cs89x0.c revision 1.39.6.1 1 /* $NetBSD: cs89x0.c,v 1.39.6.1 2018/07/26 23:55:29 snj Exp $ */
2
3 /*
4 * Copyright (c) 2004 Christopher Gilbert
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright 1997
31 * Digital Equipment Corporation. All rights reserved.
32 *
33 * This software is furnished under license and may be used and
34 * copied only in accordance with the following terms and conditions.
35 * Subject to these conditions, you may download, copy, install,
36 * use, modify and distribute this software in source and/or binary
37 * form. No title or ownership is transferred hereby.
38 *
39 * 1) Any source code used, modified or distributed must reproduce
40 * and retain this copyright notice and list of conditions as
41 * they appear in the source file.
42 *
43 * 2) No right is granted to use any trade name, trademark, or logo of
44 * Digital Equipment Corporation. Neither the "Digital Equipment
45 * Corporation" name nor any trademark or logo of Digital Equipment
46 * Corporation may be used to endorse or promote products derived
47 * from this software without the prior written permission of
48 * Digital Equipment Corporation.
49 *
50 * 3) This software is provided "AS-IS" and any express or implied
51 * warranties, including but not limited to, any implied warranties
52 * of merchantability, fitness for a particular purpose, or
53 * non-infringement are disclaimed. In no event shall DIGITAL be
54 * liable for any damages whatsoever, and in particular, DIGITAL
55 * shall not be liable for special, indirect, consequential, or
56 * incidental damages or damages for lost profits, loss of
57 * revenue or loss of use, whether such damages arise in contract,
58 * negligence, tort, under statute, in equity, at law or otherwise,
59 * even if advised of the possibility of such damage.
60 */
61
62 /*
63 **++
64 ** FACILITY
65 **
66 ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 ** ABSTRACT
69 **
70 ** This module provides standard ethernet access for INET protocols
71 ** only.
72 **
73 ** AUTHORS
74 **
75 ** Peter Dettori SEA - Software Engineering.
76 **
77 ** CREATION DATE:
78 **
79 ** 13-Feb-1997.
80 **
81 ** MODIFICATION HISTORY (Digital):
82 **
83 ** Revision 1.27 1998/01/20 17:59:40 cgd
84 ** update for moved headers
85 **
86 ** Revision 1.26 1998/01/12 19:29:36 cgd
87 ** use arm32/isa versions of isadma code.
88 **
89 ** Revision 1.25 1997/12/12 01:35:27 cgd
90 ** convert to use new arp code (from Brini)
91 **
92 ** Revision 1.24 1997/12/10 22:31:56 cgd
93 ** trim some fat (get rid of ability to explicitly supply enet addr, since
94 ** it was never used and added a bunch of code which really doesn't belong in
95 ** an enet driver), and clean up slightly.
96 **
97 ** Revision 1.23 1997/10/06 16:42:12 cgd
98 ** copyright notices
99 **
100 ** Revision 1.22 1997/06/20 19:38:01 chaiken
101 ** fixes some smartcard problems
102 **
103 ** Revision 1.21 1997/06/10 02:56:20 grohn
104 ** Added call to ledNetActive
105 **
106 ** Revision 1.20 1997/06/05 00:47:06 dettori
107 ** Changed cs_process_rx_dma to reset and re-initialise the
108 ** ethernet chip when DMA gets out of sync, or mbufs
109 ** can't be allocated.
110 **
111 ** Revision 1.19 1997/06/03 03:09:58 dettori
112 ** Turn off sc_txbusy flag when a transmit underrun
113 ** occurs.
114 **
115 ** Revision 1.18 1997/06/02 00:04:35 dettori
116 ** redefined the transmit table to get around the nfs_timer bug while we are
117 ** looking into it further.
118 **
119 ** Also changed interrupts from EDGE to LEVEL.
120 **
121 ** Revision 1.17 1997/05/27 23:31:01 dettori
122 ** Pulled out changes to DMAMODE defines.
123 **
124 ** Revision 1.16 1997/05/23 04:25:16 cgd
125 ** reformat log so it fits in 80cols
126 **
127 ** Revision 1.15 1997/05/23 04:22:18 cgd
128 ** remove the existing copyright notice (which Peter Dettori indicated
129 ** was incorrect, copied from an existing NetBSD file only so that the
130 ** file would have a copyright notice on it, and which he'd intended to
131 ** replace). Replace it with a Digital copyright notice, cloned from
132 ** ess.c. It's not really correct either (it indicates that the source
133 ** is Digital confidential!), but is better than nothing and more
134 ** correct than what was there before.
135 **
136 ** Revision 1.14 1997/05/23 04:12:50 cgd
137 ** use an adaptive transmit start algorithm: start by telling the chip
138 ** to start transmitting after 381 bytes have been fed to it. if that
139 ** gets transmit underruns, ramp down to 1021 bytes then "whole
140 ** packet." If successful at a given level for a while, try the next
141 ** more agressive level. This code doesn't ever try to start
142 ** transmitting after 5 bytes have been sent to the NIC, because
143 ** that underruns rather regularly. The back-off and ramp-up mechanism
144 ** could probably be tuned a little bit, but this works well enough to
145 ** support > 1MB/s transmit rates on a clear ethernet (which is about
146 ** 20-25% better than the driver had previously been getting).
147 **
148 ** Revision 1.13 1997/05/22 21:06:54 cgd
149 ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
150 ** casting from u_int8_t * to u_int16_t * without worrying about alignment
151 ** issues. This would cause bogus data to be spit out for mbufs with
152 ** misaligned data. For instance, it caused the following bits to appear
153 ** on the wire:
154 ** ... etBND 1S2C .SHA(K) R ...
155 ** 11112222333344445555
156 ** which should have appeared as:
157 ** ... NetBSD 1.2C (SHARK) ...
158 ** 11112222333344445555
159 ** Note the apparent 'rotate' of the bytes in the word, which was due to
160 ** incorrect unaligned accesses. This data corruption was the cause of
161 ** incoming telnet/rlogin hangs.
162 **
163 ** Revision 1.12 1997/05/22 01:55:32 cgd
164 ** reformat log so it fits in 80cols
165 **
166 ** Revision 1.11 1997/05/22 01:50:27 cgd
167 ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 ** so packets aimed at other hosts don't get sent to ether_input().
169 ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 ** you can easily tell (`strings`) what version of the driver is in your
171 ** kernel binary.
172 ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
173 ** safe, and not really a performance win anyway. (It was only used when
174 ** setting up the multicast logical address filter, which is an
175 ** infrequent event. It could have been used in the IFF_PROMISCUOUS
176 ** address check above, but the benefit of it vs. memcmp would be
177 ** inconsequential, there.) Use memcmp() instead.
178 ** * restructure csStartOuput to avoid the following bugs in the case where
179 ** txWait was being set:
180 ** * it would accidentally drop the outgoing packet if told to wait
181 ** but the outgoing packet queue was empty.
182 ** * it would bpf_mtap() the outgoing packet multiple times (once for
183 ** each time it was told to wait), and would also recalculate
184 ** the length of the outgoing packet each time it was told to
185 ** wait.
186 ** While there, rename txWait to txLoop, since with the new structure of
187 ** the code, the latter name makes more sense.
188 **
189 ** Revision 1.10 1997/05/19 02:03:20 cgd
190 ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
191 ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
193 ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 ** as before.
195 **
196 ** Revision 1.9 1997/05/19 01:45:37 cgd
197 ** create a new function, cs_ether_input(), which does received-packet
198 ** BPF and ether_input processing. This code used to be in three places,
199 ** and centralizing it will make adding IFF_PROMISC support much easier.
200 ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 ** do copies with bus_space_write_region_2(). It's more correct, and
202 ** potentially more efficient. That function needs to be gutted (to
203 ** deal properly with alignment issues, which it currently does wrong),
204 ** however, and the change doesn't gain much, so there's no point in
205 ** enabling it now.
