cs89x0.c revision 1.34.4.5 1 /* $NetBSD: cs89x0.c,v 1.34.4.5 2017/08/28 17:52:03 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2004 Christopher Gilbert
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright 1997
31 * Digital Equipment Corporation. All rights reserved.
32 *
33 * This software is furnished under license and may be used and
34 * copied only in accordance with the following terms and conditions.
35 * Subject to these conditions, you may download, copy, install,
36 * use, modify and distribute this software in source and/or binary
37 * form. No title or ownership is transferred hereby.
38 *
39 * 1) Any source code used, modified or distributed must reproduce
40 * and retain this copyright notice and list of conditions as
41 * they appear in the source file.
42 *
43 * 2) No right is granted to use any trade name, trademark, or logo of
44 * Digital Equipment Corporation. Neither the "Digital Equipment
45 * Corporation" name nor any trademark or logo of Digital Equipment
46 * Corporation may be used to endorse or promote products derived
47 * from this software without the prior written permission of
48 * Digital Equipment Corporation.
49 *
50 * 3) This software is provided "AS-IS" and any express or implied
51 * warranties, including but not limited to, any implied warranties
52 * of merchantability, fitness for a particular purpose, or
53 * non-infringement are disclaimed. In no event shall DIGITAL be
54 * liable for any damages whatsoever, and in particular, DIGITAL
55 * shall not be liable for special, indirect, consequential, or
56 * incidental damages or damages for lost profits, loss of
57 * revenue or loss of use, whether such damages arise in contract,
58 * negligence, tort, under statute, in equity, at law or otherwise,
59 * even if advised of the possibility of such damage.
60 */
61
62 /*
63 **++
64 ** FACILITY
65 **
66 ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 ** ABSTRACT
69 **
70 ** This module provides standard ethernet access for INET protocols
71 ** only.
72 **
73 ** AUTHORS
74 **
75 ** Peter Dettori SEA - Software Engineering.
76 **
77 ** CREATION DATE:
78 **
79 ** 13-Feb-1997.
80 **
81 ** MODIFICATION HISTORY (Digital):
82 **
83 ** Revision 1.27 1998/01/20 17:59:40 cgd
84 ** update for moved headers
85 **
86 ** Revision 1.26 1998/01/12 19:29:36 cgd
87 ** use arm32/isa versions of isadma code.
88 **
89 ** Revision 1.25 1997/12/12 01:35:27 cgd
90 ** convert to use new arp code (from Brini)
91 **
92 ** Revision 1.24 1997/12/10 22:31:56 cgd
93 ** trim some fat (get rid of ability to explicitly supply enet addr, since
94 ** it was never used and added a bunch of code which really doesn't belong in
95 ** an enet driver), and clean up slightly.
96 **
97 ** Revision 1.23 1997/10/06 16:42:12 cgd
98 ** copyright notices
99 **
100 ** Revision 1.22 1997/06/20 19:38:01 chaiken
101 ** fixes some smartcard problems
102 **
103 ** Revision 1.21 1997/06/10 02:56:20 grohn
104 ** Added call to ledNetActive
105 **
106 ** Revision 1.20 1997/06/05 00:47:06 dettori
107 ** Changed cs_process_rx_dma to reset and re-initialise the
108 ** ethernet chip when DMA gets out of sync, or mbufs
109 ** can't be allocated.
110 **
111 ** Revision 1.19 1997/06/03 03:09:58 dettori
112 ** Turn off sc_txbusy flag when a transmit underrun
113 ** occurs.
114 **
115 ** Revision 1.18 1997/06/02 00:04:35 dettori
116 ** redefined the transmit table to get around the nfs_timer bug while we are
117 ** looking into it further.
118 **
119 ** Also changed interrupts from EDGE to LEVEL.
120 **
121 ** Revision 1.17 1997/05/27 23:31:01 dettori
122 ** Pulled out changes to DMAMODE defines.
123 **
124 ** Revision 1.16 1997/05/23 04:25:16 cgd
125 ** reformat log so it fits in 80cols
126 **
127 ** Revision 1.15 1997/05/23 04:22:18 cgd
128 ** remove the existing copyright notice (which Peter Dettori indicated
129 ** was incorrect, copied from an existing NetBSD file only so that the
130 ** file would have a copyright notice on it, and which he'd intended to
131 ** replace). Replace it with a Digital copyright notice, cloned from
132 ** ess.c. It's not really correct either (it indicates that the source
133 ** is Digital confidential!), but is better than nothing and more
134 ** correct than what was there before.
135 **
136 ** Revision 1.14 1997/05/23 04:12:50 cgd
137 ** use an adaptive transmit start algorithm: start by telling the chip
138 ** to start transmitting after 381 bytes have been fed to it. if that
139 ** gets transmit underruns, ramp down to 1021 bytes then "whole
140 ** packet." If successful at a given level for a while, try the next
141 ** more agressive level. This code doesn't ever try to start
142 ** transmitting after 5 bytes have been sent to the NIC, because
143 ** that underruns rather regularly. The back-off and ramp-up mechanism
144 ** could probably be tuned a little bit, but this works well enough to
145 ** support > 1MB/s transmit rates on a clear ethernet (which is about
146 ** 20-25% better than the driver had previously been getting).
147 **
148 ** Revision 1.13 1997/05/22 21:06:54 cgd
149 ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
150 ** casting from u_int8_t * to u_int16_t * without worrying about alignment
151 ** issues. This would cause bogus data to be spit out for mbufs with
152 ** misaligned data. For instance, it caused the following bits to appear
153 ** on the wire:
154 ** ... etBND 1S2C .SHA(K) R ...
155 ** 11112222333344445555
156 ** which should have appeared as:
157 ** ... NetBSD 1.2C (SHARK) ...
158 ** 11112222333344445555
159 ** Note the apparent 'rotate' of the bytes in the word, which was due to
160 ** incorrect unaligned accesses. This data corruption was the cause of
161 ** incoming telnet/rlogin hangs.
162 **
163 ** Revision 1.12 1997/05/22 01:55:32 cgd
164 ** reformat log so it fits in 80cols
165 **
166 ** Revision 1.11 1997/05/22 01:50:27 cgd
167 ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 ** so packets aimed at other hosts don't get sent to ether_input().
169 ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 ** you can easily tell (`strings`) what version of the driver is in your
171 ** kernel binary.
172 ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
173 ** safe, and not really a performance win anyway. (It was only used when
174 ** setting up the multicast logical address filter, which is an
175 ** infrequent event. It could have been used in the IFF_PROMISCUOUS
176 ** address check above, but the benefit of it vs. memcmp would be
177 ** inconsequential, there.) Use memcmp() instead.
178 ** * restructure csStartOuput to avoid the following bugs in the case where
179 ** txWait was being set:
180 ** * it would accidentally drop the outgoing packet if told to wait
181 ** but the outgoing packet queue was empty.
182 ** * it would bpf_mtap() the outgoing packet multiple times (once for
183 ** each time it was told to wait), and would also recalculate
184 ** the length of the outgoing packet each time it was told to
185 ** wait.
186 ** While there, rename txWait to txLoop, since with the new structure of
187 ** the code, the latter name makes more sense.
188 **
189 ** Revision 1.10 1997/05/19 02:03:20 cgd
190 ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
191 ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
193 ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 ** as before.
195 **
196 ** Revision 1.9 1997/05/19 01:45:37 cgd
197 ** create a new function, cs_ether_input(), which does received-packet
198 ** BPF and ether_input processing. This code used to be in three places,
199 ** and centralizing it will make adding IFF_PROMISC support much easier.
200 ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 ** do copies with bus_space_write_region_2(). It's more correct, and
202 ** potentially more efficient. That function needs to be gutted (to
203 ** deal properly with alignment issues, which it currently does wrong),
204 ** however, and the change doesn't gain much, so there's no point in
205 ** enabling it now.
