cs89x0.c revision 1.4 1 /* $NetBSD: cs89x0.c,v 1.4 2002/04/18 21:58:02 thorpej Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 ** FACILITY
39 **
40 ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
41 **
42 ** ABSTRACT
43 **
44 ** This module provides standard ethernet access for INET protocols
45 ** only.
46 **
47 ** AUTHORS
48 **
49 ** Peter Dettori SEA - Software Engineering.
50 **
51 ** CREATION DATE:
52 **
53 ** 13-Feb-1997.
54 **
55 ** MODIFICATION HISTORY (Digital):
56 **
57 ** Revision 1.27 1998/01/20 17:59:40 cgd
58 ** update for moved headers
59 **
60 ** Revision 1.26 1998/01/12 19:29:36 cgd
61 ** use arm32/isa versions of isadma code.
62 **
63 ** Revision 1.25 1997/12/12 01:35:27 cgd
64 ** convert to use new arp code (from Brini)
65 **
66 ** Revision 1.24 1997/12/10 22:31:56 cgd
67 ** trim some fat (get rid of ability to explicitly supply enet addr, since
68 ** it was never used and added a bunch of code which really doesn't belong in
69 ** an enet driver), and clean up slightly.
70 **
71 ** Revision 1.23 1997/10/06 16:42:12 cgd
72 ** copyright notices
73 **
74 ** Revision 1.22 1997/06/20 19:38:01 chaiken
75 ** fixes some smartcard problems
76 **
77 ** Revision 1.21 1997/06/10 02:56:20 grohn
78 ** Added call to ledNetActive
79 **
80 ** Revision 1.20 1997/06/05 00:47:06 dettori
81 ** Changed cs_process_rx_dma to reset and re-initialise the
82 ** ethernet chip when DMA gets out of sync, or mbufs
83 ** can't be allocated.
84 **
85 ** Revision 1.19 1997/06/03 03:09:58 dettori
86 ** Turn off sc_txbusy flag when a transmit underrun
87 ** occurs.
88 **
89 ** Revision 1.18 1997/06/02 00:04:35 dettori
90 ** redefined the transmit table to get around the nfs_timer bug while we are
91 ** looking into it further.
92 **
93 ** Also changed interrupts from EDGE to LEVEL.
94 **
95 ** Revision 1.17 1997/05/27 23:31:01 dettori
96 ** Pulled out changes to DMAMODE defines.
97 **
98 ** Revision 1.16 1997/05/23 04:25:16 cgd
99 ** reformat log so it fits in 80cols
100 **
101 ** Revision 1.15 1997/05/23 04:22:18 cgd
102 ** remove the existing copyright notice (which Peter Dettori indicated
103 ** was incorrect, copied from an existing NetBSD file only so that the
104 ** file would have a copyright notice on it, and which he'd intended to
105 ** replace). Replace it with a Digital copyright notice, cloned from
106 ** ess.c. It's not really correct either (it indicates that the source
107 ** is Digital confidential!), but is better than nothing and more
108 ** correct than what was there before.
109 **
110 ** Revision 1.14 1997/05/23 04:12:50 cgd
111 ** use an adaptive transmit start algorithm: start by telling the chip
112 ** to start transmitting after 381 bytes have been fed to it. if that
113 ** gets transmit underruns, ramp down to 1021 bytes then "whole
114 ** packet." If successful at a given level for a while, try the next
115 ** more agressive level. This code doesn't ever try to start
116 ** transmitting after 5 bytes have been sent to the NIC, because
117 ** that underruns rather regularly. The back-off and ramp-up mechanism
118 ** could probably be tuned a little bit, but this works well enough to
119 ** support > 1MB/s transmit rates on a clear ethernet (which is about
120 ** 20-25% better than the driver had previously been getting).
121 **
122 ** Revision 1.13 1997/05/22 21:06:54 cgd
123 ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
124 ** casting from u_int8_t * to u_int16_t * without worrying about alignment
125 ** issues. This would cause bogus data to be spit out for mbufs with
126 ** misaligned data. For instance, it caused the following bits to appear
127 ** on the wire:
128 ** ... etBND 1S2C .SHA(K) R ...
129 ** 11112222333344445555
130 ** which should have appeared as:
131 ** ... NetBSD 1.2C (SHARK) ...
132 ** 11112222333344445555
133 ** Note the apparent 'rotate' of the bytes in the word, which was due to
134 ** incorrect unaligned accesses. This data corruption was the cause of
135 ** incoming telnet/rlogin hangs.
136 **
137 ** Revision 1.12 1997/05/22 01:55:32 cgd
138 ** reformat log so it fits in 80cols
139 **
140 ** Revision 1.11 1997/05/22 01:50:27 cgd
141 ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
142 ** so packets aimed at other hosts don't get sent to ether_input().
143 ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
144 ** you can easily tell (`strings`) what version of the driver is in your
145 ** kernel binary.
146 ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
147 ** safe, and not really a performance win anyway. (It was only used when
148 ** setting up the multicast logical address filter, which is an
149 ** infrequent event. It could have been used in the IFF_PROMISCUOUS
150 ** address check above, but the benefit of it vs. memcmp would be
151 ** inconsequential, there.) Use memcmp() instead.
152 ** * restructure csStartOuput to avoid the following bugs in the case where
153 ** txWait was being set:
154 ** * it would accidentally drop the outgoing packet if told to wait
155 ** but the outgoing packet queue was empty.
156 ** * it would bpf_mtap() the outgoing packet multiple times (once for
157 ** each time it was told to wait), and would also recalculate
158 ** the length of the outgoing packet each time it was told to
159 ** wait.
160 ** While there, rename txWait to txLoop, since with the new structure of
161 ** the code, the latter name makes more sense.
162 **
163 ** Revision 1.10 1997/05/19 02:03:20 cgd
164 ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
165 ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
166 ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
167 ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
168 ** as before.
169 **
170 ** Revision 1.9 1997/05/19 01:45:37 cgd
171 ** create a new function, cs_ether_input(), which does received-packet
172 ** BPF and ether_input processing. This code used to be in three places,
173 ** and centralizing it will make adding IFF_PROMISC support much easier.
174 ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
175 ** do copies with bus_space_write_region_2(). It's more correct, and
176 ** potentially more efficient. That function needs to be gutted (to
177 ** deal properly with alignment issues, which it currently does wrong),
178 ** however, and the change doesn't gain much, so there's no point in
179 ** enabling it now.
180 **
181 ** Revision 1.8 1997/05/19 01:17:10 cgd
182 ** fix a comment re: the setting of the TxConfig register. Clean up
183 ** interface counter maintenance (make it use standard idiom).
