Home | History | Annotate | Line # | Download | only in ic
cs89x0.c revision 1.31
      1 /*	$NetBSD: cs89x0.c,v 1.31 2010/04/05 07:19:33 joerg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2004 Christopher Gilbert
      5  * All rights reserved.
      6  *
      7  * 1. Redistributions of source code must retain the above copyright
      8  *    notice, this list of conditions and the following disclaimer.
      9  * 2. Redistributions in binary form must reproduce the above copyright
     10  *    notice, this list of conditions and the following disclaimer in the
     11  *    documentation and/or other materials provided with the distribution.
     12  * 3. The name of the company nor the name of the author may be used to
     13  *    endorse or promote products derived from this software without specific
     14  *    prior written permission.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright 1997
     31  * Digital Equipment Corporation. All rights reserved.
     32  *
     33  * This software is furnished under license and may be used and
     34  * copied only in accordance with the following terms and conditions.
     35  * Subject to these conditions, you may download, copy, install,
     36  * use, modify and distribute this software in source and/or binary
     37  * form. No title or ownership is transferred hereby.
     38  *
     39  * 1) Any source code used, modified or distributed must reproduce
     40  *    and retain this copyright notice and list of conditions as
     41  *    they appear in the source file.
     42  *
     43  * 2) No right is granted to use any trade name, trademark, or logo of
     44  *    Digital Equipment Corporation. Neither the "Digital Equipment
     45  *    Corporation" name nor any trademark or logo of Digital Equipment
     46  *    Corporation may be used to endorse or promote products derived
     47  *    from this software without the prior written permission of
     48  *    Digital Equipment Corporation.
     49  *
     50  * 3) This software is provided "AS-IS" and any express or implied
     51  *    warranties, including but not limited to, any implied warranties
     52  *    of merchantability, fitness for a particular purpose, or
     53  *    non-infringement are disclaimed. In no event shall DIGITAL be
     54  *    liable for any damages whatsoever, and in particular, DIGITAL
     55  *    shall not be liable for special, indirect, consequential, or
     56  *    incidental damages or damages for lost profits, loss of
     57  *    revenue or loss of use, whether such damages arise in contract,
     58  *    negligence, tort, under statute, in equity, at law or otherwise,
     59  *    even if advised of the possibility of such damage.
     60  */
     61 
     62 /*
     63 **++
     64 **  FACILITY
     65 **
     66 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
     67 **
     68 **  ABSTRACT
     69 **
     70 **     This module provides standard ethernet access for INET protocols
     71 **     only.
     72 **
     73 **  AUTHORS
     74 **
     75 **     Peter Dettori     SEA - Software Engineering.
     76 **
     77 **  CREATION DATE:
     78 **
     79 **     13-Feb-1997.
     80 **
     81 **  MODIFICATION HISTORY (Digital):
     82 **
     83 **     Revision 1.27  1998/01/20  17:59:40  cgd
     84 **     update for moved headers
     85 **
     86 **     Revision 1.26  1998/01/12  19:29:36  cgd
     87 **     use arm32/isa versions of isadma code.
     88 **
     89 **     Revision 1.25  1997/12/12  01:35:27  cgd
     90 **     convert to use new arp code (from Brini)
     91 **
     92 **     Revision 1.24  1997/12/10  22:31:56  cgd
     93 **     trim some fat (get rid of ability to explicitly supply enet addr, since
     94 **     it was never used and added a bunch of code which really doesn't belong in
     95 **     an enet driver), and clean up slightly.
     96 **
     97 **     Revision 1.23  1997/10/06  16:42:12  cgd
     98 **     copyright notices
     99 **
    100 **     Revision 1.22  1997/06/20  19:38:01  chaiken
    101 **     fixes some smartcard problems
    102 **
    103 **     Revision 1.21  1997/06/10 02:56:20  grohn
    104 **     Added call to ledNetActive
    105 **
    106 **     Revision 1.20  1997/06/05 00:47:06  dettori
    107 **     Changed cs_process_rx_dma to reset and re-initialise the
    108 **     ethernet chip when DMA gets out of sync, or mbufs
    109 **     can't be allocated.
    110 **
    111 **     Revision 1.19  1997/06/03 03:09:58  dettori
    112 **     Turn off sc_txbusy flag when a transmit underrun
    113 **     occurs.
    114 **
    115 **     Revision 1.18  1997/06/02 00:04:35  dettori
    116 **     redefined the transmit table to get around the nfs_timer bug while we are
    117 **     looking into it further.
    118 **
    119 **     Also changed interrupts from EDGE to LEVEL.
    120 **
    121 **     Revision 1.17  1997/05/27 23:31:01  dettori
    122 **     Pulled out changes to DMAMODE defines.
    123 **
    124 **     Revision 1.16  1997/05/23 04:25:16  cgd
    125 **     reformat log so it fits in 80cols
    126 **
    127 **     Revision 1.15  1997/05/23  04:22:18  cgd
    128 **     remove the existing copyright notice (which Peter Dettori indicated
    129 **     was incorrect, copied from an existing NetBSD file only so that the
    130 **     file would have a copyright notice on it, and which he'd intended to
    131 **     replace).  Replace it with a Digital copyright notice, cloned from
    132 **     ess.c.  It's not really correct either (it indicates that the source
    133 **     is Digital confidential!), but is better than nothing and more
    134 **     correct than what was there before.
    135 **
    136 **     Revision 1.14  1997/05/23  04:12:50  cgd
    137 **     use an adaptive transmit start algorithm: start by telling the chip
    138 **     to start transmitting after 381 bytes have been fed to it.  if that
    139 **     gets transmit underruns, ramp down to 1021 bytes then "whole
    140 **     packet."  If successful at a given level for a while, try the next
    141 **     more agressive level.  This code doesn't ever try to start
    142 **     transmitting after 5 bytes have been sent to the NIC, because
    143 **     that underruns rather regularly.  The back-off and ramp-up mechanism
    144 **     could probably be tuned a little bit, but this works well enough to
    145 **     support > 1MB/s transmit rates on a clear ethernet (which is about
    146 **     20-25% better than the driver had previously been getting).
    147 **
    148 **     Revision 1.13  1997/05/22  21:06:54  cgd
    149 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
    150 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
    151 **     issues.  This would cause bogus data to be spit out for mbufs with
    152 **     misaligned data.  For instance, it caused the following bits to appear
    153 **     on the wire:
    154 **     	... etBND 1S2C .SHA(K) R ...
    155 **     	    11112222333344445555
    156 **     which should have appeared as:
    157 **     	... NetBSD 1.2C (SHARK) ...
    158 **     	    11112222333344445555
    159 **     Note the apparent 'rotate' of the bytes in the word, which was due to
    160 **     incorrect unaligned accesses.  This data corruption was the cause of
    161 **     incoming telnet/rlogin hangs.
    162 **
    163 **     Revision 1.12  1997/05/22  01:55:32  cgd
    164 **     reformat log so it fits in 80cols
    165 **
    166 **     Revision 1.11  1997/05/22  01:50:27  cgd
    167 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
    168 **       so packets aimed at other hosts don't get sent to ether_input().
    169 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
    170 **       you can easily tell (`strings`) what version of the driver is in your
    171 **       kernel binary.
    172 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
    173 **       safe, and not really a performance win anyway.  (It was only used when
    174 **       setting up the multicast logical address filter, which is an
    175 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
    176 **       address check above, but the benefit of it vs. memcmp would be
    177 **       inconsequential, there.)  Use memcmp() instead.
    178 **     * restructure csStartOuput to avoid the following bugs in the case where
    179 **       txWait was being set:
    180 **         * it would accidentally drop the outgoing packet if told to wait
    181 **           but the outgoing packet queue was empty.
    182 **         * it would bpf_mtap() the outgoing packet multiple times (once for
    183 **           each time it was told to wait), and would also recalculate
    184 **           the length of the outgoing packet each time it was told to
    185 **           wait.
    186 **       While there, rename txWait to txLoop, since with the new structure of
    187 **       the code, the latter name makes more sense.
    188 **
    189 **     Revision 1.10  1997/05/19  02:03:20  cgd
    190 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
    191 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
    192 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
    193 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
    194 **     as before.
    195 **
    196 **     Revision 1.9  1997/05/19  01:45:37  cgd
    197 **     create a new function, cs_ether_input(), which does received-packet
    198 **     BPF and ether_input processing.  This code used to be in three places,
    199 **     and centralizing it will make adding IFF_PROMISC support much easier.
    200 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
    201 **     do copies with bus_space_write_region_2().  It's more correct, and
    202 **     potentially more efficient.  That function needs to be gutted (to
    203 **     deal properly with alignment issues, which it currently does wrong),
    204 **     however, and the change doesn't gain much, so there's no point in
    205 **     enabling it now.
    206 **
    207 **     Revision 1.8  1997/05/19  01:17:10  cgd
    208 **     fix a comment re: the setting of the TxConfig register.  Clean up
    209 **     interface counter maintenance (make it use standard idiom).
