cs89x0.c revision 1.42 1 /* $NetBSD: cs89x0.c,v 1.42 2019/02/05 06:17:02 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2004 Christopher Gilbert
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright 1997
31 * Digital Equipment Corporation. All rights reserved.
32 *
33 * This software is furnished under license and may be used and
34 * copied only in accordance with the following terms and conditions.
35 * Subject to these conditions, you may download, copy, install,
36 * use, modify and distribute this software in source and/or binary
37 * form. No title or ownership is transferred hereby.
38 *
39 * 1) Any source code used, modified or distributed must reproduce
40 * and retain this copyright notice and list of conditions as
41 * they appear in the source file.
42 *
43 * 2) No right is granted to use any trade name, trademark, or logo of
44 * Digital Equipment Corporation. Neither the "Digital Equipment
45 * Corporation" name nor any trademark or logo of Digital Equipment
46 * Corporation may be used to endorse or promote products derived
47 * from this software without the prior written permission of
48 * Digital Equipment Corporation.
49 *
50 * 3) This software is provided "AS-IS" and any express or implied
51 * warranties, including but not limited to, any implied warranties
52 * of merchantability, fitness for a particular purpose, or
53 * non-infringement are disclaimed. In no event shall DIGITAL be
54 * liable for any damages whatsoever, and in particular, DIGITAL
55 * shall not be liable for special, indirect, consequential, or
56 * incidental damages or damages for lost profits, loss of
57 * revenue or loss of use, whether such damages arise in contract,
58 * negligence, tort, under statute, in equity, at law or otherwise,
59 * even if advised of the possibility of such damage.
60 */
61
62 /*
63 **++
64 ** FACILITY
65 **
66 ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 ** ABSTRACT
69 **
70 ** This module provides standard ethernet access for INET protocols
71 ** only.
72 **
73 ** AUTHORS
74 **
75 ** Peter Dettori SEA - Software Engineering.
76 **
77 ** CREATION DATE:
78 **
79 ** 13-Feb-1997.
80 **
81 ** MODIFICATION HISTORY (Digital):
82 **
83 ** Revision 1.27 1998/01/20 17:59:40 cgd
84 ** update for moved headers
85 **
86 ** Revision 1.26 1998/01/12 19:29:36 cgd
87 ** use arm32/isa versions of isadma code.
88 **
89 ** Revision 1.25 1997/12/12 01:35:27 cgd
90 ** convert to use new arp code (from Brini)
91 **
92 ** Revision 1.24 1997/12/10 22:31:56 cgd
93 ** trim some fat (get rid of ability to explicitly supply enet addr, since
94 ** it was never used and added a bunch of code which really doesn't belong in
95 ** an enet driver), and clean up slightly.
96 **
97 ** Revision 1.23 1997/10/06 16:42:12 cgd
98 ** copyright notices
99 **
100 ** Revision 1.22 1997/06/20 19:38:01 chaiken
101 ** fixes some smartcard problems
102 **
103 ** Revision 1.21 1997/06/10 02:56:20 grohn
104 ** Added call to ledNetActive
105 **
106 ** Revision 1.20 1997/06/05 00:47:06 dettori
107 ** Changed cs_process_rx_dma to reset and re-initialise the
108 ** ethernet chip when DMA gets out of sync, or mbufs
109 ** can't be allocated.
110 **
111 ** Revision 1.19 1997/06/03 03:09:58 dettori
112 ** Turn off sc_txbusy flag when a transmit underrun
113 ** occurs.
114 **
115 ** Revision 1.18 1997/06/02 00:04:35 dettori
116 ** redefined the transmit table to get around the nfs_timer bug while we are
117 ** looking into it further.
118 **
119 ** Also changed interrupts from EDGE to LEVEL.
120 **
121 ** Revision 1.17 1997/05/27 23:31:01 dettori
122 ** Pulled out changes to DMAMODE defines.
123 **
124 ** Revision 1.16 1997/05/23 04:25:16 cgd
125 ** reformat log so it fits in 80cols
126 **
127 ** Revision 1.15 1997/05/23 04:22:18 cgd
128 ** remove the existing copyright notice (which Peter Dettori indicated
129 ** was incorrect, copied from an existing NetBSD file only so that the
130 ** file would have a copyright notice on it, and which he'd intended to
131 ** replace). Replace it with a Digital copyright notice, cloned from
132 ** ess.c. It's not really correct either (it indicates that the source
133 ** is Digital confidential!), but is better than nothing and more
134 ** correct than what was there before.
135 **
136 ** Revision 1.14 1997/05/23 04:12:50 cgd
137 ** use an adaptive transmit start algorithm: start by telling the chip
138 ** to start transmitting after 381 bytes have been fed to it. if that
139 ** gets transmit underruns, ramp down to 1021 bytes then "whole
140 ** packet." If successful at a given level for a while, try the next
141 ** more agressive level. This code doesn't ever try to start
142 ** transmitting after 5 bytes have been sent to the NIC, because
143 ** that underruns rather regularly. The back-off and ramp-up mechanism
144 ** could probably be tuned a little bit, but this works well enough to
145 ** support > 1MB/s transmit rates on a clear ethernet (which is about
146 ** 20-25% better than the driver had previously been getting).
147 **
148 ** Revision 1.13 1997/05/22 21:06:54 cgd
149 ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
150 ** casting from u_int8_t * to u_int16_t * without worrying about alignment
151 ** issues. This would cause bogus data to be spit out for mbufs with
152 ** misaligned data. For instance, it caused the following bits to appear
153 ** on the wire:
154 ** ... etBND 1S2C .SHA(K) R ...
155 ** 11112222333344445555
156 ** which should have appeared as:
157 ** ... NetBSD 1.2C (SHARK) ...