184 **
185 **--
186 */
187
188 #include <sys/cdefs.h>
189 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.4 2002/04/18 21:58:02 thorpej Exp $");
190
191 #include "opt_inet.h"
192
193 #include <sys/param.h>
194 #include <sys/systm.h>
195 #include <sys/mbuf.h>
196 #include <sys/syslog.h>
197 #include <sys/socket.h>
198 #include <sys/device.h>
199 #include <sys/malloc.h>
200 #include <sys/ioctl.h>
201 #include <sys/errno.h>
202
203 #include "rnd.h"
204 #if NRND > 0
205 #include <sys/rnd.h>
206 #endif
207
208 #include <net/if.h>
209 #include <net/if_ether.h>
210 #include <net/if_media.h>
211 #ifdef INET
212 #include <netinet/in.h>
213 #include <netinet/if_inarp.h>
214 #endif
215
216 #include "bpfilter.h"
217 #if NBPFILTER > 0
218 #include <net/bpf.h>
219 #include <net/bpfdesc.h>
220 #endif
221
222 #include <uvm/uvm_extern.h>
223
224 #include <machine/bus.h>
225 #include <machine/intr.h>
226
227 #include <dev/ic/cs89x0reg.h>
228 #include <dev/ic/cs89x0var.h>
229
230 #ifdef SHARK
231 #include <shark/shark/sequoia.h>
232 #endif
233
234 /*
235 * MACRO DEFINITIONS
236 */
237 #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
238
239 /*
240 * FUNCTION PROTOTYPES
241 */
242 void cs_get_default_media __P((struct cs_softc *));
243 int cs_get_params __P((struct cs_softc *));
244 int cs_get_enaddr __P((struct cs_softc *));
245 int cs_reset_chip __P((struct cs_softc *));
246 void cs_reset __P((void *));
247 int cs_ioctl __P((struct ifnet *, u_long, caddr_t));
248 void cs_initChip __P((struct cs_softc *));
249 void cs_buffer_event __P((struct cs_softc *, u_int16_t));
250 void cs_transmit_event __P((struct cs_softc *, u_int16_t));
251 void cs_receive_event __P((struct cs_softc *, u_int16_t));
252 void cs_process_receive __P((struct cs_softc *));
253 void cs_process_rx_early __P((struct cs_softc *));
254 void cs_start_output __P((struct ifnet *));
255 void cs_copy_tx_frame __P((struct cs_softc *, struct mbuf *));
256 void cs_set_ladr_filt __P((struct cs_softc *, struct ethercom *));
257 u_int16_t cs_hash_index __P((char *));
258 void cs_counter_event __P((struct cs_softc *, u_int16_t));
259
260 int cs_mediachange __P((struct ifnet *));
261 void cs_mediastatus __P((struct ifnet *, struct ifmediareq *));
262
263 static int cs_enable __P((struct cs_softc *));
264 static void cs_disable __P((struct cs_softc *));
265 static void cs_stop __P((struct ifnet *, int));
266 static void cs_power __P((int, void *));
267
268 /*
269 * GLOBAL DECLARATIONS
270 */
271
272 /*
273 * Xmit-early table.
274 *
275 * To get better performance, we tell the chip to start packet
276 * transmission before the whole packet is copied to the chip.
277 * However, this can fail under load. When it fails, we back off
278 * to a safer setting for a little while.
279 *
280 * txcmd is the value of txcmd used to indicate when to start transmission.
281 * better is the next 'better' state in the table.
282 * better_count is the number of output packets before transition to the
283 * better state.
284 * worse is the next 'worse' state in the table.
285 *
286 * Transition to the next worse state happens automatically when a
287 * transmittion underrun occurs.
288 */
289 struct cs_xmit_early {
290 u_int16_t txcmd;
291 int better;
292 int better_count;
293 int worse;
294 } cs_xmit_early_table[3] = {
295 { TX_CMD_START_381, 0, INT_MAX, 1, },
296 { TX_CMD_START_1021, 0, 50000, 2, },
297 { TX_CMD_START_ALL, 1, 5000, 2, },
298 };
299
300 int cs_default_media[] = {
301 IFM_ETHER|IFM_10_2,
302 IFM_ETHER|IFM_10_5,
303 IFM_ETHER|IFM_10_T,
304 IFM_ETHER|IFM_10_T|IFM_FDX,
305 };
306 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
307
308 int
309 cs_attach(sc, enaddr, media, nmedia, defmedia)
310 struct cs_softc *sc;
311 u_int8_t *enaddr;
312 int *media, nmedia, defmedia;
313 {
314 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
315 const char *chipname, *medname;
316 u_int16_t reg;
317 int i;
318
319 /* Start out in IO mode */
320 sc->sc_memorymode = FALSE;
321
322 /* make sure we're right */
323 for (i = 0; i < 10000; i++) {
324 reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
325 if (reg == EISA_NUM_CRYSTAL) {
326 break;
327 }
328 }
329 if (i == 10000) {
330 printf("%s: wrong id(0x%x)\n", sc->sc_dev.dv_xname, reg);
331 return 1; /* XXX should panic? */
332 }
333
334 reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
335 sc->sc_prodid = reg & PROD_ID_MASK;
336 sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
337
338 switch (sc->sc_prodid) {
339 case PROD_ID_CS8900:
340 chipname = "CS8900";
341 break;
342 case PROD_ID_CS8920:
343 chipname = "CS8920";
344 break;
345 case PROD_ID_CS8920M:
346 chipname = "CS8920M";
347 break;
348 default:
349 panic("cs_attach: impossible");
350 }
351
352 /*
353 * the first thing to do is check that the mbuf cluster size is
354 * greater than the MTU for an ethernet frame. The code depends on
355 * this and to port this to a OS where this was not the case would
356 * not be straightforward.
357 *
358 * we need 1 byte spare because our
359 * packet read loop can overrun.
360 * and we may need pad bytes to align ip header.
361 */
362 if (MCLBYTES < ETHER_MAX_LEN + 1 +
363 ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
364 printf("%s: MCLBYTES too small for Ethernet frame\n",
365 sc->sc_dev.dv_xname);
366 return 1;
367 }
368
369 /* Start out not transmitting */
370 sc->sc_txbusy = FALSE;
371
372 /* Set up early transmit threshhold */
373 sc->sc_xe_ent = 0;
374 sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
375
376 /* Initialize ifnet structure. */
377 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
378 ifp->if_softc = sc;
379 ifp->if_start = cs_start_output;
380 ifp->if_init = cs_init;
381 ifp->if_ioctl = cs_ioctl;
382 ifp->if_stop = cs_stop;
383 ifp->if_watchdog = NULL; /* no watchdog at this stage */
384 ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
385 IFF_BROADCAST | IFF_MULTICAST;
386 IFQ_SET_READY(&ifp->if_snd);
387
388 /* Initialize ifmedia structures. */
389 ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
390
391 if (media != NULL) {
392 for (i = 0; i < nmedia; i++)
393 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
394 ifmedia_set(&sc->sc_media, defmedia);
395 } else {
396 for (i = 0; i < cs_default_nmedia; i++)
397 ifmedia_add(&sc->sc_media, cs_default_media[i],
398 0, NULL);
399 cs_get_default_media(sc);
400 }
401
402 if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
403 /* Get parameters from the EEPROM */
404 if (cs_get_params(sc) == CS_ERROR) {
405 printf("%s: unable to get settings from EEPROM\n",
406 sc->sc_dev.dv_xname);
407 return 1;
408 }
409 }
410
411 if (enaddr != NULL)
412 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
413 else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
414 /* Get and store the Ethernet address */
415 if (cs_get_enaddr(sc) == CS_ERROR) {
416 printf("%s: unable to read Ethernet address\n",
