cs89x0.c revision 1.30.4.2 1 /* $NetBSD: cs89x0.c,v 1.30.4.2 2011/03/05 20:53:14 rmind Exp $ */
2
3 /*
4 * Copyright (c) 2004 Christopher Gilbert
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright 1997
31 * Digital Equipment Corporation. All rights reserved.
32 *
33 * This software is furnished under license and may be used and
34 * copied only in accordance with the following terms and conditions.
35 * Subject to these conditions, you may download, copy, install,
36 * use, modify and distribute this software in source and/or binary
37 * form. No title or ownership is transferred hereby.
38 *
39 * 1) Any source code used, modified or distributed must reproduce
40 * and retain this copyright notice and list of conditions as
41 * they appear in the source file.
42 *
43 * 2) No right is granted to use any trade name, trademark, or logo of
44 * Digital Equipment Corporation. Neither the "Digital Equipment
45 * Corporation" name nor any trademark or logo of Digital Equipment
46 * Corporation may be used to endorse or promote products derived
47 * from this software without the prior written permission of
48 * Digital Equipment Corporation.
49 *
50 * 3) This software is provided "AS-IS" and any express or implied
51 * warranties, including but not limited to, any implied warranties
52 * of merchantability, fitness for a particular purpose, or
53 * non-infringement are disclaimed. In no event shall DIGITAL be
54 * liable for any damages whatsoever, and in particular, DIGITAL
55 * shall not be liable for special, indirect, consequential, or
56 * incidental damages or damages for lost profits, loss of
57 * revenue or loss of use, whether such damages arise in contract,
58 * negligence, tort, under statute, in equity, at law or otherwise,
59 * even if advised of the possibility of such damage.
60 */
61
62 /*
63 **++
64 ** FACILITY
65 **
66 ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 ** ABSTRACT
69 **
70 ** This module provides standard ethernet access for INET protocols
71 ** only.
72 **
73 ** AUTHORS
74 **
75 ** Peter Dettori SEA - Software Engineering.
76 **
77 ** CREATION DATE:
78 **
79 ** 13-Feb-1997.
80 **
81 ** MODIFICATION HISTORY (Digital):
82 **
83 ** Revision 1.27 1998/01/20 17:59:40 cgd
84 ** update for moved headers
85 **
86 ** Revision 1.26 1998/01/12 19:29:36 cgd
87 ** use arm32/isa versions of isadma code.
88 **
89 ** Revision 1.25 1997/12/12 01:35:27 cgd
90 ** convert to use new arp code (from Brini)
91 **
92 ** Revision 1.24 1997/12/10 22:31:56 cgd
93 ** trim some fat (get rid of ability to explicitly supply enet addr, since
94 ** it was never used and added a bunch of code which really doesn't belong in
95 ** an enet driver), and clean up slightly.
96 **
97 ** Revision 1.23 1997/10/06 16:42:12 cgd
98 ** copyright notices
99 **
100 ** Revision 1.22 1997/06/20 19:38:01 chaiken
101 ** fixes some smartcard problems
102 **
103 ** Revision 1.21 1997/06/10 02:56:20 grohn
104 ** Added call to ledNetActive
105 **
106 ** Revision 1.20 1997/06/05 00:47:06 dettori
107 ** Changed cs_process_rx_dma to reset and re-initialise the
108 ** ethernet chip when DMA gets out of sync, or mbufs
109 ** can't be allocated.
110 **
111 ** Revision 1.19 1997/06/03 03:09:58 dettori
112 ** Turn off sc_txbusy flag when a transmit underrun
113 ** occurs.
114 **
115 ** Revision 1.18 1997/06/02 00:04:35 dettori
116 ** redefined the transmit table to get around the nfs_timer bug while we are
117 ** looking into it further.
118 **
119 ** Also changed interrupts from EDGE to LEVEL.
120 **
121 ** Revision 1.17 1997/05/27 23:31:01 dettori
122 ** Pulled out changes to DMAMODE defines.
123 **
124 ** Revision 1.16 1997/05/23 04:25:16 cgd
125 ** reformat log so it fits in 80cols
126 **
127 ** Revision 1.15 1997/05/23 04:22:18 cgd
128 ** remove the existing copyright notice (which Peter Dettori indicated
129 ** was incorrect, copied from an existing NetBSD file only so that the
130 ** file would have a copyright notice on it, and which he'd intended to
131 ** replace). Replace it with a Digital copyright notice, cloned from
132 ** ess.c. It's not really correct either (it indicates that the source
133 ** is Digital confidential!), but is better than nothing and more
134 ** correct than what was there before.
135 **
136 ** Revision 1.14 1997/05/23 04:12:50 cgd
137 ** use an adaptive transmit start algorithm: start by telling the chip
138 ** to start transmitting after 381 bytes have been fed to it. if that
139 ** gets transmit underruns, ramp down to 1021 bytes then "whole
140 ** packet." If successful at a given level for a while, try the next
141 ** more agressive level. This code doesn't ever try to start
142 ** transmitting after 5 bytes have been sent to the NIC, because
143 ** that underruns rather regularly. The back-off and ramp-up mechanism
144 ** could probably be tuned a little bit, but this works well enough to
145 ** support > 1MB/s transmit rates on a clear ethernet (which is about
146 ** 20-25% better than the driver had previously been getting).
147 **
148 ** Revision 1.13 1997/05/22 21:06:54 cgd
149 ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
150 ** casting from u_int8_t * to u_int16_t * without worrying about alignment
151 ** issues. This would cause bogus data to be spit out for mbufs with
152 ** misaligned data. For instance, it caused the following bits to appear
153 ** on the wire:
154 ** ... etBND 1S2C .SHA(K) R ...
155 ** 11112222333344445555
156 ** which should have appeared as:
157 ** ... NetBSD 1.2C (SHARK) ...
158 ** 11112222333344445555
159 ** Note the apparent 'rotate' of the bytes in the word, which was due to
160 ** incorrect unaligned accesses. This data corruption was the cause of
161 ** incoming telnet/rlogin hangs.
162 **
163 ** Revision 1.12 1997/05/22 01:55:32 cgd
164 ** reformat log so it fits in 80cols
165 **
166 ** Revision 1.11 1997/05/22 01:50:27 cgd
167 ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 ** so packets aimed at other hosts don't get sent to ether_input().
169 ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 ** you can easily tell (`strings`) what version of the driver is in your
171 ** kernel binary.
172 ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
173 ** safe, and not really a performance win anyway. (It was only used when
174 ** setting up the multicast logical address filter, which is an
175 ** infrequent event. It could have been used in the IFF_PROMISCUOUS
176 ** address check above, but the benefit of it vs. memcmp would be
177 ** inconsequential, there.) Use memcmp() instead.
178 ** * restructure csStartOuput to avoid the following bugs in the case where
179 ** txWait was being set:
180 ** * it would accidentally drop the outgoing packet if told to wait
181 ** but the outgoing packet queue was empty.
182 ** * it would bpf_mtap() the outgoing packet multiple times (once for
183 ** each time it was told to wait), and would also recalculate
184 ** the length of the outgoing packet each time it was told to
185 ** wait.
186 ** While there, rename txWait to txLoop, since with the new structure of
187 ** the code, the latter name makes more sense.
188 **
189 ** Revision 1.10 1997/05/19 02:03:20 cgd
190 ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
191 ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
193 ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 ** as before.
195 **
196 ** Revision 1.9 1997/05/19 01:45:37 cgd
197 ** create a new function, cs_ether_input(), which does received-packet
198 ** BPF and ether_input processing. This code used to be in three places,
199 ** and centralizing it will make adding IFF_PROMISC support much easier.
200 ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 ** do copies with bus_space_write_region_2(). It's more correct, and
202 ** potentially more efficient. That function needs to be gutted (to
203 ** deal properly with alignment issues, which it currently does wrong),
204 ** however, and the change doesn't gain much, so there's no point in
205 ** enabling it now.
