cs89x0.c revision 1.31 1 /* $NetBSD: cs89x0.c,v 1.31 2010/04/05 07:19:33 joerg Exp $ */
2
3 /*
4 * Copyright (c) 2004 Christopher Gilbert
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright 1997
31 * Digital Equipment Corporation. All rights reserved.
32 *
33 * This software is furnished under license and may be used and
34 * copied only in accordance with the following terms and conditions.
35 * Subject to these conditions, you may download, copy, install,
36 * use, modify and distribute this software in source and/or binary
37 * form. No title or ownership is transferred hereby.
38 *
39 * 1) Any source code used, modified or distributed must reproduce
40 * and retain this copyright notice and list of conditions as
41 * they appear in the source file.
42 *
43 * 2) No right is granted to use any trade name, trademark, or logo of
44 * Digital Equipment Corporation. Neither the "Digital Equipment
45 * Corporation" name nor any trademark or logo of Digital Equipment
46 * Corporation may be used to endorse or promote products derived
47 * from this software without the prior written permission of
48 * Digital Equipment Corporation.
49 *
50 * 3) This software is provided "AS-IS" and any express or implied
51 * warranties, including but not limited to, any implied warranties
52 * of merchantability, fitness for a particular purpose, or
53 * non-infringement are disclaimed. In no event shall DIGITAL be
54 * liable for any damages whatsoever, and in particular, DIGITAL
55 * shall not be liable for special, indirect, consequential, or
56 * incidental damages or damages for lost profits, loss of
57 * revenue or loss of use, whether such damages arise in contract,
58 * negligence, tort, under statute, in equity, at law or otherwise,
59 * even if advised of the possibility of such damage.
60 */
61
62 /*
63 **++
64 ** FACILITY
65 **
66 ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 ** ABSTRACT
69 **
70 ** This module provides standard ethernet access for INET protocols
71 ** only.
72 **
73 ** AUTHORS
74 **
75 ** Peter Dettori SEA - Software Engineering.
76 **
77 ** CREATION DATE:
78 **
79 ** 13-Feb-1997.
80 **
81 ** MODIFICATION HISTORY (Digital):
82 **
83 ** Revision 1.27 1998/01/20 17:59:40 cgd
84 ** update for moved headers
85 **
86 ** Revision 1.26 1998/01/12 19:29:36 cgd
87 ** use arm32/isa versions of isadma code.
88 **
89 ** Revision 1.25 1997/12/12 01:35:27 cgd
90 ** convert to use new arp code (from Brini)
91 **
92 ** Revision 1.24 1997/12/10 22:31:56 cgd
93 ** trim some fat (get rid of ability to explicitly supply enet addr, since
94 ** it was never used and added a bunch of code which really doesn't belong in
95 ** an enet driver), and clean up slightly.
96 **
97 ** Revision 1.23 1997/10/06 16:42:12 cgd
98 ** copyright notices
99 **
100 ** Revision 1.22 1997/06/20 19:38:01 chaiken
101 ** fixes some smartcard problems
102 **
103 ** Revision 1.21 1997/06/10 02:56:20 grohn
104 ** Added call to ledNetActive
105 **
106 ** Revision 1.20 1997/06/05 00:47:06 dettori
107 ** Changed cs_process_rx_dma to reset and re-initialise the
108 ** ethernet chip when DMA gets out of sync, or mbufs
109 ** can't be allocated.
110 **
111 ** Revision 1.19 1997/06/03 03:09:58 dettori
112 ** Turn off sc_txbusy flag when a transmit underrun
113 ** occurs.
114 **
115 ** Revision 1.18 1997/06/02 00:04:35 dettori
116 ** redefined the transmit table to get around the nfs_timer bug while we are
117 ** looking into it further.
118 **
119 ** Also changed interrupts from EDGE to LEVEL.
120 **
121 ** Revision 1.17 1997/05/27 23:31:01 dettori
122 ** Pulled out changes to DMAMODE defines.
123 **
124 ** Revision 1.16 1997/05/23 04:25:16 cgd
125 ** reformat log so it fits in 80cols
126 **
127 ** Revision 1.15 1997/05/23 04:22:18 cgd
128 ** remove the existing copyright notice (which Peter Dettori indicated
129 ** was incorrect, copied from an existing NetBSD file only so that the
130 ** file would have a copyright notice on it, and which he'd intended to
131 ** replace). Replace it with a Digital copyright notice, cloned from
132 ** ess.c. It's not really correct either (it indicates that the source
133 ** is Digital confidential!), but is better than nothing and more
134 ** correct than what was there before.
135 **
136 ** Revision 1.14 1997/05/23 04:12:50 cgd
137 ** use an adaptive transmit start algorithm: start by telling the chip
138 ** to start transmitting after 381 bytes have been fed to it. if that
139 ** gets transmit underruns, ramp down to 1021 bytes then "whole
140 ** packet." If successful at a given level for a while, try the next
141 ** more agressive level. This code doesn't ever try to start
142 ** transmitting after 5 bytes have been sent to the NIC, because
143 ** that underruns rather regularly. The back-off and ramp-up mechanism
144 ** could probably be tuned a little bit, but this works well enough to
145 ** support > 1MB/s transmit rates on a clear ethernet (which is about
146 ** 20-25% better than the driver had previously been getting).
147 **
148 ** Revision 1.13 1997/05/22 21:06:54 cgd
149 ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
150 ** casting from u_int8_t * to u_int16_t * without worrying about alignment
151 ** issues. This would cause bogus data to be spit out for mbufs with
152 ** misaligned data. For instance, it caused the following bits to appear
153 ** on the wire:
154 ** ... etBND 1S2C .SHA(K) R ...
155 ** 11112222333344445555
156 ** which should have appeared as:
157 ** ... NetBSD 1.2C (SHARK) ...
158 ** 11112222333344445555
159 ** Note the apparent 'rotate' of the bytes in the word, which was due to
160 ** incorrect unaligned accesses. This data corruption was the cause of
161 ** incoming telnet/rlogin hangs.
162 **
163 ** Revision 1.12 1997/05/22 01:55:32 cgd
164 ** reformat log so it fits in 80cols
165 **
166 ** Revision 1.11 1997/05/22 01:50:27 cgd
167 ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 ** so packets aimed at other hosts don't get sent to ether_input().
169 ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 ** you can easily tell (`strings`) what version of the driver is in your
171 ** kernel binary.
172 ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
173 ** safe, and not really a performance win anyway. (It was only used when
174 ** setting up the multicast logical address filter, which is an
175 ** infrequent event. It could have been used in the IFF_PROMISCUOUS
176 ** address check above, but the benefit of it vs. memcmp would be
177 ** inconsequential, there.) Use memcmp() instead.
178 ** * restructure csStartOuput to avoid the following bugs in the case where
179 ** txWait was being set:
180 ** * it would accidentally drop the outgoing packet if told to wait
181 ** but the outgoing packet queue was empty.
182 ** * it would bpf_mtap() the outgoing packet multiple times (once for
183 ** each time it was told to wait), and would also recalculate
184 ** the length of the outgoing packet each time it was told to
185 ** wait.
186 ** While there, rename txWait to txLoop, since with the new structure of
187 ** the code, the latter name makes more sense.
188 **
189 ** Revision 1.10 1997/05/19 02:03:20 cgd
190 ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
191 ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
193 ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 ** as before.
195 **
196 ** Revision 1.9 1997/05/19 01:45:37 cgd
197 ** create a new function, cs_ether_input(), which does received-packet
198 ** BPF and ether_input processing. This code used to be in three places,
199 ** and centralizing it will make adding IFF_PROMISC support much easier.
200 ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 ** do copies with bus_space_write_region_2(). It's more correct, and
202 ** potentially more efficient. That function needs to be gutted (to
203 ** deal properly with alignment issues, which it currently does wrong),
204 ** however, and the change doesn't gain much, so there's no point in
205 ** enabling it now.