206 **
207 ** Revision 1.8 1997/05/19 01:17:10 cgd
208 ** fix a comment re: the setting of the TxConfig register. Clean up
209 ** interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.34.4.5 2017/08/28 17:52:03 skrll Exp $");
216
217 #include "opt_inet.h"
218
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228
229 #include <sys/rndsource.h>
230
231 #include <net/if.h>
232 #include <net/if_ether.h>
233 #include <net/if_media.h>
234 #ifdef INET
235 #include <netinet/in.h>
236 #include <netinet/if_inarp.h>
237 #endif
238
239 #include <net/bpf.h>
240 #include <net/bpfdesc.h>
241
242 #include <sys/bus.h>
243 #include <sys/intr.h>
244
245 #include <dev/ic/cs89x0reg.h>
246 #include <dev/ic/cs89x0var.h>
247
248 #ifdef SHARK
249 #include <shark/shark/sequoia.h>
250 #endif
251
252 /*
253 * MACRO DEFINITIONS
254 */
255 #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
256
257 /*
258 * FUNCTION PROTOTYPES
259 */
260 static void cs_get_default_media(struct cs_softc *);
261 static int cs_get_params(struct cs_softc *);
262 static int cs_get_enaddr(struct cs_softc *);
263 static int cs_reset_chip(struct cs_softc *);
264 static void cs_reset(struct cs_softc *);
265 static int cs_ioctl(struct ifnet *, u_long, void *);
266 static void cs_initChip(struct cs_softc *);
267 static void cs_buffer_event(struct cs_softc *, u_int16_t);
268 static void cs_transmit_event(struct cs_softc *, u_int16_t);
269 static void cs_receive_event(struct cs_softc *, u_int16_t);
270 static void cs_process_receive(struct cs_softc *);
271 static void cs_process_rx_early(struct cs_softc *);
272 static void cs_start_output(struct ifnet *);
273 static void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
274 static void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
275 static u_int16_t cs_hash_index(char *);
276 static void cs_counter_event(struct cs_softc *, u_int16_t);
277
278 static int cs_mediachange(struct ifnet *);
279 static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
280
281 static bool cs_shutdown(device_t, int);
282 static int cs_enable(struct cs_softc *);
283 static void cs_disable(struct cs_softc *);
284 static void cs_stop(struct ifnet *, int);
285 static int cs_scan_eeprom(struct cs_softc *);
286 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
287
288
289 /*
290 * GLOBAL DECLARATIONS
291 */
292
293 /*
294 * Xmit-early table.
295 *
296 * To get better performance, we tell the chip to start packet
297 * transmission before the whole packet is copied to the chip.
298 * However, this can fail under load. When it fails, we back off
299 * to a safer setting for a little while.
300 *
301 * txcmd is the value of txcmd used to indicate when to start transmission.
302 * better is the next 'better' state in the table.
303 * better_count is the number of output packets before transition to the
304 * better state.
305 * worse is the next 'worse' state in the table.
306 *
307 * Transition to the next worse state happens automatically when a
308 * transmittion underrun occurs.
309 */
310 struct cs_xmit_early {
311 u_int16_t txcmd;
312 int better;
313 int better_count;
314 int worse;
315 } cs_xmit_early_table[3] = {
316 { TX_CMD_START_381, 0, INT_MAX, 1, },
317 { TX_CMD_START_1021, 0, 50000, 2, },
318 { TX_CMD_START_ALL, 1, 5000, 2, },
319 };
320
321 int cs_default_media[] = {
322 IFM_ETHER|IFM_10_2,
323 IFM_ETHER|IFM_10_5,
324 IFM_ETHER|IFM_10_T,
325 IFM_ETHER|IFM_10_T|IFM_FDX,
326 };
327 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
328
329 int
330 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
331 int nmedia, int defmedia)
332 {
333 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
334 const char *chipname, *medname;
335 u_int16_t reg;
336 int i;
337
338 /* Start out in IO mode */
339 sc->sc_memorymode = FALSE;
340
341 /* make sure we're right */
342 for (i = 0; i < 10000; i++) {
343 reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
344 if (reg == EISA_NUM_CRYSTAL) {
345 break;
346 }
347 }
348 if (i == 10000) {
349 aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
350 return 1; /* XXX should panic? */
351 }
352
353 reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
354 sc->sc_prodid = reg & PROD_ID_MASK;
355 sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
356
357 switch (sc->sc_prodid) {
358 case PROD_ID_CS8900:
359 chipname = "CS8900";
360 break;
361 case PROD_ID_CS8920:
362 chipname = "CS8920";
363 break;
364 case PROD_ID_CS8920M:
365 chipname = "CS8920M";
366 break;
367 default:
368 panic("cs_attach: impossible");
369 }
370
371 /*
372 * the first thing to do is check that the mbuf cluster size is
373 * greater than the MTU for an ethernet frame. The code depends on
374 * this and to port this to a OS where this was not the case would
375 * not be straightforward.
376 *
377 * we need 1 byte spare because our
378 * packet read loop can overrun.
379 * and we may need pad bytes to align ip header.
380 */
381 if (MCLBYTES < ETHER_MAX_LEN + 1 +
382 ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
383 printf("%s: MCLBYTES too small for Ethernet frame\n",
384 device_xname(sc->sc_dev));
385 return 1;
386 }
387
388 /* Start out not transmitting */
389 sc->sc_txbusy = FALSE;
390
391 /* Set up early transmit threshhold */
392 sc->sc_xe_ent = 0;
393 sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
394
395 /* Initialize ifnet structure. */
396 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
397 ifp->if_softc = sc;
398 ifp->if_start = cs_start_output;
399 ifp->if_init = cs_init;
400 ifp->if_ioctl = cs_ioctl;
401 ifp->if_stop = cs_stop;
402 ifp->if_watchdog = NULL; /* no watchdog at this stage */
403 ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
404 IFF_BROADCAST | IFF_MULTICAST;
405 IFQ_SET_READY(&ifp->if_snd);
406
407 /* Initialize ifmedia structures. */
408 ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
409
410 if (media != NULL) {
411 for (i = 0; i < nmedia; i++)
412 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
413 ifmedia_set(&sc->sc_media, defmedia);
414 } else {
415 for (i = 0; i < cs_default_nmedia; i++)
416 ifmedia_add(&sc->sc_media, cs_default_media[i],
417 0, NULL);
418 cs_get_default_media(sc);
419 }
420
421 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
422 if (cs_scan_eeprom(sc) == CS_ERROR) {
423 /* failed to scan the eeprom, pretend there isn't an eeprom */
424 aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
425 sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
426 }
427 }
428
429 if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
430 /* Get parameters from the EEPROM */
431 if (cs_get_params(sc) == CS_ERROR) {
432 aprint_error_dev(sc->sc_dev,
433 "unable to get settings from EEPROM\n");
434 return 1;
435 }
436 }
437
438 if (enaddr != NULL)
439 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
440 else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
441 /* Get and store the Ethernet address */
442 if (cs_get_enaddr(sc) == CS_ERROR) {
443 aprint_error_dev(sc->sc_dev,
444 "unable to read Ethernet address\n");
445 return 1;
446 }
447 } else {
448 #if 1
449 int j;
450 uint v;
451
452 for (j = 0; j < 6; j += 2) {
453 v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
454 sc->sc_enaddr[j + 0] = v;
455 sc->sc_enaddr[j + 1] = v >> 8;
456 }
457 #else
458 printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
459 return 1;
460 #endif
461 }
462
463 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
464 case IFM_10_2:
465 medname = "BNC";
466 break;
467 case IFM_10_5:
468 medname = "AUI";
469 break;
470 case IFM_10_T:
471 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
472 medname = "UTP <full-duplex>";
473 else
474 medname = "UTP";
475 break;
476 default:
477 panic("cs_attach: impossible");
478 }
479 printf("%s: %s rev. %c, address %s, media %s\n",
480 device_xname(sc->sc_dev),
481 chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
482 medname);
483
484 if (sc->sc_dma_attach)