417 sc->sc_dev.dv_xname);
418 return 1;
419 }
420 } else {
421 printf("%s: no Ethernet address!\n", sc->sc_dev.dv_xname);
422 return 1;
423 }
424
425 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
426 case IFM_10_2:
427 medname = "BNC";
428 break;
429 case IFM_10_5:
430 medname = "AUI";
431 break;
432 case IFM_10_T:
433 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
434 medname = "UTP <full-duplex>";
435 else
436 medname = "UTP";
437 break;
438 default:
439 panic("cs_attach: impossible");
440 }
441 printf("%s: %s rev. %c, address %s, media %s\n", sc->sc_dev.dv_xname,
442 chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
443 medname);
444
445 if (sc->sc_dma_attach)
446 (*sc->sc_dma_attach)(sc);
447
448 sc->sc_sh = shutdownhook_establish(cs_reset, sc);
449 if (sc->sc_sh == NULL) {
450 printf("%s: unable to establish shutdownhook\n",
451 sc->sc_dev.dv_xname);
452 cs_detach(sc);
453 return 1;
454 }
455
456 /* Attach the interface. */
457 if_attach(ifp);
458 ether_ifattach(ifp, sc->sc_enaddr);
459
460 #if NRND > 0
461 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
462 RND_TYPE_NET, 0);
463 #endif
464 sc->sc_cfgflags |= CFGFLG_ATTACHED;
465
466 /* Reset the chip */
467 if (cs_reset_chip(sc) == CS_ERROR) {
468 printf("%s: reset failed\n", sc->sc_dev.dv_xname);
469 cs_detach(sc);
470 return 1;
471 }
472
473 sc->sc_powerhook = powerhook_establish(cs_power, sc);
474 if (sc->sc_powerhook == 0)
475 printf("%s: warning: powerhook_establish failed\n",
476 sc->sc_dev.dv_xname);
477
478 return 0;
479 }
480
481 int
482 cs_detach(sc)
483 struct cs_softc *sc;
484 {
485 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
486
487 if (sc->sc_powerhook) {
488 powerhook_disestablish(sc->sc_powerhook);
489 sc->sc_powerhook = 0;
490 }
491
492 if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
493 #if NRND > 0
494 rnd_detach_source(&sc->rnd_source);
495 #endif
496 ether_ifdetach(ifp);
497 if_detach(ifp);
498 sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
499 }
500
501 if (sc->sc_sh != NULL)
502 shutdownhook_disestablish(sc->sc_sh);
503
504 #if 0
505 /*
506 * XXX not necessary
507 */
508 if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
509 isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
510 isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
511 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
512 sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
513 }
514 #endif
515
516 return 0;
517 }
518
519 void
520 cs_get_default_media(sc)
521 struct cs_softc *sc;
522 {
523 u_int16_t adp_cfg, xmit_ctl;
524
525 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
526 printf("%s: cs_get_default_media: EEPROM missing or bad\n",
527 sc->sc_dev.dv_xname);
528 goto fakeit;
529 }
530
531 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
532 &adp_cfg) == CS_ERROR) {
533 printf("%s: unable to read adapter config from EEPROM\n",
534 sc->sc_dev.dv_xname);
535 goto fakeit;
536 }
537
538 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_XMIT_CTL,
539 &xmit_ctl) == CS_ERROR) {
540 printf("%s: unable to read transmit control from EEPROM\n",
541 sc->sc_dev.dv_xname);
542 goto fakeit;
543 }
544
545 switch (adp_cfg & ADPTR_CFG_MEDIA) {
546 case ADPTR_CFG_AUI:
547 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
548 break;
549 case ADPTR_CFG_10BASE2:
550 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
551 break;
552 case ADPTR_CFG_10BASET:
553 default:
554 if (xmit_ctl & XMIT_CTL_FDX)
555 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
556 else
557 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
558 break;
559 }
560 return;
561
562 fakeit:
563 printf("%s: WARNING: default media setting may be inaccurate\n",
564 sc->sc_dev.dv_xname);
565 /* XXX Arbitrary... */
566 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
567 }
568
569 int
570 cs_get_params(sc)
571 struct cs_softc *sc;
572 {
573 u_int16_t isaConfig;
574 u_int16_t adapterConfig;
575
576 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
577 printf("%s: cs_get_params: EEPROM missing or bad\n",
578 sc->sc_dev.dv_xname);
579 return (CS_ERROR);
580 }
581
582 /* Get ISA configuration from the EEPROM */
583 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ISA_CFG,
584 &isaConfig) == CS_ERROR)
585 goto eeprom_bad;
586
587 /* Get adapter configuration from the EEPROM */
588 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
589 &adapterConfig) == CS_ERROR)
590 goto eeprom_bad;
591
592 /* Copy the USE_SA flag */
593 if (isaConfig & ISA_CFG_USE_SA)
594 sc->sc_cfgflags |= CFGFLG_USE_SA;
595
596 /* Copy the IO Channel Ready flag */
597 if (isaConfig & ISA_CFG_IOCHRDY)
598 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
599
600 /* Copy the DC/DC Polarity flag */
601 if (adapterConfig & ADPTR_CFG_DCDC_POL)
602 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
603
604 return (CS_OK);
605
606 eeprom_bad:
607 printf("%s: cs_get_params: unable to read from EEPROM\n",
608 sc->sc_dev.dv_xname);
609 return (CS_ERROR);
610 }
611
612 int
613 cs_get_enaddr(sc)
614 struct cs_softc *sc;
615 {
616 u_int16_t *myea;
617
618 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
619 printf("%s: cs_get_enaddr: EEPROM missing or bad\n",
620 sc->sc_dev.dv_xname);
621 return (CS_ERROR);
622 }
623
624 myea = (u_int16_t *)sc->sc_enaddr;
625
626 /* Get Ethernet address from the EEPROM */
627 /* XXX this will likely lose on a big-endian machine. -- cgd */
628 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_H,
629 &myea[0]) == CS_ERROR)
630 goto eeprom_bad;
631 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_M,
632 &myea[1]) == CS_ERROR)
633 goto eeprom_bad;
634 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_L,
635 &myea[2]) == CS_ERROR)
636 goto eeprom_bad;
637
638 return (CS_OK);
639
640 eeprom_bad:
641 printf("%s: cs_get_enaddr: unable to read from EEPROM\n",
642 sc->sc_dev.dv_xname);
643 return (CS_ERROR);
644 }
645
646 int
647 cs_reset_chip(sc)
648 struct cs_softc *sc;
649 {
650 int intState;
651 int x;
652
653 /* Disable interrupts at the CPU so reset command is atomic */
654 intState = splnet();
655
656 /*
657 * We are now resetting the chip
658 *
659 * A spurious interrupt is generated by the chip when it is reset. This
660 * variable informs the interrupt handler to ignore this interrupt.
661 */
662 sc->sc_resetting = TRUE;
663
664 /* Issue a reset command to the chip */
665 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
666
667 /* Re-enable interrupts at the CPU */
668 splx(intState);
669
670 /* The chip is always in IO mode after a reset */
671 sc->sc_memorymode = FALSE;
672
673 /* If transmission was in progress, it is not now */
674 sc->sc_txbusy = FALSE;
675
676 /*
677 * there was a delay(125); here, but it seems uneccesary 125 usec is
678 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
679 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
680 * should be sufficient.
