Home | History | Annotate | Line # | Download | only in ic
cs89x0.c revision 1.36
      1 /*	$NetBSD: cs89x0.c,v 1.36 2016/02/09 08:32:10 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2004 Christopher Gilbert
      5  * All rights reserved.
      6  *
      7  * 1. Redistributions of source code must retain the above copyright
      8  *    notice, this list of conditions and the following disclaimer.
      9  * 2. Redistributions in binary form must reproduce the above copyright
     10  *    notice, this list of conditions and the following disclaimer in the
     11  *    documentation and/or other materials provided with the distribution.
     12  * 3. The name of the company nor the name of the author may be used to
     13  *    endorse or promote products derived from this software without specific
     14  *    prior written permission.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright 1997
     31  * Digital Equipment Corporation. All rights reserved.
     32  *
     33  * This software is furnished under license and may be used and
     34  * copied only in accordance with the following terms and conditions.
     35  * Subject to these conditions, you may download, copy, install,
     36  * use, modify and distribute this software in source and/or binary
     37  * form. No title or ownership is transferred hereby.
     38  *
     39  * 1) Any source code used, modified or distributed must reproduce
     40  *    and retain this copyright notice and list of conditions as
     41  *    they appear in the source file.
     42  *
     43  * 2) No right is granted to use any trade name, trademark, or logo of
     44  *    Digital Equipment Corporation. Neither the "Digital Equipment
     45  *    Corporation" name nor any trademark or logo of Digital Equipment
     46  *    Corporation may be used to endorse or promote products derived
     47  *    from this software without the prior written permission of
     48  *    Digital Equipment Corporation.
     49  *
     50  * 3) This software is provided "AS-IS" and any express or implied
     51  *    warranties, including but not limited to, any implied warranties
     52  *    of merchantability, fitness for a particular purpose, or
     53  *    non-infringement are disclaimed. In no event shall DIGITAL be
     54  *    liable for any damages whatsoever, and in particular, DIGITAL
     55  *    shall not be liable for special, indirect, consequential, or
     56  *    incidental damages or damages for lost profits, loss of
     57  *    revenue or loss of use, whether such damages arise in contract,
     58  *    negligence, tort, under statute, in equity, at law or otherwise,
     59  *    even if advised of the possibility of such damage.
     60  */
     61 
     62 /*
     63 **++
     64 **  FACILITY
     65 **
     66 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
     67 **
     68 **  ABSTRACT
     69 **
     70 **     This module provides standard ethernet access for INET protocols
     71 **     only.
     72 **
     73 **  AUTHORS
     74 **
     75 **     Peter Dettori     SEA - Software Engineering.
     76 **
     77 **  CREATION DATE:
     78 **
     79 **     13-Feb-1997.
     80 **
     81 **  MODIFICATION HISTORY (Digital):
     82 **
     83 **     Revision 1.27  1998/01/20  17:59:40  cgd
     84 **     update for moved headers
     85 **
     86 **     Revision 1.26  1998/01/12  19:29:36  cgd
     87 **     use arm32/isa versions of isadma code.
     88 **
     89 **     Revision 1.25  1997/12/12  01:35:27  cgd
     90 **     convert to use new arp code (from Brini)
     91 **
     92 **     Revision 1.24  1997/12/10  22:31:56  cgd
     93 **     trim some fat (get rid of ability to explicitly supply enet addr, since
     94 **     it was never used and added a bunch of code which really doesn't belong in
     95 **     an enet driver), and clean up slightly.
     96 **
     97 **     Revision 1.23  1997/10/06  16:42:12  cgd
     98 **     copyright notices
     99 **
    100 **     Revision 1.22  1997/06/20  19:38:01  chaiken
    101 **     fixes some smartcard problems
    102 **
    103 **     Revision 1.21  1997/06/10 02:56:20  grohn
    104 **     Added call to ledNetActive
    105 **
    106 **     Revision 1.20  1997/06/05 00:47:06  dettori
    107 **     Changed cs_process_rx_dma to reset and re-initialise the
    108 **     ethernet chip when DMA gets out of sync, or mbufs
    109 **     can't be allocated.
    110 **
    111 **     Revision 1.19  1997/06/03 03:09:58  dettori
    112 **     Turn off sc_txbusy flag when a transmit underrun
    113 **     occurs.
    114 **
    115 **     Revision 1.18  1997/06/02 00:04:35  dettori
    116 **     redefined the transmit table to get around the nfs_timer bug while we are
    117 **     looking into it further.
    118 **
    119 **     Also changed interrupts from EDGE to LEVEL.
    120 **
    121 **     Revision 1.17  1997/05/27 23:31:01  dettori
    122 **     Pulled out changes to DMAMODE defines.
    123 **
    124 **     Revision 1.16  1997/05/23 04:25:16  cgd
    125 **     reformat log so it fits in 80cols
    126 **
    127 **     Revision 1.15  1997/05/23  04:22:18  cgd
    128 **     remove the existing copyright notice (which Peter Dettori indicated
    129 **     was incorrect, copied from an existing NetBSD file only so that the
    130 **     file would have a copyright notice on it, and which he'd intended to
    131 **     replace).  Replace it with a Digital copyright notice, cloned from
    132 **     ess.c.  It's not really correct either (it indicates that the source
    133 **     is Digital confidential!), but is better than nothing and more
    134 **     correct than what was there before.
    135 **
    136 **     Revision 1.14  1997/05/23  04:12:50  cgd
    137 **     use an adaptive transmit start algorithm: start by telling the chip
    138 **     to start transmitting after 381 bytes have been fed to it.  if that
    139 **     gets transmit underruns, ramp down to 1021 bytes then "whole
    140 **     packet."  If successful at a given level for a while, try the next
    141 **     more agressive level.  This code doesn't ever try to start
    142 **     transmitting after 5 bytes have been sent to the NIC, because
    143 **     that underruns rather regularly.  The back-off and ramp-up mechanism
    144 **     could probably be tuned a little bit, but this works well enough to
    145 **     support > 1MB/s transmit rates on a clear ethernet (which is about
    146 **     20-25% better than the driver had previously been getting).
    147 **
    148 **     Revision 1.13  1997/05/22  21:06:54  cgd
    149 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
    150 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
    151 **     issues.  This would cause bogus data to be spit out for mbufs with
    152 **     misaligned data.  For instance, it caused the following bits to appear
    153 **     on the wire:
    154 **     	... etBND 1S2C .SHA(K) R ...
    155 **     	    11112222333344445555
    156 **     which should have appeared as:
    157 **     	... NetBSD 1.2C (SHARK) ...
    158 **     	    11112222333344445555
    159 **     Note the apparent 'rotate' of the bytes in the word, which was due to
    160 **     incorrect unaligned accesses.  This data corruption was the cause of
    161 **     incoming telnet/rlogin hangs.
    162 **
    163 **     Revision 1.12  1997/05/22  01:55:32  cgd
    164 **     reformat log so it fits in 80cols
    165 **
    166 **     Revision 1.11  1997/05/22  01:50:27  cgd
    167 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
    168 **       so packets aimed at other hosts don't get sent to ether_input().
    169 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
    170 **       you can easily tell (`strings`) what version of the driver is in your
    171 **       kernel binary.
    172 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
    173 **       safe, and not really a performance win anyway.  (It was only used when
    174 **       setting up the multicast logical address filter, which is an
    175 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
    176 **       address check above, but the benefit of it vs. memcmp would be
    177 **       inconsequential, there.)  Use memcmp() instead.
    178 **     * restructure csStartOuput to avoid the following bugs in the case where
    179 **       txWait was being set:
    180 **         * it would accidentally drop the outgoing packet if told to wait
    181 **           but the outgoing packet queue was empty.
    182 **         * it would bpf_mtap() the outgoing packet multiple times (once for
    183 **           each time it was told to wait), and would also recalculate
    184 **           the length of the outgoing packet each time it was told to
    185 **           wait.
    186 **       While there, rename txWait to txLoop, since with the new structure of
    187 **       the code, the latter name makes more sense.
    188 **
    189 **     Revision 1.10  1997/05/19  02:03:20  cgd
    190 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
    191 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
    192 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
    193 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
    194 **     as before.
    195 **
    196 **     Revision 1.9  1997/05/19  01:45:37  cgd
    197 **     create a new function, cs_ether_input(), which does received-packet
    198 **     BPF and ether_input processing.  This code used to be in three places,
    199 **     and centralizing it will make adding IFF_PROMISC support much easier.
    200 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
    201 **     do copies with bus_space_write_region_2().  It's more correct, and
    202 **     potentially more efficient.  That function needs to be gutted (to
    203 **     deal properly with alignment issues, which it currently does wrong),
    204 **     however, and the change doesn't gain much, so there's no point in
    205 **     enabling it now.
    206 **
    207 **     Revision 1.8  1997/05/19  01:17:10  cgd
    208 **     fix a comment re: the setting of the TxConfig register.  Clean up
    209 **     interface counter maintenance (make it use standard idiom).