    210 **
    211 **--
    212 */
    213 
    214 #include <sys/cdefs.h>
    215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.31 2010/04/05 07:19:33 joerg Exp $");
    216 
    217 #include "opt_inet.h"
    218 
    219 #include <sys/param.h>
    220 #include <sys/systm.h>
    221 #include <sys/mbuf.h>
    222 #include <sys/syslog.h>
    223 #include <sys/socket.h>
    224 #include <sys/device.h>
    225 #include <sys/malloc.h>
    226 #include <sys/ioctl.h>
    227 #include <sys/errno.h>
    228 
    229 #include "rnd.h"
    230 #if NRND > 0
    231 #include <sys/rnd.h>
    232 #endif
    233 
    234 #include <net/if.h>
    235 #include <net/if_ether.h>
    236 #include <net/if_media.h>
    237 #ifdef INET
    238 #include <netinet/in.h>
    239 #include <netinet/if_inarp.h>
    240 #endif
    241 
    242 #include <net/bpf.h>
    243 #include <net/bpfdesc.h>
    244 
    245 #include <uvm/uvm_extern.h>
    246 
    247 #include <sys/bus.h>
    248 #include <sys/intr.h>
    249 
    250 #include <dev/ic/cs89x0reg.h>
    251 #include <dev/ic/cs89x0var.h>
    252 
    253 #ifdef SHARK
    254 #include <shark/shark/sequoia.h>
    255 #endif
    256 
    257 /*
    258  * MACRO DEFINITIONS
    259  */
    260 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
    261 
    262 /*
    263  * FUNCTION PROTOTYPES
    264  */
    265 static void	cs_get_default_media(struct cs_softc *);
    266 static int	cs_get_params(struct cs_softc *);
    267 static int	cs_get_enaddr(struct cs_softc *);
    268 static int	cs_reset_chip(struct cs_softc *);
    269 static void	cs_reset(struct cs_softc *);
    270 static int	cs_ioctl(struct ifnet *, u_long, void *);
    271 static void	cs_initChip(struct cs_softc *);
    272 static void	cs_buffer_event(struct cs_softc *, u_int16_t);
    273 static void	cs_transmit_event(struct cs_softc *, u_int16_t);
    274 static void	cs_receive_event(struct cs_softc *, u_int16_t);
    275 static void	cs_process_receive(struct cs_softc *);
    276 static void	cs_process_rx_early(struct cs_softc *);
    277 static void	cs_start_output(struct ifnet *);
    278 static void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
    279 static void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
    280 static u_int16_t cs_hash_index(char *);
    281 static void	cs_counter_event(struct cs_softc *, u_int16_t);
    282 
    283 static int	cs_mediachange(struct ifnet *);
    284 static void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
    285 
    286 static bool cs_shutdown(device_t, int);
    287 static int cs_enable(struct cs_softc *);
    288 static void cs_disable(struct cs_softc *);
    289 static void cs_stop(struct ifnet *, int);
    290 static int cs_scan_eeprom(struct cs_softc *);
    291 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
    292 
    293 
    294 /*
    295  * GLOBAL DECLARATIONS
    296  */
    297 
    298 /*
    299  * Xmit-early table.
    300  *
    301  * To get better performance, we tell the chip to start packet
    302  * transmission before the whole packet is copied to the chip.
    303  * However, this can fail under load.  When it fails, we back off
    304  * to a safer setting for a little while.
    305  *
    306  * txcmd is the value of txcmd used to indicate when to start transmission.
    307  * better is the next 'better' state in the table.
    308  * better_count is the number of output packets before transition to the
    309  *   better state.
    310  * worse is the next 'worse' state in the table.
    311  *
    312  * Transition to the next worse state happens automatically when a
    313  * transmittion underrun occurs.
    314  */
    315 struct cs_xmit_early {
    316 	u_int16_t       txcmd;
    317 	int             better;
    318 	int             better_count;
    319 	int             worse;
    320 } cs_xmit_early_table[3] = {
    321 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
    322 	{ TX_CMD_START_1021,	0,	50000,		2, },
    323 	{ TX_CMD_START_ALL,	1,	5000,		2, },
    324 };
    325 
    326 int cs_default_media[] = {
    327 	IFM_ETHER|IFM_10_2,
    328 	IFM_ETHER|IFM_10_5,
    329 	IFM_ETHER|IFM_10_T,
    330 	IFM_ETHER|IFM_10_T|IFM_FDX,
    331 };
    332 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
    333 
    334 int
    335 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
    336 	  int nmedia, int defmedia)
    337 {
    338 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    339 	const char *chipname, *medname;
    340 	u_int16_t reg;
    341 	int i;
    342 
    343 	/* Start out in IO mode */
    344 	sc->sc_memorymode = FALSE;
    345 
    346 	/* make sure we're right */
    347 	for (i = 0; i < 10000; i++) {
    348 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
    349 		if (reg == EISA_NUM_CRYSTAL) {
    350 			break;
    351 		}
    352 	}
    353 	if (i == 10000) {
    354 		aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
    355 		return 1; /* XXX should panic? */
    356 	}
    357 
    358 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
    359 	sc->sc_prodid = reg & PROD_ID_MASK;
    360 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
    361 
    362 	switch (sc->sc_prodid) {
    363 	case PROD_ID_CS8900:
    364 		chipname = "CS8900";
    365 		break;
    366 	case PROD_ID_CS8920:
    367 		chipname = "CS8920";
    368 		break;
    369 	case PROD_ID_CS8920M:
    370 		chipname = "CS8920M";
    371 		break;
    372 	default:
    373 		panic("cs_attach: impossible");
    374 	}
    375 
    376 	/*
    377 	 * the first thing to do is check that the mbuf cluster size is
    378 	 * greater than the MTU for an ethernet frame. The code depends on
    379 	 * this and to port this to a OS where this was not the case would
    380 	 * not be straightforward.
    381 	 *
    382 	 * we need 1 byte spare because our
    383 	 * packet read loop can overrun.
    384 	 * and we may need pad bytes to align ip header.
    385 	 */
    386 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
    387 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
    388 		printf("%s: MCLBYTES too small for Ethernet frame\n",
    389 		    device_xname(sc->sc_dev));
    390 		return 1;
    391 	}
    392 
    393 	/* Start out not transmitting */
    394 	sc->sc_txbusy = FALSE;
    395 
    396 	/* Set up early transmit threshhold */
    397 	sc->sc_xe_ent = 0;
    398 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
    399 
    400 	/* Initialize ifnet structure. */
    401 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    402 	ifp->if_softc = sc;
    403 	ifp->if_start = cs_start_output;
    404 	ifp->if_init = cs_init;
    405 	ifp->if_ioctl = cs_ioctl;
    406 	ifp->if_stop = cs_stop;
    407 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
    408 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
    409 	    IFF_BROADCAST | IFF_MULTICAST;
    410 	IFQ_SET_READY(&ifp->if_snd);
    411 
    412 	/* Initialize ifmedia structures. */
    413 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
    414 
    415 	if (media != NULL) {
    416 		for (i = 0; i < nmedia; i++)
    417 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
    418 		ifmedia_set(&sc->sc_media, defmedia);
    419 	} else {
    420 		for (i = 0; i < cs_default_nmedia; i++)
    421 			ifmedia_add(&sc->sc_media, cs_default_media[i],
    422 			    0, NULL);
    423 		cs_get_default_media(sc);
    424 	}
    425 
    426 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
    427 		if (cs_scan_eeprom(sc) == CS_ERROR) {
    428 			/* failed to scan the eeprom, pretend there isn't an eeprom */
    429 			aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
    430 			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
    431 		}
    432 	}
    433 
    434 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
    435 		/* Get parameters from the EEPROM */
    436 		if (cs_get_params(sc) == CS_ERROR) {
    437 			aprint_error_dev(sc->sc_dev,
    438 			    "unable to get settings from EEPROM\n");
    439 			return 1;
    440 		}
    441 	}
    442 
    443 	if (enaddr != NULL)
    444 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
    445 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
    446 		/* Get and store the Ethernet address */
    447 		if (cs_get_enaddr(sc) == CS_ERROR) {
    448 			aprint_error_dev(sc->sc_dev,
    449 			    "unable to read Ethernet address\n");
    450 			return 1;
    451 		}
    452 	} else {
    453 #if 1
    454 		int j;
    455 		uint v;
    456 
    457 		for (j = 0; j < 6; j += 2) {
    458 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
    459 			sc->sc_enaddr[j + 0] = v;
    460 			sc->sc_enaddr[j + 1] = v >> 8;
    461 		}
    462 #else
    463 		printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
    464 		return 1;
    465 #endif
    466 	}
    467 
    468 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
    469 	case IFM_10_2:
    470 		medname = "BNC";
    471 		break;
    472 	case IFM_10_5:
    473 		medname = "AUI";
    474 		break;
    475 	case IFM_10_T:
    476 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
    477 			medname = "UTP <full-duplex>";
    478 		else
    479 			medname = "UTP";
    480 		break;
    481 	default:
    482 		panic("cs_attach: impossible");
    483 	}
    484 	printf("%s: %s rev. %c, address %s, media %s\n",
    485 	    device_xname(sc->sc_dev),
    486 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
    487 	    medname);
    488 
    489 	if (sc->sc_dma_attach)
    490 		(*sc->sc_dma_attach)(sc);
    491 
    492 	/* Attach the interface. */
    493 	if_attach(ifp);
    494 	ether_ifattach(ifp, sc->sc_enaddr);