206 **
207 ** Revision 1.8 1997/05/19 01:17:10 cgd
208 ** fix a comment re: the setting of the TxConfig register. Clean up
209 ** interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.30.4.2 2011/03/05 20:53:14 rmind Exp $");
216
217 #include "opt_inet.h"
218
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228
229 #include "rnd.h"
230 #if NRND > 0
231 #include <sys/rnd.h>
232 #endif
233
234 #include <net/if.h>
235 #include <net/if_ether.h>
236 #include <net/if_media.h>
237 #ifdef INET
238 #include <netinet/in.h>
239 #include <netinet/if_inarp.h>
240 #endif
241
242 #include <net/bpf.h>
243 #include <net/bpfdesc.h>
244
245 #include <sys/bus.h>
246 #include <sys/intr.h>
247
248 #include <dev/ic/cs89x0reg.h>
249 #include <dev/ic/cs89x0var.h>
250
251 #ifdef SHARK
252 #include <shark/shark/sequoia.h>
253 #endif
254
255 /*
256 * MACRO DEFINITIONS
257 */
258 #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
259
260 /*
261 * FUNCTION PROTOTYPES
262 */
263 static void cs_get_default_media(struct cs_softc *);
264 static int cs_get_params(struct cs_softc *);
265 static int cs_get_enaddr(struct cs_softc *);
266 static int cs_reset_chip(struct cs_softc *);
267 static void cs_reset(struct cs_softc *);
268 static int cs_ioctl(struct ifnet *, u_long, void *);
269 static void cs_initChip(struct cs_softc *);
270 static void cs_buffer_event(struct cs_softc *, u_int16_t);
271 static void cs_transmit_event(struct cs_softc *, u_int16_t);
272 static void cs_receive_event(struct cs_softc *, u_int16_t);
273 static void cs_process_receive(struct cs_softc *);
274 static void cs_process_rx_early(struct cs_softc *);
275 static void cs_start_output(struct ifnet *);
276 static void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
277 static void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
278 static u_int16_t cs_hash_index(char *);
279 static void cs_counter_event(struct cs_softc *, u_int16_t);
280
281 static int cs_mediachange(struct ifnet *);
282 static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
283
284 static bool cs_shutdown(device_t, int);
285 static int cs_enable(struct cs_softc *);
286 static void cs_disable(struct cs_softc *);
287 static void cs_stop(struct ifnet *, int);
288 static int cs_scan_eeprom(struct cs_softc *);
289 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
290
291
292 /*
293 * GLOBAL DECLARATIONS
294 */
295
296 /*
297 * Xmit-early table.
298 *
299 * To get better performance, we tell the chip to start packet
300 * transmission before the whole packet is copied to the chip.
301 * However, this can fail under load. When it fails, we back off
302 * to a safer setting for a little while.
303 *
304 * txcmd is the value of txcmd used to indicate when to start transmission.
305 * better is the next 'better' state in the table.
306 * better_count is the number of output packets before transition to the
307 * better state.
308 * worse is the next 'worse' state in the table.
309 *
310 * Transition to the next worse state happens automatically when a
311 * transmittion underrun occurs.
312 */
313 struct cs_xmit_early {
314 u_int16_t txcmd;
315 int better;
316 int better_count;
317 int worse;
318 } cs_xmit_early_table[3] = {
319 { TX_CMD_START_381, 0, INT_MAX, 1, },
320 { TX_CMD_START_1021, 0, 50000, 2, },
321 { TX_CMD_START_ALL, 1, 5000, 2, },
322 };
323
324 int cs_default_media[] = {
325 IFM_ETHER|IFM_10_2,
326 IFM_ETHER|IFM_10_5,
327 IFM_ETHER|IFM_10_T,
328 IFM_ETHER|IFM_10_T|IFM_FDX,
329 };
330 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
331
332 int
333 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
334 int nmedia, int defmedia)
335 {
336 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
337 const char *chipname, *medname;
338 u_int16_t reg;
339 int i;
340
341 /* Start out in IO mode */
342 sc->sc_memorymode = FALSE;
343
344 /* make sure we're right */
345 for (i = 0; i < 10000; i++) {
346 reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
347 if (reg == EISA_NUM_CRYSTAL) {
348 break;
349 }
350 }
351 if (i == 10000) {
352 aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
353 return 1; /* XXX should panic? */
354 }
355
356 reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
357 sc->sc_prodid = reg & PROD_ID_MASK;
358 sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
359
360 switch (sc->sc_prodid) {
361 case PROD_ID_CS8900:
362 chipname = "CS8900";
363 break;
364 case PROD_ID_CS8920:
365 chipname = "CS8920";
366 break;
367 case PROD_ID_CS8920M:
368 chipname = "CS8920M";
369 break;
370 default:
371 panic("cs_attach: impossible");
372 }
373
374 /*
375 * the first thing to do is check that the mbuf cluster size is
376 * greater than the MTU for an ethernet frame. The code depends on
377 * this and to port this to a OS where this was not the case would
378 * not be straightforward.
379 *
380 * we need 1 byte spare because our
381 * packet read loop can overrun.
382 * and we may need pad bytes to align ip header.
383 */
384 if (MCLBYTES < ETHER_MAX_LEN + 1 +
385 ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
386 printf("%s: MCLBYTES too small for Ethernet frame\n",
387 device_xname(sc->sc_dev));
388 return 1;
389 }
390
391 /* Start out not transmitting */
392 sc->sc_txbusy = FALSE;
393
394 /* Set up early transmit threshhold */
395 sc->sc_xe_ent = 0;
396 sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
397
398 /* Initialize ifnet structure. */
399 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
400 ifp->if_softc = sc;
401 ifp->if_start = cs_start_output;
402 ifp->if_init = cs_init;
403 ifp->if_ioctl = cs_ioctl;
404 ifp->if_stop = cs_stop;
405 ifp->if_watchdog = NULL; /* no watchdog at this stage */
406 ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
407 IFF_BROADCAST | IFF_MULTICAST;
408 IFQ_SET_READY(&ifp->if_snd);
409
410 /* Initialize ifmedia structures. */
411 ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
412
413 if (media != NULL) {
414 for (i = 0; i < nmedia; i++)
415 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
416 ifmedia_set(&sc->sc_media, defmedia);
417 } else {
418 for (i = 0; i < cs_default_nmedia; i++)
419 ifmedia_add(&sc->sc_media, cs_default_media[i],
420 0, NULL);
421 cs_get_default_media(sc);
422 }
423
424 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
425 if (cs_scan_eeprom(sc) == CS_ERROR) {
426 /* failed to scan the eeprom, pretend there isn't an eeprom */
427 aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
428 sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
429 }
430 }
431
432 if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
433 /* Get parameters from the EEPROM */
434 if (cs_get_params(sc) == CS_ERROR) {
435 aprint_error_dev(sc->sc_dev,
436 "unable to get settings from EEPROM\n");
437 return 1;
438 }
439 }
440
441 if (enaddr != NULL)
442 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
443 else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
444 /* Get and store the Ethernet address */
445 if (cs_get_enaddr(sc) == CS_ERROR) {
446 aprint_error_dev(sc->sc_dev,
447 "unable to read Ethernet address\n");
448 return 1;
449 }
450 } else {
451 #if 1
452 int j;
453 uint v;
454
455 for (j = 0; j < 6; j += 2) {
456 v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
457 sc->sc_enaddr[j + 0] = v;
458 sc->sc_enaddr[j + 1] = v >> 8;
459 }
460 #else
461 printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
462 return 1;
463 #endif
464 }
465
466 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
467 case IFM_10_2:
468 medname = "BNC";
469 break;
470 case IFM_10_5:
471 medname = "AUI";
472 break;
473 case IFM_10_T:
474 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
475 medname = "UTP <full-duplex>";
476 else
477 medname = "UTP";
478 break;
479 default:
480 panic("cs_attach: impossible");
481 }
482 printf("%s: %s rev. %c, address %s, media %s\n",
483 device_xname(sc->sc_dev),
484 chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
485 medname);