    210 **
    211 **--
    212 */
    213 
    214 #include <sys/cdefs.h>
    215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.36 2016/02/09 08:32:10 ozaki-r Exp $");
    216 
    217 #include "opt_inet.h"
    218 
    219 #include <sys/param.h>
    220 #include <sys/systm.h>
    221 #include <sys/mbuf.h>
    222 #include <sys/syslog.h>
    223 #include <sys/socket.h>
    224 #include <sys/device.h>
    225 #include <sys/malloc.h>
    226 #include <sys/ioctl.h>
    227 #include <sys/errno.h>
    228 
    229 #include <sys/rndsource.h>
    230 
    231 #include <net/if.h>
    232 #include <net/if_ether.h>
    233 #include <net/if_media.h>
    234 #ifdef INET
    235 #include <netinet/in.h>
    236 #include <netinet/if_inarp.h>
    237 #endif
    238 
    239 #include <net/bpf.h>
    240 #include <net/bpfdesc.h>
    241 
    242 #include <sys/bus.h>
    243 #include <sys/intr.h>
    244 
    245 #include <dev/ic/cs89x0reg.h>
    246 #include <dev/ic/cs89x0var.h>
    247 
    248 #ifdef SHARK
    249 #include <shark/shark/sequoia.h>
    250 #endif
    251 
    252 /*
    253  * MACRO DEFINITIONS
    254  */
    255 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
    256 
    257 /*
    258  * FUNCTION PROTOTYPES
    259  */
    260 static void	cs_get_default_media(struct cs_softc *);
    261 static int	cs_get_params(struct cs_softc *);
    262 static int	cs_get_enaddr(struct cs_softc *);
    263 static int	cs_reset_chip(struct cs_softc *);
    264 static void	cs_reset(struct cs_softc *);
    265 static int	cs_ioctl(struct ifnet *, u_long, void *);
    266 static void	cs_initChip(struct cs_softc *);
    267 static void	cs_buffer_event(struct cs_softc *, u_int16_t);
    268 static void	cs_transmit_event(struct cs_softc *, u_int16_t);
    269 static void	cs_receive_event(struct cs_softc *, u_int16_t);
    270 static void	cs_process_receive(struct cs_softc *);
    271 static void	cs_process_rx_early(struct cs_softc *);
    272 static void	cs_start_output(struct ifnet *);
    273 static void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
    274 static void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
    275 static u_int16_t cs_hash_index(char *);
    276 static void	cs_counter_event(struct cs_softc *, u_int16_t);
    277 
    278 static int	cs_mediachange(struct ifnet *);
    279 static void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
    280 
    281 static bool cs_shutdown(device_t, int);
    282 static int cs_enable(struct cs_softc *);
    283 static void cs_disable(struct cs_softc *);
    284 static void cs_stop(struct ifnet *, int);
    285 static int cs_scan_eeprom(struct cs_softc *);
    286 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
    287 
    288 
    289 /*
    290  * GLOBAL DECLARATIONS
    291  */
    292 
    293 /*
    294  * Xmit-early table.
    295  *
    296  * To get better performance, we tell the chip to start packet
    297  * transmission before the whole packet is copied to the chip.
    298  * However, this can fail under load.  When it fails, we back off
    299  * to a safer setting for a little while.
    300  *
    301  * txcmd is the value of txcmd used to indicate when to start transmission.
    302  * better is the next 'better' state in the table.
    303  * better_count is the number of output packets before transition to the
    304  *   better state.
    305  * worse is the next 'worse' state in the table.
    306  *
    307  * Transition to the next worse state happens automatically when a
    308  * transmittion underrun occurs.
    309  */
    310 struct cs_xmit_early {
    311 	u_int16_t       txcmd;
    312 	int             better;
    313 	int             better_count;
    314 	int             worse;
    315 } cs_xmit_early_table[3] = {
    316 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
    317 	{ TX_CMD_START_1021,	0,	50000,		2, },
    318 	{ TX_CMD_START_ALL,	1,	5000,		2, },
    319 };
    320 
    321 int cs_default_media[] = {
    322 	IFM_ETHER|IFM_10_2,
    323 	IFM_ETHER|IFM_10_5,
    324 	IFM_ETHER|IFM_10_T,
    325 	IFM_ETHER|IFM_10_T|IFM_FDX,
    326 };
    327 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
    328 
    329 int
    330 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
    331 	  int nmedia, int defmedia)
    332 {
    333 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    334 	const char *chipname, *medname;
    335 	u_int16_t reg;
    336 	int i;
    337 
    338 	/* Start out in IO mode */
    339 	sc->sc_memorymode = FALSE;
    340 
    341 	/* make sure we're right */
    342 	for (i = 0; i < 10000; i++) {
    343 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
    344 		if (reg == EISA_NUM_CRYSTAL) {
    345 			break;
    346 		}
    347 	}
    348 	if (i == 10000) {
    349 		aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
    350 		return 1; /* XXX should panic? */
    351 	}
    352 
    353 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
    354 	sc->sc_prodid = reg & PROD_ID_MASK;
    355 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
    356 
    357 	switch (sc->sc_prodid) {
    358 	case PROD_ID_CS8900:
    359 		chipname = "CS8900";
    360 		break;
    361 	case PROD_ID_CS8920:
    362 		chipname = "CS8920";
    363 		break;
    364 	case PROD_ID_CS8920M:
    365 		chipname = "CS8920M";
    366 		break;
    367 	default:
    368 		panic("cs_attach: impossible");
    369 	}
    370 
    371 	/*
    372 	 * the first thing to do is check that the mbuf cluster size is
    373 	 * greater than the MTU for an ethernet frame. The code depends on
    374 	 * this and to port this to a OS where this was not the case would
    375 	 * not be straightforward.
    376 	 *
    377 	 * we need 1 byte spare because our
    378 	 * packet read loop can overrun.
    379 	 * and we may need pad bytes to align ip header.
    380 	 */
    381 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
    382 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
    383 		printf("%s: MCLBYTES too small for Ethernet frame\n",
    384 		    device_xname(sc->sc_dev));
    385 		return 1;
    386 	}
    387 
    388 	/* Start out not transmitting */
    389 	sc->sc_txbusy = FALSE;
    390 
    391 	/* Set up early transmit threshhold */
    392 	sc->sc_xe_ent = 0;
    393 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
    394 
    395 	/* Initialize ifnet structure. */
    396 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    397 	ifp->if_softc = sc;
    398 	ifp->if_start = cs_start_output;
    399 	ifp->if_init = cs_init;
    400 	ifp->if_ioctl = cs_ioctl;
    401 	ifp->if_stop = cs_stop;
    402 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
    403 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
    404 	    IFF_BROADCAST | IFF_MULTICAST;
    405 	IFQ_SET_READY(&ifp->if_snd);
    406 
    407 	/* Initialize ifmedia structures. */
    408 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
    409 
    410 	if (media != NULL) {
    411 		for (i = 0; i < nmedia; i++)
    412 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
    413 		ifmedia_set(&sc->sc_media, defmedia);
    414 	} else {
    415 		for (i = 0; i < cs_default_nmedia; i++)
    416 			ifmedia_add(&sc->sc_media, cs_default_media[i],
    417 			    0, NULL);
    418 		cs_get_default_media(sc);
    419 	}
    420 
    421 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
    422 		if (cs_scan_eeprom(sc) == CS_ERROR) {
    423 			/* failed to scan the eeprom, pretend there isn't an eeprom */
    424 			aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
    425 			sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
    426 		}
    427 	}
    428 
    429 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
    430 		/* Get parameters from the EEPROM */
    431 		if (cs_get_params(sc) == CS_ERROR) {
    432 			aprint_error_dev(sc->sc_dev,
    433 			    "unable to get settings from EEPROM\n");
    434 			return 1;
    435 		}
    436 	}
    437 
    438 	if (enaddr != NULL)
    439 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
    440 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
    441 		/* Get and store the Ethernet address */
    442 		if (cs_get_enaddr(sc) == CS_ERROR) {
    443 			aprint_error_dev(sc->sc_dev,
    444 			    "unable to read Ethernet address\n");
    445 			return 1;
    446 		}
    447 	} else {
    448 #if 1
    449 		int j;
    450 		uint v;
    451 
    452 		for (j = 0; j < 6; j += 2) {
    453 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
    454 			sc->sc_enaddr[j + 0] = v;
    455 			sc->sc_enaddr[j + 1] = v >> 8;
    456 		}
    457 #else
    458 		printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
    459 		return 1;
    460 #endif
    461 	}
    462 
    463 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
    464 	case IFM_10_2:
    465 		medname = "BNC";
    466 		break;
    467 	case IFM_10_5:
    468 		medname = "AUI";
    469 		break;
    470 	case IFM_10_T:
    471 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
    472 			medname = "UTP <full-duplex>";
    473 		else
    474 			medname = "UTP";
    475 		break;
    476 	default:
    477 		panic("cs_attach: impossible");
    478 	}
    479 	printf("%s: %s rev. %c, address %s, media %s\n",
    480 	    device_xname(sc->sc_dev),
    481 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
    482 	    medname);
    483 
    484 	if (sc->sc_dma_attach)
    485 		(*sc->sc_dma_attach)(sc);
    486 
    487 	/* Attach the interface. */
    488 	if_attach(ifp);
    489 	ether_ifattach(ifp, sc->sc_enaddr);
    490 