    495 
    496 #if NRND > 0
    497 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    498 			  RND_TYPE_NET, 0);
    499 #endif
    500 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
    501 
    502 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
    503 		pmf_class_network_register(sc->sc_dev, ifp);
    504 	else
    505 		aprint_error_dev(sc->sc_dev,
    506 		    "couldn't establish power handler\n");
    507 
    508 	/* Reset the chip */
    509 	if (cs_reset_chip(sc) == CS_ERROR) {
    510 		aprint_error_dev(sc->sc_dev, "reset failed\n");
    511 		cs_detach(sc);
    512 		return 1;
    513 	}
    514 
    515 	return 0;
    516 }
    517 
    518 int
    519 cs_detach(struct cs_softc *sc)
    520 {
    521 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    522 
    523 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
    524 #if NRND > 0
    525 		rnd_detach_source(&sc->rnd_source);
    526 #endif
    527 		ether_ifdetach(ifp);
    528 		if_detach(ifp);
    529 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
    530 	}
    531 
    532 #if 0
    533 	/*
    534 	 * XXX not necessary
    535 	 */
    536 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
    537 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
    538 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
    539 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
    540 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
    541 	}
    542 #endif
    543 
    544 	pmf_device_deregister(sc->sc_dev);
    545 
    546 	return 0;
    547 }
    548 
    549 bool
    550 cs_shutdown(device_t self, int howto)
    551 {
    552 	struct cs_softc *sc;
    553 
    554 	sc = device_private(self);
    555 	cs_reset(sc);
    556 
    557 	return true;
    558 }
    559 
    560 void
    561 cs_get_default_media(struct cs_softc *sc)
    562 {
    563 	u_int16_t adp_cfg, xmit_ctl;
    564 
    565 	if (cs_verify_eeprom(sc) == CS_ERROR) {
    566 		aprint_error_dev(sc->sc_dev,
    567 		    "cs_get_default_media: EEPROM missing or bad\n");
    568 		goto fakeit;
    569 	}
    570 
    571 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
    572 		aprint_error_dev(sc->sc_dev,
    573 		    "unable to read adapter config from EEPROM\n");
    574 		goto fakeit;
    575 	}
    576 
    577 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
    578 		aprint_error_dev(sc->sc_dev,
    579 		    "unable to read transmit control from EEPROM\n");
    580 		goto fakeit;
    581 	}
    582 
    583 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
    584 	case ADPTR_CFG_AUI:
    585 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
    586 		break;
    587 	case ADPTR_CFG_10BASE2:
    588 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
    589 		break;
    590 	case ADPTR_CFG_10BASET:
    591 	default:
    592 		if (xmit_ctl & XMIT_CTL_FDX)
    593 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
    594 		else
    595 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
    596 		break;
    597 	}
    598 	return;
    599 
    600  fakeit:
    601 	aprint_error_dev(sc->sc_dev,
    602 	    "WARNING: default media setting may be inaccurate\n");
    603 	/* XXX Arbitrary... */
    604 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
    605 }
    606 
    607 /*
    608  * cs_scan_eeprom
    609  *
    610  * Attempt to take a complete copy of the eeprom into main memory.
    611  * this will allow faster parsing of the eeprom data.
    612  *
    613  * Only tested against a 8920M's eeprom, but the data sheet for the
    614  * 8920A indicates that is uses the same layout.
    615  */
    616 int
    617 cs_scan_eeprom(struct cs_softc *sc)
    618 {
    619 	u_int16_t result;
    620 	int	i;
    621 	int	eeprom_size;
    622 	u_int8_t checksum = 0;
    623 
    624 	if (cs_verify_eeprom(sc) == CS_ERROR) {
    625 		aprint_error_dev(sc->sc_dev,
    626 		    "cs_scan_params: EEPROM missing or bad\n");
    627 		return (CS_ERROR);
    628 	}
    629 
    630 	/*
    631 	 * read the 0th word from the eeprom, it will tell us the length
    632 	 * and if the eeprom is valid
    633 	 */
    634 	cs_read_eeprom(sc, 0, &result);
    635 
    636 	/* check the eeprom signature */
    637 	if ((result & 0xE000) != 0xA000) {
    638 		/* empty eeprom */
    639 		return (CS_ERROR);
    640 	}
    641 
    642 	/*
    643 	 * take the eeprom size (note the read value doesn't include the header
    644 	 * word)
    645 	 */
    646 	eeprom_size = (result & 0xff) + 2;
    647 
    648 	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
    649 	if (sc->eeprom_data == NULL) {
    650 		/* no memory, treat this as if there's no eeprom */
    651 		return (CS_ERROR);
    652 	}
    653 
    654 	sc->eeprom_size = eeprom_size;
    655 
    656 	/* read the eeprom into the buffer, also calculate the checksum  */
    657 	for (i = 0; i < (eeprom_size >> 1); i++) {
    658 		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
    659 		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
    660 		checksum += (sc->eeprom_data[i] & 0x00ff);
    661 	}
    662 
    663 	/*
    664 	 * validate checksum calculation, the sum of all the bytes should be 0,
    665 	 * as the high byte of the last word is the 2's complement of the
    666 	 * sum to that point.
    667 	 */
    668 	if (checksum != 0) {
    669 		aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
    670 		return (CS_ERROR);
    671 	}
    672 
    673 	return (CS_OK);
    674 }
    675 
    676 static int
    677 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
    678 {
    679 	int x, maxword;
    680 
    681 	/* Check that we have eeprom data */
    682 	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
    683 		return (CS_ERROR);
    684 
    685 	/*
    686 	 * We only want to read the data words, the last word contains the
    687 	 * checksum
    688 	 */
    689 	maxword = (sc->eeprom_size - 2) >> 1;
    690 
    691 	/* start 1 word in, as the first word is the length and signature */
    692 	x = 1;
    693 
    694 	while ( x < (maxword)) {
    695 		u_int16_t header;
    696 		int group_size;
    697 		int offset;
    698 		int offset_max;
    699 
    700 		/* read in the group header word */
    701 		header = sc->eeprom_data[x];
    702 		x++;	/* skip group header */
    703 
    704 		/*
    705 		 * size of group in words is in the top 4 bits, note that it
    706 		 * is one less than the number of words
    707 		 */
    708 		group_size = header & 0xF000;
    709 
    710 		/*
    711 		 * CS8900 Data sheet says this should be 0x01ff,
    712 		 * but my cs8920 eeprom has higher offsets,
    713 		 * perhaps the 8920 allows higher offsets, otherwise
    714 		 * it's writing to places that it shouldn't
    715 		 */
    716 		/* work out the offsets this group covers */
    717 		offset = header & 0x0FFF;
    718 		offset_max = offset + (group_size << 1);
    719 
    720 		/* check if the pkgpg we're after is in this group */
    721 		if ((offset <= pktpg) && (pktpg <= offset_max)) {
    722 			/* the pkgpg value we want is in here */
    723 			int eeprom_location;
    724 
    725 			eeprom_location = ((pktpg - offset) >> 1) ;
    726 
    727 			*pValue = sc->eeprom_data[x + eeprom_location];
    728 			return (CS_OK);
    729 		} else {
    730 			/* skip this group (+ 1 for first entry) */
    731 			x += group_size + 1;
    732 		}
    733 	}
    734 
    735 	/*
    736 	 * if we've fallen out here then we don't have a value in the EEPROM
    737 	 * for this pktpg so return an error
    738 	 */
    739 	return (CS_ERROR);
    740 }
    741 
    742 int
    743 cs_get_params(struct cs_softc *sc)
    744 {
    745 	u_int16_t isaConfig;
    746 	u_int16_t adapterConfig;
    747 
    748 	if (cs_verify_eeprom(sc) == CS_ERROR) {
    749 		aprint_error_dev(sc->sc_dev,
    750 		    "cs_get_params: EEPROM missing or bad\n");
    751 		return (CS_ERROR);
    752 	}
    753 
    754 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
    755 		/* Get ISA configuration from the EEPROM */
    756 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
    757 			       	== CS_ERROR) {
    758 			/* eeprom doesn't have this value, use data sheet default */
    759 			isaConfig = 0x0017;
    760 		}
    761 
    762 		/* Get adapter configuration from the EEPROM */
    763 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
    764 				== CS_ERROR) {
    765 			/* eeprom doesn't have this value, use data sheet default */
    766 			adapterConfig = 0x0015;
    767 		}
    768 
    769 		/* Copy the USE_SA flag */
    770 		if (isaConfig & BUS_CTL_USE_SA)
    771 			sc->sc_cfgflags |= CFGFLG_USE_SA;
    772 
    773 		/* Copy the IO Channel Ready flag */
    774 		if (isaConfig & BUS_CTL_IOCHRDY)
    775 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
    776 
    777 		/* Copy the DC/DC Polarity flag */
    778 		if (adapterConfig & SELF_CTL_HCB1)
    779 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
    780 	} else {
    781 		/* Get ISA configuration from the EEPROM */
    782 		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
    783 			goto eeprom_bad;
    784 
    785 		/* Get adapter configuration from the EEPROM */
    786 		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
    787 			goto eeprom_bad;
    788 
    789 		/* Copy the USE_SA flag */
    790 		if (isaConfig & ISA_CFG_USE_SA)
    791 			sc->sc_cfgflags |= CFGFLG_USE_SA;
    792 
    793 		/* Copy the IO Channel Ready flag */
    794 		if (isaConfig & ISA_CFG_IOCHRDY)
    795 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
    796 
    797 		/* Copy the DC/DC Polarity flag */
