* now program the chip with the addresses */
1094 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1095 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1096 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1097 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1098 return;
1099 }
1100
1101 u_int16_t
1102 cs_hash_index(addr)
1103 char *addr;
1104 {
1105 u_int POLY = 0x04c11db6;
1106 u_int crc_value = 0xffffffff;
1107 u_int16_t hash_code = 0;
1108 int i;
1109 u_int current_bit;
1110 char current_byte = *addr;
1111 u_int cur_crc_high;
1112
1113 for (i = 0; i < 6; i++) {
1114 current_byte = *addr;
1115 addr++;
1116
1117 for (current_bit = 8; current_bit; current_bit--) {
1118 cur_crc_high = crc_value >> 31;
1119 crc_value <<= 1;
1120 if (cur_crc_high ^ (current_byte & 0x01)) {
1121 crc_value ^= POLY;
1122 crc_value |= 0x00000001;
1123 }
1124 current_byte >>= 1;
1125 }
1126 }
1127
1128 /*
1129 * The hash code is the 6 least significant bits of the CRC
1130 * in the reverse order: CRC[0] = hash[5],CRC[1] = hash[4],etc.
1131 */
1132 for (i = 0; i < 6; i++) {
1133 hash_code = (u_int16_t) ((hash_code << 1) |
1134 (u_int16_t) ((crc_value >> i) & 0x00000001));
1135 }
1136
1137 return hash_code;
1138 }
1139
1140 void
1141 cs_reset(arg)
1142 void *arg;
1143 {
1144 struct cs_softc *sc = arg;
1145
1146 /* Mark the interface as down */
1147 sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1148
1149 /* Reset the chip */
1150 cs_reset_chip(sc);
1151 }
1152
1153 int
1154 cs_ioctl(ifp, cmd, data)
1155 struct ifnet *ifp;
1156 u_long cmd;
1157 caddr_t data;
1158 {
1159 struct cs_softc *sc = ifp->if_softc;
1160 struct ifreq *ifr = (struct ifreq *) data;
1161 int state;
1162 int result;
1163
1164 state = splnet();
1165
1166 result = 0; /* only set if something goes wrong */
1167
1168 switch (cmd) {
1169 case SIOCGIFMEDIA:
1170 case SIOCSIFMEDIA:
1171 result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1172 break;
1173
1174 default:
1175 result = ether_ioctl(ifp, cmd, data);
1176 if (result == ENETRESET) {
1177 if (CS_IS_ENABLED(sc)) {
1178 /*
1179 * Multicast list has changed. Set the
1180 * hardware filter accordingly.
1181 */
1182 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1183 }
1184 result = 0;
1185 }
1186 break;
1187 }
1188
1189 splx(state);
1190
1191 return result;
1192 }
1193
1194 int
1195 cs_mediachange(ifp)
1196 struct ifnet *ifp;
1197 {
1198
1199 /*
1200 * Current media is already set up. Just reset the interface
1201 * to let the new value take hold.
1202 */
1203 cs_init(ifp);
1204 return (0);
1205 }
1206
1207 void
1208 cs_mediastatus(ifp, ifmr)
1209 struct ifnet *ifp;
1210 struct ifmediareq *ifmr;
1211 {
1212 struct cs_softc *sc = ifp->if_softc;
1213
1214 /*
1215 * The currently selected media is always the active media.