485 (*sc->sc_dma_attach)(sc);
486
487 /* Attach the interface. */
488 if_attach(ifp);
489 if_deferred_start_init(ifp, NULL);
490 ether_ifattach(ifp, sc->sc_enaddr);
491
492 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
493 RND_TYPE_NET, RND_FLAG_DEFAULT);
494 sc->sc_cfgflags |= CFGFLG_ATTACHED;
495
496 if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
497 pmf_class_network_register(sc->sc_dev, ifp);
498 else
499 aprint_error_dev(sc->sc_dev,
500 "couldn't establish power handler\n");
501
502 /* Reset the chip */
503 if (cs_reset_chip(sc) == CS_ERROR) {
504 aprint_error_dev(sc->sc_dev, "reset failed\n");
505 cs_detach(sc);
506 return 1;
507 }
508
509 return 0;
510 }
511
512 int
513 cs_detach(struct cs_softc *sc)
514 {
515 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
516
517 if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
518 rnd_detach_source(&sc->rnd_source);
519 ether_ifdetach(ifp);
520 if_detach(ifp);
521 sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
522 }
523
524 #if 0
525 /*
526 * XXX not necessary
527 */
528 if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
529 isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
530 isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
531 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
532 sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
533 }
534 #endif
535
536 pmf_device_deregister(sc->sc_dev);
537
538 return 0;
539 }
540
541 bool
542 cs_shutdown(device_t self, int howto)
543 {
544 struct cs_softc *sc;
545
546 sc = device_private(self);
547 cs_reset(sc);
548
549 return true;
550 }
551
552 void
553 cs_get_default_media(struct cs_softc *sc)
554 {
555 u_int16_t adp_cfg, xmit_ctl;
556
557 if (cs_verify_eeprom(sc) == CS_ERROR) {
558 aprint_error_dev(sc->sc_dev,
559 "cs_get_default_media: EEPROM missing or bad\n");
560 goto fakeit;
561 }
562
563 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
564 aprint_error_dev(sc->sc_dev,
565 "unable to read adapter config from EEPROM\n");
566 goto fakeit;
567 }
568
569 if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
570 aprint_error_dev(sc->sc_dev,
571 "unable to read transmit control from EEPROM\n");
572 goto fakeit;
573 }
574
575 switch (adp_cfg & ADPTR_CFG_MEDIA) {
576 case ADPTR_CFG_AUI:
577 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
578 break;
579 case ADPTR_CFG_10BASE2:
580 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
581 break;
582 case ADPTR_CFG_10BASET:
583 default:
584 if (xmit_ctl & XMIT_CTL_FDX)
585 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
586 else
587 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
588 break;
589 }
590 return;
591
592 fakeit:
593 aprint_error_dev(sc->sc_dev,
594 "WARNING: default media setting may be inaccurate\n");
595 /* XXX Arbitrary... */
596 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
597 }
598
599 /*
600 * cs_scan_eeprom
601 *
602 * Attempt to take a complete copy of the eeprom into main memory.
603 * this will allow faster parsing of the eeprom data.
604 *
605 * Only tested against a 8920M's eeprom, but the data sheet for the
606 * 8920A indicates that is uses the same layout.
607 */
608 int
609 cs_scan_eeprom(struct cs_softc *sc)
610 {
611 u_int16_t result;
612 int i;
613 int eeprom_size;
614 u_int8_t checksum = 0;
615
616 if (cs_verify_eeprom(sc) == CS_ERROR) {
617 aprint_error_dev(sc->sc_dev,
618 "cs_scan_params: EEPROM missing or bad\n");
619 return (CS_ERROR);
620 }
621
622 /*
623 * read the 0th word from the eeprom, it will tell us the length
624 * and if the eeprom is valid
625 */
626 cs_read_eeprom(sc, 0, &result);
627
628 /* check the eeprom signature */
629 if ((result & 0xE000) != 0xA000) {
630 /* empty eeprom */
631 return (CS_ERROR);
632 }
633
634 /*
635 * take the eeprom size (note the read value doesn't include the header
636 * word)
637 */
638 eeprom_size = (result & 0xff) + 2;
639
640 sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
641 if (sc->eeprom_data == NULL) {
642 /* no memory, treat this as if there's no eeprom */
643 return (CS_ERROR);
644 }
645
646 sc->eeprom_size = eeprom_size;
647
648 /* read the eeprom into the buffer, also calculate the checksum */
649 for (i = 0; i < (eeprom_size >> 1); i++) {
650 cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
651 checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
652 checksum += (sc->eeprom_data[i] & 0x00ff);
653 }
654
655 /*
656 * validate checksum calculation, the sum of all the bytes should be 0,
657 * as the high byte of the last word is the 2's complement of the
658 * sum to that point.
659 */
660 if (checksum != 0) {
661 aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
662 return (CS_ERROR);
663 }
664
665 return (CS_OK);
666 }
667
668 static int
669 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
670 {
671 int x, maxword;
672
673 /* Check that we have eeprom data */
674 if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
675 return (CS_ERROR);
676
677 /*
678 * We only want to read the data words, the last word contains the
679 * checksum
680 */
681 maxword = (sc->eeprom_size - 2) >> 1;
682
683 /* start 1 word in, as the first word is the length and signature */
684 x = 1;
685
686 while ( x < (maxword)) {
687 u_int16_t header;
688 int group_size;
689 int offset;
690 int offset_max;
691
692 /* read in the group header word */
693 header = sc->eeprom_data[x];
694 x++; /* skip group header */
695
696 /*
697 * size of group in words is in the top 4 bits, note that it
698 * is one less than the number of words
699 */
700 group_size = header & 0xF000;
701
702 /*
703 * CS8900 Data sheet says this should be 0x01ff,
704 * but my cs8920 eeprom has higher offsets,
705 * perhaps the 8920 allows higher offsets, otherwise
706 * it's writing to places that it shouldn't
707 */
708 /* work out the offsets this group covers */
709 offset = header & 0x0FFF;
710 offset_max = offset + (group_size << 1);
711
712 /* check if the pkgpg we're after is in this group */
713 if ((offset <= pktpg) && (pktpg <= offset_max)) {
714 /* the pkgpg value we want is in here */
715 int eeprom_location;
716
717 eeprom_location = ((pktpg - offset) >> 1) ;
718
719 *pValue = sc->eeprom_data[x + eeprom_location];
720 return (CS_OK);
721 } else {
722 /* skip this group (+ 1 for first entry) */
723 x += group_size + 1;
724 }
725 }
726
727 /*
728 * if we've fallen out here then we don't have a value in the EEPROM
729 * for this pktpg so return an error
730 */
731 return (CS_ERROR);
732 }
733
734 int
735 cs_get_params(struct cs_softc *sc)
736 {
737 u_int16_t isaConfig;
738 u_int16_t adapterConfig;
739
740 if (cs_verify_eeprom(sc) == CS_ERROR) {
741 aprint_error_dev(sc->sc_dev,
742 "cs_get_params: EEPROM missing or bad\n");
743 return (CS_ERROR);
744 }
745
746 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
747 /* Get ISA configuration from the EEPROM */
748 if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
749 == CS_ERROR) {
750 /* eeprom doesn't have this value, use data sheet default */
751 isaConfig = 0x0017;
752 }
753
754 /* Get adapter configuration from the EEPROM */
755 if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
756 == CS_ERROR) {
757 /* eeprom doesn't have this value, use data sheet default */
758 adapterConfig = 0x0015;
759 }
760
761 /* Copy the USE_SA flag */
762 if (isaConfig & BUS_CTL_USE_SA)
763 sc->sc_cfgflags |= CFGFLG_USE_SA;
764
765 /* Copy the IO Channel Ready flag */
766 if (isaConfig & BUS_CTL_IOCHRDY)
767 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
768
769 /* Copy the DC/DC Polarity flag */
770 if (adapterConfig & SELF_CTL_HCB1)
771 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
772 } else {
773 /* Get ISA configuration from the EEPROM */
774 if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
775 goto eeprom_bad;
776
777 /* Get adapter configuration from the EEPROM */
778 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