    798 		if (adapterConfig & ADPTR_CFG_DCDC_POL)
    799 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
    800 	}
    801 
    802 	return (CS_OK);
    803 eeprom_bad:
    804 	aprint_error_dev(sc->sc_dev,
    805 	    "cs_get_params: unable to read from EEPROM\n");
    806 	return (CS_ERROR);
    807 }
    808 
    809 int
    810 cs_get_enaddr(struct cs_softc *sc)
    811 {
    812 	uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
    813 	int i;
    814 
    815 	if (cs_verify_eeprom(sc) == CS_ERROR) {
    816 		aprint_error_dev(sc->sc_dev,
    817 		    "cs_get_enaddr: EEPROM missing or bad\n");
    818 		return (CS_ERROR);
    819 	}
    820 
    821 	/* Get Ethernet address from the EEPROM */
    822 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
    823 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
    824 				== CS_ERROR)
    825 			goto eeprom_bad;
    826 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
    827 				== CS_ERROR)
    828 			goto eeprom_bad;
    829 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
    830 				== CS_ERROR)
    831 			goto eeprom_bad;
    832 	} else {
    833 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
    834 			goto eeprom_bad;
    835 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
    836 			goto eeprom_bad;
    837 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
    838 			goto eeprom_bad;
    839 	}
    840 
    841 	for (i = 0; i < __arraycount(myea); i++) {
    842 		sc->sc_enaddr[i * 2 + 0] = myea[i];
    843 		sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
    844 	}
    845 
    846 	return (CS_OK);
    847 
    848  eeprom_bad:
    849 	aprint_error_dev(sc->sc_dev,
    850 	    "cs_get_enaddr: unable to read from EEPROM\n");
    851 	return (CS_ERROR);
    852 }
    853 
    854 int
    855 cs_reset_chip(struct cs_softc *sc)
    856 {
    857 	int intState;
    858 	int x;
    859 
    860 	/* Disable interrupts at the CPU so reset command is atomic */
    861 	intState = splnet();
    862 
    863 	/*
    864 	 * We are now resetting the chip
    865 	 *
    866 	 * A spurious interrupt is generated by the chip when it is reset. This
    867 	 * variable informs the interrupt handler to ignore this interrupt.
    868 	 */
    869 	sc->sc_resetting = TRUE;
    870 
    871 	/* Issue a reset command to the chip */
    872 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
    873 
    874 	/* Re-enable interrupts at the CPU */
    875 	splx(intState);
    876 
    877 	/* The chip is always in IO mode after a reset */
    878 	sc->sc_memorymode = FALSE;
    879 
    880 	/* If transmission was in progress, it is not now */
    881 	sc->sc_txbusy = FALSE;
    882 
    883 	/*
    884 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
    885 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
    886 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
    887 	 * should be sufficient.
    888 	 */
    889 
    890 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
    891 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
    892 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
    893 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
    894 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
    895 
    896 	/* Wait until the EEPROM is not busy */
    897 	for (x = 0; x < MAXLOOP; x++) {
    898 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
    899 			break;
    900 	}
    901 
    902 	if (x == MAXLOOP)
    903 		return CS_ERROR;
    904 
    905 	/* Wait until initialization is done */
    906 	for (x = 0; x < MAXLOOP; x++) {
    907 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
    908 			break;
    909 	}
    910 
    911 	if (x == MAXLOOP)
    912 		return CS_ERROR;
    913 
    914 	/* Reset is no longer in progress */
    915 	sc->sc_resetting = FALSE;
    916 
    917 	return CS_OK;
    918 }
    919 
    920 int
    921 cs_verify_eeprom(struct cs_softc *sc)
    922 {
    923 	u_int16_t self_status;
    924 
    925 	/* Verify that the EEPROM is present and OK */
    926 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
    927 	if (((self_status & SELF_ST_EEP_PRES) &&
    928 	     (self_status & SELF_ST_EEP_OK)) == 0)
    929 		return (CS_ERROR);
    930 
    931 	return (CS_OK);
    932 }
    933 
    934 int
    935 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
    936 {
    937 	int x;
    938 
    939 	/* Ensure that the EEPROM is not busy */
    940 	for (x = 0; x < MAXLOOP; x++) {
    941 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
    942 		      SELF_ST_SI_BUSY))
    943 			break;
    944 	}
    945 
    946 	if (x == MAXLOOP)
    947 		return (CS_ERROR);
    948 
    949 	/* Issue the command to read the offset within the EEPROM */
    950 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
    951 	    offset | EEPROM_CMD_READ);
    952 
    953 	/* Wait until the command is completed */
    954 	for (x = 0; x < MAXLOOP; x++) {
    955 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
    956 		      SELF_ST_SI_BUSY))
    957 			break;
    958 	}
    959 
    960 	if (x == MAXLOOP)
    961 		return (CS_ERROR);
    962 
    963 	/* Get the EEPROM data from the EEPROM Data register */
    964 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
    965 
    966 	return (CS_OK);
    967 }
    968 
    969 void
    970 cs_initChip(struct cs_softc *sc)
    971 {
    972 	u_int16_t busCtl;
    973 	u_int16_t selfCtl;
    974 	u_int16_t v;
    975 	u_int16_t isaId;
    976 	int i;
    977 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
    978 
    979 	/* Disable reception and transmission of frames */
    980 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
    981 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
    982 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
    983 
    984 	/* Disable interrupt at the chip */
    985 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    986 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
    987 
    988 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
    989 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
    990 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
    991 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    992 		    busCtl & ~BUS_CTL_IOCHRDY);
    993 	} else {
    994 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    995 		    busCtl | BUS_CTL_IOCHRDY);
    996 	}
    997 
    998 	/* Set the Line Control register to match the media type */
    999 	if (media == IFM_10_T)
   1000 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
   1001 	else
   1002 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
   1003 
   1004 	/*
   1005 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
   1006 	 * enable the DC/DC converter
   1007 	 */
   1008 	selfCtl = SELF_CTL_HC1E;
   1009 
   1010 	/* If the media type is 10Base2 */
   1011 	if (media == IFM_10_2) {
   1012 		/*
   1013 		 * Enable the DC/DC converter if it has a low enable.
   1014 		 */
   1015 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
   1016 			/*
   1017 			 * Set the HCB1 bit, which causes the HC1 pin to go
   1018 			 * low.
   1019 			 */
   1020 			selfCtl |= SELF_CTL_HCB1;
   1021 	} else { /* Media type is 10BaseT or AUI */
   1022 		/*
   1023 		 * Disable the DC/DC converter if it has a high enable.
   1024 		 */
   1025 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
   1026 			/*
   1027 			 * Set the HCB1 bit, which causes the HC1 pin to go
   1028 			 * low.
   1029 			 */
   1030 			selfCtl |= SELF_CTL_HCB1;
   1031 		}
   1032 	}
   1033 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
   1034 
   1035 	/* enable normal link pulse */
   1036 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
   1037 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
   1038 
   1039 	/* Enable full-duplex, if appropriate */
   1040 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
   1041 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
   1042 
   1043 	/* RX_CTL set in cs_set_ladr_filt(), below */
   1044 
   1045 	/* enable all transmission interrupts */
   1046 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
   1047 
   1048 	/* Accept all receive interrupts */
   1049 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
   1050 
   1051 	/*
   1052 	 * Configure Operational Modes
   1053 	 *
   1054 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
   1055 	 * a better way to do it because the card has a counter which can be
   1056 	 * read to update the RX_MISS counter. This saves many interrupts.
   1057 	 *
   1058 	 * I have turned on the tx and rx overflow interrupts to counter using
   1059 	 * the receive miss interrupt. This is a better estimate of errors
   1060 	 * and requires lower system overhead.
   1061 	 */
   1062 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
   1063 			  BUF_CFG_RX_DMA_IE);
   1064 
   1065 	if (sc->sc_dma_chipinit)
   1066 		(*sc->sc_dma_chipinit)(sc);
   1067 
   1068 	/* If memory mode is enabled */
   1069 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
   1070 		/* If external logic is present for address decoding */
   1071 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
   1072 			/*
   1073 			 * Program the external logic to decode address bits
   1074 			 * SA20-SA23
   1075 			 */
   1076 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
   1077 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
   1078 			    EEPROM_CMD_ELSEL);
   1079 		}
   1080 
   1081 		/*
   1082 		 * Write the packet page base physical address to the memory
   1083 		 * base register.