681 */
682
683 /* Transition SBHE to switch chip from 8-bit to 16-bit */
684 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
685 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
686 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
687 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
688
689 /* Wait until the EEPROM is not busy */
690 for (x = 0; x < MAXLOOP; x++) {
691 if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
692 break;
693 }
694
695 if (x == MAXLOOP)
696 return CS_ERROR;
697
698 /* Wait until initialization is done */
699 for (x = 0; x < MAXLOOP; x++) {
700 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
701 break;
702 }
703
704 if (x == MAXLOOP)
705 return CS_ERROR;
706
707 /* Reset is no longer in progress */
708 sc->sc_resetting = FALSE;
709
710 return CS_OK;
711 }
712
713 int
714 cs_verify_eeprom(iot, ioh)
715 bus_space_tag_t iot;
716 bus_space_handle_t ioh;
717 {
718 u_int16_t self_status;
719
720 /* Verify that the EEPROM is present and OK */
721 self_status = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST);
722 if (((self_status & SELF_ST_EEP_PRES) &&
723 (self_status & SELF_ST_EEP_OK)) == 0)
724 return (CS_ERROR);
725
726 return (CS_OK);
727 }
728
729 int
730 cs_read_eeprom(iot, ioh, offset, pValue)
731 bus_space_tag_t iot;
732 bus_space_handle_t ioh;
733 int offset;
734 u_int16_t *pValue;
735 {
736 int x;
737
738 /* Ensure that the EEPROM is not busy */
739 for (x = 0; x < MAXLOOP; x++) {
740 if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
741 SELF_ST_SI_BUSY))
742 break;
743 }
744
745 if (x == MAXLOOP)
746 return (CS_ERROR);
747
748 /* Issue the command to read the offset within the EEPROM */
749 CS_WRITE_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_CMD,
750 offset | EEPROM_CMD_READ);
751
752 /* Wait until the command is completed */
753 for (x = 0; x < MAXLOOP; x++) {
754 if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
755 SELF_ST_SI_BUSY))
756 break;
757 }
758
759 if (x == MAXLOOP)
760 return (CS_ERROR);
761
762 /* Get the EEPROM data from the EEPROM Data register */
763 *pValue = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_DATA);
764
765 return (CS_OK);
766 }
767
768 void
769 cs_initChip(sc)
770 struct cs_softc *sc;
771 {
772 u_int16_t busCtl;
773 u_int16_t selfCtl;
774 u_int16_t *myea;
775 u_int16_t isaId;
776 int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
777
778 /* Disable reception and transmission of frames */
779 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
780 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
781 ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
782
783 /* Disable interrupt at the chip */
784 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
785 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
786
787 /* If IOCHRDY is enabled then clear the bit in the busCtl register */
788 busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
789 if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
790 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
791 busCtl & ~BUS_CTL_IOCHRDY);
792 } else {
793 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
794 busCtl | BUS_CTL_IOCHRDY);
795 }
796
797 /* Set the Line Control register to match the media type */
798 if (media == IFM_10_T)
799 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
800 else
801 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
802
803 /*
804 * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
805 * enable the DC/DC converter
806 */
807 selfCtl = SELF_CTL_HC1E;
808
809 /* If the media type is 10Base2 */
810 if (media == IFM_10_2) {
811 /*
812 * Enable the DC/DC converter if it has a low enable.
813 */
814 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
815 /*
816 * Set the HCB1 bit, which causes the HC1 pin to go
817 * low.
818 */
819 selfCtl |= SELF_CTL_HCB1;
820 } else { /* Media type is 10BaseT or AUI */
821 /*
822 * Disable the DC/DC converter if it has a high enable.
823 */
824 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
825 /*
826 * Set the HCB1 bit, which causes the HC1 pin to go
827 * low.
828 */
829 selfCtl |= SELF_CTL_HCB1;
830 }
831 }
832 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
833
834 /* enable normal link pulse */
835 if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
836 CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
837
838 /* Enable full-duplex, if appropriate */
839 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
840 CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
841
842 /* RX_CTL set in cs_set_ladr_filt(), below */
843
844 /* enable all transmission interrupts */
845 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
846
847 /* Accept all receive interrupts */
848 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
849
850 /*
851 * Configure Operational Modes
852 *
853 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
854 * a better way to do it because the card has a counter which can be
855 * read to update the RX_MISS counter. This saves many interupts.
856 *
857 * I have turned on the tx and rx overflow interupts to counter using
858 * the receive miss interrupt. This is a better estimate of errors
859 * and requires lower system overhead.
860 */
861 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
862 BUF_CFG_RX_DMA_IE);
863
864 if (sc->sc_dma_chipinit)
865 (*sc->sc_dma_chipinit)(sc);
866
867 /* If memory mode is enabled */
868 if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
869 /* If external logic is present for address decoding */
870 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
871 /*
872 * Program the external logic to decode address bits
873 * SA20-SA23
874 */
875 CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
876 ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
877 EEPROM_CMD_ELSEL);
878 }
879
880 /*
881 * Write the packet page base physical address to the memory
882 * base register.
883 */
884 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
885 sc->sc_pktpgaddr & 0xFFFF);
886 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
887 sc->sc_pktpgaddr >> 16);
888 busCtl = BUS_CTL_MEM_MODE;
889
890 /* tell the chip to read the addresses off the SA pins */
891 if (sc->sc_cfgflags & CFGFLG_USE_SA) {
892 busCtl |= BUS_CTL_USE_SA;
893 }
894 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
895 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
896
897 /* We are in memory mode now! */
898 sc->sc_memorymode = TRUE;
899
900 /*
901 * wait here (10ms) for the chip to swap over. this is the
902 * maximum time that this could take.
903 */
904 delay(10000);
905
906 /* Verify that we can read from the chip */
907 isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
908
909 /*
910 * As a last minute sanity check before actually using mapped
911 * memory we verify that we can read the isa number from the
912 * chip in memory mode.
913 */
914 if (isaId != EISA_NUM_CRYSTAL) {
915 printf("%s: failed to enable memory mode\n",
916 sc->sc_dev.dv_xname);
917 sc->sc_memorymode = FALSE;
918 } else {
919 /*
920 * we are in memory mode so if we aren't using DMA,
921 * then program the chip to interrupt early.
922 */
923 if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
924 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
925 BUF_CFG_RX_DEST_IE |
926 BUF_CFG_RX_MISS_OVER_IE |
927 BUF_CFG_TX_COL_OVER_IE);
928 }
929 }
930
931 }
932
933 /* Put Ethernet address into the Individual Address register */
934 myea = (u_int16_t *)sc->sc_enaddr;
935 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 0, myea[0]);
936 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 2, myea[1]);
937 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 4, myea[2]);
938
939 if (sc->sc_irq != -1) {
940 /* Set the interrupt level in the chip */
941 if (sc->sc_prodid == PROD_ID_CS8900) {
942 if (sc->sc_irq == 5) {
943 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
944 } else {
945 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
946 }
947 }
948 else { /* CS8920 */
949 CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
950 }
951 }
952
953 /* write the multicast mask to the address filter register */
954 cs_set_ladr_filt(sc, &sc->sc_ethercom);
955
956 /* Enable reception and transmission of frames */
957 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
958 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
959 LINE_CTL_RX_ON | LINE_CTL_TX_ON);
960
961 /* Enable interrupt at the chip */
962 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
963 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
964 }
965
966 int
967 cs_init(ifp)
968 struct ifnet *ifp;
969 {
970 int intState;
971 int error = CS_OK;
972 struct cs_softc *sc = ifp->if_softc;
973
974 if (cs_enable(sc))
975 goto out;
976
977 cs_stop(ifp, 0);
978
979 intState = splnet();
980
981 #if 0
982 /* Mark the interface as down */
983 sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
984 #endif
985
986 #ifdef CS_DEBUG
987 /* Enable debugging */
988 sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
989 #endif
990
991 /* Reset the chip */
992 if ((error = cs_reset_chip(sc)) == CS_OK) {
993 /* Initialize the chip */
994 cs_initChip(sc);
995
996 /* Mark the interface as running */
997 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
998 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
999 sc->sc_ethercom.ec_if.if_timer = 0;
1000
1001 /* Assume we have carrier until we are told otherwise. */
1002 sc->sc_carrier = 1;
1003 } else {
1004 printf("%s: unable to reset chip\n", sc->sc_dev.dv_xname);
1005 }
1006
1007 splx(intState);
1008 out:
1009 if (error == CS_OK)
1010 return 0;
1011 return EIO;
1012 }
1013
1014 void
1015 cs_set_ladr_filt(sc, ec)
1016 struct cs_softc *sc;
1017 struct ethercom *ec;
1018 {
1019 struct ifnet *ifp = &ec->ec_if;
1020 struct ether_multi *enm;
1021 struct ether_multistep step;
1022 u_int16_t af[4];
1023 u_int16_t port, mask, index;
1024
1025 /*
1026 * Set up multicast address filter by passing all multicast addresses
1027 * through a crc generator, and then using the high order 6 bits as an
1028 * index into the 64 bit logical address filter. The high order bit
1029 * selects the word, while the rest of the bits select the bit within
1030 * the word.