486
487 if (sc->sc_dma_attach)
488 (*sc->sc_dma_attach)(sc);
489
490 /* Attach the interface. */
491 if_attach(ifp);
492 ether_ifattach(ifp, sc->sc_enaddr);
493
494 #if NRND > 0
495 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
496 RND_TYPE_NET, 0);
497 #endif
498 sc->sc_cfgflags |= CFGFLG_ATTACHED;
499
500 if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
501 pmf_class_network_register(sc->sc_dev, ifp);
502 else
503 aprint_error_dev(sc->sc_dev,
504 "couldn't establish power handler\n");
505
506 /* Reset the chip */
507 if (cs_reset_chip(sc) == CS_ERROR) {
508 aprint_error_dev(sc->sc_dev, "reset failed\n");
509 cs_detach(sc);
510 return 1;
511 }
512
513 return 0;
514 }
515
516 int
517 cs_detach(struct cs_softc *sc)
518 {
519 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
520
521 if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
522 #if NRND > 0
523 rnd_detach_source(&sc->rnd_source);
524 #endif
525 ether_ifdetach(ifp);
526 if_detach(ifp);
527 sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
528 }
529
530 #if 0
531 /*
532 * XXX not necessary
533 */
534 if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
535 isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
536 isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
537 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
538 sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
539 }
540 #endif
541
542 pmf_device_deregister(sc->sc_dev);
543
544 return 0;
545 }
546
547 bool
548 cs_shutdown(device_t self, int howto)
549 {
550 struct cs_softc *sc;
551
552 sc = device_private(self);
553 cs_reset(sc);
554
555 return true;
556 }
557
558 void
559 cs_get_default_media(struct cs_softc *sc)
560 {
561 u_int16_t adp_cfg, xmit_ctl;
562
563 if (cs_verify_eeprom(sc) == CS_ERROR) {
564 aprint_error_dev(sc->sc_dev,
565 "cs_get_default_media: EEPROM missing or bad\n");
566 goto fakeit;
567 }
568
569 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
570 aprint_error_dev(sc->sc_dev,
571 "unable to read adapter config from EEPROM\n");
572 goto fakeit;
573 }
574
575 if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
576 aprint_error_dev(sc->sc_dev,
577 "unable to read transmit control from EEPROM\n");
578 goto fakeit;
579 }
580
581 switch (adp_cfg & ADPTR_CFG_MEDIA) {
582 case ADPTR_CFG_AUI:
583 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
584 break;
585 case ADPTR_CFG_10BASE2:
586 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
587 break;
588 case ADPTR_CFG_10BASET:
589 default:
590 if (xmit_ctl & XMIT_CTL_FDX)
591 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
592 else
593 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
594 break;
595 }
596 return;
597
598 fakeit:
599 aprint_error_dev(sc->sc_dev,
600 "WARNING: default media setting may be inaccurate\n");
601 /* XXX Arbitrary... */
602 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
603 }
604
605 /*
606 * cs_scan_eeprom
607 *
608 * Attempt to take a complete copy of the eeprom into main memory.
609 * this will allow faster parsing of the eeprom data.
610 *
611 * Only tested against a 8920M's eeprom, but the data sheet for the
612 * 8920A indicates that is uses the same layout.
613 */
614 int
615 cs_scan_eeprom(struct cs_softc *sc)
616 {
617 u_int16_t result;
618 int i;
619 int eeprom_size;
620 u_int8_t checksum = 0;
621
622 if (cs_verify_eeprom(sc) == CS_ERROR) {
623 aprint_error_dev(sc->sc_dev,
624 "cs_scan_params: EEPROM missing or bad\n");
625 return (CS_ERROR);
626 }
627
628 /*
629 * read the 0th word from the eeprom, it will tell us the length
630 * and if the eeprom is valid
631 */
632 cs_read_eeprom(sc, 0, &result);
633
634 /* check the eeprom signature */
635 if ((result & 0xE000) != 0xA000) {
636 /* empty eeprom */
637 return (CS_ERROR);
638 }
639
640 /*
641 * take the eeprom size (note the read value doesn't include the header
642 * word)
643 */
644 eeprom_size = (result & 0xff) + 2;
645
646 sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
647 if (sc->eeprom_data == NULL) {
648 /* no memory, treat this as if there's no eeprom */
649 return (CS_ERROR);
650 }
651
652 sc->eeprom_size = eeprom_size;
653
654 /* read the eeprom into the buffer, also calculate the checksum */
655 for (i = 0; i < (eeprom_size >> 1); i++) {
656 cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
657 checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
658 checksum += (sc->eeprom_data[i] & 0x00ff);
659 }
660
661 /*
662 * validate checksum calculation, the sum of all the bytes should be 0,
663 * as the high byte of the last word is the 2's complement of the
664 * sum to that point.
665 */
666 if (checksum != 0) {
667 aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
668 return (CS_ERROR);
669 }
670
671 return (CS_OK);
672 }
673
674 static int
675 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
676 {
677 int x, maxword;
678
679 /* Check that we have eeprom data */
680 if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
681 return (CS_ERROR);
682
683 /*
684 * We only want to read the data words, the last word contains the
685 * checksum
686 */
687 maxword = (sc->eeprom_size - 2) >> 1;
688
689 /* start 1 word in, as the first word is the length and signature */
690 x = 1;
691
692 while ( x < (maxword)) {
693 u_int16_t header;
694 int group_size;
695 int offset;
696 int offset_max;
697
698 /* read in the group header word */
699 header = sc->eeprom_data[x];
700 x++; /* skip group header */
701
702 /*
703 * size of group in words is in the top 4 bits, note that it
704 * is one less than the number of words
705 */
706 group_size = header & 0xF000;
707
708 /*
709 * CS8900 Data sheet says this should be 0x01ff,
710 * but my cs8920 eeprom has higher offsets,
711 * perhaps the 8920 allows higher offsets, otherwise
712 * it's writing to places that it shouldn't
713 */
714 /* work out the offsets this group covers */
715 offset = header & 0x0FFF;
716 offset_max = offset + (group_size << 1);
717
718 /* check if the pkgpg we're after is in this group */
719 if ((offset <= pktpg) && (pktpg <= offset_max)) {
720 /* the pkgpg value we want is in here */
721 int eeprom_location;
722
723 eeprom_location = ((pktpg - offset) >> 1) ;
724
725 *pValue = sc->eeprom_data[x + eeprom_location];
726 return (CS_OK);
727 } else {
728 /* skip this group (+ 1 for first entry) */
729 x += group_size + 1;
730 }
731 }
732
733 /*
734 * if we've fallen out here then we don't have a value in the EEPROM
735 * for this pktpg so return an error
736 */
737 return (CS_ERROR);
738 }
739
740 int
741 cs_get_params(struct cs_softc *sc)
742 {
743 u_int16_t isaConfig;
744 u_int16_t adapterConfig;
745
746 if (cs_verify_eeprom(sc) == CS_ERROR) {
747 aprint_error_dev(sc->sc_dev,
748 "cs_get_params: EEPROM missing or bad\n");
749 return (CS_ERROR);
750 }
751
752 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
753 /* Get ISA configuration from the EEPROM */
754 if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
755 == CS_ERROR) {
756 /* eeprom doesn't have this value, use data sheet default */
757 isaConfig = 0x0017;
758 }
759
760 /* Get adapter configuration from the EEPROM */
761 if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
762 == CS_ERROR) {
763 /* eeprom doesn't have this value, use data sheet default */
764 adapterConfig = 0x0015;
765 }
766
767 /* Copy the USE_SA flag */
768 if (isaConfig & BUS_CTL_USE_SA)
769 sc->sc_cfgflags |= CFGFLG_USE_SA;
770
771 /* Copy the IO Channel Ready flag */
772 if (isaConfig & BUS_CTL_IOCHRDY)
773 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
774
775 /* Copy the DC/DC Polarity flag */
776 if (adapterConfig & SELF_CTL_HCB1)
777 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
778 } else {
779 /* Get ISA configuration from the EEPROM */
780 if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
781 goto eeprom_bad;
782
783 /* Get adapter configuration from the EEPROM */
784 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