206 **
207 ** Revision 1.8 1997/05/19 01:17:10 cgd
208 ** fix a comment re: the setting of the TxConfig register. Clean up
209 ** interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.31 2010/04/05 07:19:33 joerg Exp $");
216
217 #include "opt_inet.h"
218
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228
229 #include "rnd.h"
230 #if NRND > 0
231 #include <sys/rnd.h>
232 #endif
233
234 #include <net/if.h>
235 #include <net/if_ether.h>
236 #include <net/if_media.h>
237 #ifdef INET
238 #include <netinet/in.h>
239 #include <netinet/if_inarp.h>
240 #endif
241
242 #include <net/bpf.h>
243 #include <net/bpfdesc.h>
244
245 #include <uvm/uvm_extern.h>
246
247 #include <sys/bus.h>
248 #include <sys/intr.h>
249
250 #include <dev/ic/cs89x0reg.h>
251 #include <dev/ic/cs89x0var.h>
252
253 #ifdef SHARK
254 #include <shark/shark/sequoia.h>
255 #endif
256
257 /*
258 * MACRO DEFINITIONS
259 */
260 #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
261
262 /*
263 * FUNCTION PROTOTYPES
264 */
265 static void cs_get_default_media(struct cs_softc *);
266 static int cs_get_params(struct cs_softc *);
267 static int cs_get_enaddr(struct cs_softc *);
268 static int cs_reset_chip(struct cs_softc *);
269 static void cs_reset(struct cs_softc *);
270 static int cs_ioctl(struct ifnet *, u_long, void *);
271 static void cs_initChip(struct cs_softc *);
272 static void cs_buffer_event(struct cs_softc *, u_int16_t);
273 static void cs_transmit_event(struct cs_softc *, u_int16_t);
274 static void cs_receive_event(struct cs_softc *, u_int16_t);
275 static void cs_process_receive(struct cs_softc *);
276 static void cs_process_rx_early(struct cs_softc *);
277 static void cs_start_output(struct ifnet *);
278 static void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
279 static void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
280 static u_int16_t cs_hash_index(char *);
281 static void cs_counter_event(struct cs_softc *, u_int16_t);
282
283 static int cs_mediachange(struct ifnet *);
284 static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
285
286 static bool cs_shutdown(device_t, int);
287 static int cs_enable(struct cs_softc *);
288 static void cs_disable(struct cs_softc *);
289 static void cs_stop(struct ifnet *, int);
290 static int cs_scan_eeprom(struct cs_softc *);
291 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
292
293
294 /*
295 * GLOBAL DECLARATIONS
296 */
297
298 /*
299 * Xmit-early table.
300 *
301 * To get better performance, we tell the chip to start packet
302 * transmission before the whole packet is copied to the chip.
303 * However, this can fail under load. When it fails, we back off
304 * to a safer setting for a little while.
305 *
306 * txcmd is the value of txcmd used to indicate when to start transmission.
307 * better is the next 'better' state in the table.
308 * better_count is the number of output packets before transition to the
309 * better state.
310 * worse is the next 'worse' state in the table.
311 *
312 * Transition to the next worse state happens automatically when a
313 * transmittion underrun occurs.
314 */
315 struct cs_xmit_early {
316 u_int16_t txcmd;
317 int better;
318 int better_count;
319 int worse;
320 } cs_xmit_early_table[3] = {
321 { TX_CMD_START_381, 0, INT_MAX, 1, },
322 { TX_CMD_START_1021, 0, 50000, 2, },
323 { TX_CMD_START_ALL, 1, 5000, 2, },
324 };
325
326 int cs_default_media[] = {
327 IFM_ETHER|IFM_10_2,
328 IFM_ETHER|IFM_10_5,
329 IFM_ETHER|IFM_10_T,
330 IFM_ETHER|IFM_10_T|IFM_FDX,
331 };
332 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
333
334 int
335 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
336 int nmedia, int defmedia)
337 {
338 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
339 const char *chipname, *medname;
340 u_int16_t reg;
341 int i;
342
343 /* Start out in IO mode */
344 sc->sc_memorymode = FALSE;
345
346 /* make sure we're right */
347 for (i = 0; i < 10000; i++) {
348 reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
349 if (reg == EISA_NUM_CRYSTAL) {
350 break;
351 }
352 }
353 if (i == 10000) {
354 aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
355 return 1; /* XXX should panic? */
356 }
357
358 reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
359 sc->sc_prodid = reg & PROD_ID_MASK;
360 sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
361
362 switch (sc->sc_prodid) {
363 case PROD_ID_CS8900:
364 chipname = "CS8900";
365 break;
366 case PROD_ID_CS8920:
367 chipname = "CS8920";
368 break;
369 case PROD_ID_CS8920M:
370 chipname = "CS8920M";
371 break;
372 default:
373 panic("cs_attach: impossible");
374 }
375
376 /*
377 * the first thing to do is check that the mbuf cluster size is
378 * greater than the MTU for an ethernet frame. The code depends on
379 * this and to port this to a OS where this was not the case would
380 * not be straightforward.
381 *
382 * we need 1 byte spare because our
383 * packet read loop can overrun.
384 * and we may need pad bytes to align ip header.
385 */
386 if (MCLBYTES < ETHER_MAX_LEN + 1 +
387 ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
388 printf("%s: MCLBYTES too small for Ethernet frame\n",
389 device_xname(sc->sc_dev));
390 return 1;
391 }
392
393 /* Start out not transmitting */
394 sc->sc_txbusy = FALSE;
395
396 /* Set up early transmit threshhold */
397 sc->sc_xe_ent = 0;
398 sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
399
400 /* Initialize ifnet structure. */
401 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
402 ifp->if_softc = sc;
403 ifp->if_start = cs_start_output;
404 ifp->if_init = cs_init;
405 ifp->if_ioctl = cs_ioctl;
406 ifp->if_stop = cs_stop;
407 ifp->if_watchdog = NULL; /* no watchdog at this stage */
408 ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
409 IFF_BROADCAST | IFF_MULTICAST;
410 IFQ_SET_READY(&ifp->if_snd);
411
412 /* Initialize ifmedia structures. */
413 ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
414
415 if (media != NULL) {
416 for (i = 0; i < nmedia; i++)
417 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
418 ifmedia_set(&sc->sc_media, defmedia);
419 } else {
420 for (i = 0; i < cs_default_nmedia; i++)
421 ifmedia_add(&sc->sc_media, cs_default_media[i],
422 0, NULL);
423 cs_get_default_media(sc);
424 }
425
426 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
427 if (cs_scan_eeprom(sc) == CS_ERROR) {
428 /* failed to scan the eeprom, pretend there isn't an eeprom */
429 aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
430 sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
431 }
432 }
433
434 if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
435 /* Get parameters from the EEPROM */
436 if (cs_get_params(sc) == CS_ERROR) {
437 aprint_error_dev(sc->sc_dev,
438 "unable to get settings from EEPROM\n");
439 return 1;
440 }
441 }
442
443 if (enaddr != NULL)
444 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
445 else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
446 /* Get and store the Ethernet address */
447 if (cs_get_enaddr(sc) == CS_ERROR) {
448 aprint_error_dev(sc->sc_dev,
449 "unable to read Ethernet address\n");
450 return 1;
451 }
452 } else {
453 #if 1
454 int j;
455 uint v;
456
457 for (j = 0; j < 6; j += 2) {
458 v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
459 sc->sc_enaddr[j + 0] = v;
460 sc->sc_enaddr[j + 1] = v >> 8;
461 }
462 #else
463 printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
464 return 1;
465 #endif
466 }
467
468 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
469 case IFM_10_2:
470 medname = "BNC";
471 break;
472 case IFM_10_5:
473 medname = "AUI";
474 break;
475 case IFM_10_T:
476 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
477 medname = "UTP <full-duplex>";
478 else
479 medname = "UTP";
480 break;
481 default:
482 panic("cs_attach: impossible");
483 }
484 printf("%s: %s rev. %c, address %s, media %s\n",
485 device_xname(sc->sc_dev),
486 chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