    491 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    492 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
    493 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
    494 
    495 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
    496 		pmf_class_network_register(sc->sc_dev, ifp);
    497 	else
    498 		aprint_error_dev(sc->sc_dev,
    499 		    "couldn't establish power handler\n");
    500 
    501 	/* Reset the chip */
    502 	if (cs_reset_chip(sc) == CS_ERROR) {
    503 		aprint_error_dev(sc->sc_dev, "reset failed\n");
    504 		cs_detach(sc);
    505 		return 1;
    506 	}
    507 
    508 	return 0;
    509 }
    510 
    511 int
    512 cs_detach(struct cs_softc *sc)
    513 {
    514 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    515 
    516 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
    517 		rnd_detach_source(&sc->rnd_source);
    518 		ether_ifdetach(ifp);
    519 		if_detach(ifp);
    520 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
    521 	}
    522 
    523 #if 0
    524 	/*
    525 	 * XXX not necessary
    526 	 */
    527 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
    528 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
    529 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
    530 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
    531 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
    532 	}
    533 #endif
    534 
    535 	pmf_device_deregister(sc->sc_dev);
    536 
    537 	return 0;
    538 }
    539 
    540 bool
    541 cs_shutdown(device_t self, int howto)
    542 {
    543 	struct cs_softc *sc;
    544 
    545 	sc = device_private(self);
    546 	cs_reset(sc);
    547 
    548 	return true;
    549 }
    550 
    551 void
    552 cs_get_default_media(struct cs_softc *sc)
    553 {
    554 	u_int16_t adp_cfg, xmit_ctl;
    555 
    556 	if (cs_verify_eeprom(sc) == CS_ERROR) {
    557 		aprint_error_dev(sc->sc_dev,
    558 		    "cs_get_default_media: EEPROM missing or bad\n");
    559 		goto fakeit;
    560 	}
    561 
    562 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
    563 		aprint_error_dev(sc->sc_dev,
    564 		    "unable to read adapter config from EEPROM\n");
    565 		goto fakeit;
    566 	}
    567 
    568 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
    569 		aprint_error_dev(sc->sc_dev,
    570 		    "unable to read transmit control from EEPROM\n");
    571 		goto fakeit;
    572 	}
    573 
    574 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
    575 	case ADPTR_CFG_AUI:
    576 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
    577 		break;
    578 	case ADPTR_CFG_10BASE2:
    579 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
    580 		break;
    581 	case ADPTR_CFG_10BASET:
    582 	default:
    583 		if (xmit_ctl & XMIT_CTL_FDX)
    584 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
    585 		else
    586 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
    587 		break;
    588 	}
    589 	return;
    590 
    591  fakeit:
    592 	aprint_error_dev(sc->sc_dev,
    593 	    "WARNING: default media setting may be inaccurate\n");
    594 	/* XXX Arbitrary... */
    595 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
    596 }
    597 
    598 /*
    599  * cs_scan_eeprom
    600  *
    601  * Attempt to take a complete copy of the eeprom into main memory.
    602  * this will allow faster parsing of the eeprom data.
    603  *
    604  * Only tested against a 8920M's eeprom, but the data sheet for the
    605  * 8920A indicates that is uses the same layout.
    606  */
    607 int
    608 cs_scan_eeprom(struct cs_softc *sc)
    609 {
    610 	u_int16_t result;
    611 	int	i;
    612 	int	eeprom_size;
    613 	u_int8_t checksum = 0;
    614 
    615 	if (cs_verify_eeprom(sc) == CS_ERROR) {
    616 		aprint_error_dev(sc->sc_dev,
    617 		    "cs_scan_params: EEPROM missing or bad\n");
    618 		return (CS_ERROR);
    619 	}
    620 
    621 	/*
    622 	 * read the 0th word from the eeprom, it will tell us the length
    623 	 * and if the eeprom is valid
    624 	 */
    625 	cs_read_eeprom(sc, 0, &result);
    626 
    627 	/* check the eeprom signature */
    628 	if ((result & 0xE000) != 0xA000) {
    629 		/* empty eeprom */
    630 		return (CS_ERROR);
    631 	}
    632 
    633 	/*
    634 	 * take the eeprom size (note the read value doesn't include the header
    635 	 * word)
    636 	 */
    637 	eeprom_size = (result & 0xff) + 2;
    638 
    639 	sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
    640 	if (sc->eeprom_data == NULL) {
    641 		/* no memory, treat this as if there's no eeprom */
    642 		return (CS_ERROR);
    643 	}
    644 
    645 	sc->eeprom_size = eeprom_size;
    646 
    647 	/* read the eeprom into the buffer, also calculate the checksum  */
    648 	for (i = 0; i < (eeprom_size >> 1); i++) {
    649 		cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
    650 		checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
    651 		checksum += (sc->eeprom_data[i] & 0x00ff);
    652 	}
    653 
    654 	/*
    655 	 * validate checksum calculation, the sum of all the bytes should be 0,
    656 	 * as the high byte of the last word is the 2's complement of the
    657 	 * sum to that point.
    658 	 */
    659 	if (checksum != 0) {
    660 		aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
    661 		return (CS_ERROR);
    662 	}
    663 
    664 	return (CS_OK);
    665 }
    666 
    667 static int
    668 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
    669 {
    670 	int x, maxword;
    671 
    672 	/* Check that we have eeprom data */
    673 	if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
    674 		return (CS_ERROR);
    675 
    676 	/*
    677 	 * We only want to read the data words, the last word contains the
    678 	 * checksum
    679 	 */
    680 	maxword = (sc->eeprom_size - 2) >> 1;
    681 
    682 	/* start 1 word in, as the first word is the length and signature */
    683 	x = 1;
    684 
    685 	while ( x < (maxword)) {
    686 		u_int16_t header;
    687 		int group_size;
    688 		int offset;
    689 		int offset_max;
    690 
    691 		/* read in the group header word */
    692 		header = sc->eeprom_data[x];
    693 		x++;	/* skip group header */
    694 
    695 		/*
    696 		 * size of group in words is in the top 4 bits, note that it
    697 		 * is one less than the number of words
    698 		 */
    699 		group_size = header & 0xF000;
    700 
    701 		/*
    702 		 * CS8900 Data sheet says this should be 0x01ff,
    703 		 * but my cs8920 eeprom has higher offsets,
    704 		 * perhaps the 8920 allows higher offsets, otherwise
    705 		 * it's writing to places that it shouldn't
    706 		 */
    707 		/* work out the offsets this group covers */
    708 		offset = header & 0x0FFF;
    709 		offset_max = offset + (group_size << 1);
    710 
    711 		/* check if the pkgpg we're after is in this group */
    712 		if ((offset <= pktpg) && (pktpg <= offset_max)) {
    713 			/* the pkgpg value we want is in here */
    714 			int eeprom_location;
    715 
    716 			eeprom_location = ((pktpg - offset) >> 1) ;
    717 
    718 			*pValue = sc->eeprom_data[x + eeprom_location];
    719 			return (CS_OK);
    720 		} else {
    721 			/* skip this group (+ 1 for first entry) */
    722 			x += group_size + 1;
    723 		}
    724 	}
    725 
    726 	/*
    727 	 * if we've fallen out here then we don't have a value in the EEPROM
    728 	 * for this pktpg so return an error
    729 	 */
    730 	return (CS_ERROR);
    731 }
    732 
    733 int
    734 cs_get_params(struct cs_softc *sc)
    735 {
    736 	u_int16_t isaConfig;
    737 	u_int16_t adapterConfig;
    738 
    739 	if (cs_verify_eeprom(sc) == CS_ERROR) {
    740 		aprint_error_dev(sc->sc_dev,
    741 		    "cs_get_params: EEPROM missing or bad\n");
    742 		return (CS_ERROR);
    743 	}
    744 
    745 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
    746 		/* Get ISA configuration from the EEPROM */
    747 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
    748 			       	== CS_ERROR) {
    749 			/* eeprom doesn't have this value, use data sheet default */
    750 			isaConfig = 0x0017;
    751 		}
    752 
    753 		/* Get adapter configuration from the EEPROM */
    754 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
    755 				== CS_ERROR) {
    756 			/* eeprom doesn't have this value, use data sheet default */
    757 			adapterConfig = 0x0015;
    758 		}
    759 
    760 		/* Copy the USE_SA flag */
    761 		if (isaConfig & BUS_CTL_USE_SA)
    762 			sc->sc_cfgflags |= CFGFLG_USE_SA;
    763 
    764 		/* Copy the IO Channel Ready flag */
    765 		if (isaConfig & BUS_CTL_IOCHRDY)
    766 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
    767 
    768 		/* Copy the DC/DC Polarity flag */
    769 		if (adapterConfig & SELF_CTL_HCB1)
    770 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
    771 	} else {
    772 		/* Get ISA configuration from the EEPROM */
    773 		if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
    774 			goto eeprom_bad;
    775 
    776 		/* Get adapter configuration from the EEPROM */
    777 		if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
    778 			goto eeprom_bad;
    779 
    780 		/* Copy the USE_SA flag */
    781 		if (isaConfig & ISA_CFG_USE_SA)
    782 			sc->sc_cfgflags |= CFGFLG_USE_SA;
    783 
    784 		/* Copy the IO Channel Ready flag */
    785 		if (isaConfig & ISA_CFG_IOCHRDY)
    786 			sc->sc_cfgflags |= CFGFLG_IOCHRDY;
    787 
    788 		/* Copy the DC/DC Polarity flag */
    789 		if (adapterConfig & ADPTR_CFG_DCDC_POL)