1031 */
1032 if (ifp->if_flags & IFF_PROMISC) {
1033 /* accept all valid frames. */
1034 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1035 RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1036 RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1037 ifp->if_flags |= IFF_ALLMULTI;
1038 return;
1039 }
1040
1041 /*
1042 * accept frames if a. crc valid, b. individual address match c.
1043 * broadcast address,and d. multicast addresses matched in the hash
1044 * filter
1045 */
1046 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1047 RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1048
1049
1050 /*
1051 * start off with all multicast flag clear, set it if we need to
1052 * later, otherwise we will leave it.
1053 */
1054 ifp->if_flags &= ~IFF_ALLMULTI;
1055 af[0] = af[1] = af[2] = af[3] = 0x0000;
1056
1057 /*
1058 * Loop through all the multicast addresses unless we get a range of
1059 * addresses, in which case we will just accept all packets.
1060 * Justification for this is given in the next comment.
1061 */
1062 ETHER_FIRST_MULTI(step, ec, enm);
1063 while (enm != NULL) {
1064 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1065 sizeof enm->enm_addrlo)) {
1066 /*
1067 * We must listen to a range of multicast addresses.
1068 * For now, just accept all multicasts, rather than
1069 * trying to set only those filter bits needed to match
1070 * the range. (At this time, the only use of address
1071 * ranges is for IP multicast routing, for which the
1072 * range is big enough to require all bits set.)
1073 */
1074 ifp->if_flags |= IFF_ALLMULTI;
1075 af[0] = af[1] = af[2] = af[3] = 0xffff;
1076 break;
1077 } else {
1078 /*
1079 * we have got an individual address so just set that
1080 * bit.
1081 */
1082 index = cs_hash_index(enm->enm_addrlo);
1083
1084 /* Set the bit the Logical address filter. */
1085 port = (u_int16_t) (index >> 4);
1086 mask = (u_int16_t) (1 << (index & 0xf));
1087 af[port] |= mask;
1088
1089 ETHER_NEXT_MULTI(step, enm);
1090 }
1091 }
1092
1093 /* now program the chip with the addresses */
1094 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1095 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1096 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1097 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1098 return;
1099 }
1100
1101 u_int16_t
1102 cs_hash_index(addr)
1103 char *addr;
1104 {
1105 uint32_t crc;
1106 uint16_t hash_code;
1107
1108 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1109
1110 hash_code = crc >> 26;
1111 return (hash_code);
1112 }
1113
1114 void
1115 cs_reset(arg)
1116 void *arg;
1117 {
1118 struct cs_softc *sc = arg;
1119
1120 /* Mark the interface as down */
1121 sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1122
1123 /* Reset the chip */
1124 cs_reset_chip(sc);
1125 }
1126
1127 int
1128 cs_ioctl(ifp, cmd, data)
1129 struct ifnet *ifp;
1130 u_long cmd;
1131 caddr_t data;
1132 {
1133 struct cs_softc *sc = ifp->if_softc;
1134 struct ifreq *ifr = (struct ifreq *) data;
1135 int state;
1136 int result;
1137
1138 state = splnet();
1139
1140 result = 0; /* only set if something goes wrong */
1141
1142 switch (cmd) {
1143 case SIOCGIFMEDIA:
1144 case SIOCSIFMEDIA:
1145 result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1146 break;
1147
1148 default:
1149 result = ether_ioctl(ifp, cmd, data);
1150 if (result == ENETRESET) {
1151 if (CS_IS_ENABLED(sc)) {
1152 /*
1153 * Multicast list has changed. Set the
1154 * hardware filter accordingly.
1155 */
1156 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1157 }
1158 result = 0;
1159 }
1160 break;
1161 }
1162
1163 splx(state);
1164
1165 return result;
1166 }
1167
1168 int
1169 cs_mediachange(ifp)
1170 struct ifnet *ifp;
1171 {
1172
1173 /*
1174 * Current media is already set up. Just reset the interface
1175 * to let the new value take hold.
1176 */
1177 cs_init(ifp);
1178 return (0);
1179 }
1180
1181 void
1182 cs_mediastatus(ifp, ifmr)
1183 struct ifnet *ifp;
1184 struct ifmediareq *ifmr;
1185 {
1186 struct cs_softc *sc = ifp->if_softc;
1187
1188 /*
1189 * The currently selected media is always the active media.
1190 */
1191 ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1192
1193 if (ifp->if_flags & IFF_UP) {
1194 /* Interface up, status is valid. */
1195 ifmr->ifm_status = IFM_AVALID |
1196 (sc->sc_carrier ? IFM_ACTIVE : 0);
1197 }
1198 else ifmr->ifm_status = 0;
1199 }
1200
1201 int
1202 cs_intr(arg)
1203 void *arg;
1204 {
1205 struct cs_softc *sc = arg;
1206 u_int16_t Event;
1207 #if NRND > 0
1208 u_int16_t rndEvent;
1209 #endif
1210
1211 /* Ignore any interrupts that happen while the chip is being reset */
1212 if (sc->sc_resetting) {
1213 printf("%s: cs_intr: reset in progress\n",
1214 sc->sc_dev.dv_xname);
1215 return 1;
1216 }
1217
1218 /* Read an event from the Interrupt Status Queue */
1219 if (sc->sc_memorymode)
1220 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1221 else
1222 Event = CS_READ_PORT(sc, PORT_ISQ);
1223
1224 if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1225 return 0; /* not ours */
1226
1227 #if NRND > 0
1228 rndEvent = Event;
1229 #endif
1230
1231 /* Process all the events in the Interrupt Status Queue */
1232 while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1233 /* Dispatch to an event handler based on the register number */
1234 switch (Event & REG_NUM_MASK) {
1235 case REG_NUM_RX_EVENT:
1236 cs_receive_event(sc, Event);
1237 break;
1238 case REG_NUM_TX_EVENT:
1239 cs_transmit_event(sc, Event);
1240 break;
1241 case REG_NUM_BUF_EVENT:
1242 cs_buffer_event(sc, Event);
1243 break;
1244 case REG_NUM_TX_COL:
1245 case REG_NUM_RX_MISS:
1246 cs_counter_event(sc, Event);
1247 break;
1248 default:
1249 printf("%s: unknown interrupt event 0x%x\n",
1250 sc->sc_dev.dv_xname, Event);
1251 break;
1252 }
1253
1254 /* Read another event from the Interrupt Status Queue */
1255 if (sc->sc_memorymode)
1256 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1257 else
1258 Event = CS_READ_PORT(sc, PORT_ISQ);
1259 }
1260
1261 /* have handled the interupt */
1262 #if NRND > 0
1263 rnd_add_uint32(&sc->rnd_source, rndEvent);
1264 #endif
1265 return 1;
1266 }
1267
1268 void
1269 cs_counter_event(sc, cntEvent)
1270 struct cs_softc *sc;
1271 u_int16_t cntEvent;
1272 {
1273 struct ifnet *ifp;
1274 u_int16_t errorCount;
1275
1276 ifp = &sc->sc_ethercom.ec_if;
1277
1278 switch (cntEvent & REG_NUM_MASK) {
1279 case REG_NUM_TX_COL:
1280 /*
1281 * the count should be read before an overflow occurs.
1282 */
1283 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1284 /*
1285 * the tramsit event routine always checks the number of
1286 * collisions for any packet so we don't increment any
1287 * counters here, as they should already have been
1288 * considered.