487 medname);
488
489 if (sc->sc_dma_attach)
490 (*sc->sc_dma_attach)(sc);
491
492 /* Attach the interface. */
493 if_attach(ifp);
494 ether_ifattach(ifp, sc->sc_enaddr);
495
496 #if NRND > 0
497 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
498 RND_TYPE_NET, 0);
499 #endif
500 sc->sc_cfgflags |= CFGFLG_ATTACHED;
501
502 if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
503 pmf_class_network_register(sc->sc_dev, ifp);
504 else
505 aprint_error_dev(sc->sc_dev,
506 "couldn't establish power handler\n");
507
508 /* Reset the chip */
509 if (cs_reset_chip(sc) == CS_ERROR) {
510 aprint_error_dev(sc->sc_dev, "reset failed\n");
511 cs_detach(sc);
512 return 1;
513 }
514
515 return 0;
516 }
517
518 int
519 cs_detach(struct cs_softc *sc)
520 {
521 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
522
523 if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
524 #if NRND > 0
525 rnd_detach_source(&sc->rnd_source);
526 #endif
527 ether_ifdetach(ifp);
528 if_detach(ifp);
529 sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
530 }
531
532 #if 0
533 /*
534 * XXX not necessary
535 */
536 if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
537 isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
538 isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
539 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
540 sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
541 }
542 #endif
543
544 pmf_device_deregister(sc->sc_dev);
545
546 return 0;
547 }
548
549 bool
550 cs_shutdown(device_t self, int howto)
551 {
552 struct cs_softc *sc;
553
554 sc = device_private(self);
555 cs_reset(sc);
556
557 return true;
558 }
559
560 void
561 cs_get_default_media(struct cs_softc *sc)
562 {
563 u_int16_t adp_cfg, xmit_ctl;
564
565 if (cs_verify_eeprom(sc) == CS_ERROR) {
566 aprint_error_dev(sc->sc_dev,
567 "cs_get_default_media: EEPROM missing or bad\n");
568 goto fakeit;
569 }
570
571 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
572 aprint_error_dev(sc->sc_dev,
573 "unable to read adapter config from EEPROM\n");
574 goto fakeit;
575 }
576
577 if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
578 aprint_error_dev(sc->sc_dev,
579 "unable to read transmit control from EEPROM\n");
580 goto fakeit;
581 }
582
583 switch (adp_cfg & ADPTR_CFG_MEDIA) {
584 case ADPTR_CFG_AUI:
585 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
586 break;
587 case ADPTR_CFG_10BASE2:
588 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
589 break;
590 case ADPTR_CFG_10BASET:
591 default:
592 if (xmit_ctl & XMIT_CTL_FDX)
593 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
594 else
595 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
596 break;
597 }
598 return;
599
600 fakeit:
601 aprint_error_dev(sc->sc_dev,
602 "WARNING: default media setting may be inaccurate\n");
603 /* XXX Arbitrary... */
604 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
605 }
606
607 /*
608 * cs_scan_eeprom
609 *
610 * Attempt to take a complete copy of the eeprom into main memory.
611 * this will allow faster parsing of the eeprom data.
612 *
613 * Only tested against a 8920M's eeprom, but the data sheet for the
614 * 8920A indicates that is uses the same layout.
615 */
616 int
617 cs_scan_eeprom(struct cs_softc *sc)
618 {
619 u_int16_t result;
620 int i;
621 int eeprom_size;
622 u_int8_t checksum = 0;
623
624 if (cs_verify_eeprom(sc) == CS_ERROR) {
625 aprint_error_dev(sc->sc_dev,
626 "cs_scan_params: EEPROM missing or bad\n");
627 return (CS_ERROR);
628 }
629
630 /*
631 * read the 0th word from the eeprom, it will tell us the length
632 * and if the eeprom is valid
633 */
634 cs_read_eeprom(sc, 0, &result);
635
636 /* check the eeprom signature */
637 if ((result & 0xE000) != 0xA000) {
638 /* empty eeprom */
639 return (CS_ERROR);
640 }
641
642 /*
643 * take the eeprom size (note the read value doesn't include the header
644 * word)
645 */
646 eeprom_size = (result & 0xff) + 2;
647
648 sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
649 if (sc->eeprom_data == NULL) {
650 /* no memory, treat this as if there's no eeprom */
651 return (CS_ERROR);
652 }
653
654 sc->eeprom_size = eeprom_size;
655
656 /* read the eeprom into the buffer, also calculate the checksum */
657 for (i = 0; i < (eeprom_size >> 1); i++) {
658 cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
659 checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
660 checksum += (sc->eeprom_data[i] & 0x00ff);
661 }
662
663 /*
664 * validate checksum calculation, the sum of all the bytes should be 0,
665 * as the high byte of the last word is the 2's complement of the
666 * sum to that point.
667 */
668 if (checksum != 0) {
669 aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
670 return (CS_ERROR);
671 }
672
673 return (CS_OK);
674 }
675
676 static int
677 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
678 {
679 int x, maxword;
680
681 /* Check that we have eeprom data */
682 if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
683 return (CS_ERROR);
684
685 /*
686 * We only want to read the data words, the last word contains the
687 * checksum
688 */
689 maxword = (sc->eeprom_size - 2) >> 1;
690
691 /* start 1 word in, as the first word is the length and signature */
692 x = 1;
693
694 while ( x < (maxword)) {
695 u_int16_t header;
696 int group_size;
697 int offset;
698 int offset_max;
699
700 /* read in the group header word */
701 header = sc->eeprom_data[x];
702 x++; /* skip group header */
703
704 /*
705 * size of group in words is in the top 4 bits, note that it
706 * is one less than the number of words
707 */
708 group_size = header & 0xF000;
709
710 /*
711 * CS8900 Data sheet says this should be 0x01ff,
712 * but my cs8920 eeprom has higher offsets,
713 * perhaps the 8920 allows higher offsets, otherwise
714 * it's writing to places that it shouldn't
715 */
716 /* work out the offsets this group covers */
717 offset = header & 0x0FFF;
718 offset_max = offset + (group_size << 1);
719
720 /* check if the pkgpg we're after is in this group */
721 if ((offset <= pktpg) && (pktpg <= offset_max)) {
722 /* the pkgpg value we want is in here */
723 int eeprom_location;
724
725 eeprom_location = ((pktpg - offset) >> 1) ;
726
727 *pValue = sc->eeprom_data[x + eeprom_location];
728 return (CS_OK);
729 } else {
730 /* skip this group (+ 1 for first entry) */
731 x += group_size + 1;
732 }
733 }
734
735 /*
736 * if we've fallen out here then we don't have a value in the EEPROM
737 * for this pktpg so return an error
738 */
739 return (CS_ERROR);
740 }
741
742 int
743 cs_get_params(struct cs_softc *sc)
744 {
745 u_int16_t isaConfig;
746 u_int16_t adapterConfig;
747
748 if (cs_verify_eeprom(sc) == CS_ERROR) {
749 aprint_error_dev(sc->sc_dev,
750 "cs_get_params: EEPROM missing or bad\n");
751 return (CS_ERROR);
752 }
753
754 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
755 /* Get ISA configuration from the EEPROM */
756 if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
757 == CS_ERROR) {
758 /* eeprom doesn't have this value, use data sheet default */
759 isaConfig = 0x0017;
760 }
761
762 /* Get adapter configuration from the EEPROM */
763 if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
764 == CS_ERROR) {
765 /* eeprom doesn't have this value, use data sheet default */
766 adapterConfig = 0x0015;
767 }
768
769 /* Copy the USE_SA flag */
770 if (isaConfig & BUS_CTL_USE_SA)
771 sc->sc_cfgflags |= CFGFLG_USE_SA;
772
773 /* Copy the IO Channel Ready flag */
774 if (isaConfig & BUS_CTL_IOCHRDY)
775 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
776
777 /* Copy the DC/DC Polarity flag */
778 if (adapterConfig & SELF_CTL_HCB1)
779 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
780 } else {
781 /* Get ISA configuration from the EEPROM */
782 if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
783 goto eeprom_bad;
784
785 /* Get adapter configuration from the EEPROM */
786 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