158 ** 11112222333344445555
159 ** Note the apparent 'rotate' of the bytes in the word, which was due to
160 ** incorrect unaligned accesses. This data corruption was the cause of
161 ** incoming telnet/rlogin hangs.
162 **
163 ** Revision 1.12 1997/05/22 01:55:32 cgd
164 ** reformat log so it fits in 80cols
165 **
166 ** Revision 1.11 1997/05/22 01:50:27 cgd
167 ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 ** so packets aimed at other hosts don't get sent to ether_input().
169 ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 ** you can easily tell (`strings`) what version of the driver is in your
171 ** kernel binary.
172 ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
173 ** safe, and not really a performance win anyway. (It was only used when
174 ** setting up the multicast logical address filter, which is an
175 ** infrequent event. It could have been used in the IFF_PROMISCUOUS
176 ** address check above, but the benefit of it vs. memcmp would be
177 ** inconsequential, there.) Use memcmp() instead.
178 ** * restructure csStartOuput to avoid the following bugs in the case where
179 ** txWait was being set:
180 ** * it would accidentally drop the outgoing packet if told to wait
181 ** but the outgoing packet queue was empty.
182 ** * it would bpf_mtap() the outgoing packet multiple times (once for
183 ** each time it was told to wait), and would also recalculate
184 ** the length of the outgoing packet each time it was told to
185 ** wait.
186 ** While there, rename txWait to txLoop, since with the new structure of
187 ** the code, the latter name makes more sense.
188 **
189 ** Revision 1.10 1997/05/19 02:03:20 cgd
190 ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
191 ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
193 ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 ** as before.
195 **
196 ** Revision 1.9 1997/05/19 01:45:37 cgd
197 ** create a new function, cs_ether_input(), which does received-packet
198 ** BPF and ether_input processing. This code used to be in three places,
199 ** and centralizing it will make adding IFF_PROMISC support much easier.
200 ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 ** do copies with bus_space_write_region_2(). It's more correct, and
202 ** potentially more efficient. That function needs to be gutted (to
203 ** deal properly with alignment issues, which it currently does wrong),
204 ** however, and the change doesn't gain much, so there's no point in
205 ** enabling it now.
206 **
207 ** Revision 1.8 1997/05/19 01:17:10 cgd
208 ** fix a comment re: the setting of the TxConfig register. Clean up
209 ** interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.42 2019/02/05 06:17:02 msaitoh Exp $");
216
217 #include "opt_inet.h"
218
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228
229 #include <sys/rndsource.h>
230
231 #include <net/if.h>
232 #include <net/if_ether.h>
233 #include <net/if_media.h>
234 #include <net/bpf.h>
235
236 #ifdef INET
237 #include <netinet/in.h>
238 #include <netinet/if_inarp.h>
239 #endif
240
241 #include <sys/bus.h>
242 #include <sys/intr.h>
243
244 #include <dev/ic/cs89x0reg.h>
245 #include <dev/ic/cs89x0var.h>
246
247 #ifdef SHARK
248 #include <shark/shark/sequoia.h>
249 #endif
250
251 /*
252 * MACRO DEFINITIONS
253 */
254 #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
255
256 /*
257 * FUNCTION PROTOTYPES
258 */
259 static void cs_get_default_media(struct cs_softc *);
260 static int cs_get_params(struct cs_softc *);
261 static int cs_get_enaddr(struct cs_softc *);
262 static int cs_reset_chip(struct cs_softc *);
263 static void cs_reset(struct cs_softc *);
264 static int cs_ioctl(struct ifnet *, u_long, void *);
265 static void cs_initChip(struct cs_softc *);
266 static void cs_buffer_event(struct cs_softc *, u_int16_t);
267 static void cs_transmit_event(struct cs_softc *, u_int16_t);
268 static void cs_receive_event(struct cs_softc *, u_int16_t);
269 static void cs_process_receive(struct cs_softc *);
270 static void cs_process_rx_early(struct cs_softc *);
271 static void cs_start_output(struct ifnet *);
272 static void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
273 static void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
274 static u_int16_t cs_hash_index(char *);
275 static void cs_counter_event(struct cs_softc *, u_int16_t);
276
277 static int cs_mediachange(struct ifnet *);
278 static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
279
280 static bool cs_shutdown(device_t, int);
281 static int cs_enable(struct cs_softc *);
282 static void cs_disable(struct cs_softc *);
283 static void cs_stop(struct ifnet *, int);
284 static int cs_scan_eeprom(struct cs_softc *);
285 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, u_int16_t *);
286
287
288 /*
289 * GLOBAL DECLARATIONS
290 */
291
292 /*
293 * Xmit-early table.
294 *
295 * To get better performance, we tell the chip to start packet
296 * transmission before the whole packet is copied to the chip.
297 * However, this can fail under load. When it fails, we back off
298 * to a safer setting for a little while.
299 *
300 * txcmd is the value of txcmd used to indicate when to start transmission.
301 * better is the next 'better' state in the table.
302 * better_count is the number of output packets before transition to the
303 * better state.
304 * worse is the next 'worse' state in the table.
305 *
306 * Transition to the next worse state happens automatically when a
307 * transmittion underrun occurs.