   1084 		 */
   1085 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
   1086 		    sc->sc_pktpgaddr & 0xFFFF);
   1087 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
   1088 		    sc->sc_pktpgaddr >> 16);
   1089 		busCtl = BUS_CTL_MEM_MODE;
   1090 
   1091 		/* tell the chip to read the addresses off the SA pins */
   1092 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
   1093 			busCtl |= BUS_CTL_USE_SA;
   1094 		}
   1095 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
   1096 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
   1097 
   1098 		/* We are in memory mode now! */
   1099 		sc->sc_memorymode = TRUE;
   1100 
   1101 		/*
   1102 		 * wait here (10ms) for the chip to swap over. this is the
   1103 		 * maximum time that this could take.
   1104 		 */
   1105 		delay(10000);
   1106 
   1107 		/* Verify that we can read from the chip */
   1108 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
   1109 
   1110 		/*
   1111 		 * As a last minute sanity check before actually using mapped
   1112 		 * memory we verify that we can read the isa number from the
   1113 		 * chip in memory mode.
   1114 		 */
   1115 		if (isaId != EISA_NUM_CRYSTAL) {
   1116 			aprint_error_dev(sc->sc_dev,
   1117 			    "failed to enable memory mode\n");
   1118 			sc->sc_memorymode = FALSE;
   1119 		} else {
   1120 			/*
   1121 			 * we are in memory mode so if we aren't using DMA,
   1122 			 * then program the chip to interrupt early.
   1123 			 */
   1124 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
   1125 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
   1126 				    BUF_CFG_RX_DEST_IE |
   1127 				    BUF_CFG_RX_MISS_OVER_IE |
   1128 				    BUF_CFG_TX_COL_OVER_IE);
   1129 			}
   1130 		}
   1131 
   1132 	}
   1133 
   1134 	/* Put Ethernet address into the Individual Address register */
   1135 	for (i = 0; i < 6; i += 2) {
   1136 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
   1137 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
   1138 	}
   1139 
   1140 	if (sc->sc_irq != -1) {
   1141 		/* Set the interrupt level in the chip */
   1142 		if (sc->sc_prodid == PROD_ID_CS8900) {
   1143 			if (sc->sc_irq == 5) {
   1144 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
   1145 			} else {
   1146 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
   1147 			}
   1148 		}
   1149 		else { /* CS8920 */
   1150 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
   1151 		}
   1152 	}
   1153 
   1154 	/* write the multicast mask to the address filter register */
   1155 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
   1156 
   1157 	/* Enable reception and transmission of frames */
   1158 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
   1159 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
   1160 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
   1161 
   1162 	/* Enable interrupt at the chip */
   1163 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
   1164 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
   1165 }
   1166 
   1167 int
   1168 cs_init(struct ifnet *ifp)
   1169 {
   1170 	int intState;
   1171 	int error = CS_OK;
   1172 	struct cs_softc *sc = ifp->if_softc;
   1173 
   1174 	if (cs_enable(sc))
   1175 		goto out;
   1176 
   1177 	cs_stop(ifp, 0);
   1178 
   1179 	intState = splnet();
   1180 
   1181 #if 0
   1182 	/* Mark the interface as down */
   1183 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
   1184 #endif
   1185 
   1186 #ifdef CS_DEBUG
   1187 	/* Enable debugging */
   1188 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
   1189 #endif
   1190 
   1191 	/* Reset the chip */
   1192 	if ((error = cs_reset_chip(sc)) == CS_OK) {
   1193 		/* Initialize the chip */
   1194 		cs_initChip(sc);
   1195 
   1196 		/* Mark the interface as running */
   1197 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
   1198 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1199 		sc->sc_ethercom.ec_if.if_timer = 0;
   1200 
   1201 		/* Assume we have carrier until we are told otherwise. */
   1202 		sc->sc_carrier = 1;
   1203 	} else {
   1204 		aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
   1205 	}
   1206 
   1207 	splx(intState);
   1208 out:
   1209 	if (error == CS_OK)
   1210 		return 0;
   1211 	return EIO;
   1212 }
   1213 
   1214 void
   1215 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
   1216 {
   1217 	struct ifnet *ifp = &ec->ec_if;
   1218 	struct ether_multi *enm;
   1219 	struct ether_multistep step;
   1220 	u_int16_t af[4];
   1221 	u_int16_t port, mask, index;
   1222 
   1223 	/*
   1224          * Set up multicast address filter by passing all multicast addresses
   1225          * through a crc generator, and then using the high order 6 bits as an
   1226          * index into the 64 bit logical address filter.  The high order bit
   1227          * selects the word, while the rest of the bits select the bit within
   1228          * the word.
   1229          */
   1230 	if (ifp->if_flags & IFF_PROMISC) {
   1231 		/* accept all valid frames. */
   1232 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
   1233 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
   1234 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
   1235 		ifp->if_flags |= IFF_ALLMULTI;
   1236 		return;
   1237 	}
   1238 
   1239 	/*
   1240 	 * accept frames if a. crc valid, b. individual address match c.
   1241 	 * broadcast address,and d. multicast addresses matched in the hash
   1242 	 * filter
   1243 	 */
   1244 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
   1245 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
   1246 
   1247 
   1248 	/*
   1249 	 * start off with all multicast flag clear, set it if we need to
   1250 	 * later, otherwise we will leave it.
   1251 	 */
   1252 	ifp->if_flags &= ~IFF_ALLMULTI;
   1253 	af[0] = af[1] = af[2] = af[3] = 0x0000;
   1254 
   1255 	/*
   1256 	 * Loop through all the multicast addresses unless we get a range of
   1257 	 * addresses, in which case we will just accept all packets.
   1258 	 * Justification for this is given in the next comment.
   1259 	 */
   1260 	ETHER_FIRST_MULTI(step, ec, enm);
   1261 	while (enm != NULL) {
   1262 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1263 		    sizeof enm->enm_addrlo)) {
   1264 			/*
   1265 	                 * We must listen to a range of multicast addresses.
   1266 	                 * For now, just accept all multicasts, rather than
   1267 	                 * trying to set only those filter bits needed to match
   1268 	                 * the range.  (At this time, the only use of address
   1269 	                 * ranges is for IP multicast routing, for which the
   1270 	                 * range is big enough to require all bits set.)
   1271 	                 */
   1272 			ifp->if_flags |= IFF_ALLMULTI;
   1273 			af[0] = af[1] = af[2] = af[3] = 0xffff;
   1274 			break;
   1275 		} else {
   1276 			/*
   1277 	                 * we have got an individual address so just set that
   1278 	                 * bit.
   1279 	                 */
   1280 			index = cs_hash_index(enm->enm_addrlo);
   1281 
   1282 			/* Set the bit the Logical address filter. */
   1283 			port = (u_int16_t) (index >> 4);
   1284 			mask = (u_int16_t) (1 << (index & 0xf));
   1285 			af[port] |= mask;
   1286 
   1287 			ETHER_NEXT_MULTI(step, enm);
   1288 		}
   1289 	}
   1290 
   1291 	/* now program the chip with the addresses */
   1292 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
   1293 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
   1294 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
   1295 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
   1296 	return;
   1297 }
   1298 
   1299 u_int16_t
   1300 cs_hash_index(char *addr)
   1301 {
   1302 	uint32_t crc;
   1303 	uint16_t hash_code;
   1304 
   1305 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
   1306 
   1307 	hash_code = crc >> 26;
   1308 	return (hash_code);
   1309 }
   1310 
   1311 void
   1312 cs_reset(struct cs_softc *sc)
   1313 {
   1314 
   1315 	/* Mark the interface as down */
   1316 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1317 
   1318 	/* Reset the chip */
   1319 	cs_reset_chip(sc);
   1320 }
   1321 
   1322 int
   1323 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1324 {
   1325 	struct cs_softc *sc = ifp->if_softc;
   1326 	struct ifreq *ifr = data;
   1327 	int state;
   1328 	int result;
   1329 
   1330 	state = splnet();
   1331 
   1332 	result = 0;		/* only set if something goes wrong */
   1333 
   1334 	switch (cmd) {
   1335 	case SIOCGIFMEDIA:
   1336 	case SIOCSIFMEDIA:
   1337 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1338 		break;
   1339 
   1340 	default:
   1341 		result = ether_ioctl(ifp, cmd, data);
   1342 		if (result == ENETRESET) {
   1343 			if (ifp->if_flags & IFF_RUNNING) {
   1344 				/*
   1345 				 * Multicast list has changed.  Set the
   1346 				 * hardware filter accordingly.
   1347 				 */
   1348 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
   1349 			}
   1350 			result = 0;
   1351 		}
   1352 		break;
   1353 	}
   1354 
   1355 	splx(state);
   1356 
   1357 	return result;
   1358 }
   1359 
   1360 int
   1361 cs_mediachange(struct ifnet *ifp)
   1362 {
   1363 
   1364 	/*
   1365 	 * Current media is already set up.  Just reset the interface
   1366 	 * to let the new value take hold.