779 goto eeprom_bad;
780
781 /* Copy the USE_SA flag */
782 if (isaConfig & ISA_CFG_USE_SA)
783 sc->sc_cfgflags |= CFGFLG_USE_SA;
784
785 /* Copy the IO Channel Ready flag */
786 if (isaConfig & ISA_CFG_IOCHRDY)
787 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
788
789 /* Copy the DC/DC Polarity flag */
790 if (adapterConfig & ADPTR_CFG_DCDC_POL)
791 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
792 }
793
794 return (CS_OK);
795 eeprom_bad:
796 aprint_error_dev(sc->sc_dev,
797 "cs_get_params: unable to read from EEPROM\n");
798 return (CS_ERROR);
799 }
800
801 int
802 cs_get_enaddr(struct cs_softc *sc)
803 {
804 uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
805 int i;
806
807 if (cs_verify_eeprom(sc) == CS_ERROR) {
808 aprint_error_dev(sc->sc_dev,
809 "cs_get_enaddr: EEPROM missing or bad\n");
810 return (CS_ERROR);
811 }
812
813 /* Get Ethernet address from the EEPROM */
814 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
815 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
816 == CS_ERROR)
817 goto eeprom_bad;
818 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
819 == CS_ERROR)
820 goto eeprom_bad;
821 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
822 == CS_ERROR)
823 goto eeprom_bad;
824 } else {
825 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
826 goto eeprom_bad;
827 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
828 goto eeprom_bad;
829 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
830 goto eeprom_bad;
831 }
832
833 for (i = 0; i < __arraycount(myea); i++) {
834 sc->sc_enaddr[i * 2 + 0] = myea[i];
835 sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
836 }
837
838 return (CS_OK);
839
840 eeprom_bad:
841 aprint_error_dev(sc->sc_dev,
842 "cs_get_enaddr: unable to read from EEPROM\n");
843 return (CS_ERROR);
844 }
845
846 int
847 cs_reset_chip(struct cs_softc *sc)
848 {
849 int intState;
850 int x;
851
852 /* Disable interrupts at the CPU so reset command is atomic */
853 intState = splnet();
854
855 /*
856 * We are now resetting the chip
857 *
858 * A spurious interrupt is generated by the chip when it is reset. This
859 * variable informs the interrupt handler to ignore this interrupt.
860 */
861 sc->sc_resetting = TRUE;
862
863 /* Issue a reset command to the chip */
864 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
865
866 /* Re-enable interrupts at the CPU */
867 splx(intState);
868
869 /* The chip is always in IO mode after a reset */
870 sc->sc_memorymode = FALSE;
871
872 /* If transmission was in progress, it is not now */
873 sc->sc_txbusy = FALSE;
874
875 /*
876 * there was a delay(125); here, but it seems uneccesary 125 usec is
877 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
878 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
879 * should be sufficient.
880 */
881
882 /* Transition SBHE to switch chip from 8-bit to 16-bit */
883 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
884 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
885 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
886 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
887
888 /* Wait until the EEPROM is not busy */
889 for (x = 0; x < MAXLOOP; x++) {
890 if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
891 break;
892 }
893
894 if (x == MAXLOOP)
895 return CS_ERROR;
896
897 /* Wait until initialization is done */
898 for (x = 0; x < MAXLOOP; x++) {
899 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
900 break;
901 }
902
903 if (x == MAXLOOP)
904 return CS_ERROR;
905
906 /* Reset is no longer in progress */
907 sc->sc_resetting = FALSE;
908
909 return CS_OK;
910 }
911
912 int
913 cs_verify_eeprom(struct cs_softc *sc)
914 {
915 u_int16_t self_status;
916
917 /* Verify that the EEPROM is present and OK */
918 self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
919 if (((self_status & SELF_ST_EEP_PRES) &&
920 (self_status & SELF_ST_EEP_OK)) == 0)
921 return (CS_ERROR);
922
923 return (CS_OK);
924 }
925
926 int
927 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
928 {
929 int x;
930
931 /* Ensure that the EEPROM is not busy */
932 for (x = 0; x < MAXLOOP; x++) {
933 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
934 SELF_ST_SI_BUSY))
935 break;
936 }
937
938 if (x == MAXLOOP)
939 return (CS_ERROR);
940
941 /* Issue the command to read the offset within the EEPROM */
942 CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
943 offset | EEPROM_CMD_READ);
944
945 /* Wait until the command is completed */
946 for (x = 0; x < MAXLOOP; x++) {
947 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
948 SELF_ST_SI_BUSY))
949 break;
950 }
951
952 if (x == MAXLOOP)
953 return (CS_ERROR);
954
955 /* Get the EEPROM data from the EEPROM Data register */
956 *pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
957
958 return (CS_OK);
959 }
960
961 void
962 cs_initChip(struct cs_softc *sc)
963 {
964 u_int16_t busCtl;
965 u_int16_t selfCtl;
966 u_int16_t v;
967 u_int16_t isaId;
968 int i;
969 int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
970
971 /* Disable reception and transmission of frames */
972 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
973 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
974 ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
975
976 /* Disable interrupt at the chip */
977 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
978 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
979
980 /* If IOCHRDY is enabled then clear the bit in the busCtl register */
981 busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
982 if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
983 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
984 busCtl & ~BUS_CTL_IOCHRDY);
985 } else {
986 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
987 busCtl | BUS_CTL_IOCHRDY);
988 }
989
990 /* Set the Line Control register to match the media type */
991 if (media == IFM_10_T)
992 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
993 else
994 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
995
996 /*
997 * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
998 * enable the DC/DC converter
999 */
1000 selfCtl = SELF_CTL_HC1E;
1001
1002 /* If the media type is 10Base2 */
1003 if (media == IFM_10_2) {
1004 /*
1005 * Enable the DC/DC converter if it has a low enable.
1006 */
1007 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1008 /*
1009 * Set the HCB1 bit, which causes the HC1 pin to go
1010 * low.
1011 */
1012 selfCtl |= SELF_CTL_HCB1;
1013 } else { /* Media type is 10BaseT or AUI */
1014 /*
1015 * Disable the DC/DC converter if it has a high enable.
1016 */
1017 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1018 /*
1019 * Set the HCB1 bit, which causes the HC1 pin to go
1020 * low.
1021 */
1022 selfCtl |= SELF_CTL_HCB1;
1023 }
1024 }
1025 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1026
1027 /* enable normal link pulse */
1028 if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1029 CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1030
1031 /* Enable full-duplex, if appropriate */
1032 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1033 CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1034
1035 /* RX_CTL set in cs_set_ladr_filt(), below */
1036
1037 /* enable all transmission interrupts */
1038 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1039
1040 /* Accept all receive interrupts */
1041 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1042
1043 /*
1044 * Configure Operational Modes
1045 *
1046 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1047 * a better way to do it because the card has a counter which can be
1048 * read to update the RX_MISS counter. This saves many interrupts.
1049 *
1050 * I have turned on the tx and rx overflow interrupts to counter using
1051 * the receive miss interrupt. This is a better estimate of errors
1052 * and requires lower system overhead.