308 */
309 struct cs_xmit_early {
310 u_int16_t txcmd;
311 int better;
312 int better_count;
313 int worse;
314 } cs_xmit_early_table[3] = {
315 { TX_CMD_START_381, 0, INT_MAX, 1, },
316 { TX_CMD_START_1021, 0, 50000, 2, },
317 { TX_CMD_START_ALL, 1, 5000, 2, },
318 };
319
320 int cs_default_media[] = {
321 IFM_ETHER|IFM_10_2,
322 IFM_ETHER|IFM_10_5,
323 IFM_ETHER|IFM_10_T,
324 IFM_ETHER|IFM_10_T|IFM_FDX,
325 };
326 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
327
328 int
329 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
330 int nmedia, int defmedia)
331 {
332 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
333 const char *chipname, *medname;
334 u_int16_t reg;
335 int i;
336
337 /* Start out in IO mode */
338 sc->sc_memorymode = FALSE;
339
340 /* make sure we're right */
341 for (i = 0; i < 10000; i++) {
342 reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
343 if (reg == EISA_NUM_CRYSTAL) {
344 break;
345 }
346 }
347 if (i == 10000) {
348 aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
349 return 1; /* XXX should panic? */
350 }
351
352 reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
353 sc->sc_prodid = reg & PROD_ID_MASK;
354 sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
355
356 switch (sc->sc_prodid) {
357 case PROD_ID_CS8900:
358 chipname = "CS8900";
359 break;
360 case PROD_ID_CS8920:
361 chipname = "CS8920";
362 break;
363 case PROD_ID_CS8920M:
364 chipname = "CS8920M";
365 break;
366 default:
367 panic("cs_attach: impossible");
368 }
369
370 /*
371 * the first thing to do is check that the mbuf cluster size is
372 * greater than the MTU for an ethernet frame. The code depends on
373 * this and to port this to a OS where this was not the case would
374 * not be straightforward.
375 *
376 * we need 1 byte spare because our
377 * packet read loop can overrun.
378 * and we may need pad bytes to align ip header.
379 */
380 if (MCLBYTES < ETHER_MAX_LEN + 1 +
381 ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
382 printf("%s: MCLBYTES too small for Ethernet frame\n",
383 device_xname(sc->sc_dev));
384 return 1;
385 }
386
387 /* Start out not transmitting */
388 sc->sc_txbusy = FALSE;
389
390 /* Set up early transmit threshhold */
391 sc->sc_xe_ent = 0;
392 sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
393
394 /* Initialize ifnet structure. */
395 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
396 ifp->if_softc = sc;
397 ifp->if_start = cs_start_output;
398 ifp->if_init = cs_init;
399 ifp->if_ioctl = cs_ioctl;
400 ifp->if_stop = cs_stop;
401 ifp->if_watchdog = NULL; /* no watchdog at this stage */
402 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
403 IFQ_SET_READY(&ifp->if_snd);
404
405 /* Initialize ifmedia structures. */
406 ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
407
408 if (media != NULL) {
409 for (i = 0; i < nmedia; i++)
410 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
411 ifmedia_set(&sc->sc_media, defmedia);
412 } else {
413 for (i = 0; i < cs_default_nmedia; i++)
414 ifmedia_add(&sc->sc_media, cs_default_media[i],
415 0, NULL);
416 cs_get_default_media(sc);
417 }
418
419 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
420 if (cs_scan_eeprom(sc) == CS_ERROR) {
421 /* failed to scan the eeprom, pretend there isn't an eeprom */
422 aprint_error_dev(sc->sc_dev, "unable to scan EEPROM\n");
423 sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
424 }
425 }
426
427 if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
428 /* Get parameters from the EEPROM */
429 if (cs_get_params(sc) == CS_ERROR) {
430 aprint_error_dev(sc->sc_dev,
431 "unable to get settings from EEPROM\n");
432 return 1;
433 }
434 }
435
436 if (enaddr != NULL)
437 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
438 else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
439 /* Get and store the Ethernet address */
440 if (cs_get_enaddr(sc) == CS_ERROR) {
441 aprint_error_dev(sc->sc_dev,
442 "unable to read Ethernet address\n");
443 return 1;
444 }
445 } else {
446 #if 1
447 int j;
448 uint v;
449
450 for (j = 0; j < 6; j += 2) {
451 v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
452 sc->sc_enaddr[j + 0] = v;
453 sc->sc_enaddr[j + 1] = v >> 8;
454 }
455 #else
456 printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
457 return 1;
458 #endif
459 }
460
461 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
462 case IFM_10_2:
463 medname = "BNC";
464 break;
465 case IFM_10_5:
466 medname = "AUI";
467 break;
468 case IFM_10_T:
469 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
470 medname = "UTP <full-duplex>";
471 else
472 medname = "UTP";
473 break;
474 default:
475 panic("cs_attach: impossible");
476 }
477 printf("%s: %s rev. %c, address %s, media %s\n",
478 device_xname(sc->sc_dev),
479 chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
480 medname);
481
482 if (sc->sc_dma_attach)
483 (*sc->sc_dma_attach)(sc);
484
485 /* Attach the interface. */
486 if_attach(ifp);
487 if_deferred_start_init(ifp, NULL);
488 ether_ifattach(ifp, sc->sc_enaddr);
489
490 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
491 RND_TYPE_NET, RND_FLAG_DEFAULT);
492 sc->sc_cfgflags |= CFGFLG_ATTACHED;
493
494 if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
495 pmf_class_network_register(sc->sc_dev, ifp);
496 else
497 aprint_error_dev(sc->sc_dev,
498 "couldn't establish power handler\n");
499
500 /* Reset the chip */
501 if (cs_reset_chip(sc) == CS_ERROR) {
502 aprint_error_dev(sc->sc_dev, "reset failed\n");
503 cs_detach(sc);
504 return 1;
505 }
506
507 return 0;
508 }
509
510 int
511 cs_detach(struct cs_softc *sc)
512 {
513 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
514
515 if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
516 rnd_detach_source(&sc->rnd_source);
517 ether_ifdetach(ifp);
518 if_detach(ifp);
519 sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
520 }
521
522 #if 0
523 /*
524 * XXX not necessary
525 */
526 if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
527 isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
528 isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
529 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
530 sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
531 }
532 #endif
533
534 pmf_device_deregister(sc->sc_dev);
535
536 return 0;
537 }
538
539 bool
540 cs_shutdown(device_t self, int howto)
541 {
542 struct cs_softc *sc;
543
544 sc = device_private(self);
545 cs_reset(sc);
546
547 return true;
548 }
549
550 void
551 cs_get_default_media(struct cs_softc *sc)
552 {
553 u_int16_t adp_cfg, xmit_ctl;
554
555 if (cs_verify_eeprom(sc) == CS_ERROR) {
556 aprint_error_dev(sc->sc_dev,
557 "cs_get_default_media: EEPROM missing or bad\n");
558 goto fakeit;
559 }
560
561 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
562 aprint_error_dev(sc->sc_dev,
563 "unable to read adapter config from EEPROM\n");
564 goto fakeit;
565 }
566
567 if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
568 aprint_error_dev(sc->sc_dev,
569 "unable to read transmit control from EEPROM\n");
570 goto fakeit;
571 }
572
573 switch (adp_cfg & ADPTR_CFG_MEDIA) {
574 case ADPTR_CFG_AUI:
575 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
576 break;
577 case ADPTR_CFG_10BASE2:
578 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
579 break;
580 case ADPTR_CFG_10BASET:
581 default:
582 if (xmit_ctl & XMIT_CTL_FDX)
583 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
584 else
585 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
586 break;
587 }
588 return;
589
590 fakeit:
591 aprint_error_dev(sc->sc_dev,
592 "WARNING: default media setting may be inaccurate\n");
593 /* XXX Arbitrary... */
594 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
595 }
596
597 /*
598 * cs_scan_eeprom
599 *
600 * Attempt to take a complete copy of the eeprom into main memory.