    790 			sc->sc_cfgflags |= CFGFLG_DCDC_POL;
    791 	}
    792 
    793 	return (CS_OK);
    794 eeprom_bad:
    795 	aprint_error_dev(sc->sc_dev,
    796 	    "cs_get_params: unable to read from EEPROM\n");
    797 	return (CS_ERROR);
    798 }
    799 
    800 int
    801 cs_get_enaddr(struct cs_softc *sc)
    802 {
    803 	uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
    804 	int i;
    805 
    806 	if (cs_verify_eeprom(sc) == CS_ERROR) {
    807 		aprint_error_dev(sc->sc_dev,
    808 		    "cs_get_enaddr: EEPROM missing or bad\n");
    809 		return (CS_ERROR);
    810 	}
    811 
    812 	/* Get Ethernet address from the EEPROM */
    813 	if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
    814 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
    815 				== CS_ERROR)
    816 			goto eeprom_bad;
    817 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
    818 				== CS_ERROR)
    819 			goto eeprom_bad;
    820 		if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
    821 				== CS_ERROR)
    822 			goto eeprom_bad;
    823 	} else {
    824 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
    825 			goto eeprom_bad;
    826 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
    827 			goto eeprom_bad;
    828 		if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
    829 			goto eeprom_bad;
    830 	}
    831 
    832 	for (i = 0; i < __arraycount(myea); i++) {
    833 		sc->sc_enaddr[i * 2 + 0] = myea[i];
    834 		sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
    835 	}
    836 
    837 	return (CS_OK);
    838 
    839  eeprom_bad:
    840 	aprint_error_dev(sc->sc_dev,
    841 	    "cs_get_enaddr: unable to read from EEPROM\n");
    842 	return (CS_ERROR);
    843 }
    844 
    845 int
    846 cs_reset_chip(struct cs_softc *sc)
    847 {
    848 	int intState;
    849 	int x;
    850 
    851 	/* Disable interrupts at the CPU so reset command is atomic */
    852 	intState = splnet();
    853 
    854 	/*
    855 	 * We are now resetting the chip
    856 	 *
    857 	 * A spurious interrupt is generated by the chip when it is reset. This
    858 	 * variable informs the interrupt handler to ignore this interrupt.
    859 	 */
    860 	sc->sc_resetting = TRUE;
    861 
    862 	/* Issue a reset command to the chip */
    863 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
    864 
    865 	/* Re-enable interrupts at the CPU */
    866 	splx(intState);
    867 
    868 	/* The chip is always in IO mode after a reset */
    869 	sc->sc_memorymode = FALSE;
    870 
    871 	/* If transmission was in progress, it is not now */
    872 	sc->sc_txbusy = FALSE;
    873 
    874 	/*
    875 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
    876 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
    877 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
    878 	 * should be sufficient.
    879 	 */
    880 
    881 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
    882 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
    883 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
    884 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
    885 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
    886 
    887 	/* Wait until the EEPROM is not busy */
    888 	for (x = 0; x < MAXLOOP; x++) {
    889 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
    890 			break;
    891 	}
    892 
    893 	if (x == MAXLOOP)
    894 		return CS_ERROR;
    895 
    896 	/* Wait until initialization is done */
    897 	for (x = 0; x < MAXLOOP; x++) {
    898 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
    899 			break;
    900 	}
    901 
    902 	if (x == MAXLOOP)
    903 		return CS_ERROR;
    904 
    905 	/* Reset is no longer in progress */
    906 	sc->sc_resetting = FALSE;
    907 
    908 	return CS_OK;
    909 }
    910 
    911 int
    912 cs_verify_eeprom(struct cs_softc *sc)
    913 {
    914 	u_int16_t self_status;
    915 
    916 	/* Verify that the EEPROM is present and OK */
    917 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
    918 	if (((self_status & SELF_ST_EEP_PRES) &&
    919 	     (self_status & SELF_ST_EEP_OK)) == 0)
    920 		return (CS_ERROR);
    921 
    922 	return (CS_OK);
    923 }
    924 
    925 int
    926 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
    927 {
    928 	int x;
    929 
    930 	/* Ensure that the EEPROM is not busy */
    931 	for (x = 0; x < MAXLOOP; x++) {
    932 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
    933 		      SELF_ST_SI_BUSY))
    934 			break;
    935 	}
    936 
    937 	if (x == MAXLOOP)
    938 		return (CS_ERROR);
    939 
    940 	/* Issue the command to read the offset within the EEPROM */
    941 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
    942 	    offset | EEPROM_CMD_READ);
    943 
    944 	/* Wait until the command is completed */
    945 	for (x = 0; x < MAXLOOP; x++) {
    946 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
    947 		      SELF_ST_SI_BUSY))
    948 			break;
    949 	}
    950 
    951 	if (x == MAXLOOP)
    952 		return (CS_ERROR);
    953 
    954 	/* Get the EEPROM data from the EEPROM Data register */
    955 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
    956 
    957 	return (CS_OK);
    958 }
    959 
    960 void
    961 cs_initChip(struct cs_softc *sc)
    962 {
    963 	u_int16_t busCtl;
    964 	u_int16_t selfCtl;
    965 	u_int16_t v;
    966 	u_int16_t isaId;
    967 	int i;
    968 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
    969 
    970 	/* Disable reception and transmission of frames */
    971 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
    972 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
    973 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
    974 
    975 	/* Disable interrupt at the chip */
    976 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    977 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
    978 
    979 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
    980 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
    981 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
    982 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    983 		    busCtl & ~BUS_CTL_IOCHRDY);
    984 	} else {
    985 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    986 		    busCtl | BUS_CTL_IOCHRDY);
    987 	}
    988 
    989 	/* Set the Line Control register to match the media type */
    990 	if (media == IFM_10_T)
    991 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
    992 	else
    993 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
    994 
    995 	/*
    996 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
    997 	 * enable the DC/DC converter
    998 	 */
    999 	selfCtl = SELF_CTL_HC1E;
   1000 
   1001 	/* If the media type is 10Base2 */
   1002 	if (media == IFM_10_2) {
   1003 		/*
   1004 		 * Enable the DC/DC converter if it has a low enable.
   1005 		 */
   1006 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
   1007 			/*
   1008 			 * Set the HCB1 bit, which causes the HC1 pin to go
   1009 			 * low.
   1010 			 */
   1011 			selfCtl |= SELF_CTL_HCB1;
   1012 	} else { /* Media type is 10BaseT or AUI */
   1013 		/*
   1014 		 * Disable the DC/DC converter if it has a high enable.
   1015 		 */
   1016 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
   1017 			/*
   1018 			 * Set the HCB1 bit, which causes the HC1 pin to go
   1019 			 * low.
   1020 			 */
   1021 			selfCtl |= SELF_CTL_HCB1;
   1022 		}
   1023 	}
   1024 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
   1025 
   1026 	/* enable normal link pulse */
   1027 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
   1028 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
   1029 
   1030 	/* Enable full-duplex, if appropriate */
   1031 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
   1032 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
   1033 
   1034 	/* RX_CTL set in cs_set_ladr_filt(), below */
   1035 
   1036 	/* enable all transmission interrupts */
   1037 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
   1038 
   1039 	/* Accept all receive interrupts */
   1040 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
   1041 
   1042 	/*
   1043 	 * Configure Operational Modes
   1044 	 *
   1045 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
   1046 	 * a better way to do it because the card has a counter which can be
   1047 	 * read to update the RX_MISS counter. This saves many interrupts.
   1048 	 *
   1049 	 * I have turned on the tx and rx overflow interrupts to counter using
   1050 	 * the receive miss interrupt. This is a better estimate of errors
   1051 	 * and requires lower system overhead.
   1052 	 */
   1053 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
   1054 			  BUF_CFG_RX_DMA_IE);
   1055 
   1056 	if (sc->sc_dma_chipinit)
   1057 		(*sc->sc_dma_chipinit)(sc);
   1058 
   1059 	/* If memory mode is enabled */
   1060 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
   1061 		/* If external logic is present for address decoding */
   1062 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
   1063 			/*
   1064 			 * Program the external logic to decode address bits
   1065 			 * SA20-SA23
   1066 			 */
   1067 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
   1068 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
   1069 			    EEPROM_CMD_ELSEL);
   1070 		}
   1071 
   1072 		/*
   1073 		 * Write the packet page base physical address to the memory
   1074 		 * base register.