787 goto eeprom_bad;
788
789 /* Copy the USE_SA flag */
790 if (isaConfig & ISA_CFG_USE_SA)
791 sc->sc_cfgflags |= CFGFLG_USE_SA;
792
793 /* Copy the IO Channel Ready flag */
794 if (isaConfig & ISA_CFG_IOCHRDY)
795 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
796
797 /* Copy the DC/DC Polarity flag */
798 if (adapterConfig & ADPTR_CFG_DCDC_POL)
799 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
800 }
801
802 return (CS_OK);
803 eeprom_bad:
804 aprint_error_dev(sc->sc_dev,
805 "cs_get_params: unable to read from EEPROM\n");
806 return (CS_ERROR);
807 }
808
809 int
810 cs_get_enaddr(struct cs_softc *sc)
811 {
812 uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
813 int i;
814
815 if (cs_verify_eeprom(sc) == CS_ERROR) {
816 aprint_error_dev(sc->sc_dev,
817 "cs_get_enaddr: EEPROM missing or bad\n");
818 return (CS_ERROR);
819 }
820
821 /* Get Ethernet address from the EEPROM */
822 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
823 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
824 == CS_ERROR)
825 goto eeprom_bad;
826 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
827 == CS_ERROR)
828 goto eeprom_bad;
829 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
830 == CS_ERROR)
831 goto eeprom_bad;
832 } else {
833 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
834 goto eeprom_bad;
835 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
836 goto eeprom_bad;
837 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
838 goto eeprom_bad;
839 }
840
841 for (i = 0; i < __arraycount(myea); i++) {
842 sc->sc_enaddr[i * 2 + 0] = myea[i];
843 sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
844 }
845
846 return (CS_OK);
847
848 eeprom_bad:
849 aprint_error_dev(sc->sc_dev,
850 "cs_get_enaddr: unable to read from EEPROM\n");
851 return (CS_ERROR);
852 }
853
854 int
855 cs_reset_chip(struct cs_softc *sc)
856 {
857 int intState;
858 int x;
859
860 /* Disable interrupts at the CPU so reset command is atomic */
861 intState = splnet();
862
863 /*
864 * We are now resetting the chip
865 *
866 * A spurious interrupt is generated by the chip when it is reset. This
867 * variable informs the interrupt handler to ignore this interrupt.
868 */
869 sc->sc_resetting = TRUE;
870
871 /* Issue a reset command to the chip */
872 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
873
874 /* Re-enable interrupts at the CPU */
875 splx(intState);
876
877 /* The chip is always in IO mode after a reset */
878 sc->sc_memorymode = FALSE;
879
880 /* If transmission was in progress, it is not now */
881 sc->sc_txbusy = FALSE;
882
883 /*
884 * there was a delay(125); here, but it seems uneccesary 125 usec is
885 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
886 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
887 * should be sufficient.
888 */
889
890 /* Transition SBHE to switch chip from 8-bit to 16-bit */
891 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
892 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
893 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
894 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
895
896 /* Wait until the EEPROM is not busy */
897 for (x = 0; x < MAXLOOP; x++) {
898 if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
899 break;
900 }
901
902 if (x == MAXLOOP)
903 return CS_ERROR;
904
905 /* Wait until initialization is done */
906 for (x = 0; x < MAXLOOP; x++) {
907 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
908 break;
909 }
910
911 if (x == MAXLOOP)
912 return CS_ERROR;
913
914 /* Reset is no longer in progress */
915 sc->sc_resetting = FALSE;
916
917 return CS_OK;
918 }
919
920 int
921 cs_verify_eeprom(struct cs_softc *sc)
922 {
923 u_int16_t self_status;
924
925 /* Verify that the EEPROM is present and OK */
926 self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
927 if (((self_status & SELF_ST_EEP_PRES) &&
928 (self_status & SELF_ST_EEP_OK)) == 0)
929 return (CS_ERROR);
930
931 return (CS_OK);
932 }
933
934 int
935 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
936 {
937 int x;
938
939 /* Ensure that the EEPROM is not busy */
940 for (x = 0; x < MAXLOOP; x++) {
941 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
942 SELF_ST_SI_BUSY))
943 break;
944 }
945
946 if (x == MAXLOOP)
947 return (CS_ERROR);
948
949 /* Issue the command to read the offset within the EEPROM */
950 CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
951 offset | EEPROM_CMD_READ);
952
953 /* Wait until the command is completed */
954 for (x = 0; x < MAXLOOP; x++) {
955 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
956 SELF_ST_SI_BUSY))
957 break;
958 }
959
960 if (x == MAXLOOP)
961 return (CS_ERROR);
962
963 /* Get the EEPROM data from the EEPROM Data register */
964 *pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
965
966 return (CS_OK);
967 }
968
969 void
970 cs_initChip(struct cs_softc *sc)
971 {
972 u_int16_t busCtl;
973 u_int16_t selfCtl;
974 u_int16_t v;
975 u_int16_t isaId;
976 int i;
977 int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
978
979 /* Disable reception and transmission of frames */
980 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
981 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
982 ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
983
984 /* Disable interrupt at the chip */
985 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
986 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
987
988 /* If IOCHRDY is enabled then clear the bit in the busCtl register */
989 busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
990 if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
991 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
992 busCtl & ~BUS_CTL_IOCHRDY);
993 } else {
994 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
995 busCtl | BUS_CTL_IOCHRDY);
996 }
997
998 /* Set the Line Control register to match the media type */
999 if (media == IFM_10_T)
1000 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
1001 else
1002 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
1003
1004 /*
1005 * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
1006 * enable the DC/DC converter
1007 */
1008 selfCtl = SELF_CTL_HC1E;
1009
1010 /* If the media type is 10Base2 */
1011 if (media == IFM_10_2) {
1012 /*
1013 * Enable the DC/DC converter if it has a low enable.
1014 */
1015 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1016 /*
1017 * Set the HCB1 bit, which causes the HC1 pin to go
1018 * low.
1019 */
1020 selfCtl |= SELF_CTL_HCB1;
1021 } else { /* Media type is 10BaseT or AUI */
1022 /*
1023 * Disable the DC/DC converter if it has a high enable.
1024 */
1025 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1026 /*
1027 * Set the HCB1 bit, which causes the HC1 pin to go
1028 * low.
1029 */
1030 selfCtl |= SELF_CTL_HCB1;
1031 }
1032 }
1033 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1034
1035 /* enable normal link pulse */
1036 if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1037 CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1038
1039 /* Enable full-duplex, if appropriate */
1040 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1041 CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1042
1043 /* RX_CTL set in cs_set_ladr_filt(), below */
1044
1045 /* enable all transmission interrupts */
1046 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1047
1048 /* Accept all receive interrupts */
1049 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1050
1051 /*
1052 * Configure Operational Modes
1053 *
1054 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1055 * a better way to do it because the card has a counter which can be
1056 * read to update the RX_MISS counter. This saves many interrupts.
1057 *
1058 * I have turned on the tx and rx overflow interrupts to counter using
1059 * the receive miss interrupt. This is a better estimate of errors
1060 * and requires lower system overhead.