785 goto eeprom_bad;
786
787 /* Copy the USE_SA flag */
788 if (isaConfig & ISA_CFG_USE_SA)
789 sc->sc_cfgflags |= CFGFLG_USE_SA;
790
791 /* Copy the IO Channel Ready flag */
792 if (isaConfig & ISA_CFG_IOCHRDY)
793 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
794
795 /* Copy the DC/DC Polarity flag */
796 if (adapterConfig & ADPTR_CFG_DCDC_POL)
797 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
798 }
799
800 return (CS_OK);
801 eeprom_bad:
802 aprint_error_dev(sc->sc_dev,
803 "cs_get_params: unable to read from EEPROM\n");
804 return (CS_ERROR);
805 }
806
807 int
808 cs_get_enaddr(struct cs_softc *sc)
809 {
810 uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
811 int i;
812
813 if (cs_verify_eeprom(sc) == CS_ERROR) {
814 aprint_error_dev(sc->sc_dev,
815 "cs_get_enaddr: EEPROM missing or bad\n");
816 return (CS_ERROR);
817 }
818
819 /* Get Ethernet address from the EEPROM */
820 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
821 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
822 == CS_ERROR)
823 goto eeprom_bad;
824 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
825 == CS_ERROR)
826 goto eeprom_bad;
827 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
828 == CS_ERROR)
829 goto eeprom_bad;
830 } else {
831 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
832 goto eeprom_bad;
833 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
834 goto eeprom_bad;
835 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
836 goto eeprom_bad;
837 }
838
839 for (i = 0; i < __arraycount(myea); i++) {
840 sc->sc_enaddr[i * 2 + 0] = myea[i];
841 sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
842 }
843
844 return (CS_OK);
845
846 eeprom_bad:
847 aprint_error_dev(sc->sc_dev,
848 "cs_get_enaddr: unable to read from EEPROM\n");
849 return (CS_ERROR);
850 }
851
852 int
853 cs_reset_chip(struct cs_softc *sc)
854 {
855 int intState;
856 int x;
857
858 /* Disable interrupts at the CPU so reset command is atomic */
859 intState = splnet();
860
861 /*
862 * We are now resetting the chip
863 *
864 * A spurious interrupt is generated by the chip when it is reset. This
865 * variable informs the interrupt handler to ignore this interrupt.
866 */
867 sc->sc_resetting = TRUE;
868
869 /* Issue a reset command to the chip */
870 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
871
872 /* Re-enable interrupts at the CPU */
873 splx(intState);
874
875 /* The chip is always in IO mode after a reset */
876 sc->sc_memorymode = FALSE;
877
878 /* If transmission was in progress, it is not now */
879 sc->sc_txbusy = FALSE;
880
881 /*
882 * there was a delay(125); here, but it seems uneccesary 125 usec is
883 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
884 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
885 * should be sufficient.
886 */
887
888 /* Transition SBHE to switch chip from 8-bit to 16-bit */
889 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
890 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
891 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
892 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
893
894 /* Wait until the EEPROM is not busy */
895 for (x = 0; x < MAXLOOP; x++) {
896 if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
897 break;
898 }
899
900 if (x == MAXLOOP)
901 return CS_ERROR;
902
903 /* Wait until initialization is done */
904 for (x = 0; x < MAXLOOP; x++) {
905 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
906 break;
907 }
908
909 if (x == MAXLOOP)
910 return CS_ERROR;
911
912 /* Reset is no longer in progress */
913 sc->sc_resetting = FALSE;
914
915 return CS_OK;
916 }
917
918 int
919 cs_verify_eeprom(struct cs_softc *sc)
920 {
921 u_int16_t self_status;
922
923 /* Verify that the EEPROM is present and OK */
924 self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
925 if (((self_status & SELF_ST_EEP_PRES) &&
926 (self_status & SELF_ST_EEP_OK)) == 0)
927 return (CS_ERROR);
928
929 return (CS_OK);
930 }
931
932 int
933 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
934 {
935 int x;
936
937 /* Ensure that the EEPROM is not busy */
938 for (x = 0; x < MAXLOOP; x++) {
939 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
940 SELF_ST_SI_BUSY))
941 break;
942 }
943
944 if (x == MAXLOOP)
945 return (CS_ERROR);
946
947 /* Issue the command to read the offset within the EEPROM */
948 CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
949 offset | EEPROM_CMD_READ);
950
951 /* Wait until the command is completed */
952 for (x = 0; x < MAXLOOP; x++) {
953 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
954 SELF_ST_SI_BUSY))
955 break;
956 }
957
958 if (x == MAXLOOP)
959 return (CS_ERROR);
960
961 /* Get the EEPROM data from the EEPROM Data register */
962 *pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
963
964 return (CS_OK);
965 }
966
967 void
968 cs_initChip(struct cs_softc *sc)
969 {
970 u_int16_t busCtl;
971 u_int16_t selfCtl;
972 u_int16_t v;
973 u_int16_t isaId;
974 int i;
975 int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
976
977 /* Disable reception and transmission of frames */
978 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
979 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
980 ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
981
982 /* Disable interrupt at the chip */
983 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
984 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
985
986 /* If IOCHRDY is enabled then clear the bit in the busCtl register */
987 busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
988 if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
989 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
990 busCtl & ~BUS_CTL_IOCHRDY);
991 } else {
992 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
993 busCtl | BUS_CTL_IOCHRDY);
994 }
995
996 /* Set the Line Control register to match the media type */
997 if (media == IFM_10_T)
998 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
999 else
1000 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
1001
1002 /*
1003 * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
1004 * enable the DC/DC converter
1005 */
1006 selfCtl = SELF_CTL_HC1E;
1007
1008 /* If the media type is 10Base2 */
1009 if (media == IFM_10_2) {
1010 /*
1011 * Enable the DC/DC converter if it has a low enable.
1012 */
1013 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1014 /*
1015 * Set the HCB1 bit, which causes the HC1 pin to go
1016 * low.
1017 */
1018 selfCtl |= SELF_CTL_HCB1;
1019 } else { /* Media type is 10BaseT or AUI */
1020 /*
1021 * Disable the DC/DC converter if it has a high enable.
1022 */
1023 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1024 /*
1025 * Set the HCB1 bit, which causes the HC1 pin to go
1026 * low.
1027 */
1028 selfCtl |= SELF_CTL_HCB1;
1029 }
1030 }
1031 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1032
1033 /* enable normal link pulse */
1034 if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1035 CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1036
1037 /* Enable full-duplex, if appropriate */
1038 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1039 CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1040
1041 /* RX_CTL set in cs_set_ladr_filt(), below */
1042
1043 /* enable all transmission interrupts */
1044 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1045
1046 /* Accept all receive interrupts */
1047 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1048
1049 /*
1050 * Configure Operational Modes
1051 *
1052 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1053 * a better way to do it because the card has a counter which can be
1054 * read to update the RX_MISS counter. This saves many interrupts.
1055 *
1056 * I have turned on the tx and rx overflow interrupts to counter using
1057 * the receive miss interrupt. This is a better estimate of errors
1058 * and requires lower system overhead.