   1075 		 */
   1076 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
   1077 		    sc->sc_pktpgaddr & 0xFFFF);
   1078 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
   1079 		    sc->sc_pktpgaddr >> 16);
   1080 		busCtl = BUS_CTL_MEM_MODE;
   1081 
   1082 		/* tell the chip to read the addresses off the SA pins */
   1083 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
   1084 			busCtl |= BUS_CTL_USE_SA;
   1085 		}
   1086 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
   1087 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
   1088 
   1089 		/* We are in memory mode now! */
   1090 		sc->sc_memorymode = TRUE;
   1091 
   1092 		/*
   1093 		 * wait here (10ms) for the chip to swap over. this is the
   1094 		 * maximum time that this could take.
   1095 		 */
   1096 		delay(10000);
   1097 
   1098 		/* Verify that we can read from the chip */
   1099 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
   1100 
   1101 		/*
   1102 		 * As a last minute sanity check before actually using mapped
   1103 		 * memory we verify that we can read the isa number from the
   1104 		 * chip in memory mode.
   1105 		 */
   1106 		if (isaId != EISA_NUM_CRYSTAL) {
   1107 			aprint_error_dev(sc->sc_dev,
   1108 			    "failed to enable memory mode\n");
   1109 			sc->sc_memorymode = FALSE;
   1110 		} else {
   1111 			/*
   1112 			 * we are in memory mode so if we aren't using DMA,
   1113 			 * then program the chip to interrupt early.
   1114 			 */
   1115 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
   1116 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
   1117 				    BUF_CFG_RX_DEST_IE |
   1118 				    BUF_CFG_RX_MISS_OVER_IE |
   1119 				    BUF_CFG_TX_COL_OVER_IE);
   1120 			}
   1121 		}
   1122 
   1123 	}
   1124 
   1125 	/* Put Ethernet address into the Individual Address register */
   1126 	for (i = 0; i < 6; i += 2) {
   1127 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
   1128 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
   1129 	}
   1130 
   1131 	if (sc->sc_irq != -1) {
   1132 		/* Set the interrupt level in the chip */
   1133 		if (sc->sc_prodid == PROD_ID_CS8900) {
   1134 			if (sc->sc_irq == 5) {
   1135 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
   1136 			} else {
   1137 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
   1138 			}
   1139 		}
   1140 		else { /* CS8920 */
   1141 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
   1142 		}
   1143 	}
   1144 
   1145 	/* write the multicast mask to the address filter register */
   1146 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
   1147 
   1148 	/* Enable reception and transmission of frames */
   1149 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
   1150 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
   1151 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
   1152 
   1153 	/* Enable interrupt at the chip */
   1154 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
   1155 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
   1156 }
   1157 
   1158 int
   1159 cs_init(struct ifnet *ifp)
   1160 {
   1161 	int intState;
   1162 	int error = CS_OK;
   1163 	struct cs_softc *sc = ifp->if_softc;
   1164 
   1165 	if (cs_enable(sc))
   1166 		goto out;
   1167 
   1168 	cs_stop(ifp, 0);
   1169 
   1170 	intState = splnet();
   1171 
   1172 #if 0
   1173 	/* Mark the interface as down */
   1174 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
   1175 #endif
   1176 
   1177 #ifdef CS_DEBUG
   1178 	/* Enable debugging */
   1179 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
   1180 #endif
   1181 
   1182 	/* Reset the chip */
   1183 	if ((error = cs_reset_chip(sc)) == CS_OK) {
   1184 		/* Initialize the chip */
   1185 		cs_initChip(sc);
   1186 
   1187 		/* Mark the interface as running */
   1188 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
   1189 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1190 		sc->sc_ethercom.ec_if.if_timer = 0;
   1191 
   1192 		/* Assume we have carrier until we are told otherwise. */
   1193 		sc->sc_carrier = 1;
   1194 	} else {
   1195 		aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
   1196 	}
   1197 
   1198 	splx(intState);
   1199 out:
   1200 	if (error == CS_OK)
   1201 		return 0;
   1202 	return EIO;
   1203 }
   1204 
   1205 void
   1206 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
   1207 {
   1208 	struct ifnet *ifp = &ec->ec_if;
   1209 	struct ether_multi *enm;
   1210 	struct ether_multistep step;
   1211 	u_int16_t af[4];
   1212 	u_int16_t port, mask, index;
   1213 
   1214 	/*
   1215          * Set up multicast address filter by passing all multicast addresses
   1216          * through a crc generator, and then using the high order 6 bits as an
   1217          * index into the 64 bit logical address filter.  The high order bit
   1218          * selects the word, while the rest of the bits select the bit within
   1219          * the word.
   1220          */
   1221 	if (ifp->if_flags & IFF_PROMISC) {
   1222 		/* accept all valid frames. */
   1223 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
   1224 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
   1225 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
   1226 		ifp->if_flags |= IFF_ALLMULTI;
   1227 		return;
   1228 	}
   1229 
   1230 	/*
   1231 	 * accept frames if a. crc valid, b. individual address match c.
   1232 	 * broadcast address,and d. multicast addresses matched in the hash
   1233 	 * filter
   1234 	 */
   1235 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
   1236 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
   1237 
   1238 
   1239 	/*
   1240 	 * start off with all multicast flag clear, set it if we need to
   1241 	 * later, otherwise we will leave it.
   1242 	 */
   1243 	ifp->if_flags &= ~IFF_ALLMULTI;
   1244 	af[0] = af[1] = af[2] = af[3] = 0x0000;
   1245 
   1246 	/*
   1247 	 * Loop through all the multicast addresses unless we get a range of
   1248 	 * addresses, in which case we will just accept all packets.
   1249 	 * Justification for this is given in the next comment.
   1250 	 */
   1251 	ETHER_FIRST_MULTI(step, ec, enm);
   1252 	while (enm != NULL) {
   1253 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1254 		    sizeof enm->enm_addrlo)) {
   1255 			/*
   1256 	                 * We must listen to a range of multicast addresses.
   1257 	                 * For now, just accept all multicasts, rather than
   1258 	                 * trying to set only those filter bits needed to match
   1259 	                 * the range.  (At this time, the only use of address
   1260 	                 * ranges is for IP multicast routing, for which the
   1261 	                 * range is big enough to require all bits set.)
   1262 	                 */
   1263 			ifp->if_flags |= IFF_ALLMULTI;
   1264 			af[0] = af[1] = af[2] = af[3] = 0xffff;
   1265 			break;
   1266 		} else {
   1267 			/*
   1268 	                 * we have got an individual address so just set that
   1269 	                 * bit.
   1270 	                 */
   1271 			index = cs_hash_index(enm->enm_addrlo);
   1272 
   1273 			/* Set the bit the Logical address filter. */
   1274 			port = (u_int16_t) (index >> 4);
   1275 			mask = (u_int16_t) (1 << (index & 0xf));
   1276 			af[port] |= mask;
   1277 
   1278 			ETHER_NEXT_MULTI(step, enm);
   1279 		}
   1280 	}
   1281 
   1282 	/* now program the chip with the addresses */
   1283 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
   1284 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
   1285 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
   1286 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
   1287 	return;
   1288 }
   1289 
   1290 u_int16_t
   1291 cs_hash_index(char *addr)
   1292 {
   1293 	uint32_t crc;
   1294 	uint16_t hash_code;
   1295 
   1296 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
   1297 
   1298 	hash_code = crc >> 26;
   1299 	return (hash_code);
   1300 }
   1301 
   1302 void
   1303 cs_reset(struct cs_softc *sc)
   1304 {
   1305 
   1306 	/* Mark the interface as down */
   1307 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1308 
   1309 	/* Reset the chip */
   1310 	cs_reset_chip(sc);
   1311 }
   1312 
   1313 int
   1314 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1315 {
   1316 	struct cs_softc *sc = ifp->if_softc;
   1317 	struct ifreq *ifr = data;
   1318 	int state;
   1319 	int result;
   1320 
   1321 	state = splnet();
   1322 
   1323 	result = 0;		/* only set if something goes wrong */
   1324 
   1325 	switch (cmd) {
   1326 	case SIOCGIFMEDIA:
   1327 	case SIOCSIFMEDIA:
   1328 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1329 		break;
   1330 
   1331 	default:
   1332 		result = ether_ioctl(ifp, cmd, data);
   1333 		if (result == ENETRESET) {
   1334 			if (ifp->if_flags & IFF_RUNNING) {
   1335 				/*
   1336 				 * Multicast list has changed.  Set the
   1337 				 * hardware filter accordingly.
   1338 				 */
   1339 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
   1340 			}
   1341 			result = 0;
   1342 		}
   1343 		break;
   1344 	}
   1345 
   1346 	splx(state);
   1347 
   1348 	return result;
   1349 }
   1350 
   1351 int
   1352 cs_mediachange(struct ifnet *ifp)
   1353 {
   1354 
   1355 	/*
   1356 	 * Current media is already set up.  Just reset the interface
   1357 	 * to let the new value take hold.