1289 */
1290 break;
1291 case REG_NUM_RX_MISS:
1292 /*
1293 * the count should be read before an overflow occurs.
1294 */
1295 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1296 /*
1297 * Increment the input error count, the first 6bits are the
1298 * register id.
1299 */
1300 ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1301 break;
1302 default:
1303 /* do nothing */
1304 break;
1305 }
1306 }
1307
1308 void
1309 cs_buffer_event(sc, bufEvent)
1310 struct cs_softc *sc;
1311 u_int16_t bufEvent;
1312 {
1313 struct ifnet *ifp;
1314
1315 ifp = &sc->sc_ethercom.ec_if;
1316
1317 /*
1318 * multiple events can be in the buffer event register at one time so
1319 * a standard switch statement will not suffice, here every event
1320 * must be checked.
1321 */
1322
1323 /*
1324 * if 128 bits have been rxed by the time we get here, the dest event
1325 * will be cleared and 128 event will be set.
1326 */
1327 if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1328 cs_process_rx_early(sc);
1329 }
1330
1331 if (bufEvent & BUF_EVENT_RX_DMA) {
1332 /* process the receive data */
1333 if (sc->sc_dma_process_rx)
1334 (*sc->sc_dma_process_rx)(sc);
1335 else
1336 /* should panic? */
1337 printf("%s: unexpected dma event\n", sc->sc_dev.dv_xname);
1338 }
1339
1340 if (bufEvent & BUF_EVENT_TX_UNDR) {
1341 #if 0
1342 /*
1343 * This can happen occasionally, and it's not worth worrying
1344 * about.
1345 */
1346 printf("%s: transmit underrun (%d -> %d)\n",
1347 sc->sc_dev.dv_xname, sc->sc_xe_ent,
1348 cs_xmit_early_table[sc->sc_xe_ent].worse);
1349 #endif
1350 sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1351 sc->sc_xe_togo =
1352 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1353
1354 /* had an underrun, transmit is finished */
1355 sc->sc_txbusy = FALSE;
1356 }
1357
1358 if (bufEvent & BUF_EVENT_SW_INT) {
1359 printf("%s: software initiated interrupt\n",
1360 sc->sc_dev.dv_xname);
1361 }
1362 }
1363
1364 void
1365 cs_transmit_event(sc, txEvent)
1366 struct cs_softc *sc;
1367 u_int16_t txEvent;
1368 {
1369 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1370
1371 /* If there were any errors transmitting this frame */
1372 if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1373 TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1374 /* Increment the output error count */
1375 ifp->if_oerrors++;
1376
1377 /* Note carrier loss. */
1378 if (txEvent & TX_EVENT_LOSS_CRS)
1379 sc->sc_carrier = 0;
1380
1381 /* If debugging is enabled then log error messages */
1382 if (ifp->if_flags & IFF_DEBUG) {
1383 if (txEvent & TX_EVENT_LOSS_CRS) {
1384 printf("%s: lost carrier\n",
1385 sc->sc_dev.dv_xname);
1386 }
1387 if (txEvent & TX_EVENT_SQE_ERR) {
1388 printf("%s: SQE error\n",
1389 sc->sc_dev.dv_xname);
1390 }
1391 if (txEvent & TX_EVENT_OUT_WIN) {
1392 printf("%s: out-of-window collision\n",
1393 sc->sc_dev.dv_xname);
1394 }
1395 if (txEvent & TX_EVENT_JABBER) {
1396 printf("%s: jabber\n", sc->sc_dev.dv_xname);
1397 }
1398 if (txEvent & TX_EVENT_16_COLL) {
1399 printf("%s: 16 collisions\n",
1400 sc->sc_dev.dv_xname);
1401 }
1402 }
1403 }
1404 else {
1405 /* Transmission successful, carrier is up. */
1406 sc->sc_carrier = 1;
1407 #ifdef SHARK
1408 ledNetActive();
1409 #endif
1410 }
1411
1412 /* Add the number of collisions for this frame */
1413 if (txEvent & TX_EVENT_16_COLL) {
1414 ifp->if_collisions += 16;
1415 } else {
1416 ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1417 }
1418
1419 ifp->if_opackets++;
1420
1421 /* Transmission is no longer in progress */
1422 sc->sc_txbusy = FALSE;
1423
1424 /* If there is more to transmit */
1425 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1426 /* Start the next transmission */
1427 cs_start_output(ifp);
1428 }
1429 }
1430
1431 void
1432 cs_print_rx_errors(sc, rxEvent)
1433 struct cs_softc *sc;
1434 u_int16_t rxEvent;
1435 {
1436
1437 if (rxEvent & RX_EVENT_RUNT)
1438 printf("%s: runt\n", sc->sc_dev.dv_xname);
1439
1440 if (rxEvent & RX_EVENT_X_DATA)
1441 printf("%s: extra data\n", sc->sc_dev.dv_xname);
1442
1443 if (rxEvent & RX_EVENT_CRC_ERR) {
1444 if (rxEvent & RX_EVENT_DRIBBLE)
1445 printf("%s: alignment error\n", sc->sc_dev.dv_xname);
1446 else
1447 printf("%s: CRC error\n", sc->sc_dev.dv_xname);
1448 } else {
1449 if (rxEvent & RX_EVENT_DRIBBLE)
1450 printf("%s: dribble bits\n", sc->sc_dev.dv_xname);
1451 }
1452 }
1453
1454 void
1455 cs_receive_event(sc, rxEvent)
1456 struct cs_softc *sc;
1457 u_int16_t rxEvent;
1458 {
1459 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1460
1461 /* If the frame was not received OK */
1462 if (!(rxEvent & RX_EVENT_RX_OK)) {
1463 /* Increment the input error count */
1464 ifp->if_ierrors++;
1465
1466 /*
1467 * If debugging is enabled then log error messages.
1468 */
1469 if (ifp->if_flags & IFF_DEBUG) {
1470 if (rxEvent != REG_NUM_RX_EVENT) {
1471 cs_print_rx_errors(sc, rxEvent);
1472
1473 /*
1474 * Must read the length of all received
1475 * frames
1476 */
1477 CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1478
1479 /* Skip the received frame */
1480 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1481 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1482 RX_CFG_SKIP);
1483 } else {
1484 printf("%s: implied skip\n",
1485 sc->sc_dev.dv_xname);
1486 }
1487 }
1488 } else {
1489 /*
1490 * process the received frame and pass it up to the upper
1491 * layers.
1492 */
1493 cs_process_receive(sc);
1494 }
1495 }
1496
1497 void
1498 cs_ether_input(sc, m)
1499 struct cs_softc *sc;
1500 struct mbuf *m;
1501 {
1502 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1503
1504 ifp->if_ipackets++;
1505
1506 #if NBPFILTER > 0
1507 /*
1508 * Check if there's a BPF listener on this interface.
1509 * If so, hand off the raw packet to BPF.