1216 */
1217 ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1218
1219 if (ifp->if_flags & IFF_UP) {
1220 /* Interface up, status is valid. */
1221 ifmr->ifm_status = IFM_AVALID |
1222 (sc->sc_carrier ? IFM_ACTIVE : 0);
1223 }
1224 else ifmr->ifm_status = 0;
1225 }
1226
1227 int
1228 cs_intr(arg)
1229 void *arg;
1230 {
1231 struct cs_softc *sc = arg;
1232 u_int16_t Event;
1233 #if NRND > 0
1234 u_int16_t rndEvent;
1235 #endif
1236
1237 /* Ignore any interrupts that happen while the chip is being reset */
1238 if (sc->sc_resetting) {
1239 printf("%s: cs_intr: reset in progress\n",
1240 sc->sc_dev.dv_xname);
1241 return 1;
1242 }
1243
1244 /* Read an event from the Interrupt Status Queue */
1245 if (sc->sc_memorymode)
1246 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1247 else
1248 Event = CS_READ_PORT(sc, PORT_ISQ);
1249
1250 if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1251 return 0; /* not ours */
1252
1253 #if NRND > 0
1254 rndEvent = Event;
1255 #endif
1256
1257 /* Process all the events in the Interrupt Status Queue */
1258 while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1259 /* Dispatch to an event handler based on the register number */
1260 switch (Event & REG_NUM_MASK) {
1261 case REG_NUM_RX_EVENT:
1262 cs_receive_event(sc, Event);
1263 break;
1264 case REG_NUM_TX_EVENT:
1265 cs_transmit_event(sc, Event);
1266 break;
1267 case REG_NUM_BUF_EVENT:
1268 cs_buffer_event(sc, Event);
1269 break;
1270 case REG_NUM_TX_COL:
1271 case REG_NUM_RX_MISS:
1272 cs_counter_event(sc, Event);
1273 break;
1274 default:
1275 printf("%s: unknown interrupt event 0x%x\n",
1276 sc->sc_dev.dv_xname, Event);
1277 break;
1278 }
1279
1280 /* Read another event from the Interrupt Status Queue */
1281 if (sc->sc_memorymode)
1282 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1283 else
1284 Event = CS_READ_PORT(sc, PORT_ISQ);
1285 }
1286
1287 /* have handled the interupt */
1288 #if NRND > 0
1289 rnd_add_uint32(&sc->rnd_source, rndEvent);
1290 #endif
1291 return 1;
1292 }
1293
1294 void
1295 cs_counter_event(sc, cntEvent)
1296 struct cs_softc *sc;
1297 u_int16_t cntEvent;
1298 {
1299 struct ifnet *ifp;
1300 u_int16_t errorCount;
1301
1302 ifp = &sc->sc_ethercom.ec_if;
1303
1304 switch (cntEvent & REG_NUM_MASK) {
1305 case REG_NUM_TX_COL:
1306 /*
1307 * the count should be read before an overflow occurs.
1308 */
1309 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1310 /*
1311 * the tramsit event routine always checks the number of
1312 * collisions for any packet so we don't increment any
1313 * counters here, as they should already have been
1314 * considered.
1315 */
1316 break;
1317 case REG_NUM_RX_MISS:
1318 /*
1319 * the count should be read before an overflow occurs.
1320 */
1321 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1322 /*
1323 * Increment the input error count, the first 6bits are the
1324 * register id.
1325 */
1326 ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1327 break;
1328 default:
1329 /* do nothing */
1330 break;
1331 }
1332 }
1333
1334 void
1335 cs_buffer_event(sc, bufEvent)
1336 struct cs_softc *sc;
1337 u_int16_t bufEvent;
1338 {
1339 struct ifnet *ifp;
1340
1341 ifp = &sc->sc_ethercom.ec_if;
1342
1343 /*
1344 * multiple events can be in the buffer event register at one time so
1345 * a standard switch statement will not suffice, here every event
1346 * must be checked.
1347 */
1348
1349 /*
1350 * if 128 bits have been rxed by the time we get here, the dest event
1351 * will be cleared and 128 event will be set.
1352 */
1353 if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1354 cs_process_rx_early(sc);
1355 }
1356
1357 if (bufEvent & BUF_EVENT_RX_DMA) {
1358 /* process the receive data */
1359 if (sc->sc_dma_process_rx)
1360 (*sc->sc_dma_process_rx)(sc);
1361 else
1362 /* should panic? */
1363 printf("%s: unexpected dma event\n", sc->sc_dev.dv_xname);
1364 }
1365
1366 if (bufEvent & BUF_EVENT_TX_UNDR) {
1367 #if 0
1368 /*
1369 * This can happen occasionally, and it's not worth worrying
1370 * about.