1061 */
1062 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1063 BUF_CFG_RX_DMA_IE);
1064
1065 if (sc->sc_dma_chipinit)
1066 (*sc->sc_dma_chipinit)(sc);
1067
1068 /* If memory mode is enabled */
1069 if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1070 /* If external logic is present for address decoding */
1071 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1072 /*
1073 * Program the external logic to decode address bits
1074 * SA20-SA23
1075 */
1076 CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1077 ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1078 EEPROM_CMD_ELSEL);
1079 }
1080
1081 /*
1082 * Write the packet page base physical address to the memory
1083 * base register.
1084 */
1085 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1086 sc->sc_pktpgaddr & 0xFFFF);
1087 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1088 sc->sc_pktpgaddr >> 16);
1089 busCtl = BUS_CTL_MEM_MODE;
1090
1091 /* tell the chip to read the addresses off the SA pins */
1092 if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1093 busCtl |= BUS_CTL_USE_SA;
1094 }
1095 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1096 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1097
1098 /* We are in memory mode now! */
1099 sc->sc_memorymode = TRUE;
1100
1101 /*
1102 * wait here (10ms) for the chip to swap over. this is the
1103 * maximum time that this could take.
1104 */
1105 delay(10000);
1106
1107 /* Verify that we can read from the chip */
1108 isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1109
1110 /*
1111 * As a last minute sanity check before actually using mapped
1112 * memory we verify that we can read the isa number from the
1113 * chip in memory mode.
1114 */
1115 if (isaId != EISA_NUM_CRYSTAL) {
1116 aprint_error_dev(sc->sc_dev,
1117 "failed to enable memory mode\n");
1118 sc->sc_memorymode = FALSE;
1119 } else {
1120 /*
1121 * we are in memory mode so if we aren't using DMA,
1122 * then program the chip to interrupt early.
1123 */
1124 if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1125 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1126 BUF_CFG_RX_DEST_IE |
1127 BUF_CFG_RX_MISS_OVER_IE |
1128 BUF_CFG_TX_COL_OVER_IE);
1129 }
1130 }
1131
1132 }
1133
1134 /* Put Ethernet address into the Individual Address register */
1135 for (i = 0; i < 6; i += 2) {
1136 v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1137 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1138 }
1139
1140 if (sc->sc_irq != -1) {
1141 /* Set the interrupt level in the chip */
1142 if (sc->sc_prodid == PROD_ID_CS8900) {
1143 if (sc->sc_irq == 5) {
1144 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1145 } else {
1146 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1147 }
1148 }
1149 else { /* CS8920 */
1150 CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1151 }
1152 }
1153
1154 /* write the multicast mask to the address filter register */
1155 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1156
1157 /* Enable reception and transmission of frames */
1158 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1159 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1160 LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1161
1162 /* Enable interrupt at the chip */
1163 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1164 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1165 }
1166
1167 int
1168 cs_init(struct ifnet *ifp)
1169 {
1170 int intState;
1171 int error = CS_OK;
1172 struct cs_softc *sc = ifp->if_softc;
1173
1174 if (cs_enable(sc))
1175 goto out;
1176
1177 cs_stop(ifp, 0);
1178
1179 intState = splnet();
1180
1181 #if 0
1182 /* Mark the interface as down */
1183 sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1184 #endif
1185
1186 #ifdef CS_DEBUG
1187 /* Enable debugging */
1188 sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1189 #endif
1190
1191 /* Reset the chip */
1192 if ((error = cs_reset_chip(sc)) == CS_OK) {
1193 /* Initialize the chip */
1194 cs_initChip(sc);
1195
1196 /* Mark the interface as running */
1197 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1198 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1199 sc->sc_ethercom.ec_if.if_timer = 0;
1200
1201 /* Assume we have carrier until we are told otherwise. */
1202 sc->sc_carrier = 1;
1203 } else {
1204 aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1205 }
1206
1207 splx(intState);
1208 out:
1209 if (error == CS_OK)
1210 return 0;
1211 return EIO;
1212 }
1213
1214 void
1215 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1216 {
1217 struct ifnet *ifp = &ec->ec_if;
1218 struct ether_multi *enm;
1219 struct ether_multistep step;
1220 u_int16_t af[4];
1221 u_int16_t port, mask, index;
1222
1223 /*
1224 * Set up multicast address filter by passing all multicast addresses
1225 * through a crc generator, and then using the high order 6 bits as an
1226 * index into the 64 bit logical address filter. The high order bit
1227 * selects the word, while the rest of the bits select the bit within
1228 * the word.
1229 */
1230 if (ifp->if_flags & IFF_PROMISC) {
1231 /* accept all valid frames. */
1232 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1233 RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1234 RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1235 ifp->if_flags |= IFF_ALLMULTI;
1236 return;
1237 }
1238
1239 /*
1240 * accept frames if a. crc valid, b. individual address match c.
1241 * broadcast address,and d. multicast addresses matched in the hash
1242 * filter
1243 */
1244 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1245 RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1246
1247
1248 /*
1249 * start off with all multicast flag clear, set it if we need to
1250 * later, otherwise we will leave it.
1251 */
1252 ifp->if_flags &= ~IFF_ALLMULTI;
1253 af[0] = af[1] = af[2] = af[3] = 0x0000;
1254
1255 /*
1256 * Loop through all the multicast addresses unless we get a range of
1257 * addresses, in which case we will just accept all packets.
1258 * Justification for this is given in the next comment.
1259 */
1260 ETHER_FIRST_MULTI(step, ec, enm);
1261 while (enm != NULL) {
1262 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1263 sizeof enm->enm_addrlo)) {
1264 /*
1265 * We must listen to a range of multicast addresses.
1266 * For now, just accept all multicasts, rather than
1267 * trying to set only those filter bits needed to match
1268 * the range. (At this time, the only use of address
1269 * ranges is for IP multicast routing, for which the
1270 * range is big enough to require all bits set.)
1271 */
1272 ifp->if_flags |= IFF_ALLMULTI;
1273 af[0] = af[1] = af[2] = af[3] = 0xffff;
1274 break;
1275 } else {
1276 /*
1277 * we have got an individual address so just set that
1278 * bit.
1279 */
1280 index = cs_hash_index(enm->enm_addrlo);
1281
1282 /* Set the bit the Logical address filter. */
1283 port = (u_int16_t) (index >> 4);
1284 mask = (u_int16_t) (1 << (index & 0xf));
1285 af[port] |= mask;
1286
1287 ETHER_NEXT_MULTI(step, enm);
1288 }
1289 }
1290
1291 /* now program the chip with the addresses */
1292 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1293 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1294 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1295 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1296 return;
1297 }
1298
1299 u_int16_t
1300 cs_hash_index(char *addr)
1301 {
1302 uint32_t crc;
1303 uint16_t hash_code;
1304
1305 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1306
1307 hash_code = crc >> 26;
1308 return (hash_code);
1309 }
1310
1311 void
1312 cs_reset(struct cs_softc *sc)
1313 {
1314
1315 /* Mark the interface as down */
1316 sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1317
1318 /* Reset the chip */
1319 cs_reset_chip(sc);
1320 }
1321
1322 int
1323 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1324 {
1325 struct cs_softc *sc = ifp->if_softc;
1326 struct ifreq *ifr = data;
1327 int state;
1328 int result;
1329
1330 state = splnet();
1331
1332 result = 0; /* only set if something goes wrong */
1333
1334 switch (cmd) {
1335 case SIOCGIFMEDIA:
1336 case SIOCSIFMEDIA:
1337 result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1338 break;
1339
1340 default:
1341 result = ether_ioctl(ifp, cmd, data);
1342 if (result == ENETRESET) {
1343 if (ifp->if_flags & IFF_RUNNING) {
1344 /*
1345 * Multicast list has changed. Set the
1346 * hardware filter accordingly.
1347 */
1348 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1349 }
1350 result = 0;
1351 }
1352 break;
1353 }
1354
1355 splx(state);
1356
1357 return result;
1358 }
1359
1360 int
1361 cs_mediachange(struct ifnet *ifp)
1362 {
1363
1364 /*
1365 * Current media is already set up. Just reset the interface
1366 * to let the new value take hold.