1053 */
1054 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1055 BUF_CFG_RX_DMA_IE);
1056
1057 if (sc->sc_dma_chipinit)
1058 (*sc->sc_dma_chipinit)(sc);
1059
1060 /* If memory mode is enabled */
1061 if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1062 /* If external logic is present for address decoding */
1063 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1064 /*
1065 * Program the external logic to decode address bits
1066 * SA20-SA23
1067 */
1068 CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1069 ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1070 EEPROM_CMD_ELSEL);
1071 }
1072
1073 /*
1074 * Write the packet page base physical address to the memory
1075 * base register.
1076 */
1077 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1078 sc->sc_pktpgaddr & 0xFFFF);
1079 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1080 sc->sc_pktpgaddr >> 16);
1081 busCtl = BUS_CTL_MEM_MODE;
1082
1083 /* tell the chip to read the addresses off the SA pins */
1084 if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1085 busCtl |= BUS_CTL_USE_SA;
1086 }
1087 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1088 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1089
1090 /* We are in memory mode now! */
1091 sc->sc_memorymode = TRUE;
1092
1093 /*
1094 * wait here (10ms) for the chip to swap over. this is the
1095 * maximum time that this could take.
1096 */
1097 delay(10000);
1098
1099 /* Verify that we can read from the chip */
1100 isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1101
1102 /*
1103 * As a last minute sanity check before actually using mapped
1104 * memory we verify that we can read the isa number from the
1105 * chip in memory mode.
1106 */
1107 if (isaId != EISA_NUM_CRYSTAL) {
1108 aprint_error_dev(sc->sc_dev,
1109 "failed to enable memory mode\n");
1110 sc->sc_memorymode = FALSE;
1111 } else {
1112 /*
1113 * we are in memory mode so if we aren't using DMA,
1114 * then program the chip to interrupt early.
1115 */
1116 if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1117 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1118 BUF_CFG_RX_DEST_IE |
1119 BUF_CFG_RX_MISS_OVER_IE |
1120 BUF_CFG_TX_COL_OVER_IE);
1121 }
1122 }
1123
1124 }
1125
1126 /* Put Ethernet address into the Individual Address register */
1127 for (i = 0; i < 6; i += 2) {
1128 v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1129 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1130 }
1131
1132 if (sc->sc_irq != -1) {
1133 /* Set the interrupt level in the chip */
1134 if (sc->sc_prodid == PROD_ID_CS8900) {
1135 if (sc->sc_irq == 5) {
1136 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1137 } else {
1138 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1139 }
1140 }
1141 else { /* CS8920 */
1142 CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1143 }
1144 }
1145
1146 /* write the multicast mask to the address filter register */
1147 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1148
1149 /* Enable reception and transmission of frames */
1150 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1151 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1152 LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1153
1154 /* Enable interrupt at the chip */
1155 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1156 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1157 }
1158
1159 int
1160 cs_init(struct ifnet *ifp)
1161 {
1162 int intState;
1163 int error = CS_OK;
1164 struct cs_softc *sc = ifp->if_softc;
1165
1166 if (cs_enable(sc))
1167 goto out;
1168
1169 cs_stop(ifp, 0);
1170
1171 intState = splnet();
1172
1173 #if 0
1174 /* Mark the interface as down */
1175 sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1176 #endif
1177
1178 #ifdef CS_DEBUG
1179 /* Enable debugging */
1180 sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1181 #endif
1182
1183 /* Reset the chip */
1184 if ((error = cs_reset_chip(sc)) == CS_OK) {
1185 /* Initialize the chip */
1186 cs_initChip(sc);
1187
1188 /* Mark the interface as running */
1189 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1190 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1191 sc->sc_ethercom.ec_if.if_timer = 0;
1192
1193 /* Assume we have carrier until we are told otherwise. */
1194 sc->sc_carrier = 1;
1195 } else {
1196 aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1197 }
1198
1199 splx(intState);
1200 out:
1201 if (error == CS_OK)
1202 return 0;
1203 return EIO;
1204 }
1205
1206 void
1207 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1208 {
1209 struct ifnet *ifp = &ec->ec_if;
1210 struct ether_multi *enm;
1211 struct ether_multistep step;
1212 u_int16_t af[4];
1213 u_int16_t port, mask, index;
1214
1215 /*
1216 * Set up multicast address filter by passing all multicast addresses
1217 * through a crc generator, and then using the high order 6 bits as an
1218 * index into the 64 bit logical address filter. The high order bit
1219 * selects the word, while the rest of the bits select the bit within
1220 * the word.
1221 */
1222 if (ifp->if_flags & IFF_PROMISC) {
1223 /* accept all valid frames. */
1224 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1225 RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1226 RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1227 ifp->if_flags |= IFF_ALLMULTI;
1228 return;
1229 }
1230
1231 /*
1232 * accept frames if a. crc valid, b. individual address match c.
1233 * broadcast address,and d. multicast addresses matched in the hash
1234 * filter
1235 */
1236 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1237 RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1238
1239
1240 /*
1241 * start off with all multicast flag clear, set it if we need to
1242 * later, otherwise we will leave it.
1243 */
1244 ifp->if_flags &= ~IFF_ALLMULTI;
1245 af[0] = af[1] = af[2] = af[3] = 0x0000;
1246
1247 /*
1248 * Loop through all the multicast addresses unless we get a range of
1249 * addresses, in which case we will just accept all packets.
1250 * Justification for this is given in the next comment.
1251 */
1252 ETHER_FIRST_MULTI(step, ec, enm);
1253 while (enm != NULL) {
1254 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1255 sizeof enm->enm_addrlo)) {
1256 /*
1257 * We must listen to a range of multicast addresses.
1258 * For now, just accept all multicasts, rather than
1259 * trying to set only those filter bits needed to match
1260 * the range. (At this time, the only use of address
1261 * ranges is for IP multicast routing, for which the
1262 * range is big enough to require all bits set.)
1263 */
1264 ifp->if_flags |= IFF_ALLMULTI;
1265 af[0] = af[1] = af[2] = af[3] = 0xffff;
1266 break;
1267 } else {
1268 /*
1269 * we have got an individual address so just set that
1270 * bit.
1271 */
1272 index = cs_hash_index(enm->enm_addrlo);
1273
1274 /* Set the bit the Logical address filter. */
1275 port = (u_int16_t) (index >> 4);
1276 mask = (u_int16_t) (1 << (index & 0xf));
1277 af[port] |= mask;
1278
1279 ETHER_NEXT_MULTI(step, enm);
1280 }
1281 }
1282
1283 /* now program the chip with the addresses */
1284 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1285 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1286 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1287 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1288 return;
1289 }
1290
1291 u_int16_t
1292 cs_hash_index(char *addr)
1293 {
1294 uint32_t crc;
1295 uint16_t hash_code;
1296
1297 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1298
1299 hash_code = crc >> 26;
1300 return (hash_code);
1301 }
1302
1303 void
1304 cs_reset(struct cs_softc *sc)
1305 {
1306
1307 /* Mark the interface as down */
1308 sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1309
1310 /* Reset the chip */
1311 cs_reset_chip(sc);
1312 }
1313
1314 int
1315 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1316 {
1317 struct cs_softc *sc = ifp->if_softc;
1318 struct ifreq *ifr = data;
1319 int state;
1320 int result;
1321
1322 state = splnet();
1323
1324 result = 0; /* only set if something goes wrong */
1325
1326 switch (cmd) {
1327 case SIOCGIFMEDIA:
1328 case SIOCSIFMEDIA:
1329 result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1330 break;
1331
1332 default:
1333 result = ether_ioctl(ifp, cmd, data);
1334 if (result == ENETRESET) {
1335 if (ifp->if_flags & IFF_RUNNING) {
1336 /*
1337 * Multicast list has changed. Set the
1338 * hardware filter accordingly.