   1367 	 */
   1368 	cs_init(ifp);
   1369 	return (0);
   1370 }
   1371 
   1372 void
   1373 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1374 {
   1375 	struct cs_softc *sc = ifp->if_softc;
   1376 
   1377 	/*
   1378 	 * The currently selected media is always the active media.
   1379 	 */
   1380 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
   1381 
   1382 	if (ifp->if_flags & IFF_UP) {
   1383 		/* Interface up, status is valid. */
   1384 		ifmr->ifm_status = IFM_AVALID |
   1385 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
   1386 	}
   1387 		else ifmr->ifm_status = 0;
   1388 }
   1389 
   1390 int
   1391 cs_intr(void *arg)
   1392 {
   1393 	struct cs_softc *sc = arg;
   1394 	u_int16_t Event;
   1395 #if NRND > 0
   1396 	u_int16_t rndEvent;
   1397 #endif
   1398 
   1399 /*printf("cs_intr %p\n", sc);*/
   1400 	/* Ignore any interrupts that happen while the chip is being reset */
   1401 	if (sc->sc_resetting) {
   1402 		printf("%s: cs_intr: reset in progress\n",
   1403 		    device_xname(sc->sc_dev));
   1404 		return 1;
   1405 	}
   1406 
   1407 	/* Read an event from the Interrupt Status Queue */
   1408 	if (sc->sc_memorymode)
   1409 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
   1410 	else
   1411 		Event = CS_READ_PORT(sc, PORT_ISQ);
   1412 
   1413 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
   1414 		return 0;	/* not ours */
   1415 
   1416 #if NRND > 0
   1417 	rndEvent = Event;
   1418 #endif
   1419 
   1420 	/* Process all the events in the Interrupt Status Queue */
   1421 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
   1422 		/* Dispatch to an event handler based on the register number */
   1423 		switch (Event & REG_NUM_MASK) {
   1424 		case REG_NUM_RX_EVENT:
   1425 			cs_receive_event(sc, Event);
   1426 			break;
   1427 		case REG_NUM_TX_EVENT:
   1428 			cs_transmit_event(sc, Event);
   1429 			break;
   1430 		case REG_NUM_BUF_EVENT:
   1431 			cs_buffer_event(sc, Event);
   1432 			break;
   1433 		case REG_NUM_TX_COL:
   1434 		case REG_NUM_RX_MISS:
   1435 			cs_counter_event(sc, Event);
   1436 			break;
   1437 		default:
   1438 			printf("%s: unknown interrupt event 0x%x\n",
   1439 			    device_xname(sc->sc_dev), Event);
   1440 			break;
   1441 		}
   1442 
   1443 		/* Read another event from the Interrupt Status Queue */
   1444 		if (sc->sc_memorymode)
   1445 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
   1446 		else
   1447 			Event = CS_READ_PORT(sc, PORT_ISQ);
   1448 	}
   1449 
   1450 	/* have handled the interrupt */
   1451 #if NRND > 0
   1452 	rnd_add_uint32(&sc->rnd_source, rndEvent);
   1453 #endif
   1454 	return 1;
   1455 }
   1456 
   1457 void
   1458 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
   1459 {
   1460 	struct ifnet *ifp;
   1461 	u_int16_t errorCount;
   1462 
   1463 	ifp = &sc->sc_ethercom.ec_if;
   1464 
   1465 	switch (cntEvent & REG_NUM_MASK) {
   1466 	case REG_NUM_TX_COL:
   1467 		/*
   1468 		 * the count should be read before an overflow occurs.
   1469 		 */
   1470 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
   1471 		/*
   1472 		 * the tramsit event routine always checks the number of
   1473 		 * collisions for any packet so we don't increment any
   1474 		 * counters here, as they should already have been
   1475 		 * considered.
   1476 		 */
   1477 		break;
   1478 	case REG_NUM_RX_MISS:
   1479 		/*
   1480 		 * the count should be read before an overflow occurs.
   1481 		 */
   1482 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
   1483 		/*
   1484 		 * Increment the input error count, the first 6bits are the
   1485 		 * register id.
   1486 		 */
   1487 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
   1488 		break;
   1489 	default:
   1490 		/* do nothing */
   1491 		break;
   1492 	}
   1493 }
   1494 
   1495 void
   1496 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
   1497 {
   1498 
   1499 	/*
   1500 	 * multiple events can be in the buffer event register at one time so
   1501 	 * a standard switch statement will not suffice, here every event
   1502 	 * must be checked.
   1503 	 */
   1504 
   1505 	/*
   1506 	 * if 128 bits have been rxed by the time we get here, the dest event
   1507 	 * will be cleared and 128 event will be set.
   1508 	 */
   1509 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
   1510 		cs_process_rx_early(sc);
   1511 	}
   1512 
   1513 	if (bufEvent & BUF_EVENT_RX_DMA) {
   1514 		/* process the receive data */
   1515 		if (sc->sc_dma_process_rx)
   1516 			(*sc->sc_dma_process_rx)(sc);
   1517 		else
   1518 			/* should panic? */
   1519 			aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
   1520 	}
   1521 
   1522 	if (bufEvent & BUF_EVENT_TX_UNDR) {
   1523 #if 0
   1524 		/*
   1525 		 * This can happen occasionally, and it's not worth worrying
   1526 		 * about.
   1527 		 */
   1528 		printf("%s: transmit underrun (%d -> %d)\n",
   1529 		    device_xname(sc->sc_dev), sc->sc_xe_ent,
   1530 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
   1531 #endif
   1532 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
   1533 		sc->sc_xe_togo =
   1534 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
   1535 
   1536 		/* had an underrun, transmit is finished */
   1537 		sc->sc_txbusy = FALSE;
   1538 	}
   1539 
   1540 	if (bufEvent & BUF_EVENT_SW_INT) {
   1541 		printf("%s: software initiated interrupt\n",
   1542 		    device_xname(sc->sc_dev));
   1543 	}
   1544 }
   1545 
   1546 void
   1547 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
   1548 {
   1549 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1550 
   1551 	/* If there were any errors transmitting this frame */
   1552 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
   1553 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
   1554 		/* Increment the output error count */
   1555 		ifp->if_oerrors++;
   1556 
   1557 		/* Note carrier loss. */
   1558 		if (txEvent & TX_EVENT_LOSS_CRS)
   1559 			sc->sc_carrier = 0;
   1560 
   1561 		/* If debugging is enabled then log error messages */
   1562 		if (ifp->if_flags & IFF_DEBUG) {
   1563 			if (txEvent & TX_EVENT_LOSS_CRS) {
   1564 				aprint_error_dev(sc->sc_dev, "lost carrier\n");
   1565 			}
   1566 			if (txEvent & TX_EVENT_SQE_ERR) {
   1567 				aprint_error_dev(sc->sc_dev, "SQE error\n");
   1568 			}
   1569 			if (txEvent & TX_EVENT_OUT_WIN) {
   1570 				aprint_error_dev(sc->sc_dev,
   1571 				    "out-of-window collision\n");
   1572 			}
   1573 			if (txEvent & TX_EVENT_JABBER) {
   1574 				aprint_error_dev(sc->sc_dev, "jabber\n");
   1575 			}
   1576 			if (txEvent & TX_EVENT_16_COLL) {
   1577 				aprint_error_dev(sc->sc_dev, "16 collisions\n");
   1578 			}
   1579 		}
   1580 	}
   1581 	else {
   1582 		/* Transmission successful, carrier is up. */
   1583 		sc->sc_carrier = 1;
   1584 #ifdef SHARK
   1585 		ledNetActive();
   1586 #endif
   1587 	}
   1588 
   1589 	/* Add the number of collisions for this frame */
   1590 	if (txEvent & TX_EVENT_16_COLL) {
   1591 		ifp->if_collisions += 16;
   1592 	} else {
   1593 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
   1594 	}
   1595 
   1596 	ifp->if_opackets++;
   1597 
   1598 	/* Transmission is no longer in progress */
   1599 	sc->sc_txbusy = FALSE;
   1600 
   1601 	/* If there is more to transmit */
   1602 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
   1603 		/* Start the next transmission */
   1604 		cs_start_output(ifp);
   1605 	}
   1606 }
   1607 
   1608 void
   1609 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
   1610 {
   1611 
   1612 	if (rxEvent & RX_EVENT_RUNT)
   1613 		aprint_error_dev(sc->sc_dev, "runt\n");
   1614 
   1615 	if (rxEvent & RX_EVENT_X_DATA)
   1616 		aprint_error_dev(sc->sc_dev, "extra data\n");
   1617 
   1618 	if (rxEvent & RX_EVENT_CRC_ERR) {
   1619 		if (rxEvent & RX_EVENT_DRIBBLE)
   1620 			aprint_error_dev(sc->sc_dev, "alignment error\n");
   1621 		else
   1622 			aprint_error_dev(sc->sc_dev, "CRC error\n");
   1623 	} else {
   1624 		if (rxEvent & RX_EVENT_DRIBBLE)
   1625 			aprint_error_dev(sc->sc_dev, "dribble bits\n");
   1626 	}
   1627 }
   1628 
   1629 void
   1630 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
   1631 {
   1632 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1633 
   1634 	/* If the frame was not received OK */
   1635 	if (!(rxEvent & RX_EVENT_RX_OK)) {
   1636 		/* Increment the input error count */
   1637 		ifp->if_ierrors++;
   1638 
   1639 		/*
   1640 		 * If debugging is enabled then log error messages.