1510 */
1511 if (ifp->if_bpf)
1512 bpf_mtap(ifp->if_bpf, m);
1513 #endif
1514
1515 /* Pass the packet up. */
1516 (*ifp->if_input)(ifp, m);
1517 }
1518
1519 void
1520 cs_process_receive(sc)
1521 struct cs_softc *sc;
1522 {
1523 struct ifnet *ifp;
1524 struct mbuf *m;
1525 int totlen;
1526 u_int16_t *pBuff, *pBuffLimit;
1527 int pad;
1528 unsigned int frameOffset;
1529
1530 #ifdef SHARK
1531 ledNetActive();
1532 #endif
1533
1534 ifp = &sc->sc_ethercom.ec_if;
1535
1536 /* Received a packet; carrier is up. */
1537 sc->sc_carrier = 1;
1538
1539 if (sc->sc_memorymode) {
1540 /* Initialize the frame offset */
1541 frameOffset = PKTPG_RX_LENGTH;
1542
1543 /* Get the length of the received frame */
1544 totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1545 frameOffset += 2;
1546 }
1547 else {
1548 /* drop status */
1549 CS_READ_PORT(sc, PORT_RXTX_DATA);
1550
1551 /* Get the length of the received frame */
1552 totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1553 }
1554
1555 if (totlen > ETHER_MAX_LEN) {
1556 printf("%s: invalid packet length\n", sc->sc_dev.dv_xname);
1557
1558 /* skip the received frame */
1559 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1560 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1561 return;
1562 }
1563
1564 MGETHDR(m, M_DONTWAIT, MT_DATA);
1565 if (m == 0) {
1566 printf("%s: cs_process_receive: unable to allocate mbuf\n",
1567 sc->sc_dev.dv_xname);
1568 ifp->if_ierrors++;
1569 /*
1570 * couldn't allocate an mbuf so things are not good, may as
1571 * well drop the packet I think.
1572 *
1573 * have already read the length so we should be right to skip
1574 * the packet.
1575 */
1576 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1577 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1578 return;
1579 }
1580 m->m_pkthdr.rcvif = ifp;
1581 m->m_pkthdr.len = totlen;
1582
1583 /* number of bytes to align ip header on word boundary for ipintr */
1584 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1585
1586 /*
1587 * alloc mbuf cluster if we need.
1588 * we need 1 byte spare because following
1589 * packet read loop can overrun.
1590 */
1591 if (totlen + pad + 1 > MHLEN) {
1592 MCLGET(m, M_DONTWAIT);
1593 if ((m->m_flags & M_EXT) == 0) {
1594 /* couldn't allocate an mbuf cluster */
1595 printf("%s: cs_process_receive: unable to allocate a cluster\n",
1596 sc->sc_dev.dv_xname);
1597 m_freem(m);
1598
1599 /* skip the received frame */
1600 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1601 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1602 return;
1603 }
1604 }
1605
1606 /* align ip header on word boundary for ipintr */
1607 m->m_data += pad;
1608
1609 m->m_len = totlen;
1610 pBuff = mtod(m, u_int16_t *);
1611
1612 /* now read the data from the chip */
1613 if (sc->sc_memorymode) {
1614 pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
1615 while (pBuff < pBuffLimit) {
1616 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1617 frameOffset += 2;
1618 }
1619 }
1620 else {
1621 bus_space_read_multi_2(sc->sc_iot, sc->sc_ioh, PORT_RXTX_DATA,
1622 pBuff, (totlen + 1)>>1);
1623 }
1624
1625 cs_ether_input(sc, m);
1626 }
1627
1628 void
1629 cs_process_rx_early(sc)
1630 struct cs_softc *sc;
1631 {
1632 struct ifnet *ifp;
1633 struct mbuf *m;
1634 u_int16_t frameCount, oldFrameCount;
1635 u_int16_t rxEvent;
1636 u_int16_t *pBuff;
1637 int pad;
1638 unsigned int frameOffset;
1639
1640
1641 ifp = &sc->sc_ethercom.ec_if;
1642
1643 /* Initialize the frame offset */
1644 frameOffset = PKTPG_RX_FRAME;
1645 frameCount = 0;
1646
1647 MGETHDR(m, M_DONTWAIT, MT_DATA);
1648 if (m == 0) {
1649 printf("%s: cs_process_rx_early: unable to allocate mbuf\n",
1650 sc->sc_dev.dv_xname);
1651 ifp->if_ierrors++;
1652 /*
1653 * couldn't allocate an mbuf so things are not good, may as
1654 * well drop the packet I think.
1655 *
1656 * have already read the length so we should be right to skip
1657 * the packet.
1658 */
1659 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1660 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1661 return;
1662 }
1663 m->m_pkthdr.rcvif = ifp;
1664 /*
1665 * save processing by always using a mbuf cluster, guarenteed to fit
1666 * packet
1667 */
1668 MCLGET(m, M_DONTWAIT);
1669 if ((m->m_flags & M_EXT) == 0) {
1670 /* couldn't allocate an mbuf cluster */
1671 printf("%s: cs_process_rx_early: unable to allocate a cluster\n",
1672 sc->sc_dev.dv_xname);
1673 m_freem(m);
1674 /* skip the frame */
1675 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1676 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1677 return;
1678 }
1679
1680 /* align ip header on word boundary for ipintr */
1681 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1682 m->m_data += pad;
1683
1684 /* set up the buffer pointer to point to the data area */
1685 pBuff = mtod(m, u_int16_t *);
1686
1687 /*
1688 * now read the frame byte counter until we have finished reading the
1689 * frame
1690 */
1691 oldFrameCount = 0;
1692 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1693 while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1694 for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1695 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1696 frameOffset += 2;
1697 }
1698
1699 /* read the new count from the chip */
1700 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1701 }
1702
1703 /* update the mbuf counts */
1704 m->m_len = oldFrameCount;
1705 m->m_pkthdr.len = oldFrameCount;
1706
1707 /* now check the Rx Event register */
1708 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1709
1710 if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1711 /*
1712 * do an implied skip, it seems to be more reliable than a
1713 * forced skip.
1714 */
1715 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1716 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1717
1718 /*
1719 * now read the RX_EVENT register to perform an implied skip.
1720 */
1721 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1722
1723 cs_ether_input(sc, m);
1724 } else {
1725 m_freem(m);
1726 ifp->if_ierrors++;
1727 }
1728 }
1729
1730 void
1731 cs_start_output(ifp)
1732 struct ifnet *ifp;
1733 {
1734 struct cs_softc *sc;
1735 struct mbuf *pMbuf;
1736 struct mbuf *pMbufChain;
1737 u_int16_t BusStatus;
1738 u_int16_t Length;
1739 int txLoop = 0;
1740 int dropout = 0;
1741
1742 sc = ifp->if_softc;
1743
1744 /* check that the interface is up and running */
1745 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1746 return;
1747 }
1748
1749 /* Don't interrupt a transmission in progress */
1750 if (sc->sc_txbusy) {
1751 return;
1752 }
1753
1754 /* this loop will only run through once if transmission is successful */
1755 /*
1756 * While there are packets to transmit and a transmit is not in
1757 * progress
1758 */
1759 while (sc->sc_txbusy == 0 && dropout == 0) {
1760 IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1761 if (pMbufChain == NULL)
1762 break;
1763
1764 #if NBPFILTER > 0
1765 /*
1766 * If BPF is listening on this interface, let it see the packet
1767 * before we commit it to the wire.
1768 */
1769 if (ifp->if_bpf)
1770 bpf_mtap(ifp->if_bpf, pMbufChain);
1771 #endif
1772
1773 /* Find the total length of the data to transmit */
1774 Length = 0;
1775 for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1776 Length += pMbuf->m_len;
1777
1778 do {
1779 /*
1780 * Request that the transmit be started after all
1781 * data has been copied
1782 *
1783 * In IO mode must write to the IO port not the packet
1784 * page address
1785 *
1786 * If this is changed to start transmission after a
1787 * small amount of data has been copied you tend to
1788 * get packet missed errors i think because the ISA
1789 * bus is too slow. Or possibly the copy routine is
1790 * not streamlined enough.
1791 */
1792 if (sc->sc_memorymode) {
1793 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1794 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1795 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1796 }
1797 else {
1798 CS_WRITE_PORT(sc, PORT_TX_CMD,
1799 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1800 CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1801 }
1802
1803 /*
1804 * Adjust early-transmit machinery.