1339 */
1340 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1341 }
1342 result = 0;
1343 }
1344 break;
1345 }
1346
1347 splx(state);
1348
1349 return result;
1350 }
1351
1352 int
1353 cs_mediachange(struct ifnet *ifp)
1354 {
1355
1356 /*
1357 * Current media is already set up. Just reset the interface
1358 * to let the new value take hold.
1359 */
1360 cs_init(ifp);
1361 return (0);
1362 }
1363
1364 void
1365 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1366 {
1367 struct cs_softc *sc = ifp->if_softc;
1368
1369 /*
1370 * The currently selected media is always the active media.
1371 */
1372 ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1373
1374 if (ifp->if_flags & IFF_UP) {
1375 /* Interface up, status is valid. */
1376 ifmr->ifm_status = IFM_AVALID |
1377 (sc->sc_carrier ? IFM_ACTIVE : 0);
1378 }
1379 else ifmr->ifm_status = 0;
1380 }
1381
1382 int
1383 cs_intr(void *arg)
1384 {
1385 struct cs_softc *sc = arg;
1386 u_int16_t Event;
1387 u_int16_t rndEvent;
1388
1389 /*printf("cs_intr %p\n", sc);*/
1390 /* Ignore any interrupts that happen while the chip is being reset */
1391 if (sc->sc_resetting) {
1392 printf("%s: cs_intr: reset in progress\n",
1393 device_xname(sc->sc_dev));
1394 return 1;
1395 }
1396
1397 /* Read an event from the Interrupt Status Queue */
1398 if (sc->sc_memorymode)
1399 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1400 else
1401 Event = CS_READ_PORT(sc, PORT_ISQ);
1402
1403 if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1404 return 0; /* not ours */
1405
1406 rndEvent = Event;
1407
1408 /* Process all the events in the Interrupt Status Queue */
1409 while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1410 /* Dispatch to an event handler based on the register number */
1411 switch (Event & REG_NUM_MASK) {
1412 case REG_NUM_RX_EVENT:
1413 cs_receive_event(sc, Event);
1414 break;
1415 case REG_NUM_TX_EVENT:
1416 cs_transmit_event(sc, Event);
1417 break;
1418 case REG_NUM_BUF_EVENT:
1419 cs_buffer_event(sc, Event);
1420 break;
1421 case REG_NUM_TX_COL:
1422 case REG_NUM_RX_MISS:
1423 cs_counter_event(sc, Event);
1424 break;
1425 default:
1426 printf("%s: unknown interrupt event 0x%x\n",
1427 device_xname(sc->sc_dev), Event);
1428 break;
1429 }
1430
1431 /* Read another event from the Interrupt Status Queue */
1432 if (sc->sc_memorymode)
1433 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1434 else
1435 Event = CS_READ_PORT(sc, PORT_ISQ);
1436 }
1437
1438 /* have handled the interrupt */
1439 rnd_add_uint32(&sc->rnd_source, rndEvent);
1440 return 1;
1441 }
1442
1443 void
1444 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1445 {
1446 struct ifnet *ifp;
1447 u_int16_t errorCount;
1448
1449 ifp = &sc->sc_ethercom.ec_if;
1450
1451 switch (cntEvent & REG_NUM_MASK) {
1452 case REG_NUM_TX_COL:
1453 /*
1454 * the count should be read before an overflow occurs.
1455 */
1456 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1457 /*
1458 * the tramsit event routine always checks the number of
1459 * collisions for any packet so we don't increment any
1460 * counters here, as they should already have been
1461 * considered.
1462 */
1463 break;
1464 case REG_NUM_RX_MISS:
1465 /*
1466 * the count should be read before an overflow occurs.
1467 */
1468 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1469 /*
1470 * Increment the input error count, the first 6bits are the
1471 * register id.
1472 */
1473 ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1474 break;
1475 default:
1476 /* do nothing */
1477 break;
1478 }
1479 }
1480
1481 void
1482 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1483 {
1484
1485 /*
1486 * multiple events can be in the buffer event register at one time so
1487 * a standard switch statement will not suffice, here every event
1488 * must be checked.
1489 */
1490
1491 /*
1492 * if 128 bits have been rxed by the time we get here, the dest event
1493 * will be cleared and 128 event will be set.
1494 */
1495 if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1496 cs_process_rx_early(sc);
1497 }
1498
1499 if (bufEvent & BUF_EVENT_RX_DMA) {
1500 /* process the receive data */
1501 if (sc->sc_dma_process_rx)
1502 (*sc->sc_dma_process_rx)(sc);
1503 else
1504 /* should panic? */
1505 aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1506 }
1507
1508 if (bufEvent & BUF_EVENT_TX_UNDR) {
1509 #if 0
1510 /*
1511 * This can happen occasionally, and it's not worth worrying
1512 * about.
1513 */
1514 printf("%s: transmit underrun (%d -> %d)\n",
1515 device_xname(sc->sc_dev), sc->sc_xe_ent,
1516 cs_xmit_early_table[sc->sc_xe_ent].worse);
1517 #endif
1518 sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1519 sc->sc_xe_togo =
1520 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1521
1522 /* had an underrun, transmit is finished */
1523 sc->sc_txbusy = FALSE;
1524 }
1525
1526 if (bufEvent & BUF_EVENT_SW_INT) {
1527 printf("%s: software initiated interrupt\n",
1528 device_xname(sc->sc_dev));
1529 }
1530 }
1531
1532 void
1533 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1534 {
1535 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1536
1537 /* If there were any errors transmitting this frame */
1538 if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1539 TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1540 /* Increment the output error count */
1541 ifp->if_oerrors++;
1542
1543 /* Note carrier loss. */
1544 if (txEvent & TX_EVENT_LOSS_CRS)
1545 sc->sc_carrier = 0;
1546
1547 /* If debugging is enabled then log error messages */
1548 if (ifp->if_flags & IFF_DEBUG) {
1549 if (txEvent & TX_EVENT_LOSS_CRS) {
1550 aprint_error_dev(sc->sc_dev, "lost carrier\n");
1551 }
1552 if (txEvent & TX_EVENT_SQE_ERR) {
1553 aprint_error_dev(sc->sc_dev, "SQE error\n");
1554 }
1555 if (txEvent & TX_EVENT_OUT_WIN) {
1556 aprint_error_dev(sc->sc_dev,
1557 "out-of-window collision\n");
1558 }
1559 if (txEvent & TX_EVENT_JABBER) {
1560 aprint_error_dev(sc->sc_dev, "jabber\n");
1561 }
1562 if (txEvent & TX_EVENT_16_COLL) {
1563 aprint_error_dev(sc->sc_dev, "16 collisions\n");
1564 }
1565 }
1566 }
1567 else {
1568 /* Transmission successful, carrier is up. */
1569 sc->sc_carrier = 1;
1570 #ifdef SHARK
1571 ledNetActive();
1572 #endif
1573 }
1574
1575 /* Add the number of collisions for this frame */
1576 if (txEvent & TX_EVENT_16_COLL) {
1577 ifp->if_collisions += 16;
1578 } else {
1579 ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1580 }
1581
1582 ifp->if_opackets++;
1583
1584 /* Transmission is no longer in progress */
1585 sc->sc_txbusy = FALSE;
1586
1587 /* If there is more to transmit, start the next transmission */
1588 if_schedule_deferred_start(ifp);
1589 }
1590
1591 void
1592 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1593 {
1594
1595 if (rxEvent & RX_EVENT_RUNT)
1596 aprint_error_dev(sc->sc_dev, "runt\n");
1597
1598 if (rxEvent & RX_EVENT_X_DATA)
1599 aprint_error_dev(sc->sc_dev, "extra data\n");
1600
1601 if (rxEvent & RX_EVENT_CRC_ERR) {
1602 if (rxEvent & RX_EVENT_DRIBBLE)
1603 aprint_error_dev(sc->sc_dev, "alignment error\n");
1604 else
1605 aprint_error_dev(sc->sc_dev, "CRC error\n");
1606 } else {
1607 if (rxEvent & RX_EVENT_DRIBBLE)
1608 aprint_error_dev(sc->sc_dev, "dribble bits\n");
1609 }
1610 }
1611
1612 void
1613 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1614 {
1615 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1616
1617 /* If the frame was not received OK */
1618 if (!(rxEvent & RX_EVENT_RX_OK)) {
1619 /* Increment the input error count */
1620 ifp->if_ierrors++;
1621
1622 /*
1623 * If debugging is enabled then log error messages.