   1641 		 */
   1642 		if (ifp->if_flags & IFF_DEBUG) {
   1643 			if (rxEvent != REG_NUM_RX_EVENT) {
   1644 				cs_print_rx_errors(sc, rxEvent);
   1645 
   1646 				/*
   1647 				 * Must read the length of all received
   1648 				 * frames
   1649 				 */
   1650 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
   1651 
   1652 				/* Skip the received frame */
   1653 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1654 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
   1655 						  RX_CFG_SKIP);
   1656 			} else {
   1657 				aprint_error_dev(sc->sc_dev, "implied skip\n");
   1658 			}
   1659 		}
   1660 	} else {
   1661 		/*
   1662 		 * process the received frame and pass it up to the upper
   1663 		 * layers.
   1664 		 */
   1665 		cs_process_receive(sc);
   1666 	}
   1667 }
   1668 
   1669 void
   1670 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
   1671 {
   1672 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1673 
   1674 	ifp->if_ipackets++;
   1675 
   1676 	/*
   1677 	 * Check if there's a BPF listener on this interface.
   1678 	 * If so, hand off the raw packet to BPF.
   1679 	 */
   1680 	bpf_mtap(ifp, m);
   1681 
   1682 	/* Pass the packet up. */
   1683 	(*ifp->if_input)(ifp, m);
   1684 }
   1685 
   1686 void
   1687 cs_process_receive(struct cs_softc *sc)
   1688 {
   1689 	struct ifnet *ifp;
   1690 	struct mbuf *m;
   1691 	int totlen;
   1692 	u_int16_t *pBuff, *pBuffLimit;
   1693 	int pad;
   1694 	unsigned int frameOffset = 0;	/* XXX: gcc */
   1695 
   1696 #ifdef SHARK
   1697 	ledNetActive();
   1698 #endif
   1699 
   1700 	ifp = &sc->sc_ethercom.ec_if;
   1701 
   1702 	/* Received a packet; carrier is up. */
   1703 	sc->sc_carrier = 1;
   1704 
   1705 	if (sc->sc_memorymode) {
   1706 		/* Initialize the frame offset */
   1707 		frameOffset = PKTPG_RX_LENGTH;
   1708 
   1709 		/* Get the length of the received frame */
   1710 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
   1711 		frameOffset += 2;
   1712 	}
   1713 	else {
   1714 		/* drop status */
   1715 		CS_READ_PORT(sc, PORT_RXTX_DATA);
   1716 
   1717 		/* Get the length of the received frame */
   1718 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
   1719 	}
   1720 
   1721 	if (totlen > ETHER_MAX_LEN) {
   1722 		aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
   1723 		    totlen);
   1724 
   1725 		/* skip the received frame */
   1726 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1727 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1728 		return;
   1729 	}
   1730 
   1731 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1732 	if (m == 0) {
   1733 		aprint_error_dev(sc->sc_dev,
   1734 		    "cs_process_receive: unable to allocate mbuf\n");
   1735 		ifp->if_ierrors++;
   1736 		/*
   1737 		 * couldn't allocate an mbuf so things are not good, may as
   1738 		 * well drop the packet I think.
   1739 		 *
   1740 		 * have already read the length so we should be right to skip
   1741 		 * the packet.
   1742 		 */
   1743 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1744 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1745 		return;
   1746 	}
   1747 	m->m_pkthdr.rcvif = ifp;
   1748 	m->m_pkthdr.len = totlen;
   1749 
   1750 	/* number of bytes to align ip header on word boundary for ipintr */
   1751 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
   1752 
   1753 	/*
   1754 	 * alloc mbuf cluster if we need.
   1755 	 * we need 1 byte spare because following
   1756 	 * packet read loop can overrun.
   1757 	 */
   1758 	if (totlen + pad + 1 > MHLEN) {
   1759 		MCLGET(m, M_DONTWAIT);
   1760 		if ((m->m_flags & M_EXT) == 0) {
   1761 			/* couldn't allocate an mbuf cluster */
   1762 			aprint_error_dev(sc->sc_dev,
   1763 			    "cs_process_receive: "
   1764 			    "unable to allocate a cluster\n");
   1765 			m_freem(m);
   1766 
   1767 			/* skip the received frame */
   1768 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1769 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1770 			return;
   1771 		}
   1772 	}
   1773 
   1774 	/* align ip header on word boundary for ipintr */
   1775 	m->m_data += pad;
   1776 
   1777 	m->m_len = totlen;
   1778 	pBuff = mtod(m, u_int16_t *);
   1779 
   1780 	/* now read the data from the chip */
   1781 	if (sc->sc_memorymode) {
   1782 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
   1783 		while (pBuff < pBuffLimit) {
   1784 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
   1785 			frameOffset += 2;
   1786 		}
   1787 	}
   1788 	else {
   1789 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
   1790 	}
   1791 
   1792 	cs_ether_input(sc, m);
   1793 }
   1794 
   1795 void
   1796 cs_process_rx_early(struct cs_softc *sc)
   1797 {
   1798 	struct ifnet *ifp;
   1799 	struct mbuf *m;
   1800 	u_int16_t frameCount, oldFrameCount;
   1801 	u_int16_t rxEvent;
   1802 	u_int16_t *pBuff;
   1803 	int pad;
   1804 	unsigned int frameOffset;
   1805 
   1806 
   1807 	ifp = &sc->sc_ethercom.ec_if;
   1808 
   1809 	/* Initialize the frame offset */
   1810 	frameOffset = PKTPG_RX_FRAME;
   1811 	frameCount = 0;
   1812 
   1813 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1814 	if (m == 0) {
   1815 		aprint_error_dev(sc->sc_dev,
   1816 		    "cs_process_rx_early: unable to allocate mbuf\n");
   1817 		ifp->if_ierrors++;
   1818 		/*
   1819 		 * couldn't allocate an mbuf so things are not good, may as
   1820 		 * well drop the packet I think.
   1821 		 *
   1822 		 * have already read the length so we should be right to skip
   1823 		 * the packet.
   1824 		 */
   1825 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1826 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1827 		return;
   1828 	}
   1829 	m->m_pkthdr.rcvif = ifp;
   1830 	/*
   1831 	 * save processing by always using a mbuf cluster, guaranteed to fit
   1832 	 * packet
   1833 	 */
   1834 	MCLGET(m, M_DONTWAIT);
   1835 	if ((m->m_flags & M_EXT) == 0) {
   1836 		/* couldn't allocate an mbuf cluster */
   1837 		aprint_error_dev(sc->sc_dev,
   1838 		    "cs_process_rx_early: unable to allocate a cluster\n");
   1839 		m_freem(m);
   1840 		/* skip the frame */
   1841 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1842 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1843 		return;
   1844 	}
   1845 
   1846 	/* align ip header on word boundary for ipintr */
   1847 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
   1848 	m->m_data += pad;
   1849 
   1850 	/* set up the buffer pointer to point to the data area */
   1851 	pBuff = mtod(m, u_int16_t *);
   1852 
   1853 	/*
   1854 	 * now read the frame byte counter until we have finished reading the
   1855 	 * frame
   1856 	 */
   1857 	oldFrameCount = 0;
   1858 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
   1859 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
   1860 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
   1861 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
   1862 			frameOffset += 2;
   1863 		}
   1864 
   1865 		/* read the new count from the chip */
   1866 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
   1867 	}
   1868 
   1869 	/* update the mbuf counts */
   1870 	m->m_len = oldFrameCount;
   1871 	m->m_pkthdr.len = oldFrameCount;
   1872 
   1873 	/* now check the Rx Event register */
   1874 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
   1875 
   1876 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
   1877 		/*
   1878 		 * do an implied skip, it seems to be more reliable than a
   1879 		 * forced skip.
   1880 		 */
   1881 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
   1882 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
   1883 
   1884 		/*
   1885 		 * now read the RX_EVENT register to perform an implied skip.
   1886 		 */
   1887 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
   1888 
   1889 		cs_ether_input(sc, m);
   1890 	} else {
   1891 		m_freem(m);
   1892 		ifp->if_ierrors++;
   1893 	}
   1894 }
   1895 
   1896 void
   1897 cs_start_output(struct ifnet *ifp)
   1898 {
   1899 	struct cs_softc *sc;
   1900 	struct mbuf *pMbuf;
   1901 	struct mbuf *pMbufChain;
   1902 	u_int16_t BusStatus;
   1903 	u_int16_t Length;
   1904 	int txLoop = 0;
   1905 	int dropout = 0;
   1906 
   1907 	sc = ifp->if_softc;
   1908 
   1909 	/* check that the interface is up and running */
   1910 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
   1911 		return;
   1912 	}
   1913 
   1914 	/* Don't interrupt a transmission in progress */
   1915 	if (sc->sc_txbusy) {
   1916 		return;
   1917 	}
   1918 
   1919 	/* this loop will only run through once if transmission is successful */
   1920 	/*
   1921 	 * While there are packets to transmit and a transmit is not in
   1922 	 * progress
   1923 	 */
   1924 	while (sc->sc_txbusy == 0 && dropout == 0) {
   1925 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
   1926 		if (pMbufChain == NULL)
   1927 			break;
   1928 
   1929 		/*
   1930 	         * If BPF is listening on this interface, let it see the packet
   1931 	         * before we commit it to the wire.