1367 */
1368 cs_init(ifp);
1369 return (0);
1370 }
1371
1372 void
1373 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1374 {
1375 struct cs_softc *sc = ifp->if_softc;
1376
1377 /*
1378 * The currently selected media is always the active media.
1379 */
1380 ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1381
1382 if (ifp->if_flags & IFF_UP) {
1383 /* Interface up, status is valid. */
1384 ifmr->ifm_status = IFM_AVALID |
1385 (sc->sc_carrier ? IFM_ACTIVE : 0);
1386 }
1387 else ifmr->ifm_status = 0;
1388 }
1389
1390 int
1391 cs_intr(void *arg)
1392 {
1393 struct cs_softc *sc = arg;
1394 u_int16_t Event;
1395 #if NRND > 0
1396 u_int16_t rndEvent;
1397 #endif
1398
1399 /*printf("cs_intr %p\n", sc);*/
1400 /* Ignore any interrupts that happen while the chip is being reset */
1401 if (sc->sc_resetting) {
1402 printf("%s: cs_intr: reset in progress\n",
1403 device_xname(sc->sc_dev));
1404 return 1;
1405 }
1406
1407 /* Read an event from the Interrupt Status Queue */
1408 if (sc->sc_memorymode)
1409 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1410 else
1411 Event = CS_READ_PORT(sc, PORT_ISQ);
1412
1413 if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1414 return 0; /* not ours */
1415
1416 #if NRND > 0
1417 rndEvent = Event;
1418 #endif
1419
1420 /* Process all the events in the Interrupt Status Queue */
1421 while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1422 /* Dispatch to an event handler based on the register number */
1423 switch (Event & REG_NUM_MASK) {
1424 case REG_NUM_RX_EVENT:
1425 cs_receive_event(sc, Event);
1426 break;
1427 case REG_NUM_TX_EVENT:
1428 cs_transmit_event(sc, Event);
1429 break;
1430 case REG_NUM_BUF_EVENT:
1431 cs_buffer_event(sc, Event);
1432 break;
1433 case REG_NUM_TX_COL:
1434 case REG_NUM_RX_MISS:
1435 cs_counter_event(sc, Event);
1436 break;
1437 default:
1438 printf("%s: unknown interrupt event 0x%x\n",
1439 device_xname(sc->sc_dev), Event);
1440 break;
1441 }
1442
1443 /* Read another event from the Interrupt Status Queue */
1444 if (sc->sc_memorymode)
1445 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1446 else
1447 Event = CS_READ_PORT(sc, PORT_ISQ);
1448 }
1449
1450 /* have handled the interrupt */
1451 #if NRND > 0
1452 rnd_add_uint32(&sc->rnd_source, rndEvent);
1453 #endif
1454 return 1;
1455 }
1456
1457 void
1458 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1459 {
1460 struct ifnet *ifp;
1461 u_int16_t errorCount;
1462
1463 ifp = &sc->sc_ethercom.ec_if;
1464
1465 switch (cntEvent & REG_NUM_MASK) {
1466 case REG_NUM_TX_COL:
1467 /*
1468 * the count should be read before an overflow occurs.
1469 */
1470 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1471 /*
1472 * the tramsit event routine always checks the number of
1473 * collisions for any packet so we don't increment any
1474 * counters here, as they should already have been
1475 * considered.
1476 */
1477 break;
1478 case REG_NUM_RX_MISS:
1479 /*
1480 * the count should be read before an overflow occurs.
1481 */
1482 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1483 /*
1484 * Increment the input error count, the first 6bits are the
1485 * register id.
1486 */
1487 ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1488 break;
1489 default:
1490 /* do nothing */
1491 break;
1492 }
1493 }
1494
1495 void
1496 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1497 {
1498
1499 /*
1500 * multiple events can be in the buffer event register at one time so
1501 * a standard switch statement will not suffice, here every event
1502 * must be checked.
1503 */
1504
1505 /*
1506 * if 128 bits have been rxed by the time we get here, the dest event
1507 * will be cleared and 128 event will be set.
1508 */
1509 if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1510 cs_process_rx_early(sc);
1511 }
1512
1513 if (bufEvent & BUF_EVENT_RX_DMA) {
1514 /* process the receive data */
1515 if (sc->sc_dma_process_rx)
1516 (*sc->sc_dma_process_rx)(sc);
1517 else
1518 /* should panic? */
1519 aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1520 }
1521
1522 if (bufEvent & BUF_EVENT_TX_UNDR) {
1523 #if 0
1524 /*
1525 * This can happen occasionally, and it's not worth worrying
1526 * about.
1527 */
1528 printf("%s: transmit underrun (%d -> %d)\n",
1529 device_xname(sc->sc_dev), sc->sc_xe_ent,
1530 cs_xmit_early_table[sc->sc_xe_ent].worse);
1531 #endif
1532 sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1533 sc->sc_xe_togo =
1534 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1535
1536 /* had an underrun, transmit is finished */
1537 sc->sc_txbusy = FALSE;
1538 }
1539
1540 if (bufEvent & BUF_EVENT_SW_INT) {
1541 printf("%s: software initiated interrupt\n",
1542 device_xname(sc->sc_dev));
1543 }
1544 }
1545
1546 void
1547 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1548 {
1549 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1550
1551 /* If there were any errors transmitting this frame */
1552 if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1553 TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1554 /* Increment the output error count */
1555 ifp->if_oerrors++;
1556
1557 /* Note carrier loss. */
1558 if (txEvent & TX_EVENT_LOSS_CRS)
1559 sc->sc_carrier = 0;
1560
1561 /* If debugging is enabled then log error messages */
1562 if (ifp->if_flags & IFF_DEBUG) {
1563 if (txEvent & TX_EVENT_LOSS_CRS) {
1564 aprint_error_dev(sc->sc_dev, "lost carrier\n");
1565 }
1566 if (txEvent & TX_EVENT_SQE_ERR) {
1567 aprint_error_dev(sc->sc_dev, "SQE error\n");
1568 }
1569 if (txEvent & TX_EVENT_OUT_WIN) {
1570 aprint_error_dev(sc->sc_dev,
1571 "out-of-window collision\n");
1572 }
1573 if (txEvent & TX_EVENT_JABBER) {
1574 aprint_error_dev(sc->sc_dev, "jabber\n");
1575 }
1576 if (txEvent & TX_EVENT_16_COLL) {
1577 aprint_error_dev(sc->sc_dev, "16 collisions\n");
1578 }
1579 }
1580 }
1581 else {
1582 /* Transmission successful, carrier is up. */
1583 sc->sc_carrier = 1;
1584 #ifdef SHARK
1585 ledNetActive();
1586 #endif
1587 }
1588
1589 /* Add the number of collisions for this frame */
1590 if (txEvent & TX_EVENT_16_COLL) {
1591 ifp->if_collisions += 16;
1592 } else {
1593 ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1594 }
1595
1596 ifp->if_opackets++;
1597
1598 /* Transmission is no longer in progress */
1599 sc->sc_txbusy = FALSE;
1600
1601 /* If there is more to transmit */
1602 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1603 /* Start the next transmission */
1604 cs_start_output(ifp);
1605 }
1606 }
1607
1608 void
1609 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1610 {
1611
1612 if (rxEvent & RX_EVENT_RUNT)
1613 aprint_error_dev(sc->sc_dev, "runt\n");
1614
1615 if (rxEvent & RX_EVENT_X_DATA)
1616 aprint_error_dev(sc->sc_dev, "extra data\n");
1617
1618 if (rxEvent & RX_EVENT_CRC_ERR) {
1619 if (rxEvent & RX_EVENT_DRIBBLE)
1620 aprint_error_dev(sc->sc_dev, "alignment error\n");
1621 else
1622 aprint_error_dev(sc->sc_dev, "CRC error\n");
1623 } else {
1624 if (rxEvent & RX_EVENT_DRIBBLE)
1625 aprint_error_dev(sc->sc_dev, "dribble bits\n");
1626 }
1627 }
1628
1629 void
1630 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1631 {
1632 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1633
1634 /* If the frame was not received OK */
1635 if (!(rxEvent & RX_EVENT_RX_OK)) {
1636 /* Increment the input error count */
1637 ifp->if_ierrors++;
1638
1639 /*
1640 * If debugging is enabled then log error messages.