   1358 	 */
   1359 	cs_init(ifp);
   1360 	return (0);
   1361 }
   1362 
   1363 void
   1364 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1365 {
   1366 	struct cs_softc *sc = ifp->if_softc;
   1367 
   1368 	/*
   1369 	 * The currently selected media is always the active media.
   1370 	 */
   1371 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
   1372 
   1373 	if (ifp->if_flags & IFF_UP) {
   1374 		/* Interface up, status is valid. */
   1375 		ifmr->ifm_status = IFM_AVALID |
   1376 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
   1377 	}
   1378 		else ifmr->ifm_status = 0;
   1379 }
   1380 
   1381 int
   1382 cs_intr(void *arg)
   1383 {
   1384 	struct cs_softc *sc = arg;
   1385 	u_int16_t Event;
   1386 	u_int16_t rndEvent;
   1387 
   1388 /*printf("cs_intr %p\n", sc);*/
   1389 	/* Ignore any interrupts that happen while the chip is being reset */
   1390 	if (sc->sc_resetting) {
   1391 		printf("%s: cs_intr: reset in progress\n",
   1392 		    device_xname(sc->sc_dev));
   1393 		return 1;
   1394 	}
   1395 
   1396 	/* Read an event from the Interrupt Status Queue */
   1397 	if (sc->sc_memorymode)
   1398 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
   1399 	else
   1400 		Event = CS_READ_PORT(sc, PORT_ISQ);
   1401 
   1402 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
   1403 		return 0;	/* not ours */
   1404 
   1405 	rndEvent = Event;
   1406 
   1407 	/* Process all the events in the Interrupt Status Queue */
   1408 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
   1409 		/* Dispatch to an event handler based on the register number */
   1410 		switch (Event & REG_NUM_MASK) {
   1411 		case REG_NUM_RX_EVENT:
   1412 			cs_receive_event(sc, Event);
   1413 			break;
   1414 		case REG_NUM_TX_EVENT:
   1415 			cs_transmit_event(sc, Event);
   1416 			break;
   1417 		case REG_NUM_BUF_EVENT:
   1418 			cs_buffer_event(sc, Event);
   1419 			break;
   1420 		case REG_NUM_TX_COL:
   1421 		case REG_NUM_RX_MISS:
   1422 			cs_counter_event(sc, Event);
   1423 			break;
   1424 		default:
   1425 			printf("%s: unknown interrupt event 0x%x\n",
   1426 			    device_xname(sc->sc_dev), Event);
   1427 			break;
   1428 		}
   1429 
   1430 		/* Read another event from the Interrupt Status Queue */
   1431 		if (sc->sc_memorymode)
   1432 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
   1433 		else
   1434 			Event = CS_READ_PORT(sc, PORT_ISQ);
   1435 	}
   1436 
   1437 	/* have handled the interrupt */
   1438 	rnd_add_uint32(&sc->rnd_source, rndEvent);
   1439 	return 1;
   1440 }
   1441 
   1442 void
   1443 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
   1444 {
   1445 	struct ifnet *ifp;
   1446 	u_int16_t errorCount;
   1447 
   1448 	ifp = &sc->sc_ethercom.ec_if;
   1449 
   1450 	switch (cntEvent & REG_NUM_MASK) {
   1451 	case REG_NUM_TX_COL:
   1452 		/*
   1453 		 * the count should be read before an overflow occurs.
   1454 		 */
   1455 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
   1456 		/*
   1457 		 * the tramsit event routine always checks the number of
   1458 		 * collisions for any packet so we don't increment any
   1459 		 * counters here, as they should already have been
   1460 		 * considered.
   1461 		 */
   1462 		break;
   1463 	case REG_NUM_RX_MISS:
   1464 		/*
   1465 		 * the count should be read before an overflow occurs.
   1466 		 */
   1467 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
   1468 		/*
   1469 		 * Increment the input error count, the first 6bits are the
   1470 		 * register id.
   1471 		 */
   1472 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
   1473 		break;
   1474 	default:
   1475 		/* do nothing */
   1476 		break;
   1477 	}
   1478 }
   1479 
   1480 void
   1481 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
   1482 {
   1483 
   1484 	/*
   1485 	 * multiple events can be in the buffer event register at one time so
   1486 	 * a standard switch statement will not suffice, here every event
   1487 	 * must be checked.
   1488 	 */
   1489 
   1490 	/*
   1491 	 * if 128 bits have been rxed by the time we get here, the dest event
   1492 	 * will be cleared and 128 event will be set.
   1493 	 */
   1494 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
   1495 		cs_process_rx_early(sc);
   1496 	}
   1497 
   1498 	if (bufEvent & BUF_EVENT_RX_DMA) {
   1499 		/* process the receive data */
   1500 		if (sc->sc_dma_process_rx)
   1501 			(*sc->sc_dma_process_rx)(sc);
   1502 		else
   1503 			/* should panic? */
   1504 			aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
   1505 	}
   1506 
   1507 	if (bufEvent & BUF_EVENT_TX_UNDR) {
   1508 #if 0
   1509 		/*
   1510 		 * This can happen occasionally, and it's not worth worrying
   1511 		 * about.
   1512 		 */
   1513 		printf("%s: transmit underrun (%d -> %d)\n",
   1514 		    device_xname(sc->sc_dev), sc->sc_xe_ent,
   1515 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
   1516 #endif
   1517 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
   1518 		sc->sc_xe_togo =
   1519 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
   1520 
   1521 		/* had an underrun, transmit is finished */
   1522 		sc->sc_txbusy = FALSE;
   1523 	}
   1524 
   1525 	if (bufEvent & BUF_EVENT_SW_INT) {
   1526 		printf("%s: software initiated interrupt\n",
   1527 		    device_xname(sc->sc_dev));
   1528 	}
   1529 }
   1530 
   1531 void
   1532 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
   1533 {
   1534 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1535 
   1536 	/* If there were any errors transmitting this frame */
   1537 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
   1538 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
   1539 		/* Increment the output error count */
   1540 		ifp->if_oerrors++;
   1541 
   1542 		/* Note carrier loss. */
   1543 		if (txEvent & TX_EVENT_LOSS_CRS)
   1544 			sc->sc_carrier = 0;
   1545 
   1546 		/* If debugging is enabled then log error messages */
   1547 		if (ifp->if_flags & IFF_DEBUG) {
   1548 			if (txEvent & TX_EVENT_LOSS_CRS) {
   1549 				aprint_error_dev(sc->sc_dev, "lost carrier\n");
   1550 			}
   1551 			if (txEvent & TX_EVENT_SQE_ERR) {
   1552 				aprint_error_dev(sc->sc_dev, "SQE error\n");
   1553 			}
   1554 			if (txEvent & TX_EVENT_OUT_WIN) {
   1555 				aprint_error_dev(sc->sc_dev,
   1556 				    "out-of-window collision\n");
   1557 			}
   1558 			if (txEvent & TX_EVENT_JABBER) {
   1559 				aprint_error_dev(sc->sc_dev, "jabber\n");
   1560 			}
   1561 			if (txEvent & TX_EVENT_16_COLL) {
   1562 				aprint_error_dev(sc->sc_dev, "16 collisions\n");
   1563 			}
   1564 		}
   1565 	}
   1566 	else {
   1567 		/* Transmission successful, carrier is up. */
   1568 		sc->sc_carrier = 1;
   1569 #ifdef SHARK
   1570 		ledNetActive();
   1571 #endif
   1572 	}
   1573 
   1574 	/* Add the number of collisions for this frame */
   1575 	if (txEvent & TX_EVENT_16_COLL) {
   1576 		ifp->if_collisions += 16;
   1577 	} else {
   1578 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
   1579 	}
   1580 
   1581 	ifp->if_opackets++;
   1582 
   1583 	/* Transmission is no longer in progress */
   1584 	sc->sc_txbusy = FALSE;
   1585 
   1586 	/* If there is more to transmit */
   1587 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
   1588 		/* Start the next transmission */
   1589 		cs_start_output(ifp);
   1590 	}
   1591 }
   1592 
   1593 void
   1594 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
   1595 {
   1596 
   1597 	if (rxEvent & RX_EVENT_RUNT)
   1598 		aprint_error_dev(sc->sc_dev, "runt\n");
   1599 
   1600 	if (rxEvent & RX_EVENT_X_DATA)
   1601 		aprint_error_dev(sc->sc_dev, "extra data\n");
   1602 
   1603 	if (rxEvent & RX_EVENT_CRC_ERR) {
   1604 		if (rxEvent & RX_EVENT_DRIBBLE)
   1605 			aprint_error_dev(sc->sc_dev, "alignment error\n");
   1606 		else
   1607 			aprint_error_dev(sc->sc_dev, "CRC error\n");
   1608 	} else {
   1609 		if (rxEvent & RX_EVENT_DRIBBLE)
   1610 			aprint_error_dev(sc->sc_dev, "dribble bits\n");
   1611 	}
   1612 }
   1613 
   1614 void
   1615 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
   1616 {
   1617 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1618 
   1619 	/* If the frame was not received OK */
   1620 	if (!(rxEvent & RX_EVENT_RX_OK)) {
   1621 		/* Increment the input error count */
   1622 		ifp->if_ierrors++;
   1623 
   1624 		/*
   1625 		 * If debugging is enabled then log error messages.