1624 */
1625 if (ifp->if_flags & IFF_DEBUG) {
1626 if (rxEvent != REG_NUM_RX_EVENT) {
1627 cs_print_rx_errors(sc, rxEvent);
1628
1629 /*
1630 * Must read the length of all received
1631 * frames
1632 */
1633 CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1634
1635 /* Skip the received frame */
1636 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1637 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1638 RX_CFG_SKIP);
1639 } else {
1640 aprint_error_dev(sc->sc_dev, "implied skip\n");
1641 }
1642 }
1643 } else {
1644 /*
1645 * process the received frame and pass it up to the upper
1646 * layers.
1647 */
1648 cs_process_receive(sc);
1649 }
1650 }
1651
1652 void
1653 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1654 {
1655 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1656
1657 /* Pass the packet up. */
1658 if_percpuq_enqueue(ifp->if_percpuq, m);
1659 }
1660
1661 void
1662 cs_process_receive(struct cs_softc *sc)
1663 {
1664 struct ifnet *ifp;
1665 struct mbuf *m;
1666 int totlen;
1667 u_int16_t *pBuff, *pBuffLimit;
1668 int pad;
1669 unsigned int frameOffset = 0; /* XXX: gcc */
1670
1671 #ifdef SHARK
1672 ledNetActive();
1673 #endif
1674
1675 ifp = &sc->sc_ethercom.ec_if;
1676
1677 /* Received a packet; carrier is up. */
1678 sc->sc_carrier = 1;
1679
1680 if (sc->sc_memorymode) {
1681 /* Initialize the frame offset */
1682 frameOffset = PKTPG_RX_LENGTH;
1683
1684 /* Get the length of the received frame */
1685 totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1686 frameOffset += 2;
1687 }
1688 else {
1689 /* drop status */
1690 CS_READ_PORT(sc, PORT_RXTX_DATA);
1691
1692 /* Get the length of the received frame */
1693 totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1694 }
1695
1696 if (totlen > ETHER_MAX_LEN) {
1697 aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1698 totlen);
1699
1700 /* skip the received frame */
1701 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1702 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1703 return;
1704 }
1705
1706 MGETHDR(m, M_DONTWAIT, MT_DATA);
1707 if (m == 0) {
1708 aprint_error_dev(sc->sc_dev,
1709 "cs_process_receive: unable to allocate mbuf\n");
1710 ifp->if_ierrors++;
1711 /*
1712 * couldn't allocate an mbuf so things are not good, may as
1713 * well drop the packet I think.
1714 *
1715 * have already read the length so we should be right to skip
1716 * the packet.
1717 */
1718 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1719 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1720 return;
1721 }
1722 m_set_rcvif(m, ifp);
1723 m->m_pkthdr.len = totlen;
1724
1725 /* number of bytes to align ip header on word boundary for ipintr */
1726 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1727
1728 /*
1729 * alloc mbuf cluster if we need.
1730 * we need 1 byte spare because following
1731 * packet read loop can overrun.
1732 */
1733 if (totlen + pad + 1 > MHLEN) {
1734 MCLGET(m, M_DONTWAIT);
1735 if ((m->m_flags & M_EXT) == 0) {
1736 /* couldn't allocate an mbuf cluster */
1737 aprint_error_dev(sc->sc_dev,
1738 "cs_process_receive: "
1739 "unable to allocate a cluster\n");
1740 m_freem(m);
1741
1742 /* skip the received frame */
1743 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1744 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1745 return;
1746 }
1747 }
1748
1749 /* align ip header on word boundary for ipintr */
1750 m->m_data += pad;
1751
1752 m->m_len = totlen;
1753 pBuff = mtod(m, u_int16_t *);
1754
1755 /* now read the data from the chip */
1756 if (sc->sc_memorymode) {
1757 pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
1758 while (pBuff < pBuffLimit) {
1759 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1760 frameOffset += 2;
1761 }
1762 }
1763 else {
1764 IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1765 }
1766
1767 cs_ether_input(sc, m);
1768 }
1769
1770 void
1771 cs_process_rx_early(struct cs_softc *sc)
1772 {
1773 struct ifnet *ifp;
1774 struct mbuf *m;
1775 u_int16_t frameCount, oldFrameCount;
1776 u_int16_t rxEvent;
1777 u_int16_t *pBuff;
1778 int pad;
1779 unsigned int frameOffset;
1780
1781
1782 ifp = &sc->sc_ethercom.ec_if;
1783
1784 /* Initialize the frame offset */
1785 frameOffset = PKTPG_RX_FRAME;
1786 frameCount = 0;
1787
1788 MGETHDR(m, M_DONTWAIT, MT_DATA);
1789 if (m == 0) {
1790 aprint_error_dev(sc->sc_dev,
1791 "cs_process_rx_early: unable to allocate mbuf\n");
1792 ifp->if_ierrors++;
1793 /*
1794 * couldn't allocate an mbuf so things are not good, may as
1795 * well drop the packet I think.
1796 *
1797 * have already read the length so we should be right to skip
1798 * the packet.
1799 */
1800 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1801 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1802 return;
1803 }
1804 m_set_rcvif(m, ifp);
1805 /*
1806 * save processing by always using a mbuf cluster, guaranteed to fit
1807 * packet
1808 */
1809 MCLGET(m, M_DONTWAIT);
1810 if ((m->m_flags & M_EXT) == 0) {
1811 /* couldn't allocate an mbuf cluster */
1812 aprint_error_dev(sc->sc_dev,
1813 "cs_process_rx_early: unable to allocate a cluster\n");
1814 m_freem(m);
1815 /* skip the frame */
1816 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1817 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1818 return;
1819 }
1820
1821 /* align ip header on word boundary for ipintr */
1822 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1823 m->m_data += pad;
1824
1825 /* set up the buffer pointer to point to the data area */
1826 pBuff = mtod(m, u_int16_t *);
1827
1828 /*
1829 * now read the frame byte counter until we have finished reading the
1830 * frame
1831 */
1832 oldFrameCount = 0;
1833 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1834 while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1835 for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1836 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1837 frameOffset += 2;
1838 }
1839
1840 /* read the new count from the chip */
1841 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1842 }
1843
1844 /* update the mbuf counts */
1845 m->m_len = oldFrameCount;
1846 m->m_pkthdr.len = oldFrameCount;
1847
1848 /* now check the Rx Event register */
1849 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1850
1851 if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1852 /*
1853 * do an implied skip, it seems to be more reliable than a
1854 * forced skip.
1855 */
1856 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1857 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1858
1859 /*
1860 * now read the RX_EVENT register to perform an implied skip.
1861 */
1862 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1863
1864 cs_ether_input(sc, m);
1865 } else {
1866 m_freem(m);
1867 ifp->if_ierrors++;
1868 }
1869 }
1870
1871 void
1872 cs_start_output(struct ifnet *ifp)
1873 {
1874 struct cs_softc *sc;
1875 struct mbuf *pMbuf;
1876 struct mbuf *pMbufChain;
1877 u_int16_t BusStatus;
1878 u_int16_t Length;
1879 int txLoop = 0;
1880 int dropout = 0;
1881
1882 sc = ifp->if_softc;
1883
1884 /* check that the interface is up and running */
1885 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1886 return;
1887 }
1888
1889 /* Don't interrupt a transmission in progress */
1890 if (sc->sc_txbusy) {
1891 return;
1892 }
1893
1894 /* this loop will only run through once if transmission is successful */
1895 /*
1896 * While there are packets to transmit and a transmit is not in
1897 * progress
1898 */
1899 while (sc->sc_txbusy == 0 && dropout == 0) {
1900 IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1901 if (pMbufChain == NULL)
1902 break;
1903
1904 /*
1905 * If BPF is listening on this interface, let it see the packet
1906 * before we commit it to the wire.