601 * this will allow faster parsing of the eeprom data.
602 *
603 * Only tested against a 8920M's eeprom, but the data sheet for the
604 * 8920A indicates that is uses the same layout.
605 */
606 int
607 cs_scan_eeprom(struct cs_softc *sc)
608 {
609 u_int16_t result;
610 int i;
611 int eeprom_size;
612 u_int8_t checksum = 0;
613
614 if (cs_verify_eeprom(sc) == CS_ERROR) {
615 aprint_error_dev(sc->sc_dev,
616 "cs_scan_params: EEPROM missing or bad\n");
617 return (CS_ERROR);
618 }
619
620 /*
621 * read the 0th word from the eeprom, it will tell us the length
622 * and if the eeprom is valid
623 */
624 cs_read_eeprom(sc, 0, &result);
625
626 /* check the eeprom signature */
627 if ((result & 0xE000) != 0xA000) {
628 /* empty eeprom */
629 return (CS_ERROR);
630 }
631
632 /*
633 * take the eeprom size (note the read value doesn't include the header
634 * word)
635 */
636 eeprom_size = (result & 0xff) + 2;
637
638 sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
639 if (sc->eeprom_data == NULL) {
640 /* no memory, treat this as if there's no eeprom */
641 return (CS_ERROR);
642 }
643
644 sc->eeprom_size = eeprom_size;
645
646 /* read the eeprom into the buffer, also calculate the checksum */
647 for (i = 0; i < (eeprom_size >> 1); i++) {
648 cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
649 checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
650 checksum += (sc->eeprom_data[i] & 0x00ff);
651 }
652
653 /*
654 * validate checksum calculation, the sum of all the bytes should be 0,
655 * as the high byte of the last word is the 2's complement of the
656 * sum to that point.
657 */
658 if (checksum != 0) {
659 aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
660 return (CS_ERROR);
661 }
662
663 return (CS_OK);
664 }
665
666 static int
667 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, u_int16_t *pValue)
668 {
669 int x, maxword;
670
671 /* Check that we have eeprom data */
672 if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
673 return (CS_ERROR);
674
675 /*
676 * We only want to read the data words, the last word contains the
677 * checksum
678 */
679 maxword = (sc->eeprom_size - 2) >> 1;
680
681 /* start 1 word in, as the first word is the length and signature */
682 x = 1;
683
684 while ( x < (maxword)) {
685 u_int16_t header;
686 int group_size;
687 int offset;
688 int offset_max;
689
690 /* read in the group header word */
691 header = sc->eeprom_data[x];
692 x++; /* skip group header */
693
694 /*
695 * size of group in words is in the top 4 bits, note that it
696 * is one less than the number of words
697 */
698 group_size = header & 0xF000;
699
700 /*
701 * CS8900 Data sheet says this should be 0x01ff,
702 * but my cs8920 eeprom has higher offsets,
703 * perhaps the 8920 allows higher offsets, otherwise
704 * it's writing to places that it shouldn't
705 */
706 /* work out the offsets this group covers */
707 offset = header & 0x0FFF;
708 offset_max = offset + (group_size << 1);
709
710 /* check if the pkgpg we're after is in this group */
711 if ((offset <= pktpg) && (pktpg <= offset_max)) {
712 /* the pkgpg value we want is in here */
713 int eeprom_location;
714
715 eeprom_location = ((pktpg - offset) >> 1) ;
716
717 *pValue = sc->eeprom_data[x + eeprom_location];
718 return (CS_OK);
719 } else {
720 /* skip this group (+ 1 for first entry) */
721 x += group_size + 1;
722 }
723 }
724
725 /*
726 * if we've fallen out here then we don't have a value in the EEPROM
727 * for this pktpg so return an error
728 */
729 return (CS_ERROR);
730 }
731
732 int
733 cs_get_params(struct cs_softc *sc)
734 {
735 u_int16_t isaConfig;
736 u_int16_t adapterConfig;
737
738 if (cs_verify_eeprom(sc) == CS_ERROR) {
739 aprint_error_dev(sc->sc_dev,
740 "cs_get_params: EEPROM missing or bad\n");
741 return (CS_ERROR);
742 }
743
744 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
745 /* Get ISA configuration from the EEPROM */
746 if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
747 == CS_ERROR) {
748 /* eeprom doesn't have this value, use data sheet default */
749 isaConfig = 0x0017;
750 }
751
752 /* Get adapter configuration from the EEPROM */
753 if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL, &adapterConfig)
754 == CS_ERROR) {
755 /* eeprom doesn't have this value, use data sheet default */
756 adapterConfig = 0x0015;
757 }
758
759 /* Copy the USE_SA flag */
760 if (isaConfig & BUS_CTL_USE_SA)
761 sc->sc_cfgflags |= CFGFLG_USE_SA;
762
763 /* Copy the IO Channel Ready flag */
764 if (isaConfig & BUS_CTL_IOCHRDY)
765 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
766
767 /* Copy the DC/DC Polarity flag */
768 if (adapterConfig & SELF_CTL_HCB1)
769 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
770 } else {
771 /* Get ISA configuration from the EEPROM */
772 if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
773 goto eeprom_bad;
774
775 /* Get adapter configuration from the EEPROM */
776 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
777 goto eeprom_bad;
778
779 /* Copy the USE_SA flag */
780 if (isaConfig & ISA_CFG_USE_SA)
781 sc->sc_cfgflags |= CFGFLG_USE_SA;
782
783 /* Copy the IO Channel Ready flag */
784 if (isaConfig & ISA_CFG_IOCHRDY)
785 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
786
787 /* Copy the DC/DC Polarity flag */
788 if (adapterConfig & ADPTR_CFG_DCDC_POL)
789 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
790 }
791
792 return (CS_OK);
793 eeprom_bad:
794 aprint_error_dev(sc->sc_dev,
795 "cs_get_params: unable to read from EEPROM\n");
796 return (CS_ERROR);
797 }
798
799 int
800 cs_get_enaddr(struct cs_softc *sc)
801 {
802 uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