206 **
207 ** Revision 1.8 1997/05/19 01:17:10 cgd
208 ** fix a comment re: the setting of the TxConfig register. Clean up
209 ** interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.39.6.1 2018/07/26 23:55:29 snj Exp $");
216
217 #include "opt_inet.h"
218
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228
229 #include <sys/rndsource.h>
230
231 #include <net/if.h>
232 #include <net/if_ether.h>
233 #include <net/if_media.h>
234 #include <net/bpf.h>
235
236 #ifdef INET
237 #include <netinet/in.h>
238 #include <netinet/if_inarp.h>
239 #endif
240
241 #include <sys/bus.h>
242 #include <sys/intr.h>
243
244 #include <dev/ic/cs89x0reg.h>
245 #include <dev/ic/cs89x0var.h>
246
247 #ifdef SHARK
248 #include <shark/shark/sequoia.h>
249 #endif
250
251 /*
252 * MACRO DEFINITIONS
253 */
254 #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
255
256 /*
257 * FUNCTION PROTOTYPES
258 */
259 static void cs_get_default_media(struct cs_softc *);
260 static int cs_get_params(struct cs_softc *);
261 static int cs_get_enaddr(struct cs_softc *);
262 static int cs_reset_chip(struct cs_softc *);
263 static void cs_reset(struct cs_softc *);
264 static int cs_ioctl(struct ifnet *, u_long, void *);
265 static void cs_initChip(struct cs_softc *);
266 static void cs_buffer_event(struct cs_softc *, u_int16_t);
267 static void cs_transmit_event(struct cs_softc *, u_int16_t);
268 static void cs_receive_event(struct cs_softc *, u_int16_t);
269 static void cs_process_receive(struct cs_softc *);
270 static void cs_process_rx_early(struct cs_softc *);
271 static void cs_start_output(struct ifnet *);
272 static void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
273 static void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
274 static u_int16_t cs_hash_index(char *);
275 static void cs_counter_event(struct cs_softc *, u_int16_t);
276
277 static int cs_mediachange(struct ifnet *);
278 static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
279
280 static bool cs_shutdown(device_t, int);
281 static int cs_enable(struct cs_softc *);
282 static void cs_disable(struct cs_softc *);
283 static void cs_stop(struct ifnet *, int);
284 static int cs_scan_eeprom(struct cs_softc *);
285 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
286
287
288 /*
289 * GLOBAL DECLARATIONS
290 */
291
292 /*
293 * Xmit-early table.
294 *
295 * To get better performance, we tell the chip to start packet
296 * transmission before the whole packet is copied to the chip.
297 * However, this can fail under load. When it fails, we back off
298 * to a safer setting for a little while.
299 *
300 * txcmd is the value of txcmd used to indicate when to start transmission.
301 * better is the next 'better' state in the table.
302 * better_count is the number of output packets before transition to the
303 * better state.
304 * worse is the next 'worse' state in the table.
305 *
306 * Transition to the next worse state happens automatically when a
307 * transmittion underrun occurs.
308 */
309 struct cs_xmit_early {
310 u_int16_t txcmd;
311 int better;
312 int better_count;
313 int worse;
314 } cs_xmit_early_table[3] = {
315 { TX_CMD_START_381, 0, INT_MAX, 1, },
316 { TX_CMD_START_1021, 0, 50000, 2, },
317 { TX_CMD_START_ALL, 1, 5000, 2, },
318 };
319
320 int cs_default_media[] = {
321 IFM_ETHER|IFM_10_2,
322 IFM_ETHER|IFM_10_5,
323 IFM_ETHER|IFM_10_T,
324 IFM_ETHER|IFM_10_T|IFM_FDX,
325 };
326 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
327
328 int
329 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
330 int nmedia, int defmedia)
331 {
332 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
333 const char *chipname, *medname;
334 u_int16_t reg;
335 int i;
336
337 /* Start out in IO mode */
338 sc->sc_memorymode = FALSE;
339
340 /* make sure we're right */
341 for (i = 0; i < 10000; i++) {
342 reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
343 if (reg == EISA_NUM_CRYSTAL) {
344 break;
345 }
346 }
347 if (i == 10000) {
348 aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
349 return 1; /* XXX should panic? */
350 }
351
352 reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
353 sc->sc_prodid = reg & PROD_ID_MASK;
354 sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
355
356 switch (sc->sc_prodid) {
357 case PROD_ID_CS8900:
358 chipname = "CS8900";
359 break;
360 case PROD_ID_CS8920:
361 chipname = "CS8920";
362 break;
363 case PROD_ID_CS8920M:
364 chipname = "CS8920M";
365 break;
366 default:
367 panic("cs_attach: impossible");
368 }
369
370 /*
371 * the first thing to do is check that the mbuf cluster size is
372 * greater than the MTU for an ethernet frame. The code depends on
373 * this and to port this to a OS where this was not the case would
374 * not be straightforward.
375 *
376 * we need 1 byte spare because our
377 * packet read loop can overrun.
378 * and we may need pad bytes to align ip header.
379 */
380 if (MCLBYTES < ETHER_MAX_LEN + 1 +
381 ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
382 printf("%s: MCLBYTES too small for Ethernet frame\n",
383 device_xname(sc->sc_dev));
384 return 1;
385 }
386
387 /* Start out not transmitting */
388 sc->sc_txbusy = FALSE;
389
390 /* Set up early transmit threshhold */
391 sc->sc_xe_ent = 0;
392 sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
393
394 /* Initialize ifnet structure. */
395 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
396 ifp->if_softc = sc;
397 ifp->if_start = cs_start_output;
398 ifp->if_init = cs_init;
399 ifp->if_ioctl = cs_ioctl;
400 ifp->if_stop = cs_stop;
401 ifp->if_watchdog = NULL; /* no watchdog at this stage */
402 ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
403 IFF_BROADCAST | IFF_MULTICAST;
404 IFQ_SET_READY(&ifp->if_snd);
405
406 /* Initialize ifmedia structures. */
407 ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
408
409 if (media != NULL) {
410 for (i = 0; i < nmedia; i++)
411 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
412 ifmedia_set(&sc->sc_media, defmedia);
413 } else {
414 for (i = 0; i < cs_default_nmedia; i++)
415 ifmedia_add(&sc->sc_media, cs_default_media[i],
416 0, NULL);
417 cs_get_default_media(sc);
418 }
419
420 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
421 if (cs_scan_eeprom(sc) == CS_ERROR) {
422 /* failed to scan the eeprom, pretend there isn't an eeprom */
423 aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
424 sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
425 }
426 }
427
428 if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
429 /* Get parameters from the EEPROM */
430 if (cs_get_params(sc) == CS_ERROR) {
431 aprint_error_dev(sc->sc_dev,
432 "unable to get settings from EEPROM\n");
433 return 1;
434 }
435 }
436
437 if (enaddr != NULL)
438 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
439 else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
440 /* Get and store the Ethernet address */
441 if (cs_get_enaddr(sc) == CS_ERROR) {
442 aprint_error_dev(sc->sc_dev,
443 "unable to read Ethernet address\n");
444 return 1;
445 }
446 } else {
447 #if 1
448 int j;
449 uint v;
450
451 for (j = 0; j < 6; j += 2) {
452 v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
453 sc->sc_enaddr[j + 0] = v;
454 sc->sc_enaddr[j + 1] = v >> 8;
455 }
456 #else
457 printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
458 return 1;
459 #endif
460 }
461
462 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
463 case IFM_10_2:
464 medname = "BNC";
465 break;
466 case IFM_10_5:
467 medname = "AUI";
468 break;
469 case IFM_10_T:
470 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
471 medname = "UTP <full-duplex>";
472 else
473 medname = "UTP";
474 break;
475 default:
476 panic("cs_attach: impossible");
477 }
478 printf("%s: %s rev. %c, address %s, media %s\n",
479 device_xname(sc->sc_dev),
480 chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
481 medname);
482
483 if (sc->sc_dma_attach)
484 (*sc->sc_dma_attach)(sc);