   1932 	         */
   1933 		bpf_mtap(ifp, pMbufChain);
   1934 
   1935 		/* Find the total length of the data to transmit */
   1936 		Length = 0;
   1937 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
   1938 			Length += pMbuf->m_len;
   1939 
   1940 		do {
   1941 			/*
   1942 			 * Request that the transmit be started after all
   1943 			 * data has been copied
   1944 			 *
   1945 			 * In IO mode must write to the IO port not the packet
   1946 			 * page address
   1947 			 *
   1948 			 * If this is changed to start transmission after a
   1949 			 * small amount of data has been copied you tend to
   1950 			 * get packet missed errors i think because the ISA
   1951 			 * bus is too slow. Or possibly the copy routine is
   1952 			 * not streamlined enough.
   1953 			 */
   1954 			if (sc->sc_memorymode) {
   1955 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
   1956 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
   1957 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
   1958 			}
   1959 			else {
   1960 				CS_WRITE_PORT(sc, PORT_TX_CMD,
   1961 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
   1962 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
   1963 			}
   1964 
   1965 			/*
   1966 			 * Adjust early-transmit machinery.
   1967 			 */
   1968 			if (--sc->sc_xe_togo == 0) {
   1969 				sc->sc_xe_ent =
   1970 				    cs_xmit_early_table[sc->sc_xe_ent].better;
   1971 				sc->sc_xe_togo =
   1972 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
   1973 			}
   1974 			/*
   1975 			 * Read the BusStatus register which indicates
   1976 			 * success of the request
   1977 			 */
   1978 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
   1979 
   1980 			/*
   1981 			 * If there was an error in the transmit bid free the
   1982 			 * mbuf and go on. This is presuming that mbuf is
   1983 			 * corrupt.
   1984 			 */
   1985 			if (BusStatus & BUS_ST_TX_BID_ERR) {
   1986 				aprint_error_dev(sc->sc_dev,
   1987 				    "transmit bid error (too big)");
   1988 
   1989 				/* Discard the bad mbuf chain */
   1990 				m_freem(pMbufChain);
   1991 				sc->sc_ethercom.ec_if.if_oerrors++;
   1992 
   1993 				/* Loop up to transmit the next chain */
   1994 				txLoop = 0;
   1995 			} else {
   1996 				if (BusStatus & BUS_ST_RDY4TXNOW) {
   1997 					/*
   1998 					 * The chip is ready for transmission
   1999 					 * now
   2000 					 */
   2001 					/*
   2002 					 * Copy the frame to the chip to
   2003 					 * start transmission
   2004 					 */
   2005 					cs_copy_tx_frame(sc, pMbufChain);
   2006 
   2007 					/* Free the mbuf chain */
   2008 					m_freem(pMbufChain);
   2009 
   2010 					/* Transmission is now in progress */
   2011 					sc->sc_txbusy = TRUE;
   2012 					txLoop = 0;
   2013 				} else {
   2014 					/*
   2015 					 * if we get here we want to try
   2016 					 * again with the same mbuf, until
   2017 					 * the chip lets us transmit.
   2018 					 */
   2019 					txLoop++;
   2020 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
   2021 						/* Free the mbuf chain */
   2022 						m_freem(pMbufChain);
   2023 						/*
   2024 						 * Transmission is not in
   2025 						 * progress
   2026 						 */
   2027 						sc->sc_txbusy = FALSE;
   2028 						/*
   2029 						 * Increment the output error
   2030 						 * count
   2031 						 */
   2032 						ifp->if_oerrors++;
   2033 						/*
   2034 						 * exit the routine and drop
   2035 						 * the packet.
   2036 						 */
   2037 						txLoop = 0;
   2038 						dropout = 1;
   2039 					}
   2040 				}
   2041 			}
   2042 		} while (txLoop);
   2043 	}
   2044 }
   2045 
   2046 void
   2047 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
   2048 {
   2049 	struct mbuf *m;
   2050 	int len, leftover, frameoff;
   2051 	u_int16_t dbuf;
   2052 	u_int8_t *p;
   2053 #ifdef DIAGNOSTIC
   2054 	u_int8_t *lim;
   2055 #endif
   2056 
   2057 	/* Initialize frame pointer and data port address */
   2058 	frameoff = PKTPG_TX_FRAME;
   2059 
   2060 	/* start out with no leftover data */
   2061 	leftover = 0;
   2062 	dbuf = 0;
   2063 
   2064 	/* Process the chain of mbufs */
   2065 	for (m = m0; m != NULL; m = m->m_next) {
   2066 		/*
   2067 		 * Process all of the data in a single mbuf.
   2068 		 */
   2069 		p = mtod(m, u_int8_t *);
   2070 		len = m->m_len;
   2071 #ifdef DIAGNOSTIC
   2072 		lim = p + len;
   2073 #endif
   2074 
   2075 		while (len > 0) {
   2076 			if (leftover) {
   2077 				/*
   2078 				 * Data left over (from mbuf or realignment).
   2079 				 * Buffer the next byte, and write it and
   2080 				 * the leftover data out.
   2081 				 */
   2082 				dbuf |= *p++ << 8;
   2083 				len--;
   2084 				if (sc->sc_memorymode) {
   2085 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
   2086 					frameoff += 2;
   2087 				}
   2088 				else {
   2089 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
   2090 				}
   2091 				leftover = 0;
   2092 			} else if ((long) p & 1) {
   2093 				/*
   2094 				 * Misaligned data.  Buffer the next byte.
   2095 				 */
   2096 				dbuf = *p++;
   2097 				len--;
   2098 				leftover = 1;
   2099 			} else {
   2100 				/*
   2101 				 * Aligned data.  This is the case we like.
   2102 				 *
   2103 				 * Write-region out as much as we can, then
   2104 				 * buffer the remaining byte (if any).
   2105 				 */
   2106 				leftover = len & 1;
   2107 				len &= ~1;
   2108 				if (sc->sc_memorymode) {
   2109 					MEM_WRITE_REGION_2(sc, frameoff,
   2110 						(u_int16_t *) p, len >> 1);
   2111 					frameoff += len;
   2112 				}
   2113 				else {
   2114 					IO_WRITE_MULTI_2(sc,
   2115 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
   2116 				}
   2117 				p += len;
   2118 
   2119 				if (leftover)
   2120 					dbuf = *p++;
   2121 				len = 0;
   2122 			}
   2123 		}
   2124 		if (len < 0)
   2125 			panic("cs_copy_tx_frame: negative len");
   2126 #ifdef DIAGNOSTIC
   2127 		if (p != lim)
   2128 			panic("cs_copy_tx_frame: p != lim");
   2129 #endif
   2130 	}
   2131 	if (leftover) {
   2132 		if (sc->sc_memorymode) {
   2133 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
   2134 		}
   2135 		else {
   2136 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
   2137 		}
   2138 	}
   2139 }
   2140 
   2141 static int
   2142 cs_enable(struct cs_softc *sc)
   2143 {
   2144 
   2145 	if (CS_IS_ENABLED(sc) == 0) {
   2146 		if (sc->sc_enable != NULL) {
   2147 			int error;
   2148 
   2149 			error = (*sc->sc_enable)(sc);
   2150 			if (error)
   2151 				return (error);
   2152 		}
   2153 		sc->sc_cfgflags |= CFGFLG_ENABLED;
   2154 	}
   2155 
   2156 	return (0);
   2157 }
   2158 
   2159 static void
   2160 cs_disable(struct cs_softc *sc)
   2161 {
   2162 
   2163 	if (CS_IS_ENABLED(sc)) {
   2164 		if (sc->sc_disable != NULL)
   2165 			(*sc->sc_disable)(sc);
   2166 
   2167 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
   2168 	}
   2169 }
   2170 
   2171 static void
   2172 cs_stop(struct ifnet *ifp, int disable)
   2173 {
   2174 	struct cs_softc *sc = ifp->if_softc;
   2175 
   2176 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
   2177 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
   2178 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
   2179 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
   2180 
   2181 	if (disable) {
   2182 		cs_disable(sc);
   2183 	}
   2184 
   2185 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2186 }
   2187 
   2188 int
   2189 cs_activate(device_t self, enum devact act)
   2190 {
   2191 	struct cs_softc *sc = device_private(self);
   2192 
   2193 	switch (act) {
   2194 	case DVACT_DEACTIVATE:
   2195 		if_deactivate(&sc->sc_ethercom.ec_if);
   2196 		return 0;
   2197 	default:
   2198 		return EOPNOTSUPP;
   2199 	}
   2200 }
   2201