   1626 		 */
   1627 		if (ifp->if_flags & IFF_DEBUG) {
   1628 			if (rxEvent != REG_NUM_RX_EVENT) {
   1629 				cs_print_rx_errors(sc, rxEvent);
   1630 
   1631 				/*
   1632 				 * Must read the length of all received
   1633 				 * frames
   1634 				 */
   1635 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
   1636 
   1637 				/* Skip the received frame */
   1638 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1639 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
   1640 						  RX_CFG_SKIP);
   1641 			} else {
   1642 				aprint_error_dev(sc->sc_dev, "implied skip\n");
   1643 			}
   1644 		}
   1645 	} else {
   1646 		/*
   1647 		 * process the received frame and pass it up to the upper
   1648 		 * layers.
   1649 		 */
   1650 		cs_process_receive(sc);
   1651 	}
   1652 }
   1653 
   1654 void
   1655 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
   1656 {
   1657 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1658 
   1659 	ifp->if_ipackets++;
   1660 
   1661 	/*
   1662 	 * Check if there's a BPF listener on this interface.
   1663 	 * If so, hand off the raw packet to BPF.
   1664 	 */
   1665 	bpf_mtap(ifp, m);
   1666 
   1667 	/* Pass the packet up. */
   1668 	if_percpuq_enqueue(ifp->if_percpuq, m);
   1669 }
   1670 
   1671 void
   1672 cs_process_receive(struct cs_softc *sc)
   1673 {
   1674 	struct ifnet *ifp;
   1675 	struct mbuf *m;
   1676 	int totlen;
   1677 	u_int16_t *pBuff, *pBuffLimit;
   1678 	int pad;
   1679 	unsigned int frameOffset = 0;	/* XXX: gcc */
   1680 
   1681 #ifdef SHARK
   1682 	ledNetActive();
   1683 #endif
   1684 
   1685 	ifp = &sc->sc_ethercom.ec_if;
   1686 
   1687 	/* Received a packet; carrier is up. */
   1688 	sc->sc_carrier = 1;
   1689 
   1690 	if (sc->sc_memorymode) {
   1691 		/* Initialize the frame offset */
   1692 		frameOffset = PKTPG_RX_LENGTH;
   1693 
   1694 		/* Get the length of the received frame */
   1695 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
   1696 		frameOffset += 2;
   1697 	}
   1698 	else {
   1699 		/* drop status */
   1700 		CS_READ_PORT(sc, PORT_RXTX_DATA);
   1701 
   1702 		/* Get the length of the received frame */
   1703 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
   1704 	}
   1705 
   1706 	if (totlen > ETHER_MAX_LEN) {
   1707 		aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
   1708 		    totlen);
   1709 
   1710 		/* skip the received frame */
   1711 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1712 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1713 		return;
   1714 	}
   1715 
   1716 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1717 	if (m == 0) {
   1718 		aprint_error_dev(sc->sc_dev,
   1719 		    "cs_process_receive: unable to allocate mbuf\n");
   1720 		ifp->if_ierrors++;
   1721 		/*
   1722 		 * couldn't allocate an mbuf so things are not good, may as
   1723 		 * well drop the packet I think.
   1724 		 *
   1725 		 * have already read the length so we should be right to skip
   1726 		 * the packet.
   1727 		 */
   1728 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1729 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1730 		return;
   1731 	}
   1732 	m->m_pkthdr.rcvif = ifp;
   1733 	m->m_pkthdr.len = totlen;
   1734 
   1735 	/* number of bytes to align ip header on word boundary for ipintr */
   1736 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
   1737 
   1738 	/*
   1739 	 * alloc mbuf cluster if we need.
   1740 	 * we need 1 byte spare because following
   1741 	 * packet read loop can overrun.
   1742 	 */
   1743 	if (totlen + pad + 1 > MHLEN) {
   1744 		MCLGET(m, M_DONTWAIT);
   1745 		if ((m->m_flags & M_EXT) == 0) {
   1746 			/* couldn't allocate an mbuf cluster */
   1747 			aprint_error_dev(sc->sc_dev,
   1748 			    "cs_process_receive: "
   1749 			    "unable to allocate a cluster\n");
   1750 			m_freem(m);
   1751 
   1752 			/* skip the received frame */
   1753 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1754 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1755 			return;
   1756 		}
   1757 	}
   1758 
   1759 	/* align ip header on word boundary for ipintr */
   1760 	m->m_data += pad;
   1761 
   1762 	m->m_len = totlen;
   1763 	pBuff = mtod(m, u_int16_t *);
   1764 
   1765 	/* now read the data from the chip */
   1766 	if (sc->sc_memorymode) {
   1767 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
   1768 		while (pBuff < pBuffLimit) {
   1769 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
   1770 			frameOffset += 2;
   1771 		}
   1772 	}
   1773 	else {
   1774 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
   1775 	}
   1776 
   1777 	cs_ether_input(sc, m);
   1778 }
   1779 
   1780 void
   1781 cs_process_rx_early(struct cs_softc *sc)
   1782 {
   1783 	struct ifnet *ifp;
   1784 	struct mbuf *m;
   1785 	u_int16_t frameCount, oldFrameCount;
   1786 	u_int16_t rxEvent;
   1787 	u_int16_t *pBuff;
   1788 	int pad;
   1789 	unsigned int frameOffset;
   1790 
   1791 
   1792 	ifp = &sc->sc_ethercom.ec_if;
   1793 
   1794 	/* Initialize the frame offset */
   1795 	frameOffset = PKTPG_RX_FRAME;
   1796 	frameCount = 0;
   1797 
   1798 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1799 	if (m == 0) {
   1800 		aprint_error_dev(sc->sc_dev,
   1801 		    "cs_process_rx_early: unable to allocate mbuf\n");
   1802 		ifp->if_ierrors++;
   1803 		/*
   1804 		 * couldn't allocate an mbuf so things are not good, may as
   1805 		 * well drop the packet I think.
   1806 		 *
   1807 		 * have already read the length so we should be right to skip
   1808 		 * the packet.
   1809 		 */
   1810 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1811 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1812 		return;
   1813 	}
   1814 	m->m_pkthdr.rcvif = ifp;
   1815 	/*
   1816 	 * save processing by always using a mbuf cluster, guaranteed to fit
   1817 	 * packet
   1818 	 */
   1819 	MCLGET(m, M_DONTWAIT);
   1820 	if ((m->m_flags & M_EXT) == 0) {
   1821 		/* couldn't allocate an mbuf cluster */
   1822 		aprint_error_dev(sc->sc_dev,
   1823 		    "cs_process_rx_early: unable to allocate a cluster\n");
   1824 		m_freem(m);
   1825 		/* skip the frame */
   1826 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1827 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1828 		return;
   1829 	}
   1830 
   1831 	/* align ip header on word boundary for ipintr */
   1832 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
   1833 	m->m_data += pad;
   1834 
   1835 	/* set up the buffer pointer to point to the data area */
   1836 	pBuff = mtod(m, u_int16_t *);
   1837 
   1838 	/*
   1839 	 * now read the frame byte counter until we have finished reading the
   1840 	 * frame
   1841 	 */
   1842 	oldFrameCount = 0;
   1843 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
   1844 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
   1845 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
   1846 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
   1847 			frameOffset += 2;
   1848 		}
   1849 
   1850 		/* read the new count from the chip */
   1851 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
   1852 	}
   1853 
   1854 	/* update the mbuf counts */
   1855 	m->m_len = oldFrameCount;
   1856 	m->m_pkthdr.len = oldFrameCount;
   1857 
   1858 	/* now check the Rx Event register */
   1859 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
   1860 
   1861 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
   1862 		/*
   1863 		 * do an implied skip, it seems to be more reliable than a
   1864 		 * forced skip.
   1865 		 */
   1866 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
   1867 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
   1868 
   1869 		/*
   1870 		 * now read the RX_EVENT register to perform an implied skip.
   1871 		 */
   1872 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
   1873 
   1874 		cs_ether_input(sc, m);
   1875 	} else {
   1876 		m_freem(m);
   1877 		ifp->if_ierrors++;
   1878 	}
   1879 }
   1880 
   1881 void
   1882 cs_start_output(struct ifnet *ifp)
   1883 {
   1884 	struct cs_softc *sc;
   1885 	struct mbuf *pMbuf;
   1886 	struct mbuf *pMbufChain;
   1887 	u_int16_t BusStatus;
   1888 	u_int16_t Length;
   1889 	int txLoop = 0;
   1890 	int dropout = 0;
   1891 
   1892 	sc = ifp->if_softc;
   1893 
   1894 	/* check that the interface is up and running */
   1895 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
   1896 		return;
   1897 	}
   1898 
   1899 	/* Don't interrupt a transmission in progress */
   1900 	if (sc->sc_txbusy) {
   1901 		return;
   1902 	}
   1903 
   1904 	/* this loop will only run through once if transmission is successful */
   1905 	/*
   1906 	 * While there are packets to transmit and a transmit is not in
   1907 	 * progress
   1908 	 */
   1909 	while (sc->sc_txbusy == 0 && dropout == 0) {
   1910 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
   1911 		if (pMbufChain == NULL)
   1912 			break;
   1913 
   1914 		/*
   1915 	         * If BPF is listening on this interface, let it see the packet
   1916 	         * before we commit it to the wire.