1371 */
1372 printf("%s: transmit underrun (%d -> %d)\n",
1373 sc->sc_dev.dv_xname, sc->sc_xe_ent,
1374 cs_xmit_early_table[sc->sc_xe_ent].worse);
1375 #endif
1376 sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1377 sc->sc_xe_togo =
1378 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1379
1380 /* had an underrun, transmit is finished */
1381 sc->sc_txbusy = FALSE;
1382 }
1383
1384 if (bufEvent & BUF_EVENT_SW_INT) {
1385 printf("%s: software initiated interrupt\n",
1386 sc->sc_dev.dv_xname);
1387 }
1388 }
1389
1390 void
1391 cs_transmit_event(sc, txEvent)
1392 struct cs_softc *sc;
1393 u_int16_t txEvent;
1394 {
1395 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1396
1397 /* If there were any errors transmitting this frame */
1398 if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1399 TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1400 /* Increment the output error count */
1401 ifp->if_oerrors++;
1402
1403 /* Note carrier loss. */
1404 if (txEvent & TX_EVENT_LOSS_CRS)
1405 sc->sc_carrier = 0;
1406
1407 /* If debugging is enabled then log error messages */
1408 if (ifp->if_flags & IFF_DEBUG) {
1409 if (txEvent & TX_EVENT_LOSS_CRS) {
1410 printf("%s: lost carrier\n",
1411 sc->sc_dev.dv_xname);
1412 }
1413 if (txEvent & TX_EVENT_SQE_ERR) {
1414 printf("%s: SQE error\n",
1415 sc->sc_dev.dv_xname);
1416 }
1417 if (txEvent & TX_EVENT_OUT_WIN) {
1418 printf("%s: out-of-window collision\n",
1419 sc->sc_dev.dv_xname);
1420 }
1421 if (txEvent & TX_EVENT_JABBER) {
1422 printf("%s: jabber\n", sc->sc_dev.dv_xname);
1423 }
1424 if (txEvent & TX_EVENT_16_COLL) {
1425 printf("%s: 16 collisions\n",
1426 sc->sc_dev.dv_xname);
1427 }
1428 }
1429 }
1430 else {
1431 /* Transmission successful, carrier is up. */
1432 sc->sc_carrier = 1;
1433 #ifdef SHARK
1434 ledNetActive();
1435 #endif
1436 }
1437
1438 /* Add the number of collisions for this frame */
1439 if (txEvent & TX_EVENT_16_COLL) {
1440 ifp->if_collisions += 16;
1441 } else {
1442 ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1443 }
1444
1445 ifp->if_opackets++;
1446
1447 /* Transmission is no longer in progress */
1448 sc->sc_txbusy = FALSE;
1449
1450 /* If there is more to transmit */
1451 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1452 /* Start the next transmission */
1453 cs_start_output(ifp);
1454 }
1455 }
1456
1457 void
1458 cs_print_rx_errors(sc, rxEvent)
1459 struct cs_softc *sc;
1460 u_int16_t rxEvent;
1461 {
1462
1463 if (rxEvent & RX_EVENT_RUNT)
1464 printf("%s: runt\n", sc->sc_dev.dv_xname);
1465
1466 if (rxEvent & RX_EVENT_X_DATA)
1467 printf("%s: extra data\n", sc->sc_dev.dv_xname);
1468
1469 if (rxEvent & RX_EVENT_CRC_ERR) {
1470 if (rxEvent & RX_EVENT_DRIBBLE)
1471 printf("%s: alignment error\n", sc->sc_dev.dv_xname);
1472 else
1473 printf("%s: CRC error\n", sc->sc_dev.dv_xname);
1474 } else {
1475 if (rxEvent & RX_EVENT_DRIBBLE)
1476 printf("%s: dribble bits\n", sc->sc_dev.dv_xname);
1477 }
1478 }
1479
1480 void
1481 cs_receive_event(sc, rxEvent)
1482 struct cs_softc *sc;
1483 u_int16_t rxEvent;
1484 {
1485 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1486
1487 /* If the frame was not received OK */
1488 if (!(rxEvent & RX_EVENT_RX_OK)) {
1489 /* Increment the input error count */
1490 ifp->if_ierrors++;
1491
1492 /*
1493 * If debugging is enabled then log error messages.