1641 */
1642 if (ifp->if_flags & IFF_DEBUG) {
1643 if (rxEvent != REG_NUM_RX_EVENT) {
1644 cs_print_rx_errors(sc, rxEvent);
1645
1646 /*
1647 * Must read the length of all received
1648 * frames
1649 */
1650 CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1651
1652 /* Skip the received frame */
1653 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1654 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1655 RX_CFG_SKIP);
1656 } else {
1657 aprint_error_dev(sc->sc_dev, "implied skip\n");
1658 }
1659 }
1660 } else {
1661 /*
1662 * process the received frame and pass it up to the upper
1663 * layers.
1664 */
1665 cs_process_receive(sc);
1666 }
1667 }
1668
1669 void
1670 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1671 {
1672 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1673
1674 ifp->if_ipackets++;
1675
1676 /*
1677 * Check if there's a BPF listener on this interface.
1678 * If so, hand off the raw packet to BPF.
1679 */
1680 bpf_mtap(ifp, m);
1681
1682 /* Pass the packet up. */
1683 (*ifp->if_input)(ifp, m);
1684 }
1685
1686 void
1687 cs_process_receive(struct cs_softc *sc)
1688 {
1689 struct ifnet *ifp;
1690 struct mbuf *m;
1691 int totlen;
1692 u_int16_t *pBuff, *pBuffLimit;
1693 int pad;
1694 unsigned int frameOffset = 0; /* XXX: gcc */
1695
1696 #ifdef SHARK
1697 ledNetActive();
1698 #endif
1699
1700 ifp = &sc->sc_ethercom.ec_if;
1701
1702 /* Received a packet; carrier is up. */
1703 sc->sc_carrier = 1;
1704
1705 if (sc->sc_memorymode) {
1706 /* Initialize the frame offset */
1707 frameOffset = PKTPG_RX_LENGTH;
1708
1709 /* Get the length of the received frame */
1710 totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1711 frameOffset += 2;
1712 }
1713 else {
1714 /* drop status */
1715 CS_READ_PORT(sc, PORT_RXTX_DATA);
1716
1717 /* Get the length of the received frame */
1718 totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1719 }
1720
1721 if (totlen > ETHER_MAX_LEN) {
1722 aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1723 totlen);
1724
1725 /* skip the received frame */
1726 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1727 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1728 return;
1729 }
1730
1731 MGETHDR(m, M_DONTWAIT, MT_DATA);
1732 if (m == 0) {
1733 aprint_error_dev(sc->sc_dev,
1734 "cs_process_receive: unable to allocate mbuf\n");
1735 ifp->if_ierrors++;
1736 /*
1737 * couldn't allocate an mbuf so things are not good, may as
1738 * well drop the packet I think.
1739 *
1740 * have already read the length so we should be right to skip
1741 * the packet.
1742 */
1743 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1744 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1745 return;
1746 }
1747 m->m_pkthdr.rcvif = ifp;
1748 m->m_pkthdr.len = totlen;
1749
1750 /* number of bytes to align ip header on word boundary for ipintr */
1751 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1752
1753 /*
1754 * alloc mbuf cluster if we need.
1755 * we need 1 byte spare because following
1756 * packet read loop can overrun.
1757 */
1758 if (totlen + pad + 1 > MHLEN) {
1759 MCLGET(m, M_DONTWAIT);
1760 if ((m->m_flags & M_EXT) == 0) {
1761 /* couldn't allocate an mbuf cluster */
1762 aprint_error_dev(sc->sc_dev,
1763 "cs_process_receive: "
1764 "unable to allocate a cluster\n");
1765 m_freem(m);
1766
1767 /* skip the received frame */
1768 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1769 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1770 return;
1771 }
1772 }
1773
1774 /* align ip header on word boundary for ipintr */
1775 m->m_data += pad;
1776
1777 m->m_len = totlen;
1778 pBuff = mtod(m, u_int16_t *);
1779
1780 /* now read the data from the chip */
1781 if (sc->sc_memorymode) {
1782 pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
1783 while (pBuff < pBuffLimit) {
1784 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1785 frameOffset += 2;
1786 }
1787 }
1788 else {
1789 IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1790 }
1791
1792 cs_ether_input(sc, m);
1793 }
1794
1795 void
1796 cs_process_rx_early(struct cs_softc *sc)
1797 {
1798 struct ifnet *ifp;
1799 struct mbuf *m;
1800 u_int16_t frameCount, oldFrameCount;
1801 u_int16_t rxEvent;
1802 u_int16_t *pBuff;
1803 int pad;
1804 unsigned int frameOffset;
1805
1806
1807 ifp = &sc->sc_ethercom.ec_if;
1808
1809 /* Initialize the frame offset */
1810 frameOffset = PKTPG_RX_FRAME;
1811 frameCount = 0;
1812
1813 MGETHDR(m, M_DONTWAIT, MT_DATA);
1814 if (m == 0) {
1815 aprint_error_dev(sc->sc_dev,
1816 "cs_process_rx_early: unable to allocate mbuf\n");
1817 ifp->if_ierrors++;
1818 /*
1819 * couldn't allocate an mbuf so things are not good, may as
1820 * well drop the packet I think.
1821 *
1822 * have already read the length so we should be right to skip
1823 * the packet.
1824 */
1825 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1826 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1827 return;
1828 }
1829 m->m_pkthdr.rcvif = ifp;
1830 /*
1831 * save processing by always using a mbuf cluster, guaranteed to fit
1832 * packet
1833 */
1834 MCLGET(m, M_DONTWAIT);
1835 if ((m->m_flags & M_EXT) == 0) {
1836 /* couldn't allocate an mbuf cluster */
1837 aprint_error_dev(sc->sc_dev,
1838 "cs_process_rx_early: unable to allocate a cluster\n");
1839 m_freem(m);
1840 /* skip the frame */
1841 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1842 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1843 return;
1844 }
1845
1846 /* align ip header on word boundary for ipintr */
1847 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1848 m->m_data += pad;
1849
1850 /* set up the buffer pointer to point to the data area */
1851 pBuff = mtod(m, u_int16_t *);
1852
1853 /*
1854 * now read the frame byte counter until we have finished reading the
1855 * frame
1856 */
1857 oldFrameCount = 0;
1858 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1859 while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1860 for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1861 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1862 frameOffset += 2;
1863 }
1864
1865 /* read the new count from the chip */
1866 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1867 }
1868
1869 /* update the mbuf counts */
1870 m->m_len = oldFrameCount;
1871 m->m_pkthdr.len = oldFrameCount;
1872
1873 /* now check the Rx Event register */
1874 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1875
1876 if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1877 /*
1878 * do an implied skip, it seems to be more reliable than a
1879 * forced skip.
1880 */
1881 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1882 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1883
1884 /*
1885 * now read the RX_EVENT register to perform an implied skip.