803 int i;
804
805 if (cs_verify_eeprom(sc) == CS_ERROR) {
806 aprint_error_dev(sc->sc_dev,
807 "cs_get_enaddr: EEPROM missing or bad\n");
808 return (CS_ERROR);
809 }
810
811 /* Get Ethernet address from the EEPROM */
812 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
813 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
814 == CS_ERROR)
815 goto eeprom_bad;
816 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
817 == CS_ERROR)
818 goto eeprom_bad;
819 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
820 == CS_ERROR)
821 goto eeprom_bad;
822 } else {
823 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
824 goto eeprom_bad;
825 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
826 goto eeprom_bad;
827 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
828 goto eeprom_bad;
829 }
830
831 for (i = 0; i < __arraycount(myea); i++) {
832 sc->sc_enaddr[i * 2 + 0] = myea[i];
833 sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
834 }
835
836 return (CS_OK);
837
838 eeprom_bad:
839 aprint_error_dev(sc->sc_dev,
840 "cs_get_enaddr: unable to read from EEPROM\n");
841 return (CS_ERROR);
842 }
843
844 int
845 cs_reset_chip(struct cs_softc *sc)
846 {
847 int intState;
848 int x;
849
850 /* Disable interrupts at the CPU so reset command is atomic */
851 intState = splnet();
852
853 /*
854 * We are now resetting the chip
855 *
856 * A spurious interrupt is generated by the chip when it is reset. This
857 * variable informs the interrupt handler to ignore this interrupt.
858 */
859 sc->sc_resetting = TRUE;
860
861 /* Issue a reset command to the chip */
862 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
863
864 /* Re-enable interrupts at the CPU */
865 splx(intState);
866
867 /* The chip is always in IO mode after a reset */
868 sc->sc_memorymode = FALSE;
869
870 /* If transmission was in progress, it is not now */
871 sc->sc_txbusy = FALSE;
872
873 /*
874 * there was a delay(125); here, but it seems uneccesary 125 usec is
875 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
876 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
877 * should be sufficient.
878 */
879
880 /* Transition SBHE to switch chip from 8-bit to 16-bit */
881 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
882 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
883 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
884 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
885
886 /* Wait until the EEPROM is not busy */
887 for (x = 0; x < MAXLOOP; x++) {
888 if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
889 break;
890 }
891
892 if (x == MAXLOOP)
893 return CS_ERROR;
894
895 /* Wait until initialization is done */
896 for (x = 0; x < MAXLOOP; x++) {
897 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
898 break;
899 }
900
901 if (x == MAXLOOP)
902 return CS_ERROR;
903
904 /* Reset is no longer in progress */
905 sc->sc_resetting = FALSE;
906
907 return CS_OK;
908 }
909
910 int
911 cs_verify_eeprom(struct cs_softc *sc)
912 {
913 u_int16_t self_status;
914
915 /* Verify that the EEPROM is present and OK */
916 self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
917 if (((self_status & SELF_ST_EEP_PRES) &&
918 (self_status & SELF_ST_EEP_OK)) == 0)
919 return (CS_ERROR);
920
921 return (CS_OK);
922 }
923
924 int
925 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
926 {
927 int x;
928
929 /* Ensure that the EEPROM is not busy */
930 for (x = 0; x < MAXLOOP; x++) {
931 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
932 SELF_ST_SI_BUSY))
933 break;
934 }
935
936 if (x == MAXLOOP)
937 return (CS_ERROR);
938
939 /* Issue the command to read the offset within the EEPROM */
940 CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
941 offset | EEPROM_CMD_READ);
942
943 /* Wait until the command is completed */
944 for (x = 0; x < MAXLOOP; x++) {
945 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
946 SELF_ST_SI_BUSY))
947 break;
948 }
949
950 if (x == MAXLOOP)
951 return (CS_ERROR);
952
953 /* Get the EEPROM data from the EEPROM Data register */
954 *pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
955
956 return (CS_OK);
957 }
958
959 void
960 cs_initChip(struct cs_softc *sc)
961 {
962 u_int16_t busCtl;
963 u_int16_t selfCtl;
964 u_int16_t v;
965 u_int16_t isaId;
966 int i;
967 int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
968
969 /* Disable reception and transmission of frames */
970 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
971 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
972 ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
973
974 /* Disable interrupt at the chip */
975 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
976 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
977
978 /* If IOCHRDY is enabled then clear the bit in the busCtl register */
979 busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
980 if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
981 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
982 busCtl & ~BUS_CTL_IOCHRDY);
983 } else {
984 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
985 busCtl | BUS_CTL_IOCHRDY);
986 }
987
988 /* Set the Line Control register to match the media type */
989 if (media == IFM_10_T)
990 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
991 else
992 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
993
994 /*
995 * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
996 * enable the DC/DC converter
997 */
998 selfCtl = SELF_CTL_HC1E;
999
1000 /* If the media type is 10Base2 */
1001 if (media == IFM_10_2) {
1002 /*
1003 * Enable the DC/DC converter if it has a low enable.