1494 */
1495 if (ifp->if_flags & IFF_DEBUG) {
1496 if (rxEvent != REG_NUM_RX_EVENT) {
1497 cs_print_rx_errors(sc, rxEvent);
1498
1499 /*
1500 * Must read the length of all received
1501 * frames
1502 */
1503 CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1504
1505 /* Skip the received frame */
1506 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1507 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1508 RX_CFG_SKIP);
1509 } else {
1510 printf("%s: implied skip\n",
1511 sc->sc_dev.dv_xname);
1512 }
1513 }
1514 } else {
1515 /*
1516 * process the received frame and pass it up to the upper
1517 * layers.
1518 */
1519 cs_process_receive(sc);
1520 }
1521 }
1522
1523 void
1524 cs_ether_input(sc, m)
1525 struct cs_softc *sc;
1526 struct mbuf *m;
1527 {
1528 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1529
1530 ifp->if_ipackets++;
1531
1532 #if NBPFILTER > 0
1533 /*
1534 * Check if there's a BPF listener on this interface.
1535 * If so, hand off the raw packet to BPF.
1536 */
1537 if (ifp->if_bpf)
1538 bpf_mtap(ifp->if_bpf, m);
1539 #endif
1540
1541 /* Pass the packet up. */
1542 (*ifp->if_input)(ifp, m);
1543 }
1544
1545 void
1546 cs_process_receive(sc)
1547 struct cs_softc *sc;
1548 {
1549 struct ifnet *ifp;
1550 struct mbuf *m;
1551 int totlen;
1552 u_int16_t *pBuff, *pBuffLimit;
1553 int pad;
1554 unsigned int frameOffset;
1555
1556 #ifdef SHARK
1557 ledNetActive();
1558 #endif
1559
1560 ifp = &sc->sc_ethercom.ec_if;
1561
1562 /* Received a packet; carrier is up. */
1563 sc->sc_carrier = 1;
1564
1565 if (sc->sc_memorymode) {
1566 /* Initialize the frame offset */
1567 frameOffset = PKTPG_RX_LENGTH;
1568
1569 /* Get the length of the received frame */
1570 totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1571 frameOffset += 2;
1572 }
1573 else {
1574 /* drop status */
1575 CS_READ_PORT(sc, PORT_RXTX_DATA);
1576
1577 /* Get the length of the received frame */
1578 totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1579 }
1580
1581 if (totlen > ETHER_MAX_LEN) {
1582 printf("%s: invalid packet length\n", sc->sc_dev.dv_xname);
1583
1584 /* skip the received frame */
1585 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1586 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1587 return;
1588 }
1589
1590 MGETHDR(m, M_DONTWAIT, MT_DATA);
1591 if (m == 0) {
1592 printf("%s: cs_process_receive: unable to allocate mbuf\n",
1593 sc->sc_dev.dv_xname);
1594 ifp->if_ierrors++;
1595 /*
1596 * couldn't allocate an mbuf so things are not good, may as
1597 * well drop the packet I think.
1598 *
1599 * have already read the length so we should be right to skip
1600 * the packet.
1601 */
1602 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1603 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1604 return;
1605 }
1606 m->m_pkthdr.rcvif = ifp;
1607 m->m_pkthdr.len = totlen;
1608
1609 /* number of bytes to align ip header on word boundary for ipintr */
1610 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1611
1612 /*
1613 * alloc mbuf cluster if we need.
1614 * we need 1 byte spare because following
1615 * packet read loop can overrun.