485
486 /* Attach the interface. */
487 if_attach(ifp);
488 if_deferred_start_init(ifp, NULL);
489 ether_ifattach(ifp, sc->sc_enaddr);
490
491 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
492 RND_TYPE_NET, RND_FLAG_DEFAULT);
493 sc->sc_cfgflags |= CFGFLG_ATTACHED;
494
495 if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
496 pmf_class_network_register(sc->sc_dev, ifp);
497 else
498 aprint_error_dev(sc->sc_dev,
499 "couldn't establish power handler\n");
500
501 /* Reset the chip */
502 if (cs_reset_chip(sc) == CS_ERROR) {
503 aprint_error_dev(sc->sc_dev, "reset failed\n");
504 cs_detach(sc);
505 return 1;
506 }
507
508 return 0;
509 }
510
511 int
512 cs_detach(struct cs_softc *sc)
513 {
514 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
515
516 if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
517 rnd_detach_source(&sc->rnd_source);
518 ether_ifdetach(ifp);
519 if_detach(ifp);
520 sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
521 }
522
523 #if 0
524 /*
525 * XXX not necessary
526 */
527 if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
528 isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
529 isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
530 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
531 sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
532 }
533 #endif
534
535 pmf_device_deregister(sc->sc_dev);
536
537 return 0;
538 }
539
540 bool
541 cs_shutdown(device_t self, int howto)
542 {
543 struct cs_softc *sc;
544
545 sc = device_private(self);
546 cs_reset(sc);
547
548 return true;
549 }
550
551 void
552 cs_get_default_media(struct cs_softc *sc)
553 {
554 u_int16_t adp_cfg, xmit_ctl;
555
556 if (cs_verify_eeprom(sc) == CS_ERROR) {
557 aprint_error_dev(sc->sc_dev,
558 "cs_get_default_media: EEPROM missing or bad\n");
559 goto fakeit;
560 }
561
562 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
563 aprint_error_dev(sc->sc_dev,
564 "unable to read adapter config from EEPROM\n");
565 goto fakeit;
566 }
567
568 if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
569 aprint_error_dev(sc->sc_dev,
570 "unable to read transmit control from EEPROM\n");
571 goto fakeit;
572 }
573
574 switch (adp_cfg & ADPTR_CFG_MEDIA) {
575 case ADPTR_CFG_AUI:
576 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
577 break;
578 case ADPTR_CFG_10BASE2:
579 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
580 break;
581 case ADPTR_CFG_10BASET:
582 default:
583 if (xmit_ctl & XMIT_CTL_FDX)
584 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
585 else
586 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
587 break;
588 }
589 return;
590
591 fakeit:
592 aprint_error_dev(sc->sc_dev,
593 "WARNING: default media setting may be inaccurate\n");
594 /* XXX Arbitrary... */
595 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
596 }
597
598 /*
599 * cs_scan_eeprom
600 *
601 * Attempt to take a complete copy of the eeprom into main memory.
602 * this will allow faster parsing of the eeprom data.
603 *
604 * Only tested against a 8920M's eeprom, but the data sheet for the
605 * 8920A indicates that is uses the same layout.
606 */
607 int
608 cs_scan_eeprom(struct cs_softc *sc)
609 {
610 u_int16_t result;
611 int i;
612 int eeprom_size;
613 u_int8_t checksum = 0;
614
615 if (cs_verify_eeprom(sc) == CS_ERROR) {
616 aprint_error_dev(sc->sc_dev,
617 "cs_scan_params: EEPROM missing or bad\n");
618 return (CS_ERROR);
619 }
620
621 /*
622 * read the 0th word from the eeprom, it will tell us the length
623 * and if the eeprom is valid
624 */
625 cs_read_eeprom(sc, 0, &result);
626
627 /* check the eeprom signature */
628 if ((result & 0xE000) != 0xA000) {
629 /* empty eeprom */
630 return (CS_ERROR);
631 }
632
633 /*
634 * take the eeprom size (note the read value doesn't include the header
635 * word)
636 */
637 eeprom_size = (result & 0xff) + 2;
638
639 sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
640 if (sc->eeprom_data == NULL) {
641 /* no memory, treat this as if there's no eeprom */
642 return (CS_ERROR);
643 }
644
645 sc->eeprom_size = eeprom_size;
646
647 /* read the eeprom into the buffer, also calculate the checksum */
648 for (i = 0; i < (eeprom_size >> 1); i++) {
649 cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
650 checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
651 checksum += (sc->eeprom_data[i] & 0x00ff);
652 }
653
654 /*
655 * validate checksum calculation, the sum of all the bytes should be 0,
656 * as the high byte of the last word is the 2's complement of the
657 * sum to that point.
658 */
659 if (checksum != 0) {
660 aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
661 return (CS_ERROR);
662 }
663
664 return (CS_OK);
665 }
666
667 static int
668 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
669 {
670 int x, maxword;
671
672 /* Check that we have eeprom data */
673 if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
674 return (CS_ERROR);
675
676 /*
677 * We only want to read the data words, the last word contains the
678 * checksum
679 */
680 maxword = (sc->eeprom_size - 2) >> 1;
681
682 /* start 1 word in, as the first word is the length and signature */
683 x = 1;
684
685 while ( x < (maxword)) {
686 u_int16_t header;
687 int group_size;
688 int offset;
689 int offset_max;
690
691 /* read in the group header word */
692 header = sc->eeprom_data[x];
693 x++; /* skip group header */
694
695 /*
696 * size of group in words is in the top 4 bits, note that it
697 * is one less than the number of words
698 */
699 group_size = header & 0xF000;
700
701 /*
702 * CS8900 Data sheet says this should be 0x01ff,
703 * but my cs8920 eeprom has higher offsets,
704 * perhaps the 8920 allows higher offsets, otherwise
705 * it's writing to places that it shouldn't
706 */
707 /* work out the offsets this group covers */
708 offset = header & 0x0FFF;
709 offset_max = offset + (group_size << 1);
710
711 /* check if the pkgpg we're after is in this group */
712 if ((offset <= pktpg) && (pktpg <= offset_max)) {
713 /* the pkgpg value we want is in here */
714 int eeprom_location;
715
716 eeprom_location = ((pktpg - offset) >> 1) ;
717
718 *pValue = sc->eeprom_data[x + eeprom_location];
719 return (CS_OK);
720 } else {
721 /* skip this group (+ 1 for first entry) */
722 x += group_size + 1;
723 }
724 }
725
726 /*
727 * if we've fallen out here then we don't have a value in the EEPROM
728 * for this pktpg so return an error
729 */
730 return (CS_ERROR);
731 }
732
733 int
734 cs_get_params(struct cs_softc *sc)
735 {
736 u_int16_t isaConfig;
737 u_int16_t adapterConfig;
738
739 if (cs_verify_eeprom(sc) == CS_ERROR) {
740 aprint_error_dev(sc->sc_dev,
741 "cs_get_params: EEPROM missing or bad\n");
742 return (CS_ERROR);
743 }
744
745 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
746 /* Get ISA configuration from the EEPROM */
747 if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
748 == CS_ERROR) {
749 /* eeprom doesn't have this value, use data sheet default */
750 isaConfig = 0x0017;
751 }
752
753 /* Get adapter configuration from the EEPROM */
754 if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
755 == CS_ERROR) {
756 /* eeprom doesn't have this value, use data sheet default */
757 adapterConfig = 0x0015;
758 }
759
760 /* Copy the USE_SA flag */
761 if (isaConfig & BUS_CTL_USE_SA)
762 sc->sc_cfgflags |= CFGFLG_USE_SA;
763
764 /* Copy the IO Channel Ready flag */
765 if (isaConfig & BUS_CTL_IOCHRDY)
766 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
767
768 /* Copy the DC/DC Polarity flag */
769 if (adapterConfig & SELF_CTL_HCB1)
770 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
771 } else {
772 /* Get ISA configuration from the EEPROM */
773 if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
774 goto eeprom_bad;
775
776 /* Get adapter configuration from the EEPROM */
777 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
778 goto eeprom_bad;