1004 */
1005 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1006 /*
1007 * Set the HCB1 bit, which causes the HC1 pin to go
1008 * low.
1009 */
1010 selfCtl |= SELF_CTL_HCB1;
1011 } else { /* Media type is 10BaseT or AUI */
1012 /*
1013 * Disable the DC/DC converter if it has a high enable.
1014 */
1015 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1016 /*
1017 * Set the HCB1 bit, which causes the HC1 pin to go
1018 * low.
1019 */
1020 selfCtl |= SELF_CTL_HCB1;
1021 }
1022 }
1023 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1024
1025 /* enable normal link pulse */
1026 if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1027 CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1028
1029 /* Enable full-duplex, if appropriate */
1030 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1031 CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1032
1033 /* RX_CTL set in cs_set_ladr_filt(), below */
1034
1035 /* enable all transmission interrupts */
1036 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1037
1038 /* Accept all receive interrupts */
1039 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1040
1041 /*
1042 * Configure Operational Modes
1043 *
1044 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
1045 * a better way to do it because the card has a counter which can be
1046 * read to update the RX_MISS counter. This saves many interrupts.
1047 *
1048 * I have turned on the tx and rx overflow interrupts to counter using
1049 * the receive miss interrupt. This is a better estimate of errors
1050 * and requires lower system overhead.
1051 */
1052 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1053 BUF_CFG_RX_DMA_IE);
1054
1055 if (sc->sc_dma_chipinit)
1056 (*sc->sc_dma_chipinit)(sc);
1057
1058 /* If memory mode is enabled */
1059 if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1060 /* If external logic is present for address decoding */
1061 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1062 /*
1063 * Program the external logic to decode address bits
1064 * SA20-SA23
1065 */
1066 CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1067 ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1068 EEPROM_CMD_ELSEL);
1069 }
1070
1071 /*
1072 * Write the packet page base physical address to the memory
1073 * base register.
1074 */
1075 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1076 sc->sc_pktpgaddr & 0xFFFF);
1077 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1078 sc->sc_pktpgaddr >> 16);
1079 busCtl = BUS_CTL_MEM_MODE;
1080
1081 /* tell the chip to read the addresses off the SA pins */
1082 if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1083 busCtl |= BUS_CTL_USE_SA;
1084 }
1085 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1086 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1087
1088 /* We are in memory mode now! */
1089 sc->sc_memorymode = TRUE;
1090
1091 /*
1092 * wait here (10ms) for the chip to swap over. this is the
1093 * maximum time that this could take.
1094 */
1095 delay(10000);
1096
1097 /* Verify that we can read from the chip */
1098 isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1099
1100 /*
1101 * As a last minute sanity check before actually using mapped
1102 * memory we verify that we can read the isa number from the
1103 * chip in memory mode.
1104 */
1105 if (isaId != EISA_NUM_CRYSTAL) {
1106 aprint_error_dev(sc->sc_dev,
1107 "failed to enable memory mode\n");
1108 sc->sc_memorymode = FALSE;
1109 } else {
1110 /*
1111 * we are in memory mode so if we aren't using DMA,
1112 * then program the chip to interrupt early.