1059 */
1060 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1061 BUF_CFG_RX_DMA_IE);
1062
1063 if (sc->sc_dma_chipinit)
1064 (*sc->sc_dma_chipinit)(sc);
1065
1066 /* If memory mode is enabled */
1067 if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1068 /* If external logic is present for address decoding */
1069 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1070 /*
1071 * Program the external logic to decode address bits
1072 * SA20-SA23
1073 */
1074 CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1075 ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1076 EEPROM_CMD_ELSEL);
1077 }
1078
1079 /*
1080 * Write the packet page base physical address to the memory
1081 * base register.
1082 */
1083 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1084 sc->sc_pktpgaddr & 0xFFFF);
1085 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1086 sc->sc_pktpgaddr >> 16);
1087 busCtl = BUS_CTL_MEM_MODE;
1088
1089 /* tell the chip to read the addresses off the SA pins */
1090 if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1091 busCtl |= BUS_CTL_USE_SA;
1092 }
1093 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1094 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1095
1096 /* We are in memory mode now! */
1097 sc->sc_memorymode = TRUE;
1098
1099 /*
1100 * wait here (10ms) for the chip to swap over. this is the
1101 * maximum time that this could take.
1102 */
1103 delay(10000);
1104
1105 /* Verify that we can read from the chip */
1106 isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1107
1108 /*
1109 * As a last minute sanity check before actually using mapped
1110 * memory we verify that we can read the isa number from the
1111 * chip in memory mode.
1112 */
1113 if (isaId != EISA_NUM_CRYSTAL) {
1114 aprint_error_dev(sc->sc_dev,
1115 "failed to enable memory mode\n");
1116 sc->sc_memorymode = FALSE;
1117 } else {
1118 /*
1119 * we are in memory mode so if we aren't using DMA,
1120 * then program the chip to interrupt early.
1121 */
1122 if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1123 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1124 BUF_CFG_RX_DEST_IE |
1125 BUF_CFG_RX_MISS_OVER_IE |
1126 BUF_CFG_TX_COL_OVER_IE);
1127 }
1128 }
1129
1130 }
1131
1132 /* Put Ethernet address into the Individual Address register */
1133 for (i = 0; i < 6; i += 2) {
1134 v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1135 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1136 }
1137
1138 if (sc->sc_irq != -1) {
1139 /* Set the interrupt level in the chip */
1140 if (sc->sc_prodid == PROD_ID_CS8900) {
1141 if (sc->sc_irq == 5) {
1142 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1143 } else {
1144 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1145 }
1146 }
1147 else { /* CS8920 */
1148 CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1149 }
1150 }
1151
1152 /* write the multicast mask to the address filter register */
1153 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1154
1155 /* Enable reception and transmission of frames */
1156 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1157 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1158 LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1159
1160 /* Enable interrupt at the chip */
1161 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1162 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1163 }
1164
1165 int
1166 cs_init(struct ifnet *ifp)
1167 {
1168 int intState;
1169 int error = CS_OK;
1170 struct cs_softc *sc = ifp->if_softc;
1171
1172 if (cs_enable(sc))
1173 goto out;
1174
1175 cs_stop(ifp, 0);
1176
1177 intState = splnet();
1178
1179 #if 0
1180 /* Mark the interface as down */
1181 sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1182 #endif
1183
1184 #ifdef CS_DEBUG
1185 /* Enable debugging */
1186 sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1187 #endif
1188
1189 /* Reset the chip */
1190 if ((error = cs_reset_chip(sc)) == CS_OK) {
1191 /* Initialize the chip */
1192 cs_initChip(sc);
1193
1194 /* Mark the interface as running */
1195 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1196 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1197 sc->sc_ethercom.ec_if.if_timer = 0;
1198
1199 /* Assume we have carrier until we are told otherwise. */
1200 sc->sc_carrier = 1;
1201 } else {
1202 aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1203 }
1204
1205 splx(intState);
1206 out:
1207 if (error == CS_OK)
1208 return 0;
1209 return EIO;
1210 }
1211
1212 void
1213 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1214 {
1215 struct ifnet *ifp = &ec->ec_if;
1216 struct ether_multi *enm;
1217 struct ether_multistep step;
1218 u_int16_t af[4];
1219 u_int16_t port, mask, index;
1220
1221 /*
1222 * Set up multicast address filter by passing all multicast addresses
1223 * through a crc generator, and then using the high order 6 bits as an
1224 * index into the 64 bit logical address filter. The high order bit
1225 * selects the word, while the rest of the bits select the bit within
1226 * the word.
1227 */
1228 if (ifp->if_flags & IFF_PROMISC) {
1229 /* accept all valid frames. */
1230 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1231 RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1232 RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1233 ifp->if_flags |= IFF_ALLMULTI;
1234 return;
1235 }
1236
1237 /*
1238 * accept frames if a. crc valid, b. individual address match c.
1239 * broadcast address,and d. multicast addresses matched in the hash
1240 * filter
1241 */
1242 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1243 RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1244
1245
1246 /*
1247 * start off with all multicast flag clear, set it if we need to
1248 * later, otherwise we will leave it.
1249 */
1250 ifp->if_flags &= ~IFF_ALLMULTI;
1251 af[0] = af[1] = af[2] = af[3] = 0x0000;
1252
1253 /*
1254 * Loop through all the multicast addresses unless we get a range of
1255 * addresses, in which case we will just accept all packets.
1256 * Justification for this is given in the next comment.
1257 */
1258 ETHER_FIRST_MULTI(step, ec, enm);
1259 while (enm != NULL) {
1260 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1261 sizeof enm->enm_addrlo)) {
1262 /*
1263 * We must listen to a range of multicast addresses.
1264 * For now, just accept all multicasts, rather than
1265 * trying to set only those filter bits needed to match
1266 * the range. (At this time, the only use of address
1267 * ranges is for IP multicast routing, for which the
1268 * range is big enough to require all bits set.)
1269 */
1270 ifp->if_flags |= IFF_ALLMULTI;
1271 af[0] = af[1] = af[2] = af[3] = 0xffff;
1272 break;
1273 } else {
1274 /*
1275 * we have got an individual address so just set that
1276 * bit.
1277 */
1278 index = cs_hash_index(enm->enm_addrlo);
1279
1280 /* Set the bit the Logical address filter. */
1281 port = (u_int16_t) (index >> 4);
1282 mask = (u_int16_t) (1 << (index & 0xf));
1283 af[port] |= mask;
1284
1285 ETHER_NEXT_MULTI(step, enm);
1286 }
1287 }
1288
1289 /* now program the chip with the addresses */
1290 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1291 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1292 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1293 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1294 return;
1295 }
1296
1297 u_int16_t
1298 cs_hash_index(char *addr)
1299 {
1300 uint32_t crc;
1301 uint16_t hash_code;
1302
1303 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1304
1305 hash_code = crc >> 26;
1306 return (hash_code);
1307 }
1308
1309 void
1310 cs_reset(struct cs_softc *sc)
1311 {
1312
1313 /* Mark the interface as down */
1314 sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1315
1316 /* Reset the chip */
1317 cs_reset_chip(sc);
1318 }
1319
1320 int
1321 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1322 {
1323 struct cs_softc *sc = ifp->if_softc;
1324 struct ifreq *ifr = data;
1325 int state;
1326 int result;
1327
1328 state = splnet();
1329
1330 result = 0; /* only set if something goes wrong */
1331
1332 switch (cmd) {
1333 case SIOCGIFMEDIA:
1334 case SIOCSIFMEDIA:
1335 result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1336 break;
1337
1338 default:
1339 result = ether_ioctl(ifp, cmd, data);
1340 if (result == ENETRESET) {
1341 if (ifp->if_flags & IFF_RUNNING) {
1342 /*
1343 * Multicast list has changed. Set the
1344 * hardware filter accordingly.
1345 */
1346 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1347 }
1348 result = 0;
1349 }
1350 break;
1351 }
1352
1353 splx(state);
1354
1355 return result;
1356 }
1357
1358 int
1359 cs_mediachange(struct ifnet *ifp)
1360 {
1361
1362 /*
1363 * Current media is already set up. Just reset the interface
1364 * to let the new value take hold.