1616 */
1617 if (totlen + pad + 1 > MHLEN) {
1618 MCLGET(m, M_DONTWAIT);
1619 if ((m->m_flags & M_EXT) == 0) {
1620 /* couldn't allocate an mbuf cluster */
1621 printf("%s: cs_process_receive: unable to allocate a cluster\n",
1622 sc->sc_dev.dv_xname);
1623 m_freem(m);
1624
1625 /* skip the received frame */
1626 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1627 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1628 return;
1629 }
1630 }
1631
1632 /* align ip header on word boundary for ipintr */
1633 m->m_data += pad;
1634
1635 m->m_len = totlen;
1636 pBuff = mtod(m, u_int16_t *);
1637
1638 /* now read the data from the chip */
1639 if (sc->sc_memorymode) {
1640 pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
1641 while (pBuff < pBuffLimit) {
1642 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1643 frameOffset += 2;
1644 }
1645 }
1646 else {
1647 bus_space_read_multi_2(sc->sc_iot, sc->sc_ioh, PORT_RXTX_DATA,
1648 pBuff, (totlen + 1)>>1);
1649 }
1650
1651 cs_ether_input(sc, m);
1652 }
1653
1654 void
1655 cs_process_rx_early(sc)
1656 struct cs_softc *sc;
1657 {
1658 struct ifnet *ifp;
1659 struct mbuf *m;
1660 u_int16_t frameCount, oldFrameCount;
1661 u_int16_t rxEvent;
1662 u_int16_t *pBuff;
1663 int pad;
1664 unsigned int frameOffset;
1665
1666
1667 ifp = &sc->sc_ethercom.ec_if;
1668
1669 /* Initialize the frame offset */
1670 frameOffset = PKTPG_RX_FRAME;
1671 frameCount = 0;
1672
1673 MGETHDR(m, M_DONTWAIT, MT_DATA);
1674 if (m == 0) {
1675 printf("%s: cs_process_rx_early: unable to allocate mbuf\n",
1676 sc->sc_dev.dv_xname);
1677 ifp->if_ierrors++;
1678 /*
1679 * couldn't allocate an mbuf so things are not good, may as
1680 * well drop the packet I think.
1681 *
1682 * have already read the length so we should be right to skip
1683 * the packet.
1684 */
1685 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1686 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1687 return;
1688 }
1689 m->m_pkthdr.rcvif = ifp;
1690 /*
1691 * save processing by always using a mbuf cluster, guarenteed to fit
1692 * packet
1693 */
1694 MCLGET(m, M_DONTWAIT);
1695 if ((m->m_flags & M_EXT) == 0) {
1696 /* couldn't allocate an mbuf cluster */
1697 printf("%s: cs_process_rx_early: unable to allocate a cluster\n",
1698 sc->sc_dev.dv_xname);
1699 m_freem(m);
1700 /* skip the frame */
1701 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1702 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1703 return;
1704 }
1705
1706 /* align ip header on word boundary for ipintr */
1707 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1708 m->m_data += pad;
1709
1710 /* set up the buffer pointer to point to the data area */
1711 pBuff = mtod(m, u_int16_t *);
1712
1713 /*
1714 * now read the frame byte counter until we have finished reading the
1715 * frame
1716 */
1717 oldFrameCount = 0;
1718 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1719 while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1720 for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1721 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1722 frameOffset += 2;
1723 }
1724
1725 /* read the new count from the chip */
1726 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1727 }
1728
1729 /* update the mbuf counts */
1730 m->m_len = oldFrameCount;
1731 m->m_pkthdr.len = oldFrameCount;
1732
1733 /* now check the Rx Event register */
1734 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1735
1736 if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1737 /*
1738 * do an implied skip, it seems to be more reliable than a
1739 * forced skip.
1740 */
1741 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1742 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1743
1744 /*
1745 * now read the RX_EVENT register to perform an implied skip.
1746 */
1747 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1748
1749 cs_ether_input(sc, m);
1750 } else {
1751 m_freem(m);
1752 ifp->if_ierrors++;
1753 }
1754 }
1755
1756 void
1757 cs_start_output(ifp)
1758 struct ifnet *ifp;
1759 {
1760 struct cs_softc *sc;
1761 struct mbuf *pMbuf;
1762 struct mbuf *pMbufChain;
1763 u_int16_t BusStatus;
1764 u_int16_t Length;
1765 int txLoop = 0;
1766 int dropout = 0;
1767
1768 sc = ifp->if_softc;
1769
1770 /* check that the interface is up and running */
1771 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1772 return;
1773 }
1774
1775 /* Don't interrupt a transmission in progress */
1776 if (sc->sc_txbusy) {
1777 return;
1778 }
1779
1780 /* this loop will only run through once if transmission is successful */
1781 /*
1782 * While there are packets to transmit and a transmit is not in
1783 * progress
1784 */
1785 while (sc->sc_txbusy == 0 && dropout == 0) {
1786 IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1787 if (pMbufChain == NULL)
1788 break;
1789
1790 #if NBPFILTER > 0
1791 /*
1792 * If BPF is listening on this interface, let it see the packet
1793 * before we commit it to the wire.