779
780 /* Copy the USE_SA flag */
781 if (isaConfig & ISA_CFG_USE_SA)
782 sc->sc_cfgflags |= CFGFLG_USE_SA;
783
784 /* Copy the IO Channel Ready flag */
785 if (isaConfig & ISA_CFG_IOCHRDY)
786 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
787
788 /* Copy the DC/DC Polarity flag */
789 if (adapterConfig & ADPTR_CFG_DCDC_POL)
790 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
791 }
792
793 return (CS_OK);
794 eeprom_bad:
795 aprint_error_dev(sc->sc_dev,
796 "cs_get_params: unable to read from EEPROM\n");
797 return (CS_ERROR);
798 }
799
800 int
801 cs_get_enaddr(struct cs_softc *sc)
802 {
803 uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
804 int i;
805
806 if (cs_verify_eeprom(sc) == CS_ERROR) {
807 aprint_error_dev(sc->sc_dev,
808 "cs_get_enaddr: EEPROM missing or bad\n");
809 return (CS_ERROR);
810 }
811
812 /* Get Ethernet address from the EEPROM */
813 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
814 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
815 == CS_ERROR)
816 goto eeprom_bad;
817 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
818 == CS_ERROR)
819 goto eeprom_bad;
820 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
821 == CS_ERROR)
822 goto eeprom_bad;
823 } else {
824 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
825 goto eeprom_bad;
826 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
827 goto eeprom_bad;
828 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
829 goto eeprom_bad;
830 }
831
832 for (i = 0; i < __arraycount(myea); i++) {
833 sc->sc_enaddr[i * 2 + 0] = myea[i];
834 sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
835 }
836
837 return (CS_OK);
838
839 eeprom_bad:
840 aprint_error_dev(sc->sc_dev,
841 "cs_get_enaddr: unable to read from EEPROM\n");
842 return (CS_ERROR);
843 }
844
845 int
846 cs_reset_chip(struct cs_softc *sc)
847 {
848 int intState;
849 int x;
850
851 /* Disable interrupts at the CPU so reset command is atomic */
852 intState = splnet();
853
854 /*
855 * We are now resetting the chip
856 *
857 * A spurious interrupt is generated by the chip when it is reset. This
858 * variable informs the interrupt handler to ignore this interrupt.
859 */
860 sc->sc_resetting = TRUE;
861
862 /* Issue a reset command to the chip */
863 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
864
865 /* Re-enable interrupts at the CPU */
866 splx(intState);
867
868 /* The chip is always in IO mode after a reset */
869 sc->sc_memorymode = FALSE;
870
871 /* If transmission was in progress, it is not now */
872 sc->sc_txbusy = FALSE;
873
874 /*
875 * there was a delay(125); here, but it seems uneccesary 125 usec is
876 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
877 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
878 * should be sufficient.
879 */
880
881 /* Transition SBHE to switch chip from 8-bit to 16-bit */
882 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
883 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
884 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
885 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
886
887 /* Wait until the EEPROM is not busy */
888 for (x = 0; x < MAXLOOP; x++) {
889 if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
890 break;
891 }
892
893 if (x == MAXLOOP)
894 return CS_ERROR;
895
896 /* Wait until initialization is done */
897 for (x = 0; x < MAXLOOP; x++) {
898 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
899 break;
900 }
901
902 if (x == MAXLOOP)
903 return CS_ERROR;
904
905 /* Reset is no longer in progress */
906 sc->sc_resetting = FALSE;
907
908 return CS_OK;
909 }
910
911 int
912 cs_verify_eeprom(struct cs_softc *sc)
913 {
914 u_int16_t self_status;
915
916 /* Verify that the EEPROM is present and OK */
917 self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
918 if (((self_status & SELF_ST_EEP_PRES) &&
919 (self_status & SELF_ST_EEP_OK)) == 0)
920 return (CS_ERROR);
921
922 return (CS_OK);
923 }
924
925 int
926 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
927 {
928 int x;
929
930 /* Ensure that the EEPROM is not busy */
931 for (x = 0; x < MAXLOOP; x++) {
932 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
933 SELF_ST_SI_BUSY))
934 break;
935 }
936
937 if (x == MAXLOOP)
938 return (CS_ERROR);
939
940 /* Issue the command to read the offset within the EEPROM */
941 CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
942 offset | EEPROM_CMD_READ);
943
944 /* Wait until the command is completed */
945 for (x = 0; x < MAXLOOP; x++) {
946 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
947 SELF_ST_SI_BUSY))
948 break;
949 }
950
951 if (x == MAXLOOP)
952 return (CS_ERROR);
953
954 /* Get the EEPROM data from the EEPROM Data register */
955 *pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
956
957 return (CS_OK);
958 }
959
960 void
961 cs_initChip(struct cs_softc *sc)
962 {
963 u_int16_t busCtl;
964 u_int16_t selfCtl;
965 u_int16_t v;
966 u_int16_t isaId;
967 int i;
968 int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
969
970 /* Disable reception and transmission of frames */
971 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
972 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
973 ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
974
975 /* Disable interrupt at the chip */
976 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
977 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
978
979 /* If IOCHRDY is enabled then clear the bit in the busCtl register */
980 busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
981 if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
982 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
983 busCtl & ~BUS_CTL_IOCHRDY);
984 } else {
985 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
986 busCtl | BUS_CTL_IOCHRDY);
987 }
988
989 /* Set the Line Control register to match the media type */
990 if (media == IFM_10_T)
991 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
992 else
993 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
994
995 /*
996 * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
997 * enable the DC/DC converter
998 */
999 selfCtl = SELF_CTL_HC1E;
1000
1001 /* If the media type is 10Base2 */
1002 if (media == IFM_10_2) {
1003 /*
1004 * Enable the DC/DC converter if it has a low enable.
1005 */
1006 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1007 /*
1008 * Set the HCB1 bit, which causes the HC1 pin to go
1009 * low.
1010 */
1011 selfCtl |= SELF_CTL_HCB1;
1012 } else { /* Media type is 10BaseT or AUI */
1013 /*
1014 * Disable the DC/DC converter if it has a high enable.
1015 */
1016 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1017 /*
1018 * Set the HCB1 bit, which causes the HC1 pin to go
1019 * low.
1020 */
1021 selfCtl |= SELF_CTL_HCB1;
1022 }
1023 }
1024 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1025
1026 /* enable normal link pulse */
1027 if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1028 CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1029
1030 /* Enable full-duplex, if appropriate */
1031 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1032 CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1033
1034 /* RX_CTL set in cs_set_ladr_filt(), below */
1035
1036 /* enable all transmission interrupts */
1037 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1038
1039 /* Accept all receive interrupts */
1040 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1041
1042 /*
1043 * Configure Operational Modes
1044 *
1045 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1046 * a better way to do it because the card has a counter which can be
1047 * read to update the RX_MISS counter. This saves many interrupts.
1048 *
1049 * I have turned on the tx and rx overflow interrupts to counter using
1050 * the receive miss interrupt. This is a better estimate of errors
1051 * and requires lower system overhead.