1365 */
1366 cs_init(ifp);
1367 return (0);
1368 }
1369
1370 void
1371 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1372 {
1373 struct cs_softc *sc = ifp->if_softc;
1374
1375 /*
1376 * The currently selected media is always the active media.
1377 */
1378 ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1379
1380 if (ifp->if_flags & IFF_UP) {
1381 /* Interface up, status is valid. */
1382 ifmr->ifm_status = IFM_AVALID |
1383 (sc->sc_carrier ? IFM_ACTIVE : 0);
1384 }
1385 else ifmr->ifm_status = 0;
1386 }
1387
1388 int
1389 cs_intr(void *arg)
1390 {
1391 struct cs_softc *sc = arg;
1392 u_int16_t Event;
1393 #if NRND > 0
1394 u_int16_t rndEvent;
1395 #endif
1396
1397 /*printf("cs_intr %p\n", sc);*/
1398 /* Ignore any interrupts that happen while the chip is being reset */
1399 if (sc->sc_resetting) {
1400 printf("%s: cs_intr: reset in progress\n",
1401 device_xname(sc->sc_dev));
1402 return 1;
1403 }
1404
1405 /* Read an event from the Interrupt Status Queue */
1406 if (sc->sc_memorymode)
1407 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1408 else
1409 Event = CS_READ_PORT(sc, PORT_ISQ);
1410
1411 if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1412 return 0; /* not ours */
1413
1414 #if NRND > 0
1415 rndEvent = Event;
1416 #endif
1417
1418 /* Process all the events in the Interrupt Status Queue */
1419 while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1420 /* Dispatch to an event handler based on the register number */
1421 switch (Event & REG_NUM_MASK) {
1422 case REG_NUM_RX_EVENT:
1423 cs_receive_event(sc, Event);
1424 break;
1425 case REG_NUM_TX_EVENT:
1426 cs_transmit_event(sc, Event);
1427 break;
1428 case REG_NUM_BUF_EVENT:
1429 cs_buffer_event(sc, Event);
1430 break;
1431 case REG_NUM_TX_COL:
1432 case REG_NUM_RX_MISS:
1433 cs_counter_event(sc, Event);
1434 break;
1435 default:
1436 printf("%s: unknown interrupt event 0x%x\n",
1437 device_xname(sc->sc_dev), Event);
1438 break;
1439 }
1440
1441 /* Read another event from the Interrupt Status Queue */
1442 if (sc->sc_memorymode)
1443 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1444 else
1445 Event = CS_READ_PORT(sc, PORT_ISQ);
1446 }
1447
1448 /* have handled the interrupt */
1449 #if NRND > 0
1450 rnd_add_uint32(&sc->rnd_source, rndEvent);
1451 #endif
1452 return 1;
1453 }
1454
1455 void
1456 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1457 {
1458 struct ifnet *ifp;
1459 u_int16_t errorCount;
1460
1461 ifp = &sc->sc_ethercom.ec_if;
1462
1463 switch (cntEvent & REG_NUM_MASK) {
1464 case REG_NUM_TX_COL:
1465 /*
1466 * the count should be read before an overflow occurs.
1467 */
1468 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1469 /*
1470 * the tramsit event routine always checks the number of
1471 * collisions for any packet so we don't increment any
1472 * counters here, as they should already have been
1473 * considered.
1474 */
1475 break;
1476 case REG_NUM_RX_MISS:
1477 /*
1478 * the count should be read before an overflow occurs.
1479 */
1480 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1481 /*
1482 * Increment the input error count, the first 6bits are the
1483 * register id.
1484 */
1485 ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1486 break;
1487 default:
1488 /* do nothing */
1489 break;
1490 }
1491 }
1492
1493 void
1494 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1495 {
1496
1497 /*
1498 * multiple events can be in the buffer event register at one time so
1499 * a standard switch statement will not suffice, here every event
1500 * must be checked.
1501 */
1502
1503 /*
1504 * if 128 bits have been rxed by the time we get here, the dest event
1505 * will be cleared and 128 event will be set.
1506 */
1507 if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1508 cs_process_rx_early(sc);
1509 }
1510
1511 if (bufEvent & BUF_EVENT_RX_DMA) {
1512 /* process the receive data */
1513 if (sc->sc_dma_process_rx)
1514 (*sc->sc_dma_process_rx)(sc);
1515 else
1516 /* should panic? */
1517 aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1518 }
1519
1520 if (bufEvent & BUF_EVENT_TX_UNDR) {
1521 #if 0
1522 /*
1523 * This can happen occasionally, and it's not worth worrying
1524 * about.
1525 */
1526 printf("%s: transmit underrun (%d -> %d)\n",
1527 device_xname(sc->sc_dev), sc->sc_xe_ent,
1528 cs_xmit_early_table[sc->sc_xe_ent].worse);
1529 #endif
1530 sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1531 sc->sc_xe_togo =
1532 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1533
1534 /* had an underrun, transmit is finished */
1535 sc->sc_txbusy = FALSE;
1536 }
1537
1538 if (bufEvent & BUF_EVENT_SW_INT) {
1539 printf("%s: software initiated interrupt\n",
1540 device_xname(sc->sc_dev));
1541 }
1542 }
1543
1544 void
1545 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1546 {
1547 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1548
1549 /* If there were any errors transmitting this frame */
1550 if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1551 TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1552 /* Increment the output error count */
1553 ifp->if_oerrors++;
1554
1555 /* Note carrier loss. */
1556 if (txEvent & TX_EVENT_LOSS_CRS)
1557 sc->sc_carrier = 0;
1558
1559 /* If debugging is enabled then log error messages */
1560 if (ifp->if_flags & IFF_DEBUG) {
1561 if (txEvent & TX_EVENT_LOSS_CRS) {
1562 aprint_error_dev(sc->sc_dev, "lost carrier\n");
1563 }
1564 if (txEvent & TX_EVENT_SQE_ERR) {
1565 aprint_error_dev(sc->sc_dev, "SQE error\n");
1566 }
1567 if (txEvent & TX_EVENT_OUT_WIN) {
1568 aprint_error_dev(sc->sc_dev,
1569 "out-of-window collision\n");
1570 }
1571 if (txEvent & TX_EVENT_JABBER) {
1572 aprint_error_dev(sc->sc_dev, "jabber\n");
1573 }
1574 if (txEvent & TX_EVENT_16_COLL) {
1575 aprint_error_dev(sc->sc_dev, "16 collisions\n");
1576 }
1577 }
1578 }
1579 else {
1580 /* Transmission successful, carrier is up. */
1581 sc->sc_carrier = 1;
1582 #ifdef SHARK
1583 ledNetActive();
1584 #endif
1585 }
1586
1587 /* Add the number of collisions for this frame */
1588 if (txEvent & TX_EVENT_16_COLL) {
1589 ifp->if_collisions += 16;
1590 } else {
1591 ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1592 }
1593
1594 ifp->if_opackets++;
1595
1596 /* Transmission is no longer in progress */
1597 sc->sc_txbusy = FALSE;
1598
1599 /* If there is more to transmit */
1600 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1601 /* Start the next transmission */
1602 cs_start_output(ifp);
1603 }
1604 }
1605
1606 void
1607 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1608 {
1609
1610 if (rxEvent & RX_EVENT_RUNT)
1611 aprint_error_dev(sc->sc_dev, "runt\n");
1612
1613 if (rxEvent & RX_EVENT_X_DATA)
1614 aprint_error_dev(sc->sc_dev, "extra data\n");
1615
1616 if (rxEvent & RX_EVENT_CRC_ERR) {
1617 if (rxEvent & RX_EVENT_DRIBBLE)
1618 aprint_error_dev(sc->sc_dev, "alignment error\n");
1619 else
1620 aprint_error_dev(sc->sc_dev, "CRC error\n");
1621 } else {
1622 if (rxEvent & RX_EVENT_DRIBBLE)
1623 aprint_error_dev(sc->sc_dev, "dribble bits\n");
1624 }
1625 }
1626
1627 void
1628 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1629 {
1630 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1631
1632 /* If the frame was not received OK */
1633 if (!(rxEvent & RX_EVENT_RX_OK)) {
1634 /* Increment the input error count */
1635 ifp->if_ierrors++;
1636
1637 /*
1638 * If debugging is enabled then log error messages.