1794 */
1795 if (ifp->if_bpf)
1796 bpf_mtap(ifp->if_bpf, pMbufChain);
1797 #endif
1798
1799 /* Find the total length of the data to transmit */
1800 Length = 0;
1801 for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1802 Length += pMbuf->m_len;
1803
1804 do {
1805 /*
1806 * Request that the transmit be started after all
1807 * data has been copied
1808 *
1809 * In IO mode must write to the IO port not the packet
1810 * page address
1811 *
1812 * If this is changed to start transmission after a
1813 * small amount of data has been copied you tend to
1814 * get packet missed errors i think because the ISA
1815 * bus is too slow. Or possibly the copy routine is
1816 * not streamlined enough.
1817 */
1818 if (sc->sc_memorymode) {
1819 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1820 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1821 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1822 }
1823 else {
1824 CS_WRITE_PORT(sc, PORT_TX_CMD,
1825 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1826 CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1827 }
1828
1829 /*
1830 * Adjust early-transmit machinery.
1831 */
1832 if (--sc->sc_xe_togo == 0) {
1833 sc->sc_xe_ent =
1834 cs_xmit_early_table[sc->sc_xe_ent].better;
1835 sc->sc_xe_togo =
1836 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1837 }
1838 /*
1839 * Read the BusStatus register which indicates
1840 * success of the request
1841 */
1842 BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1843
1844 /*
1845 * If there was an error in the transmit bid free the
1846 * mbuf and go on. This is presuming that mbuf is
1847 * corrupt.
1848 */
1849 if (BusStatus & BUS_ST_TX_BID_ERR) {
1850 printf("%s: transmit bid error (too big)",
1851 sc->sc_dev.dv_xname);
1852
1853 /* Discard the bad mbuf chain */
1854 m_freem(pMbufChain);
1855 sc->sc_ethercom.ec_if.if_oerrors++;
1856
1857 /* Loop up to transmit the next chain */
1858 txLoop = 0;
1859 } else {
1860 if (BusStatus & BUS_ST_RDY4TXNOW) {
1861 /*
1862 * The chip is ready for transmission
1863 * now
1864 */
1865 /*
1866 * Copy the frame to the chip to
1867 * start transmission
1868 */
1869 cs_copy_tx_frame(sc, pMbufChain);
1870
1871 /* Free the mbuf chain */
1872 m_freem(pMbufChain);
1873
1874 /* Transmission is now in progress */
1875 sc->sc_txbusy = TRUE;
1876 txLoop = 0;
1877 } else {
1878 /*
1879 * if we get here we want to try
1880 * again with the same mbuf, until
1881 * the chip lets us transmit.
1882 */
1883 txLoop++;
1884 if (txLoop > CS_OUTPUT_LOOP_MAX) {
1885 /* Free the mbuf chain */
1886 m_freem(pMbufChain);
1887 /*
1888 * Transmission is not in
1889 * progress
1890 */
1891 sc->sc_txbusy = FALSE;
1892 /*
1893 * Increment the output error
1894 * count
1895 */
1896 ifp->if_oerrors++;
1897 /*
1898 * exit the routine and drop
1899 * the packet.
1900 */
1901 txLoop = 0;
1902 dropout = 1;
1903 }
1904 }
1905 }
1906 } while (txLoop);
1907 }
1908 }
1909
1910 void
1911 cs_copy_tx_frame(sc, m0)
1912 struct cs_softc *sc;
1913 struct mbuf *m0;
1914 {
1915 struct mbuf *m;
1916 int len, leftover, frameoff;
1917 u_int16_t dbuf;
1918 u_int8_t *p;
1919 #ifdef DIAGNOSTIC
1920 u_int8_t *lim;
1921 #endif
1922
1923 /* Initialize frame pointer and data port address */
1924 frameoff = PKTPG_TX_FRAME;
1925
1926 /* start out with no leftover data */
1927 leftover = 0;
1928 dbuf = 0;
1929
1930 /* Process the chain of mbufs */
1931 for (m = m0; m != NULL; m = m->m_next) {
1932 /*
1933 * Process all of the data in a single mbuf.
1934 */
1935 p = mtod(m, u_int8_t *);
1936 len = m->m_len;
1937 #ifdef DIAGNOSTIC
1938 lim = p + len;
1939 #endif
1940
1941 while (len > 0) {
1942 if (leftover) {
1943 /*
1944 * Data left over (from mbuf or realignment).