1113 */
1114 if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1115 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1116 BUF_CFG_RX_DEST_IE |
1117 BUF_CFG_RX_MISS_OVER_IE |
1118 BUF_CFG_TX_COL_OVER_IE);
1119 }
1120 }
1121
1122 }
1123
1124 /* Put Ethernet address into the Individual Address register */
1125 for (i = 0; i < 6; i += 2) {
1126 v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1127 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1128 }
1129
1130 if (sc->sc_irq != -1) {
1131 /* Set the interrupt level in the chip */
1132 if (sc->sc_prodid == PROD_ID_CS8900) {
1133 if (sc->sc_irq == 5) {
1134 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1135 } else {
1136 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
1137 }
1138 }
1139 else { /* CS8920 */
1140 CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
1141 }
1142 }
1143
1144 /* write the multicast mask to the address filter register */
1145 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1146
1147 /* Enable reception and transmission of frames */
1148 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1149 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1150 LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1151
1152 /* Enable interrupt at the chip */
1153 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1154 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1155 }
1156
1157 int
1158 cs_init(struct ifnet *ifp)
1159 {
1160 int intState;
1161 int error = CS_OK;
1162 struct cs_softc *sc = ifp->if_softc;
1163
1164 if (cs_enable(sc))
1165 goto out;
1166
1167 cs_stop(ifp, 0);
1168
1169 intState = splnet();
1170
1171 #if 0
1172 /* Mark the interface as down */
1173 sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1174 #endif
1175
1176 #ifdef CS_DEBUG
1177 /* Enable debugging */
1178 sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1179 #endif
1180
1181 /* Reset the chip */
1182 if ((error = cs_reset_chip(sc)) == CS_OK) {
1183 /* Initialize the chip */
1184 cs_initChip(sc);
1185
1186 /* Mark the interface as running */
1187 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1188 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1189 sc->sc_ethercom.ec_if.if_timer = 0;
1190
1191 /* Assume we have carrier until we are told otherwise. */
1192 sc->sc_carrier = 1;
1193 } else {
1194 aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1195 }
1196
1197 splx(intState);
1198 out:
1199 if (error == CS_OK)
1200 return 0;
1201 return EIO;
1202 }
1203
1204 void
1205 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1206 {
1207 struct ifnet *ifp = &ec->ec_if;
1208 struct ether_multi *enm;
1209 struct ether_multistep step;
1210 u_int16_t af[4];
1211 u_int16_t port, mask, index;
1212
1213 /*
1214 * Set up multicast address filter by passing all multicast addresses
1215 * through a crc generator, and then using the high order 6 bits as an
1216 * index into the 64 bit logical address filter. The high order bit
1217 * selects the word, while the rest of the bits select the bit within
1218 * the word.
1219 */
1220 if (ifp->if_flags & IFF_PROMISC) {
1221 /* accept all valid frames. */
1222 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1223 RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1224 RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1225 ifp->if_flags |= IFF_ALLMULTI;
1226 return;
1227 }
1228
1229 /*
1230 * accept frames if a. crc valid, b. individual address match c.
1231 * broadcast address,and d. multicast addresses matched in the hash
1232 * filter
1233 */
1234 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1235 RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1236
1237
1238 /*
1239 * start off with all multicast flag clear, set it if we need to
1240 * later, otherwise we will leave it.
1241 */
1242 ifp->if_flags &= ~IFF_ALLMULTI;
1243 af[0] = af[1] = af[2] = af[3] = 0x0000;
1244
1245 /*
1246 * Loop through all the multicast addresses unless we get a range of
1247 * addresses, in which case we will just accept all packets.
1248 * Justification for this is given in the next comment.
1249 */
1250 ETHER_FIRST_MULTI(step, ec, enm);
1251 while (enm != NULL) {
1252 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1253 sizeof enm->enm_addrlo)) {
1254 /*
1255 * We must listen to a range of multicast addresses.
1256 * For now, just accept all multicasts, rather than
1257 * trying to set only those filter bits needed to match
1258 * the range. (At this time, the only use of address
1259 * ranges is for IP multicast routing, for which the
1260 * range is big enough to require all bits set.)
1261 */
1262 ifp->if_flags |= IFF_ALLMULTI;
1263 af[0] = af[1] = af[2] = af[3] = 0xffff;
1264 break;
1265 } else {
1266 /*
1267 * we have got an individual address so just set that
1268 * bit.
1269 */
1270 index = cs_hash_index(enm->enm_addrlo);
1271
1272 /* Set the bit the Logical address filter. */
1273 port = (u_int16_t) (index >> 4);
1274 mask = (u_int16_t) (1 << (index & 0xf));
1275 af[port] |= mask;
1276
1277 ETHER_NEXT_MULTI(step, enm);
1278 }
1279 }
1280
1281 /* now program the chip with the addresses */
1282 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1283 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1284 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1285 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1286 return;
1287 }
1288
1289 u_int16_t
1290 cs_hash_index(char *addr)
1291 {
1292 uint32_t crc;
1293 uint16_t hash_code;
1294
1295 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1296
1297 hash_code = crc >> 26;
1298 return (hash_code);
1299 }
1300
1301 void
1302 cs_reset(struct cs_softc *sc)
1303 {
1304
1305 /* Mark the interface as down */
1306 sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1307
1308 /* Reset the chip */
1309 cs_reset_chip(sc);
1310 }
1311
1312 int
1313 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1314 {
1315 struct cs_softc *sc = ifp->if_softc;
1316 struct ifreq *ifr = data;
1317 int state;
1318 int result;
1319
1320 state = splnet();
1321
1322 result = 0; /* only set if something goes wrong */
1323
1324 switch (cmd) {
1325 case SIOCGIFMEDIA:
1326 case SIOCSIFMEDIA:
1327 result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1328 break;
1329
1330 default:
1331 result = ether_ioctl(ifp, cmd, data);
1332 if (result == ENETRESET) {
1333 if (ifp->if_flags & IFF_RUNNING) {
1334 /*
1335 * Multicast list has changed. Set the
1336 * hardware filter accordingly.
1337 */
1338 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1339 }
1340 result = 0;
1341 }
1342 break;
1343 }
1344
1345 splx(state);
1346
1347 return result;
1348 }
1349
1350 int
1351 cs_mediachange(struct ifnet *ifp)
1352 {
1353
1354 /*
1355 * Current media is already set up. Just reset the interface
1356 * to let the new value take hold.
1357 */
1358 cs_init(ifp);
1359 return (0);
1360 }
1361
1362 void
1363 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1364 {
1365 struct cs_softc *sc = ifp->if_softc;
1366
1367 /*
1368 * The currently selected media is always the active media.