1639 */
1640 if (ifp->if_flags & IFF_DEBUG) {
1641 if (rxEvent != REG_NUM_RX_EVENT) {
1642 cs_print_rx_errors(sc, rxEvent);
1643
1644 /*
1645 * Must read the length of all received
1646 * frames
1647 */
1648 CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1649
1650 /* Skip the received frame */
1651 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1652 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1653 RX_CFG_SKIP);
1654 } else {
1655 aprint_error_dev(sc->sc_dev, "implied skip\n");
1656 }
1657 }
1658 } else {
1659 /*
1660 * process the received frame and pass it up to the upper
1661 * layers.
1662 */
1663 cs_process_receive(sc);
1664 }
1665 }
1666
1667 void
1668 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1669 {
1670 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1671
1672 ifp->if_ipackets++;
1673
1674 /*
1675 * Check if there's a BPF listener on this interface.
1676 * If so, hand off the raw packet to BPF.
1677 */
1678 bpf_mtap(ifp, m);
1679
1680 /* Pass the packet up. */
1681 (*ifp->if_input)(ifp, m);
1682 }
1683
1684 void
1685 cs_process_receive(struct cs_softc *sc)
1686 {
1687 struct ifnet *ifp;
1688 struct mbuf *m;
1689 int totlen;
1690 u_int16_t *pBuff, *pBuffLimit;
1691 int pad;
1692 unsigned int frameOffset = 0; /* XXX: gcc */
1693
1694 #ifdef SHARK
1695 ledNetActive();
1696 #endif
1697
1698 ifp = &sc->sc_ethercom.ec_if;
1699
1700 /* Received a packet; carrier is up. */
1701 sc->sc_carrier = 1;
1702
1703 if (sc->sc_memorymode) {
1704 /* Initialize the frame offset */
1705 frameOffset = PKTPG_RX_LENGTH;
1706
1707 /* Get the length of the received frame */
1708 totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1709 frameOffset += 2;
1710 }
1711 else {
1712 /* drop status */
1713 CS_READ_PORT(sc, PORT_RXTX_DATA);
1714
1715 /* Get the length of the received frame */
1716 totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1717 }
1718
1719 if (totlen > ETHER_MAX_LEN) {
1720 aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1721 totlen);
1722
1723 /* skip the received frame */
1724 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1725 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1726 return;
1727 }
1728
1729 MGETHDR(m, M_DONTWAIT, MT_DATA);
1730 if (m == 0) {
1731 aprint_error_dev(sc->sc_dev,
1732 "cs_process_receive: unable to allocate mbuf\n");
1733 ifp->if_ierrors++;
1734 /*
1735 * couldn't allocate an mbuf so things are not good, may as
1736 * well drop the packet I think.
1737 *
1738 * have already read the length so we should be right to skip
1739 * the packet.
1740 */
1741 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1742 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1743 return;
1744 }
1745 m->m_pkthdr.rcvif = ifp;
1746 m->m_pkthdr.len = totlen;
1747
1748 /* number of bytes to align ip header on word boundary for ipintr */
1749 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1750
1751 /*
1752 * alloc mbuf cluster if we need.
1753 * we need 1 byte spare because following
1754 * packet read loop can overrun.
1755 */
1756 if (totlen + pad + 1 > MHLEN) {
1757 MCLGET(m, M_DONTWAIT);
1758 if ((m->m_flags & M_EXT) == 0) {
1759 /* couldn't allocate an mbuf cluster */
1760 aprint_error_dev(sc->sc_dev,
1761 "cs_process_receive: "
1762 "unable to allocate a cluster\n");
1763 m_freem(m);
1764
1765 /* skip the received frame */
1766 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1767 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1768 return;
1769 }
1770 }
1771
1772 /* align ip header on word boundary for ipintr */
1773 m->m_data += pad;
1774
1775 m->m_len = totlen;
1776 pBuff = mtod(m, u_int16_t *);
1777
1778 /* now read the data from the chip */
1779 if (sc->sc_memorymode) {
1780 pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
1781 while (pBuff < pBuffLimit) {
1782 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1783 frameOffset += 2;
1784 }
1785 }
1786 else {
1787 IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1788 }
1789
1790 cs_ether_input(sc, m);
1791 }
1792
1793 void
1794 cs_process_rx_early(struct cs_softc *sc)
1795 {
1796 struct ifnet *ifp;
1797 struct mbuf *m;
1798 u_int16_t frameCount, oldFrameCount;
1799 u_int16_t rxEvent;
1800 u_int16_t *pBuff;
1801 int pad;
1802 unsigned int frameOffset;
1803
1804
1805 ifp = &sc->sc_ethercom.ec_if;
1806
1807 /* Initialize the frame offset */
1808 frameOffset = PKTPG_RX_FRAME;
1809 frameCount = 0;
1810
1811 MGETHDR(m, M_DONTWAIT, MT_DATA);
1812 if (m == 0) {
1813 aprint_error_dev(sc->sc_dev,
1814 "cs_process_rx_early: unable to allocate mbuf\n");
1815 ifp->if_ierrors++;
1816 /*
1817 * couldn't allocate an mbuf so things are not good, may as
1818 * well drop the packet I think.
1819 *
1820 * have already read the length so we should be right to skip
1821 * the packet.
1822 */
1823 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1824 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1825 return;
1826 }
1827 m->m_pkthdr.rcvif = ifp;
1828 /*
1829 * save processing by always using a mbuf cluster, guaranteed to fit
1830 * packet
1831 */
1832 MCLGET(m, M_DONTWAIT);
1833 if ((m->m_flags & M_EXT) == 0) {
1834 /* couldn't allocate an mbuf cluster */
1835 aprint_error_dev(sc->sc_dev,
1836 "cs_process_rx_early: unable to allocate a cluster\n");
1837 m_freem(m);
1838 /* skip the frame */
1839 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1840 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1841 return;
1842 }
1843
1844 /* align ip header on word boundary for ipintr */
1845 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1846 m->m_data += pad;
1847
1848 /* set up the buffer pointer to point to the data area */
1849 pBuff = mtod(m, u_int16_t *);
1850
1851 /*
1852 * now read the frame byte counter until we have finished reading the
1853 * frame
1854 */
1855 oldFrameCount = 0;
1856 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1857 while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1858 for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1859 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1860 frameOffset += 2;
1861 }
1862
1863 /* read the new count from the chip */
1864 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1865 }
1866
1867 /* update the mbuf counts */
1868 m->m_len = oldFrameCount;
1869 m->m_pkthdr.len = oldFrameCount;
1870
1871 /* now check the Rx Event register */
1872 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1873
1874 if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1875 /*
1876 * do an implied skip, it seems to be more reliable than a
1877 * forced skip.
1878 */
1879 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1880 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1881
1882 /*
1883 * now read the RX_EVENT register to perform an implied skip.