1052 */
1053 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1054 BUF_CFG_RX_DMA_IE);
1055
1056 if (sc->sc_dma_chipinit)
1057 (*sc->sc_dma_chipinit)(sc);
1058
1059 /* If memory mode is enabled */
1060 if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1061 /* If external logic is present for address decoding */
1062 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1063 /*
1064 * Program the external logic to decode address bits
1065 * SA20-SA23
1066 */
1067 CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1068 ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1069 EEPROM_CMD_ELSEL);
1070 }
1071
1072 /*
1073 * Write the packet page base physical address to the memory
1074 * base register.
1075 */
1076 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1077 sc->sc_pktpgaddr & 0xFFFF);
1078 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1079 sc->sc_pktpgaddr >> 16);
1080 busCtl = BUS_CTL_MEM_MODE;
1081
1082 /* tell the chip to read the addresses off the SA pins */
1083 if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1084 busCtl |= BUS_CTL_USE_SA;
1085 }
1086 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1087 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1088
1089 /* We are in memory mode now! */
1090 sc->sc_memorymode = TRUE;
1091
1092 /*
1093 * wait here (10ms) for the chip to swap over. this is the
1094 * maximum time that this could take.
1095 */
1096 delay(10000);
1097
1098 /* Verify that we can read from the chip */
1099 isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1100
1101 /*
1102 * As a last minute sanity check before actually using mapped
1103 * memory we verify that we can read the isa number from the
1104 * chip in memory mode.
1105 */
1106 if (isaId != EISA_NUM_CRYSTAL) {
1107 aprint_error_dev(sc->sc_dev,
1108 "failed to enable memory mode\n");
1109 sc->sc_memorymode = FALSE;
1110 } else {
1111 /*
1112 * we are in memory mode so if we aren't using DMA,
1113 * then program the chip to interrupt early.
1114 */
1115 if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1116 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1117 BUF_CFG_RX_DEST_IE |
1118 BUF_CFG_RX_MISS_OVER_IE |
1119 BUF_CFG_TX_COL_OVER_IE);
1120 }
1121 }
1122
1123 }
1124
1125 /* Put Ethernet address into the Individual Address register */
1126 for (i = 0; i < 6; i += 2) {
1127 v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1128 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1129 }
1130
1131 if (sc->sc_irq != -1) {
1132 /* Set the interrupt level in the chip */
1133 if (sc->sc_prodid == PROD_ID_CS8900) {
1134 if (sc->sc_irq == 5) {
1135 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1136 } else {
1137 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1138 }
1139 }
1140 else { /* CS8920 */
1141 CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1142 }
1143 }
1144
1145 /* write the multicast mask to the address filter register */
1146 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1147
1148 /* Enable reception and transmission of frames */
1149 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1150 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1151 LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1152
1153 /* Enable interrupt at the chip */
1154 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1155 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1156 }
1157
1158 int
1159 cs_init(struct ifnet *ifp)
1160 {
1161 int intState;
1162 int error = CS_OK;
1163 struct cs_softc *sc = ifp->if_softc;
1164
1165 if (cs_enable(sc))
1166 goto out;
1167
1168 cs_stop(ifp, 0);
1169
1170 intState = splnet();
1171
1172 #if 0
1173 /* Mark the interface as down */
1174 sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1175 #endif
1176
1177 #ifdef CS_DEBUG
1178 /* Enable debugging */
1179 sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1180 #endif
1181
1182 /* Reset the chip */
1183 if ((error = cs_reset_chip(sc)) == CS_OK) {
1184 /* Initialize the chip */
1185 cs_initChip(sc);
1186
1187 /* Mark the interface as running */
1188 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1189 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1190 sc->sc_ethercom.ec_if.if_timer = 0;
1191
1192 /* Assume we have carrier until we are told otherwise. */
1193 sc->sc_carrier = 1;
1194 } else {
1195 aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1196 }
1197
1198 splx(intState);
1199 out:
1200 if (error == CS_OK)
1201 return 0;
1202 return EIO;
1203 }
1204
1205 void
1206 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1207 {
1208 struct ifnet *ifp = &ec->ec_if;
1209 struct ether_multi *enm;
1210 struct ether_multistep step;
1211 u_int16_t af[4];
1212 u_int16_t port, mask, index;
1213
1214 /*
1215 * Set up multicast address filter by passing all multicast addresses
1216 * through a crc generator, and then using the high order 6 bits as an
1217 * index into the 64 bit logical address filter. The high order bit
1218 * selects the word, while the rest of the bits select the bit within
1219 * the word.
1220 */
1221 if (ifp->if_flags & IFF_PROMISC) {
1222 /* accept all valid frames. */
1223 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1224 RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1225 RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1226 ifp->if_flags |= IFF_ALLMULTI;
1227 return;
1228 }
1229
1230 /*
1231 * accept frames if a. crc valid, b. individual address match c.
1232 * broadcast address,and d. multicast addresses matched in the hash
1233 * filter
1234 */
1235 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1236 RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1237
1238
1239 /*
1240 * start off with all multicast flag clear, set it if we need to
1241 * later, otherwise we will leave it.
1242 */
1243 ifp->if_flags &= ~IFF_ALLMULTI;
1244 af[0] = af[1] = af[2] = af[3] = 0x0000;
1245
1246 /*
1247 * Loop through all the multicast addresses unless we get a range of
1248 * addresses, in which case we will just accept all packets.
1249 * Justification for this is given in the next comment.
1250 */
1251 ETHER_FIRST_MULTI(step, ec, enm);
1252 while (enm != NULL) {
1253 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1254 sizeof enm->enm_addrlo)) {
1255 /*
1256 * We must listen to a range of multicast addresses.
1257 * For now, just accept all multicasts, rather than
1258 * trying to set only those filter bits needed to match
1259 * the range. (At this time, the only use of address
1260 * ranges is for IP multicast routing, for which the
1261 * range is big enough to require all bits set.)
1262 */
1263 ifp->if_flags |= IFF_ALLMULTI;
1264 af[0] = af[1] = af[2] = af[3] = 0xffff;
1265 break;
1266 } else {
1267 /*
1268 * we have got an individual address so just set that
1269 * bit.
1270 */
1271 index = cs_hash_index(enm->enm_addrlo);
1272
1273 /* Set the bit the Logical address filter. */
1274 port = (u_int16_t) (index >> 4);
1275 mask = (u_int16_t) (1 << (index & 0xf));
1276 af[port] |= mask;
1277
1278 ETHER_NEXT_MULTI(step, enm);
1279 }
1280 }
1281
1282 /* now program the chip with the addresses */
1283 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1284 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1285 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1286 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1287 return;
1288 }
1289
1290 u_int16_t
1291 cs_hash_index(char *addr)
1292 {
1293 uint32_t crc;
1294 uint16_t hash_code;
1295
1296 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1297
1298 hash_code = crc >> 26;
1299 return (hash_code);
1300 }
1301
1302 void
1303 cs_reset(struct cs_softc *sc)
1304 {
1305
1306 /* Mark the interface as down */
1307 sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1308
1309 /* Reset the chip */
1310 cs_reset_chip(sc);
1311 }
1312
1313 int
1314 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1315 {
1316 struct cs_softc *sc = ifp->if_softc;
1317 struct ifreq *ifr = data;
1318 int state;
1319 int result;
1320
1321 state = splnet();
1322
1323 result = 0; /* only set if something goes wrong */
1324
1325 switch (cmd) {
1326 case SIOCGIFMEDIA:
1327 case SIOCSIFMEDIA:
1328 result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1329 break;
1330
1331 default:
1332 result = ether_ioctl(ifp, cmd, data);
1333 if (result == ENETRESET) {
1334 if (ifp->if_flags & IFF_RUNNING) {
1335 /*
1336 * Multicast list has changed. Set the
1337 * hardware filter accordingly.