1886 */
1887 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1888
1889 cs_ether_input(sc, m);
1890 } else {
1891 m_freem(m);
1892 ifp->if_ierrors++;
1893 }
1894 }
1895
1896 void
1897 cs_start_output(struct ifnet *ifp)
1898 {
1899 struct cs_softc *sc;
1900 struct mbuf *pMbuf;
1901 struct mbuf *pMbufChain;
1902 u_int16_t BusStatus;
1903 u_int16_t Length;
1904 int txLoop = 0;
1905 int dropout = 0;
1906
1907 sc = ifp->if_softc;
1908
1909 /* check that the interface is up and running */
1910 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1911 return;
1912 }
1913
1914 /* Don't interrupt a transmission in progress */
1915 if (sc->sc_txbusy) {
1916 return;
1917 }
1918
1919 /* this loop will only run through once if transmission is successful */
1920 /*
1921 * While there are packets to transmit and a transmit is not in
1922 * progress
1923 */
1924 while (sc->sc_txbusy == 0 && dropout == 0) {
1925 IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1926 if (pMbufChain == NULL)
1927 break;
1928
1929 /*
1930 * If BPF is listening on this interface, let it see the packet
1931 * before we commit it to the wire.
1932 */
1933 bpf_mtap(ifp, pMbufChain);
1934
1935 /* Find the total length of the data to transmit */
1936 Length = 0;
1937 for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1938 Length += pMbuf->m_len;
1939
1940 do {
1941 /*
1942 * Request that the transmit be started after all
1943 * data has been copied
1944 *
1945 * In IO mode must write to the IO port not the packet
1946 * page address
1947 *
1948 * If this is changed to start transmission after a
1949 * small amount of data has been copied you tend to
1950 * get packet missed errors i think because the ISA
1951 * bus is too slow. Or possibly the copy routine is
1952 * not streamlined enough.
1953 */
1954 if (sc->sc_memorymode) {
1955 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1956 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1957 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1958 }
1959 else {
1960 CS_WRITE_PORT(sc, PORT_TX_CMD,
1961 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1962 CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1963 }
1964
1965 /*
1966 * Adjust early-transmit machinery.
1967 */
1968 if (--sc->sc_xe_togo == 0) {
1969 sc->sc_xe_ent =
1970 cs_xmit_early_table[sc->sc_xe_ent].better;
1971 sc->sc_xe_togo =
1972 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1973 }
1974 /*
1975 * Read the BusStatus register which indicates
1976 * success of the request
1977 */
1978 BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1979
1980 /*
1981 * If there was an error in the transmit bid free the
1982 * mbuf and go on. This is presuming that mbuf is
1983 * corrupt.
1984 */
1985 if (BusStatus & BUS_ST_TX_BID_ERR) {
1986 aprint_error_dev(sc->sc_dev,
1987 "transmit bid error (too big)");
1988
1989 /* Discard the bad mbuf chain */
1990 m_freem(pMbufChain);
1991 sc->sc_ethercom.ec_if.if_oerrors++;
1992
1993 /* Loop up to transmit the next chain */
1994 txLoop = 0;
1995 } else {
1996 if (BusStatus & BUS_ST_RDY4TXNOW) {
1997 /*
1998 * The chip is ready for transmission
1999 * now
2000 */
2001 /*
2002 * Copy the frame to the chip to
2003 * start transmission
2004 */
2005 cs_copy_tx_frame(sc, pMbufChain);
2006
2007 /* Free the mbuf chain */
2008 m_freem(pMbufChain);
2009
2010 /* Transmission is now in progress */
2011 sc->sc_txbusy = TRUE;
2012 txLoop = 0;
2013 } else {
2014 /*
2015 * if we get here we want to try
2016 * again with the same mbuf, until
2017 * the chip lets us transmit.
2018 */
2019 txLoop++;
2020 if (txLoop > CS_OUTPUT_LOOP_MAX) {
2021 /* Free the mbuf chain */
2022 m_freem(pMbufChain);
2023 /*
2024 * Transmission is not in
2025 * progress
2026 */
2027 sc->sc_txbusy = FALSE;
2028 /*
2029 * Increment the output error
2030 * count
2031 */
2032 ifp->if_oerrors++;
2033 /*
2034 * exit the routine and drop
2035 * the packet.
2036 */
2037 txLoop = 0;
2038 dropout = 1;
2039 }
2040 }
2041 }
2042 } while (txLoop);
2043 }
2044 }
2045
2046 void
2047 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2048 {
2049 struct mbuf *m;
2050 int len, leftover, frameoff;
2051 u_int16_t dbuf;
2052 u_int8_t *p;
2053 #ifdef DIAGNOSTIC
2054 u_int8_t *lim;
2055 #endif
2056
2057 /* Initialize frame pointer and data port address */
2058 frameoff = PKTPG_TX_FRAME;
2059
2060 /* start out with no leftover data */
2061 leftover = 0;
2062 dbuf = 0;
2063
2064 /* Process the chain of mbufs */
2065 for (m = m0; m != NULL; m = m->m_next) {
2066 /*
2067 * Process all of the data in a single mbuf.
2068 */
2069 p = mtod(m, u_int8_t *);
2070 len = m->m_len;
2071 #ifdef DIAGNOSTIC
2072 lim = p + len;
2073 #endif
2074
2075 while (len > 0) {
2076 if (leftover) {
2077 /*
2078 * Data left over (from mbuf or realignment).
2079 * Buffer the next byte, and write it and
2080 * the leftover data out.
2081 */
2082 dbuf |= *p++ << 8;
2083 len--;
2084 if (sc->sc_memorymode) {
2085 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2086 frameoff += 2;
2087 }
2088 else {
2089 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2090 }
2091 leftover = 0;
2092 } else if ((long) p & 1) {
2093 /*
2094 * Misaligned data. Buffer the next byte.
2095 */
2096 dbuf = *p++;
2097 len--;
2098 leftover = 1;
2099 } else {
2100 /*
2101 * Aligned data. This is the case we like.
2102 *
2103 * Write-region out as much as we can, then
2104 * buffer the remaining byte (if any).
2105 */
2106 leftover = len & 1;
2107 len &= ~1;
2108 if (sc->sc_memorymode) {
2109 MEM_WRITE_REGION_2(sc, frameoff,
2110 (u_int16_t *) p, len >> 1);
2111 frameoff += len;
2112 }
2113 else {
2114 IO_WRITE_MULTI_2(sc,
2115 PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2116 }
2117 p += len;
2118
2119 if (leftover)
2120 dbuf = *p++;
2121 len = 0;
2122 }
2123 }
2124 if (len < 0)
2125 panic("cs_copy_tx_frame: negative len");
2126 #ifdef DIAGNOSTIC
2127 if (p != lim)
2128 panic("cs_copy_tx_frame: p != lim");
2129 #endif
2130 }
2131 if (leftover) {
2132 if (sc->sc_memorymode) {
2133 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2134 }
2135 else {
2136 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2137 }
2138 }
2139 }
2140
2141 static int
2142 cs_enable(struct cs_softc *sc)
2143 {
2144
2145 if (CS_IS_ENABLED(sc) == 0) {
2146 if (sc->sc_enable != NULL) {
2147 int error;
2148
2149 error = (*sc->sc_enable)(sc);
2150 if (error)
2151 return (error);
2152 }
2153 sc->sc_cfgflags |= CFGFLG_ENABLED;
2154 }
2155
2156 return (0);
2157 }
2158
2159 static void
2160 cs_disable(struct cs_softc *sc)
2161 {
2162
2163 if (CS_IS_ENABLED(sc)) {
2164 if (sc->sc_disable != NULL)
2165 (*sc->sc_disable)(sc);
2166
2167 sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2168 }
2169 }
2170
2171 static void
2172 cs_stop(struct ifnet *ifp, int disable)
2173 {
2174 struct cs_softc *sc = ifp->if_softc;
2175
2176 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2177 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2178 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2179 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2180
2181 if (disable) {
2182 cs_disable(sc);
2183 }
2184
2185 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2186 }
2187
2188 int
2189 cs_activate(device_t self, enum devact act)
2190 {
2191 struct cs_softc *sc = device_private(self);
2192
2193 switch (act) {
2194 case DVACT_DEACTIVATE:
2195 if_deactivate(&sc->sc_ethercom.ec_if);
2196 return 0;
2197 default:
2198 return EOPNOTSUPP;
2199 }
2200 }
2201