1884 */
1885 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1886
1887 cs_ether_input(sc, m);
1888 } else {
1889 m_freem(m);
1890 ifp->if_ierrors++;
1891 }
1892 }
1893
1894 void
1895 cs_start_output(struct ifnet *ifp)
1896 {
1897 struct cs_softc *sc;
1898 struct mbuf *pMbuf;
1899 struct mbuf *pMbufChain;
1900 u_int16_t BusStatus;
1901 u_int16_t Length;
1902 int txLoop = 0;
1903 int dropout = 0;
1904
1905 sc = ifp->if_softc;
1906
1907 /* check that the interface is up and running */
1908 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1909 return;
1910 }
1911
1912 /* Don't interrupt a transmission in progress */
1913 if (sc->sc_txbusy) {
1914 return;
1915 }
1916
1917 /* this loop will only run through once if transmission is successful */
1918 /*
1919 * While there are packets to transmit and a transmit is not in
1920 * progress
1921 */
1922 while (sc->sc_txbusy == 0 && dropout == 0) {
1923 IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1924 if (pMbufChain == NULL)
1925 break;
1926
1927 /*
1928 * If BPF is listening on this interface, let it see the packet
1929 * before we commit it to the wire.
1930 */
1931 bpf_mtap(ifp, pMbufChain);
1932
1933 /* Find the total length of the data to transmit */
1934 Length = 0;
1935 for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1936 Length += pMbuf->m_len;
1937
1938 do {
1939 /*
1940 * Request that the transmit be started after all
1941 * data has been copied
1942 *
1943 * In IO mode must write to the IO port not the packet
1944 * page address
1945 *
1946 * If this is changed to start transmission after a
1947 * small amount of data has been copied you tend to
1948 * get packet missed errors i think because the ISA
1949 * bus is too slow. Or possibly the copy routine is
1950 * not streamlined enough.
1951 */
1952 if (sc->sc_memorymode) {
1953 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1954 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1955 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1956 }
1957 else {
1958 CS_WRITE_PORT(sc, PORT_TX_CMD,
1959 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1960 CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1961 }
1962
1963 /*
1964 * Adjust early-transmit machinery.
1965 */
1966 if (--sc->sc_xe_togo == 0) {
1967 sc->sc_xe_ent =
1968 cs_xmit_early_table[sc->sc_xe_ent].better;
1969 sc->sc_xe_togo =
1970 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1971 }
1972 /*
1973 * Read the BusStatus register which indicates
1974 * success of the request
1975 */
1976 BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1977
1978 /*
1979 * If there was an error in the transmit bid free the
1980 * mbuf and go on. This is presuming that mbuf is
1981 * corrupt.
1982 */
1983 if (BusStatus & BUS_ST_TX_BID_ERR) {
1984 aprint_error_dev(sc->sc_dev,
1985 "transmit bid error (too big)");
1986
1987 /* Discard the bad mbuf chain */
1988 m_freem(pMbufChain);
1989 sc->sc_ethercom.ec_if.if_oerrors++;
1990
1991 /* Loop up to transmit the next chain */
1992 txLoop = 0;
1993 } else {
1994 if (BusStatus & BUS_ST_RDY4TXNOW) {
1995 /*
1996 * The chip is ready for transmission
1997 * now
1998 */
1999 /*
2000 * Copy the frame to the chip to
2001 * start transmission
2002 */
2003 cs_copy_tx_frame(sc, pMbufChain);
2004
2005 /* Free the mbuf chain */
2006 m_freem(pMbufChain);
2007
2008 /* Transmission is now in progress */
2009 sc->sc_txbusy = TRUE;
2010 txLoop = 0;
2011 } else {
2012 /*
2013 * if we get here we want to try
2014 * again with the same mbuf, until
2015 * the chip lets us transmit.
2016 */
2017 txLoop++;
2018 if (txLoop > CS_OUTPUT_LOOP_MAX) {
2019 /* Free the mbuf chain */
2020 m_freem(pMbufChain);
2021 /*
2022 * Transmission is not in
2023 * progress
2024 */
2025 sc->sc_txbusy = FALSE;
2026 /*
2027 * Increment the output error
2028 * count
2029 */
2030 ifp->if_oerrors++;
2031 /*
2032 * exit the routine and drop
2033 * the packet.
2034 */
2035 txLoop = 0;
2036 dropout = 1;
2037 }
2038 }
2039 }
2040 } while (txLoop);
2041 }
2042 }
2043
2044 void
2045 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2046 {
2047 struct mbuf *m;
2048 int len, leftover, frameoff;
2049 u_int16_t dbuf;
2050 u_int8_t *p;
2051 #ifdef DIAGNOSTIC
2052 u_int8_t *lim;
2053 #endif
2054
2055 /* Initialize frame pointer and data port address */
2056 frameoff = PKTPG_TX_FRAME;
2057
2058 /* start out with no leftover data */
2059 leftover = 0;
2060 dbuf = 0;
2061
2062 /* Process the chain of mbufs */
2063 for (m = m0; m != NULL; m = m->m_next) {
2064 /*
2065 * Process all of the data in a single mbuf.
2066 */
2067 p = mtod(m, u_int8_t *);
2068 len = m->m_len;
2069 #ifdef DIAGNOSTIC
2070 lim = p + len;
2071 #endif
2072
2073 while (len > 0) {
2074 if (leftover) {
2075 /*
2076 * Data left over (from mbuf or realignment).
2077 * Buffer the next byte, and write it and
2078 * the leftover data out.
2079 */
2080 dbuf |= *p++ << 8;
2081 len--;
2082 if (sc->sc_memorymode) {
2083 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2084 frameoff += 2;
2085 }
2086 else {
2087 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2088 }
2089 leftover = 0;
2090 } else if ((long) p & 1) {
2091 /*
2092 * Misaligned data. Buffer the next byte.
2093 */
2094 dbuf = *p++;
2095 len--;
2096 leftover = 1;
2097 } else {
2098 /*
2099 * Aligned data. This is the case we like.
2100 *
2101 * Write-region out as much as we can, then
2102 * buffer the remaining byte (if any).
2103 */
2104 leftover = len & 1;
2105 len &= ~1;
2106 if (sc->sc_memorymode) {
2107 MEM_WRITE_REGION_2(sc, frameoff,
2108 (u_int16_t *) p, len >> 1);
2109 frameoff += len;
2110 }
2111 else {
2112 IO_WRITE_MULTI_2(sc,
2113 PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2114 }
2115 p += len;
2116
2117 if (leftover)
2118 dbuf = *p++;
2119 len = 0;
2120 }
2121 }
2122 if (len < 0)
2123 panic("cs_copy_tx_frame: negative len");
2124 #ifdef DIAGNOSTIC
2125 if (p != lim)
2126 panic("cs_copy_tx_frame: p != lim");
2127 #endif
2128 }
2129 if (leftover) {
2130 if (sc->sc_memorymode) {
2131 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2132 }
2133 else {
2134 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2135 }
2136 }
2137 }
2138
2139 static int
2140 cs_enable(struct cs_softc *sc)
2141 {
2142
2143 if (CS_IS_ENABLED(sc) == 0) {
2144 if (sc->sc_enable != NULL) {
2145 int error;
2146
2147 error = (*sc->sc_enable)(sc);
2148 if (error)
2149 return (error);
2150 }
2151 sc->sc_cfgflags |= CFGFLG_ENABLED;
2152 }
2153
2154 return (0);
2155 }
2156
2157 static void
2158 cs_disable(struct cs_softc *sc)
2159 {
2160
2161 if (CS_IS_ENABLED(sc)) {
2162 if (sc->sc_disable != NULL)
2163 (*sc->sc_disable)(sc);
2164
2165 sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2166 }
2167 }
2168
2169 static void
2170 cs_stop(struct ifnet *ifp, int disable)
2171 {
2172 struct cs_softc *sc = ifp->if_softc;
2173
2174 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2175 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2176 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2177 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2178
2179 if (disable) {
2180 cs_disable(sc);
2181 }
2182
2183 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2184 }
2185
2186 int
2187 cs_activate(device_t self, enum devact act)
2188 {
2189 struct cs_softc *sc = device_private(self);
2190
2191 switch (act) {
2192 case DVACT_DEACTIVATE:
2193 if_deactivate(&sc->sc_ethercom.ec_if);
2194 return 0;
2195 default:
2196 return EOPNOTSUPP;
2197 }
2198 }
2199