1907 */
1908 bpf_mtap(ifp, pMbufChain);
1909
1910 /* Find the total length of the data to transmit */
1911 Length = 0;
1912 for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1913 Length += pMbuf->m_len;
1914
1915 do {
1916 /*
1917 * Request that the transmit be started after all
1918 * data has been copied
1919 *
1920 * In IO mode must write to the IO port not the packet
1921 * page address
1922 *
1923 * If this is changed to start transmission after a
1924 * small amount of data has been copied you tend to
1925 * get packet missed errors i think because the ISA
1926 * bus is too slow. Or possibly the copy routine is
1927 * not streamlined enough.
1928 */
1929 if (sc->sc_memorymode) {
1930 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1931 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1932 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1933 }
1934 else {
1935 CS_WRITE_PORT(sc, PORT_TX_CMD,
1936 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1937 CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1938 }
1939
1940 /*
1941 * Adjust early-transmit machinery.
1942 */
1943 if (--sc->sc_xe_togo == 0) {
1944 sc->sc_xe_ent =
1945 cs_xmit_early_table[sc->sc_xe_ent].better;
1946 sc->sc_xe_togo =
1947 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1948 }
1949 /*
1950 * Read the BusStatus register which indicates
1951 * success of the request
1952 */
1953 BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1954
1955 /*
1956 * If there was an error in the transmit bid free the
1957 * mbuf and go on. This is presuming that mbuf is
1958 * corrupt.
1959 */
1960 if (BusStatus & BUS_ST_TX_BID_ERR) {
1961 aprint_error_dev(sc->sc_dev,
1962 "transmit bid error (too big)");
1963
1964 /* Discard the bad mbuf chain */
1965 m_freem(pMbufChain);
1966 sc->sc_ethercom.ec_if.if_oerrors++;
1967
1968 /* Loop up to transmit the next chain */
1969 txLoop = 0;
1970 } else {
1971 if (BusStatus & BUS_ST_RDY4TXNOW) {
1972 /*
1973 * The chip is ready for transmission
1974 * now
1975 */
1976 /*
1977 * Copy the frame to the chip to
1978 * start transmission
1979 */
1980 cs_copy_tx_frame(sc, pMbufChain);
1981
1982 /* Free the mbuf chain */
1983 m_freem(pMbufChain);
1984
1985 /* Transmission is now in progress */
1986 sc->sc_txbusy = TRUE;
1987 txLoop = 0;
1988 } else {
1989 /*
1990 * if we get here we want to try
1991 * again with the same mbuf, until
1992 * the chip lets us transmit.
1993 */
1994 txLoop++;
1995 if (txLoop > CS_OUTPUT_LOOP_MAX) {
1996 /* Free the mbuf chain */
1997 m_freem(pMbufChain);
1998 /*
1999 * Transmission is not in
2000 * progress
2001 */
2002 sc->sc_txbusy = FALSE;
2003 /*
2004 * Increment the output error
2005 * count
2006 */
2007 ifp->if_oerrors++;
2008 /*
2009 * exit the routine and drop
2010 * the packet.
2011 */
2012 txLoop = 0;
2013 dropout = 1;
2014 }
2015 }
2016 }
2017 } while (txLoop);
2018 }
2019 }
2020
2021 void
2022 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2023 {
2024 struct mbuf *m;
2025 int len, leftover, frameoff;
2026 u_int16_t dbuf;
2027 u_int8_t *p;
2028 #ifdef DIAGNOSTIC
2029 u_int8_t *lim;
2030 #endif
2031
2032 /* Initialize frame pointer and data port address */
2033 frameoff = PKTPG_TX_FRAME;
2034
2035 /* start out with no leftover data */
2036 leftover = 0;
2037 dbuf = 0;
2038
2039 /* Process the chain of mbufs */
2040 for (m = m0; m != NULL; m = m->m_next) {
2041 /*
2042 * Process all of the data in a single mbuf.
2043 */
2044 p = mtod(m, u_int8_t *);
2045 len = m->m_len;
2046 #ifdef DIAGNOSTIC
2047 lim = p + len;
2048 #endif
2049
2050 while (len > 0) {
2051 if (leftover) {
2052 /*
2053 * Data left over (from mbuf or realignment).
2054 * Buffer the next byte, and write it and
2055 * the leftover data out.
2056 */
2057 dbuf |= *p++ << 8;
2058 len--;
2059 if (sc->sc_memorymode) {
2060 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2061 frameoff += 2;
2062 }
2063 else {
2064 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2065 }
2066 leftover = 0;
2067 } else if ((long) p & 1) {
2068 /*
2069 * Misaligned data. Buffer the next byte.
2070 */
2071 dbuf = *p++;
2072 len--;
2073 leftover = 1;
2074 } else {
2075 /*
2076 * Aligned data. This is the case we like.
2077 *
2078 * Write-region out as much as we can, then
2079 * buffer the remaining byte (if any).
2080 */
2081 leftover = len & 1;
2082 len &= ~1;
2083 if (sc->sc_memorymode) {
2084 MEM_WRITE_REGION_2(sc, frameoff,
2085 (u_int16_t *) p, len >> 1);
2086 frameoff += len;
2087 }
2088 else {
2089 IO_WRITE_MULTI_2(sc,
2090 PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2091 }
2092 p += len;
2093
2094 if (leftover)
2095 dbuf = *p++;
2096 len = 0;
2097 }
2098 }
2099 if (len < 0)
2100 panic("cs_copy_tx_frame: negative len");
2101 #ifdef DIAGNOSTIC
2102 if (p != lim)
2103 panic("cs_copy_tx_frame: p != lim");
2104 #endif
2105 }
2106 if (leftover) {
2107 if (sc->sc_memorymode) {
2108 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2109 }
2110 else {
2111 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2112 }
2113 }
2114 }
2115
2116 static int
2117 cs_enable(struct cs_softc *sc)
2118 {
2119
2120 if (CS_IS_ENABLED(sc) == 0) {
2121 if (sc->sc_enable != NULL) {
2122 int error;
2123
2124 error = (*sc->sc_enable)(sc);
2125 if (error)
2126 return (error);
2127 }
2128 sc->sc_cfgflags |= CFGFLG_ENABLED;
2129 }
2130
2131 return (0);
2132 }
2133
2134 static void
2135 cs_disable(struct cs_softc *sc)
2136 {
2137
2138 if (CS_IS_ENABLED(sc)) {
2139 if (sc->sc_disable != NULL)
2140 (*sc->sc_disable)(sc);
2141
2142 sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2143 }
2144 }
2145
2146 static void
2147 cs_stop(struct ifnet *ifp, int disable)
2148 {
2149 struct cs_softc *sc = ifp->if_softc;
2150
2151 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2152 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2153 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2154 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2155
2156 if (disable) {
2157 cs_disable(sc);
2158 }
2159
2160 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2161 }
2162
2163 int
2164 cs_activate(device_t self, enum devact act)
2165 {
2166 struct cs_softc *sc = device_private(self);
2167
2168 switch (act) {
2169 case DVACT_DEACTIVATE:
2170 if_deactivate(&sc->sc_ethercom.ec_if);
2171 return 0;
2172 default:
2173 return EOPNOTSUPP;
2174 }
2175 }
2176