1338 */
1339 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1340 }
1341 result = 0;
1342 }
1343 break;
1344 }
1345
1346 splx(state);
1347
1348 return result;
1349 }
1350
1351 int
1352 cs_mediachange(struct ifnet *ifp)
1353 {
1354
1355 /*
1356 * Current media is already set up. Just reset the interface
1357 * to let the new value take hold.
1358 */
1359 cs_init(ifp);
1360 return (0);
1361 }
1362
1363 void
1364 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1365 {
1366 struct cs_softc *sc = ifp->if_softc;
1367
1368 /*
1369 * The currently selected media is always the active media.
1370 */
1371 ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1372
1373 if (ifp->if_flags & IFF_UP) {
1374 /* Interface up, status is valid. */
1375 ifmr->ifm_status = IFM_AVALID |
1376 (sc->sc_carrier ? IFM_ACTIVE : 0);
1377 }
1378 else ifmr->ifm_status = 0;
1379 }
1380
1381 int
1382 cs_intr(void *arg)
1383 {
1384 struct cs_softc *sc = arg;
1385 u_int16_t Event;
1386 u_int16_t rndEvent;
1387
1388 /*printf("cs_intr %p\n", sc);*/
1389 /* Ignore any interrupts that happen while the chip is being reset */
1390 if (sc->sc_resetting) {
1391 printf("%s: cs_intr: reset in progress\n",
1392 device_xname(sc->sc_dev));
1393 return 1;
1394 }
1395
1396 /* Read an event from the Interrupt Status Queue */
1397 if (sc->sc_memorymode)
1398 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1399 else
1400 Event = CS_READ_PORT(sc, PORT_ISQ);
1401
1402 if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1403 return 0; /* not ours */
1404
1405 rndEvent = Event;
1406
1407 /* Process all the events in the Interrupt Status Queue */
1408 while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1409 /* Dispatch to an event handler based on the register number */
1410 switch (Event & REG_NUM_MASK) {
1411 case REG_NUM_RX_EVENT:
1412 cs_receive_event(sc, Event);
1413 break;
1414 case REG_NUM_TX_EVENT:
1415 cs_transmit_event(sc, Event);
1416 break;
1417 case REG_NUM_BUF_EVENT:
1418 cs_buffer_event(sc, Event);
1419 break;
1420 case REG_NUM_TX_COL:
1421 case REG_NUM_RX_MISS:
1422 cs_counter_event(sc, Event);
1423 break;
1424 default:
1425 printf("%s: unknown interrupt event 0x%x\n",
1426 device_xname(sc->sc_dev), Event);
1427 break;
1428 }
1429
1430 /* Read another event from the Interrupt Status Queue */
1431 if (sc->sc_memorymode)
1432 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1433 else
1434 Event = CS_READ_PORT(sc, PORT_ISQ);
1435 }
1436
1437 /* have handled the interrupt */
1438 rnd_add_uint32(&sc->rnd_source, rndEvent);
1439 return 1;
1440 }
1441
1442 void
1443 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1444 {
1445 struct ifnet *ifp;
1446 u_int16_t errorCount;
1447
1448 ifp = &sc->sc_ethercom.ec_if;
1449
1450 switch (cntEvent & REG_NUM_MASK) {
1451 case REG_NUM_TX_COL:
1452 /*
1453 * the count should be read before an overflow occurs.
1454 */
1455 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1456 /*
1457 * the tramsit event routine always checks the number of
1458 * collisions for any packet so we don't increment any
1459 * counters here, as they should already have been
1460 * considered.
1461 */
1462 break;
1463 case REG_NUM_RX_MISS:
1464 /*
1465 * the count should be read before an overflow occurs.
1466 */
1467 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1468 /*
1469 * Increment the input error count, the first 6bits are the
1470 * register id.
1471 */
1472 ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1473 break;
1474 default:
1475 /* do nothing */
1476 break;
1477 }
1478 }
1479
1480 void
1481 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1482 {
1483
1484 /*
1485 * multiple events can be in the buffer event register at one time so
1486 * a standard switch statement will not suffice, here every event
1487 * must be checked.
1488 */
1489
1490 /*
1491 * if 128 bits have been rxed by the time we get here, the dest event
1492 * will be cleared and 128 event will be set.
1493 */
1494 if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1495 cs_process_rx_early(sc);
1496 }
1497
1498 if (bufEvent & BUF_EVENT_RX_DMA) {
1499 /* process the receive data */
1500 if (sc->sc_dma_process_rx)
1501 (*sc->sc_dma_process_rx)(sc);
1502 else
1503 /* should panic? */
1504 aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1505 }
1506
1507 if (bufEvent & BUF_EVENT_TX_UNDR) {
1508 #if 0
1509 /*
1510 * This can happen occasionally, and it's not worth worrying
1511 * about.
1512 */
1513 printf("%s: transmit underrun (%d -> %d)\n",
1514 device_xname(sc->sc_dev), sc->sc_xe_ent,
1515 cs_xmit_early_table[sc->sc_xe_ent].worse);
1516 #endif
1517 sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1518 sc->sc_xe_togo =
1519 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1520
1521 /* had an underrun, transmit is finished */
1522 sc->sc_txbusy = FALSE;
1523 }
1524
1525 if (bufEvent & BUF_EVENT_SW_INT) {
1526 printf("%s: software initiated interrupt\n",
1527 device_xname(sc->sc_dev));
1528 }
1529 }
1530
1531 void
1532 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1533 {
1534 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1535
1536 /* If there were any errors transmitting this frame */
1537 if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1538 TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1539 /* Increment the output error count */
1540 ifp->if_oerrors++;
1541
1542 /* Note carrier loss. */
1543 if (txEvent & TX_EVENT_LOSS_CRS)
1544 sc->sc_carrier = 0;
1545
1546 /* If debugging is enabled then log error messages */
1547 if (ifp->if_flags & IFF_DEBUG) {
1548 if (txEvent & TX_EVENT_LOSS_CRS) {
1549 aprint_error_dev(sc->sc_dev, "lost carrier\n");
1550 }
1551 if (txEvent & TX_EVENT_SQE_ERR) {
1552 aprint_error_dev(sc->sc_dev, "SQE error\n");
1553 }
1554 if (txEvent & TX_EVENT_OUT_WIN) {
1555 aprint_error_dev(sc->sc_dev,
1556 "out-of-window collision\n");
1557 }
1558 if (txEvent & TX_EVENT_JABBER) {
1559 aprint_error_dev(sc->sc_dev, "jabber\n");
1560 }
1561 if (txEvent & TX_EVENT_16_COLL) {
1562 aprint_error_dev(sc->sc_dev, "16 collisions\n");
1563 }
1564 }
1565 }
1566 else {
1567 /* Transmission successful, carrier is up. */
1568 sc->sc_carrier = 1;
1569 #ifdef SHARK
1570 ledNetActive();
1571 #endif
1572 }
1573
1574 /* Add the number of collisions for this frame */
1575 if (txEvent & TX_EVENT_16_COLL) {
1576 ifp->if_collisions += 16;
1577 } else {
1578 ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1579 }
1580
1581 ifp->if_opackets++;
1582
1583 /* Transmission is no longer in progress */
1584 sc->sc_txbusy = FALSE;
1585
1586 /* If there is more to transmit, start the next transmission */
1587 if_schedule_deferred_start(ifp);
1588 }
1589
1590 void
1591 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1592 {
1593
1594 if (rxEvent & RX_EVENT_RUNT)
1595 aprint_error_dev(sc->sc_dev, "runt\n");
1596
1597 if (rxEvent & RX_EVENT_X_DATA)
1598 aprint_error_dev(sc->sc_dev, "extra data\n");
1599
1600 if (rxEvent & RX_EVENT_CRC_ERR) {
1601 if (rxEvent & RX_EVENT_DRIBBLE)
1602 aprint_error_dev(sc->sc_dev, "alignment error\n");
1603 else
1604 aprint_error_dev(sc->sc_dev, "CRC error\n");
1605 } else {
1606 if (rxEvent & RX_EVENT_DRIBBLE)
1607 aprint_error_dev(sc->sc_dev, "dribble bits\n");
1608 }
1609 }
1610
1611 void
1612 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1613 {
1614 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1615
1616 /* If the frame was not received OK */
1617 if (!(rxEvent & RX_EVENT_RX_OK)) {
1618 /* Increment the input error count */
1619 ifp->if_ierrors++;
1620
1621 /*
1622 * If debugging is enabled then log error messages.