1805 */
1806 if (--sc->sc_xe_togo == 0) {
1807 sc->sc_xe_ent =
1808 cs_xmit_early_table[sc->sc_xe_ent].better;
1809 sc->sc_xe_togo =
1810 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1811 }
1812 /*
1813 * Read the BusStatus register which indicates
1814 * success of the request
1815 */
1816 BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1817
1818 /*
1819 * If there was an error in the transmit bid free the
1820 * mbuf and go on. This is presuming that mbuf is
1821 * corrupt.
1822 */
1823 if (BusStatus & BUS_ST_TX_BID_ERR) {
1824 printf("%s: transmit bid error (too big)",
1825 sc->sc_dev.dv_xname);
1826
1827 /* Discard the bad mbuf chain */
1828 m_freem(pMbufChain);
1829 sc->sc_ethercom.ec_if.if_oerrors++;
1830
1831 /* Loop up to transmit the next chain */
1832 txLoop = 0;
1833 } else {
1834 if (BusStatus & BUS_ST_RDY4TXNOW) {
1835 /*
1836 * The chip is ready for transmission
1837 * now
1838 */
1839 /*
1840 * Copy the frame to the chip to
1841 * start transmission
1842 */
1843 cs_copy_tx_frame(sc, pMbufChain);
1844
1845 /* Free the mbuf chain */
1846 m_freem(pMbufChain);
1847
1848 /* Transmission is now in progress */
1849 sc->sc_txbusy = TRUE;
1850 txLoop = 0;
1851 } else {
1852 /*
1853 * if we get here we want to try
1854 * again with the same mbuf, until
1855 * the chip lets us transmit.
1856 */
1857 txLoop++;
1858 if (txLoop > CS_OUTPUT_LOOP_MAX) {
1859 /* Free the mbuf chain */
1860 m_freem(pMbufChain);
1861 /*
1862 * Transmission is not in
1863 * progress
1864 */
1865 sc->sc_txbusy = FALSE;
1866 /*
1867 * Increment the output error
1868 * count
1869 */
1870 ifp->if_oerrors++;
1871 /*
1872 * exit the routine and drop
1873 * the packet.
1874 */
1875 txLoop = 0;
1876 dropout = 1;
1877 }
1878 }
1879 }
1880 } while (txLoop);
1881 }
1882 }
1883
1884 void
1885 cs_copy_tx_frame(sc, m0)
1886 struct cs_softc *sc;
1887 struct mbuf *m0;
1888 {
1889 struct mbuf *m;
1890 int len, leftover, frameoff;
1891 u_int16_t dbuf;
1892 u_int8_t *p;
1893 #ifdef DIAGNOSTIC
1894 u_int8_t *lim;
1895 #endif
1896
1897 /* Initialize frame pointer and data port address */
1898 frameoff = PKTPG_TX_FRAME;
1899
1900 /* start out with no leftover data */
1901 leftover = 0;
1902 dbuf = 0;
1903
1904 /* Process the chain of mbufs */
1905 for (m = m0; m != NULL; m = m->m_next) {
1906 /*
1907 * Process all of the data in a single mbuf.
1908 */
1909 p = mtod(m, u_int8_t *);
1910 len = m->m_len;
1911 #ifdef DIAGNOSTIC
1912 lim = p + len;
1913 #endif
1914
1915 while (len > 0) {
1916 if (leftover) {
1917 /*
1918 * Data left over (from mbuf or realignment).
1919 * Buffer the next byte, and write it and
1920 * the leftover data out.
1921 */
1922 dbuf |= *p++ << 8;
1923 len--;
1924 if (sc->sc_memorymode) {
1925 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
1926 frameoff += 2;
1927 }
1928 else {
1929 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
1930 }
1931 leftover = 0;
1932 } else if ((long) p & 1) {
1933 /*
1934 * Misaligned data. Buffer the next byte.
1935 */
1936 dbuf = *p++;
1937 len--;
1938 leftover = 1;
1939 } else {
1940 /*
1941 * Aligned data. This is the case we like.
1942 *
1943 * Write-region out as much as we can, then
1944 * buffer the remaining byte (if any).
1945 */
1946 leftover = len & 1;
1947 len &= ~1;
1948 if (sc->sc_memorymode) {
1949 bus_space_write_region_2(sc->sc_memt, sc->sc_memh, frameoff,
1950 (u_int16_t *) p, len >> 1);
1951 frameoff += len;
1952 }
1953 else {
1954 bus_space_write_multi_2(sc->sc_iot, sc->sc_ioh,
1955 PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
1956 }
1957 p += len;
1958
1959 if (leftover)
1960 dbuf = *p++;
1961 len = 0;
1962 }
1963 }
1964 if (len < 0)
1965 panic("cs_copy_tx_frame: negative len");
1966 #ifdef DIAGNOSTIC
1967 if (p != lim)
1968 panic("cs_copy_tx_frame: p != lim");
1969 #endif
1970 }
1971 if (leftover) {
1972 if (sc->sc_memorymode) {
1973 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
1974 }
1975 else {
1976 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
1977 }
1978 }
1979 }
1980
1981 static int
1982 cs_enable(sc)
1983 struct cs_softc *sc;
1984 {
1985
1986 if (CS_IS_ENABLED(sc) == 0) {
1987 if (sc->sc_enable != NULL) {
1988 int error;
1989
1990 error = (*sc->sc_enable)(sc);
1991 if (error)
1992 return (error);
1993 }
1994 sc->sc_cfgflags |= CFGFLG_ENABLED;
1995 }
1996
1997 return (0);
1998 }
1999
2000 static void
2001 cs_disable(sc)
2002 struct cs_softc *sc;
2003 {
2004
2005 if (CS_IS_ENABLED(sc)) {
2006 if (sc->sc_disable != NULL)
2007 (*sc->sc_disable)(sc);
2008
2009 sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2010 }
2011 }
2012
2013 static void
2014 cs_stop(ifp, disable)
2015 struct ifnet *ifp;
2016 int disable;
2017 {
2018 struct cs_softc *sc = ifp->if_softc;
2019
2020 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2021 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2022 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2023 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2024
2025 if (disable) {
2026 cs_disable(sc);
2027 }
2028
2029 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2030 }
2031
2032 int
2033 cs_activate(self, act)
2034 struct device *self;
2035 enum devact act;
2036 {
2037 struct cs_softc *sc = (void *)self;
2038 int s, error = 0;
2039
2040 s = splnet();
2041 switch (act) {
2042 case DVACT_ACTIVATE:
2043 error = EOPNOTSUPP;
2044 break;
2045
2046 case DVACT_DEACTIVATE:
2047 if_deactivate(&sc->sc_ethercom.ec_if);
2048 break;
2049 }
2050 splx(s);
2051
2052 return error;
2053 }
2054
2055 static void
2056 cs_power(why, arg)
2057 int why;
2058 void *arg;
2059 {
2060 struct cs_softc *sc = arg;
2061 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2062 int s;
2063
2064 s = splnet();
2065 switch (why) {
2066 case PWR_STANDBY:
2067 case PWR_SUSPEND:
2068 cs_stop(ifp, 0);
2069 break;
2070 case PWR_RESUME:
2071 if (ifp->if_flags & IFF_UP) {
2072 cs_init(ifp);
2073 }
2074 break;
2075 case PWR_SOFTSUSPEND:
2076 case PWR_SOFTSTANDBY:
2077 case PWR_SOFTRESUME:
2078 break;
2079 }
2080 splx(s);
2081 }
2082