1945 * Buffer the next byte, and write it and
1946 * the leftover data out.
1947 */
1948 dbuf |= *p++ << 8;
1949 len--;
1950 if (sc->sc_memorymode) {
1951 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
1952 frameoff += 2;
1953 }
1954 else {
1955 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
1956 }
1957 leftover = 0;
1958 } else if ((long) p & 1) {
1959 /*
1960 * Misaligned data. Buffer the next byte.
1961 */
1962 dbuf = *p++;
1963 len--;
1964 leftover = 1;
1965 } else {
1966 /*
1967 * Aligned data. This is the case we like.
1968 *
1969 * Write-region out as much as we can, then
1970 * buffer the remaining byte (if any).
1971 */
1972 leftover = len & 1;
1973 len &= ~1;
1974 if (sc->sc_memorymode) {
1975 bus_space_write_region_2(sc->sc_memt, sc->sc_memh, frameoff,
1976 (u_int16_t *) p, len >> 1);
1977 frameoff += len;
1978 }
1979 else {
1980 bus_space_write_multi_2(sc->sc_iot, sc->sc_ioh,
1981 PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
1982 }
1983 p += len;
1984
1985 if (leftover)
1986 dbuf = *p++;
1987 len = 0;
1988 }
1989 }
1990 if (len < 0)
1991 panic("cs_copy_tx_frame: negative len");
1992 #ifdef DIAGNOSTIC
1993 if (p != lim)
1994 panic("cs_copy_tx_frame: p != lim");
1995 #endif
1996 }
1997 if (leftover) {
1998 if (sc->sc_memorymode) {
1999 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2000 }
2001 else {
2002 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2003 }
2004 }
2005 }
2006
2007 static int
2008 cs_enable(sc)
2009 struct cs_softc *sc;
2010 {
2011 if (!CS_IS_ENABLED(sc) && sc->sc_enable) {
2012 int error;
2013
2014 error = (*sc->sc_enable)(sc);
2015 if (error)
2016 return error;
2017
2018 sc->sc_cfgflags |= CFGFLG_ENABLED;
2019 }
2020
2021 return 0;
2022 }
2023
2024 static void
2025 cs_disable(sc)
2026 struct cs_softc *sc;
2027 {
2028 if (CS_IS_ENABLED(sc) && sc->sc_disable) {
2029 (*sc->sc_disable)(sc);
2030
2031 sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2032 }
2033 }
2034
2035 static void
2036 cs_stop(ifp, disable)
2037 struct ifnet *ifp;
2038 int disable;
2039 {
2040 struct cs_softc *sc = ifp->if_softc;
2041
2042 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2043 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2044 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2045 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2046
2047 if (disable) {
2048 cs_disable(sc);
2049 }
2050
2051 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2052 }
2053
2054 int
2055 cs_activate(self, act)
2056 struct device *self;
2057 enum devact act;
2058 {
2059 struct cs_softc *sc = (void *)self;
2060 int s, error = 0;
2061
2062 s = splnet();
2063 switch (act) {
2064 case DVACT_ACTIVATE:
2065 error = EOPNOTSUPP;
2066 break;
2067
2068 case DVACT_DEACTIVATE:
2069 if_deactivate(&sc->sc_ethercom.ec_if);
2070 break;
2071 }
2072 splx(s);
2073
2074 return error;
2075 }
2076
2077 static void
2078 cs_power(why, arg)
2079 int why;
2080 void *arg;
2081 {
2082 struct cs_softc *sc = arg;
2083 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2084 int s;
2085
2086 s = splnet();
2087 switch (why) {
2088 case PWR_STANDBY:
2089 case PWR_SUSPEND:
2090 cs_stop(ifp, 0);
2091 break;
2092 case PWR_RESUME:
2093 if (ifp->if_flags & IFF_UP) {
2094 cs_init(ifp);
2095 }
2096 break;
2097 case PWR_SOFTSUSPEND:
2098 case PWR_SOFTSTANDBY:
2099 case PWR_SOFTRESUME:
2100 break;
2101 }
2102 splx(s);
2103 }
2104