1623 */
1624 if (ifp->if_flags & IFF_DEBUG) {
1625 if (rxEvent != REG_NUM_RX_EVENT) {
1626 cs_print_rx_errors(sc, rxEvent);
1627
1628 /*
1629 * Must read the length of all received
1630 * frames
1631 */
1632 CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1633
1634 /* Skip the received frame */
1635 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1636 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1637 RX_CFG_SKIP);
1638 } else {
1639 aprint_error_dev(sc->sc_dev, "implied skip\n");
1640 }
1641 }
1642 } else {
1643 /*
1644 * process the received frame and pass it up to the upper
1645 * layers.
1646 */
1647 cs_process_receive(sc);
1648 }
1649 }
1650
1651 void
1652 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1653 {
1654 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1655
1656 /* Pass the packet up. */
1657 if_percpuq_enqueue(ifp->if_percpuq, m);
1658 }
1659
1660 void
1661 cs_process_receive(struct cs_softc *sc)
1662 {
1663 struct ifnet *ifp;
1664 struct mbuf *m;
1665 int totlen;
1666 u_int16_t *pBuff, *pBuffLimit;
1667 int pad;
1668 unsigned int frameOffset = 0; /* XXX: gcc */
1669
1670 #ifdef SHARK
1671 ledNetActive();
1672 #endif
1673
1674 ifp = &sc->sc_ethercom.ec_if;
1675
1676 /* Received a packet; carrier is up. */
1677 sc->sc_carrier = 1;
1678
1679 if (sc->sc_memorymode) {
1680 /* Initialize the frame offset */
1681 frameOffset = PKTPG_RX_LENGTH;
1682
1683 /* Get the length of the received frame */
1684 totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1685 frameOffset += 2;
1686 }
1687 else {
1688 /* drop status */
1689 CS_READ_PORT(sc, PORT_RXTX_DATA);
1690
1691 /* Get the length of the received frame */
1692 totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1693 }
1694
1695 if (totlen > ETHER_MAX_LEN) {
1696 aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1697 totlen);
1698
1699 /* skip the received frame */
1700 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1701 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1702 return;
1703 }
1704
1705 MGETHDR(m, M_DONTWAIT, MT_DATA);
1706 if (m == 0) {
1707 aprint_error_dev(sc->sc_dev,
1708 "cs_process_receive: unable to allocate mbuf\n");
1709 ifp->if_ierrors++;
1710 /*
1711 * couldn't allocate an mbuf so things are not good, may as
1712 * well drop the packet I think.
1713 *
1714 * have already read the length so we should be right to skip
1715 * the packet.
1716 */
1717 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1718 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1719 return;
1720 }
1721 m_set_rcvif(m, ifp);
1722 m->m_pkthdr.len = totlen;
1723
1724 /* number of bytes to align ip header on word boundary for ipintr */
1725 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1726
1727 /*
1728 * alloc mbuf cluster if we need.
1729 * we need 1 byte spare because following
1730 * packet read loop can overrun.
1731 */
1732 if (totlen + pad + 1 > MHLEN) {
1733 MCLGET(m, M_DONTWAIT);
1734 if ((m->m_flags & M_EXT) == 0) {
1735 /* couldn't allocate an mbuf cluster */
1736 aprint_error_dev(sc->sc_dev,
1737 "cs_process_receive: "
1738 "unable to allocate a cluster\n");
1739 m_freem(m);
1740
1741 /* skip the received frame */
1742 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1743 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1744 return;
1745 }
1746 }
1747
1748 /* align ip header on word boundary for ipintr */
1749 m->m_data += pad;
1750
1751 m->m_len = totlen;
1752 pBuff = mtod(m, u_int16_t *);
1753
1754 /* now read the data from the chip */
1755 if (sc->sc_memorymode) {
1756 pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
1757 while (pBuff < pBuffLimit) {
1758 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1759 frameOffset += 2;
1760 }
1761 }
1762 else {
1763 IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1764 }
1765
1766 cs_ether_input(sc, m);
1767 }
1768
1769 void
1770 cs_process_rx_early(struct cs_softc *sc)
1771 {
1772 struct ifnet *ifp;
1773 struct mbuf *m;
1774 u_int16_t frameCount, oldFrameCount;
1775 u_int16_t rxEvent;
1776 u_int16_t *pBuff;
1777 int pad;
1778 unsigned int frameOffset;
1779
1780
1781 ifp = &sc->sc_ethercom.ec_if;
1782
1783 /* Initialize the frame offset */
1784 frameOffset = PKTPG_RX_FRAME;
1785 frameCount = 0;
1786
1787 MGETHDR(m, M_DONTWAIT, MT_DATA);
1788 if (m == 0) {
1789 aprint_error_dev(sc->sc_dev,
1790 "cs_process_rx_early: unable to allocate mbuf\n");
1791 ifp->if_ierrors++;
1792 /*
1793 * couldn't allocate an mbuf so things are not good, may as
1794 * well drop the packet I think.
1795 *
1796 * have already read the length so we should be right to skip
1797 * the packet.
1798 */
1799 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1800 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1801 return;
1802 }
1803 m_set_rcvif(m, ifp);
1804 /*
1805 * save processing by always using a mbuf cluster, guaranteed to fit
1806 * packet
1807 */
1808 MCLGET(m, M_DONTWAIT);
1809 if ((m->m_flags & M_EXT) == 0) {
1810 /* couldn't allocate an mbuf cluster */
1811 aprint_error_dev(sc->sc_dev,
1812 "cs_process_rx_early: unable to allocate a cluster\n");
1813 m_freem(m);
1814 /* skip the frame */
1815 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1816 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1817 return;
1818 }
1819
1820 /* align ip header on word boundary for ipintr */
1821 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1822 m->m_data += pad;
1823
1824 /* set up the buffer pointer to point to the data area */
1825 pBuff = mtod(m, u_int16_t *);
1826
1827 /*
1828 * now read the frame byte counter until we have finished reading the
1829 * frame
1830 */
1831 oldFrameCount = 0;
1832 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1833 while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1834 for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1835 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1836 frameOffset += 2;
1837 }
1838
1839 /* read the new count from the chip */
1840 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1841 }
1842
1843 /* update the mbuf counts */
1844 m->m_len = oldFrameCount;
1845 m->m_pkthdr.len = oldFrameCount;
1846
1847 /* now check the Rx Event register */
1848 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1849
1850 if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1851 /*
1852 * do an implied skip, it seems to be more reliable than a
1853 * forced skip.
1854 */
1855 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1856 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1857
1858 /*
1859 * now read the RX_EVENT register to perform an implied skip.
1860 */
1861 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1862
1863 cs_ether_input(sc, m);
1864 } else {
1865 m_freem(m);
1866 ifp->if_ierrors++;
1867 }
1868 }
1869
1870 void
1871 cs_start_output(struct ifnet *ifp)
1872 {
1873 struct cs_softc *sc;
1874 struct mbuf *pMbuf;
1875 struct mbuf *pMbufChain;
1876 u_int16_t BusStatus;
1877 u_int16_t Length;
1878 int txLoop = 0;
1879 int dropout = 0;
1880
1881 sc = ifp->if_softc;
1882
1883 /* check that the interface is up and running */
1884 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1885 return;
1886 }
1887
1888 /* Don't interrupt a transmission in progress */
1889 if (sc->sc_txbusy) {
1890 return;
1891 }
1892
1893 /* this loop will only run through once if transmission is successful */
1894 /*
1895 * While there are packets to transmit and a transmit is not in
1896 * progress
1897 */
1898 while (sc->sc_txbusy == 0 && dropout == 0) {
1899 IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1900 if (pMbufChain == NULL)
1901 break;
1902
1903 /*
1904 * If BPF is listening on this interface, let it see the packet
1905 * before we commit it to the wire.