   1917 	         */
   1918 		bpf_mtap(ifp, pMbufChain);
   1919 
   1920 		/* Find the total length of the data to transmit */
   1921 		Length = 0;
   1922 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
   1923 			Length += pMbuf->m_len;
   1924 
   1925 		do {
   1926 			/*
   1927 			 * Request that the transmit be started after all
   1928 			 * data has been copied
   1929 			 *
   1930 			 * In IO mode must write to the IO port not the packet
   1931 			 * page address
   1932 			 *
   1933 			 * If this is changed to start transmission after a
   1934 			 * small amount of data has been copied you tend to
   1935 			 * get packet missed errors i think because the ISA
   1936 			 * bus is too slow. Or possibly the copy routine is
   1937 			 * not streamlined enough.
   1938 			 */
   1939 			if (sc->sc_memorymode) {
   1940 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
   1941 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
   1942 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
   1943 			}
   1944 			else {
   1945 				CS_WRITE_PORT(sc, PORT_TX_CMD,
   1946 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
   1947 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
   1948 			}
   1949 
   1950 			/*
   1951 			 * Adjust early-transmit machinery.
   1952 			 */
   1953 			if (--sc->sc_xe_togo == 0) {
   1954 				sc->sc_xe_ent =
   1955 				    cs_xmit_early_table[sc->sc_xe_ent].better;
   1956 				sc->sc_xe_togo =
   1957 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
   1958 			}
   1959 			/*
   1960 			 * Read the BusStatus register which indicates
   1961 			 * success of the request
   1962 			 */
   1963 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
   1964 
   1965 			/*
   1966 			 * If there was an error in the transmit bid free the
   1967 			 * mbuf and go on. This is presuming that mbuf is
   1968 			 * corrupt.
   1969 			 */
   1970 			if (BusStatus & BUS_ST_TX_BID_ERR) {
   1971 				aprint_error_dev(sc->sc_dev,
   1972 				    "transmit bid error (too big)");
   1973 
   1974 				/* Discard the bad mbuf chain */
   1975 				m_freem(pMbufChain);
   1976 				sc->sc_ethercom.ec_if.if_oerrors++;
   1977 
   1978 				/* Loop up to transmit the next chain */
   1979 				txLoop = 0;
   1980 			} else {
   1981 				if (BusStatus & BUS_ST_RDY4TXNOW) {
   1982 					/*
   1983 					 * The chip is ready for transmission
   1984 					 * now
   1985 					 */
   1986 					/*
   1987 					 * Copy the frame to the chip to
   1988 					 * start transmission
   1989 					 */
   1990 					cs_copy_tx_frame(sc, pMbufChain);
   1991 
   1992 					/* Free the mbuf chain */
   1993 					m_freem(pMbufChain);
   1994 
   1995 					/* Transmission is now in progress */
   1996 					sc->sc_txbusy = TRUE;
   1997 					txLoop = 0;
   1998 				} else {
   1999 					/*
   2000 					 * if we get here we want to try
   2001 					 * again with the same mbuf, until
   2002 					 * the chip lets us transmit.
   2003 					 */
   2004 					txLoop++;
   2005 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
   2006 						/* Free the mbuf chain */
   2007 						m_freem(pMbufChain);
   2008 						/*
   2009 						 * Transmission is not in
   2010 						 * progress
   2011 						 */
   2012 						sc->sc_txbusy = FALSE;
   2013 						/*
   2014 						 * Increment the output error
   2015 						 * count
   2016 						 */
   2017 						ifp->if_oerrors++;
   2018 						/*
   2019 						 * exit the routine and drop
   2020 						 * the packet.
   2021 						 */
   2022 						txLoop = 0;
   2023 						dropout = 1;
   2024 					}
   2025 				}
   2026 			}
   2027 		} while (txLoop);
   2028 	}
   2029 }
   2030 
   2031 void
   2032 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
   2033 {
   2034 	struct mbuf *m;
   2035 	int len, leftover, frameoff;
   2036 	u_int16_t dbuf;
   2037 	u_int8_t *p;
   2038 #ifdef DIAGNOSTIC
   2039 	u_int8_t *lim;
   2040 #endif
   2041 
   2042 	/* Initialize frame pointer and data port address */
   2043 	frameoff = PKTPG_TX_FRAME;
   2044 
   2045 	/* start out with no leftover data */
   2046 	leftover = 0;
   2047 	dbuf = 0;
   2048 
   2049 	/* Process the chain of mbufs */
   2050 	for (m = m0; m != NULL; m = m->m_next) {
   2051 		/*
   2052 		 * Process all of the data in a single mbuf.
   2053 		 */
   2054 		p = mtod(m, u_int8_t *);
   2055 		len = m->m_len;
   2056 #ifdef DIAGNOSTIC
   2057 		lim = p + len;
   2058 #endif
   2059 
   2060 		while (len > 0) {
   2061 			if (leftover) {
   2062 				/*
   2063 				 * Data left over (from mbuf or realignment).
   2064 				 * Buffer the next byte, and write it and
   2065 				 * the leftover data out.
   2066 				 */
   2067 				dbuf |= *p++ << 8;
   2068 				len--;
   2069 				if (sc->sc_memorymode) {
   2070 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
   2071 					frameoff += 2;
   2072 				}
   2073 				else {
   2074 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
   2075 				}
   2076 				leftover = 0;
   2077 			} else if ((long) p & 1) {
   2078 				/*
   2079 				 * Misaligned data.  Buffer the next byte.
   2080 				 */
   2081 				dbuf = *p++;
   2082 				len--;
   2083 				leftover = 1;
   2084 			} else {
   2085 				/*
   2086 				 * Aligned data.  This is the case we like.
   2087 				 *
   2088 				 * Write-region out as much as we can, then
   2089 				 * buffer the remaining byte (if any).
   2090 				 */
   2091 				leftover = len & 1;
   2092 				len &= ~1;
   2093 				if (sc->sc_memorymode) {
   2094 					MEM_WRITE_REGION_2(sc, frameoff,
   2095 						(u_int16_t *) p, len >> 1);
   2096 					frameoff += len;
   2097 				}
   2098 				else {
   2099 					IO_WRITE_MULTI_2(sc,
   2100 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
   2101 				}
   2102 				p += len;
   2103 
   2104 				if (leftover)
   2105 					dbuf = *p++;
   2106 				len = 0;
   2107 			}
   2108 		}
   2109 		if (len < 0)
   2110 			panic("cs_copy_tx_frame: negative len");
   2111 #ifdef DIAGNOSTIC
   2112 		if (p != lim)
   2113 			panic("cs_copy_tx_frame: p != lim");
   2114 #endif
   2115 	}
   2116 	if (leftover) {
   2117 		if (sc->sc_memorymode) {
   2118 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
   2119 		}
   2120 		else {
   2121 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
   2122 		}
   2123 	}
   2124 }
   2125 
   2126 static int
   2127 cs_enable(struct cs_softc *sc)
   2128 {
   2129 
   2130 	if (CS_IS_ENABLED(sc) == 0) {
   2131 		if (sc->sc_enable != NULL) {
   2132 			int error;
   2133 
   2134 			error = (*sc->sc_enable)(sc);
   2135 			if (error)
   2136 				return (error);
   2137 		}
   2138 		sc->sc_cfgflags |= CFGFLG_ENABLED;
   2139 	}
   2140 
   2141 	return (0);
   2142 }
   2143 
   2144 static void
   2145 cs_disable(struct cs_softc *sc)
   2146 {
   2147 
   2148 	if (CS_IS_ENABLED(sc)) {
   2149 		if (sc->sc_disable != NULL)
   2150 			(*sc->sc_disable)(sc);
   2151 
   2152 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
   2153 	}
   2154 }
   2155 
   2156 static void
   2157 cs_stop(struct ifnet *ifp, int disable)
   2158 {
   2159 	struct cs_softc *sc = ifp->if_softc;
   2160 
   2161 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
   2162 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
   2163 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
   2164 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
   2165 
   2166 	if (disable) {
   2167 		cs_disable(sc);
   2168 	}
   2169 
   2170 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2171 }
   2172 
   2173 int
   2174 cs_activate(device_t self, enum devact act)
   2175 {
   2176 	struct cs_softc *sc = device_private(self);
   2177 
   2178 	switch (act) {
   2179 	case DVACT_DEACTIVATE:
   2180 		if_deactivate(&sc->sc_ethercom.ec_if);
   2181 		return 0;
   2182 	default:
   2183 		return EOPNOTSUPP;
   2184 	}
   2185 }
   2186