1906 */
1907 bpf_mtap(ifp, pMbufChain);
1908
1909 /* Find the total length of the data to transmit */
1910 Length = 0;
1911 for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1912 Length += pMbuf->m_len;
1913
1914 do {
1915 /*
1916 * Request that the transmit be started after all
1917 * data has been copied
1918 *
1919 * In IO mode must write to the IO port not the packet
1920 * page address
1921 *
1922 * If this is changed to start transmission after a
1923 * small amount of data has been copied you tend to
1924 * get packet missed errors i think because the ISA
1925 * bus is too slow. Or possibly the copy routine is
1926 * not streamlined enough.
1927 */
1928 if (sc->sc_memorymode) {
1929 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1930 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1931 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1932 }
1933 else {
1934 CS_WRITE_PORT(sc, PORT_TX_CMD,
1935 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1936 CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1937 }
1938
1939 /*
1940 * Adjust early-transmit machinery.
1941 */
1942 if (--sc->sc_xe_togo == 0) {
1943 sc->sc_xe_ent =
1944 cs_xmit_early_table[sc->sc_xe_ent].better;
1945 sc->sc_xe_togo =
1946 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1947 }
1948 /*
1949 * Read the BusStatus register which indicates
1950 * success of the request
1951 */
1952 BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1953
1954 /*
1955 * If there was an error in the transmit bid free the
1956 * mbuf and go on. This is presuming that mbuf is
1957 * corrupt.
1958 */
1959 if (BusStatus & BUS_ST_TX_BID_ERR) {
1960 aprint_error_dev(sc->sc_dev,
1961 "transmit bid error (too big)");
1962
1963 /* Discard the bad mbuf chain */
1964 m_freem(pMbufChain);
1965 sc->sc_ethercom.ec_if.if_oerrors++;
1966
1967 /* Loop up to transmit the next chain */
1968 txLoop = 0;
1969 } else {
1970 if (BusStatus & BUS_ST_RDY4TXNOW) {
1971 /*
1972 * The chip is ready for transmission
1973 * now
1974 */
1975 /*
1976 * Copy the frame to the chip to
1977 * start transmission
1978 */
1979 cs_copy_tx_frame(sc, pMbufChain);
1980
1981 /* Free the mbuf chain */
1982 m_freem(pMbufChain);
1983
1984 /* Transmission is now in progress */
1985 sc->sc_txbusy = TRUE;
1986 txLoop = 0;
1987 } else {
1988 /*
1989 * if we get here we want to try
1990 * again with the same mbuf, until
1991 * the chip lets us transmit.
1992 */
1993 txLoop++;
1994 if (txLoop > CS_OUTPUT_LOOP_MAX) {
1995 /* Free the mbuf chain */
1996 m_freem(pMbufChain);
1997 /*
1998 * Transmission is not in
1999 * progress
2000 */
2001 sc->sc_txbusy = FALSE;
2002 /*
2003 * Increment the output error
2004 * count
2005 */
2006 ifp->if_oerrors++;
2007 /*
2008 * exit the routine and drop
2009 * the packet.
2010 */
2011 txLoop = 0;
2012 dropout = 1;
2013 }
2014 }
2015 }
2016 } while (txLoop);
2017 }
2018 }
2019
2020 void
2021 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2022 {
2023 struct mbuf *m;
2024 int len, leftover, frameoff;
2025 u_int16_t dbuf;
2026 u_int8_t *p;
2027 #ifdef DIAGNOSTIC
2028 u_int8_t *lim;
2029 #endif
2030
2031 /* Initialize frame pointer and data port address */
2032 frameoff = PKTPG_TX_FRAME;
2033
2034 /* start out with no leftover data */
2035 leftover = 0;
2036 dbuf = 0;
2037
2038 /* Process the chain of mbufs */
2039 for (m = m0; m != NULL; m = m->m_next) {
2040 /*
2041 * Process all of the data in a single mbuf.
2042 */
2043 p = mtod(m, u_int8_t *);
2044 len = m->m_len;
2045 #ifdef DIAGNOSTIC
2046 lim = p + len;
2047 #endif
2048
2049 while (len > 0) {
2050 if (leftover) {
2051 /*
2052 * Data left over (from mbuf or realignment).
2053 * Buffer the next byte, and write it and
2054 * the leftover data out.
2055 */
2056 dbuf |= *p++ << 8;
2057 len--;
2058 if (sc->sc_memorymode) {
2059 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2060 frameoff += 2;
2061 }
2062 else {
2063 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2064 }
2065 leftover = 0;
2066 } else if ((long) p & 1) {
2067 /*
2068 * Misaligned data. Buffer the next byte.
2069 */
2070 dbuf = *p++;
2071 len--;
2072 leftover = 1;
2073 } else {
2074 /*
2075 * Aligned data. This is the case we like.
2076 *
2077 * Write-region out as much as we can, then
2078 * buffer the remaining byte (if any).
2079 */
2080 leftover = len & 1;
2081 len &= ~1;
2082 if (sc->sc_memorymode) {
2083 MEM_WRITE_REGION_2(sc, frameoff,
2084 (u_int16_t *) p, len >> 1);
2085 frameoff += len;
2086 }
2087 else {
2088 IO_WRITE_MULTI_2(sc,
2089 PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2090 }
2091 p += len;
2092
2093 if (leftover)
2094 dbuf = *p++;
2095 len = 0;
2096 }
2097 }
2098 if (len < 0)
2099 panic("cs_copy_tx_frame: negative len");
2100 #ifdef DIAGNOSTIC
2101 if (p != lim)
2102 panic("cs_copy_tx_frame: p != lim");
2103 #endif
2104 }
2105 if (leftover) {
2106 if (sc->sc_memorymode) {
2107 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2108 }
2109 else {
2110 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2111 }
2112 }
2113 }
2114
2115 static int
2116 cs_enable(struct cs_softc *sc)
2117 {
2118
2119 if (CS_IS_ENABLED(sc) == 0) {
2120 if (sc->sc_enable != NULL) {
2121 int error;
2122
2123 error = (*sc->sc_enable)(sc);
2124 if (error)
2125 return (error);
2126 }
2127 sc->sc_cfgflags |= CFGFLG_ENABLED;
2128 }
2129
2130 return (0);
2131 }
2132
2133 static void
2134 cs_disable(struct cs_softc *sc)
2135 {
2136
2137 if (CS_IS_ENABLED(sc)) {
2138 if (sc->sc_disable != NULL)
2139 (*sc->sc_disable)(sc);
2140
2141 sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2142 }
2143 }
2144
2145 static void
2146 cs_stop(struct ifnet *ifp, int disable)
2147 {
2148 struct cs_softc *sc = ifp->if_softc;
2149
2150 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2151 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2152 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2153 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2154
2155 if (disable) {
2156 cs_disable(sc);
2157 }
2158
2159 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2160 }
2161
2162 int
2163 cs_activate(device_t self, enum devact act)
2164 {
2165 struct cs_softc *sc = device_private(self);
2166
2167 switch (act) {
2168 case DVACT_DEACTIVATE:
2169 if_deactivate(&sc->sc_ethercom.ec_if);
2170 return 0;
2171 default:
2172 return EOPNOTSUPP;
2173 }
2174 }
2175