1369 */
1370 ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1371
1372 if (ifp->if_flags & IFF_UP) {
1373 /* Interface up, status is valid. */
1374 ifmr->ifm_status = IFM_AVALID |
1375 (sc->sc_carrier ? IFM_ACTIVE : 0);
1376 }
1377 else ifmr->ifm_status = 0;
1378 }
1379
1380 int
1381 cs_intr(void *arg)
1382 {
1383 struct cs_softc *sc = arg;
1384 u_int16_t Event;
1385 u_int16_t rndEvent;
1386
1387 /*printf("cs_intr %p\n", sc);*/
1388 /* Ignore any interrupts that happen while the chip is being reset */
1389 if (sc->sc_resetting) {
1390 printf("%s: cs_intr: reset in progress\n",
1391 device_xname(sc->sc_dev));
1392 return 1;
1393 }
1394
1395 /* Read an event from the Interrupt Status Queue */
1396 if (sc->sc_memorymode)
1397 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1398 else
1399 Event = CS_READ_PORT(sc, PORT_ISQ);
1400
1401 if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1402 return 0; /* not ours */
1403
1404 rndEvent = Event;
1405
1406 /* Process all the events in the Interrupt Status Queue */
1407 while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1408 /* Dispatch to an event handler based on the register number */
1409 switch (Event & REG_NUM_MASK) {
1410 case REG_NUM_RX_EVENT:
1411 cs_receive_event(sc, Event);
1412 break;
1413 case REG_NUM_TX_EVENT:
1414 cs_transmit_event(sc, Event);
1415 break;
1416 case REG_NUM_BUF_EVENT:
1417 cs_buffer_event(sc, Event);
1418 break;
1419 case REG_NUM_TX_COL:
1420 case REG_NUM_RX_MISS:
1421 cs_counter_event(sc, Event);
1422 break;
1423 default:
1424 printf("%s: unknown interrupt event 0x%x\n",
1425 device_xname(sc->sc_dev), Event);
1426 break;
1427 }
1428
1429 /* Read another event from the Interrupt Status Queue */
1430 if (sc->sc_memorymode)
1431 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1432 else
1433 Event = CS_READ_PORT(sc, PORT_ISQ);
1434 }
1435
1436 /* have handled the interrupt */
1437 rnd_add_uint32(&sc->rnd_source, rndEvent);
1438 return 1;
1439 }
1440
1441 void
1442 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1443 {
1444 struct ifnet *ifp;
1445 u_int16_t errorCount;
1446
1447 ifp = &sc->sc_ethercom.ec_if;
1448
1449 switch (cntEvent & REG_NUM_MASK) {
1450 case REG_NUM_TX_COL:
1451 /*
1452 * the count should be read before an overflow occurs.
1453 */
1454 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1455 /*
1456 * the tramsit event routine always checks the number of
1457 * collisions for any packet so we don't increment any
1458 * counters here, as they should already have been
1459 * considered.
1460 */
1461 break;
1462 case REG_NUM_RX_MISS:
1463 /*
1464 * the count should be read before an overflow occurs.
1465 */
1466 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1467 /*
1468 * Increment the input error count, the first 6bits are the
1469 * register id.
1470 */
1471 ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1472 break;
1473 default:
1474 /* do nothing */
1475 break;
1476 }
1477 }
1478
1479 void
1480 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1481 {
1482
1483 /*
1484 * multiple events can be in the buffer event register at one time so
1485 * a standard switch statement will not suffice, here every event
1486 * must be checked.
1487 */
1488
1489 /*
1490 * if 128 bits have been rxed by the time we get here, the dest event
1491 * will be cleared and 128 event will be set.
1492 */
1493 if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1494 cs_process_rx_early(sc);
1495 }
1496
1497 if (bufEvent & BUF_EVENT_RX_DMA) {
1498 /* process the receive data */
1499 if (sc->sc_dma_process_rx)
1500 (*sc->sc_dma_process_rx)(sc);
1501 else
1502 /* should panic? */
1503 aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1504 }
1505
1506 if (bufEvent & BUF_EVENT_TX_UNDR) {
1507 #if 0
1508 /*
1509 * This can happen occasionally, and it's not worth worrying
1510 * about.
1511 */
1512 printf("%s: transmit underrun (%d -> %d)\n",
1513 device_xname(sc->sc_dev), sc->sc_xe_ent,
1514 cs_xmit_early_table[sc->sc_xe_ent].worse);
1515 #endif
1516 sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1517 sc->sc_xe_togo =
1518 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1519
1520 /* had an underrun, transmit is finished */
1521 sc->sc_txbusy = FALSE;
1522 }
1523
1524 if (bufEvent & BUF_EVENT_SW_INT) {
1525 printf("%s: software initiated interrupt\n",
1526 device_xname(sc->sc_dev));
1527 }
1528 }
1529
1530 void
1531 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1532 {
1533 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1534
1535 /* If there were any errors transmitting this frame */
1536 if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1537 TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1538 /* Increment the output error count */
1539 ifp->if_oerrors++;
1540
1541 /* Note carrier loss. */
1542 if (txEvent & TX_EVENT_LOSS_CRS)
1543 sc->sc_carrier = 0;
1544
1545 /* If debugging is enabled then log error messages */
1546 if (ifp->if_flags & IFF_DEBUG) {
1547 if (txEvent & TX_EVENT_LOSS_CRS) {
1548 aprint_error_dev(sc->sc_dev, "lost carrier\n");
1549 }
1550 if (txEvent & TX_EVENT_SQE_ERR) {
1551 aprint_error_dev(sc->sc_dev, "SQE error\n");
1552 }
1553 if (txEvent & TX_EVENT_OUT_WIN) {
1554 aprint_error_dev(sc->sc_dev,
1555 "out-of-window collision\n");
1556 }
1557 if (txEvent & TX_EVENT_JABBER) {
1558 aprint_error_dev(sc->sc_dev, "jabber\n");
1559 }
1560 if (txEvent & TX_EVENT_16_COLL) {
1561 aprint_error_dev(sc->sc_dev, "16 collisions\n");
1562 }
1563 }
1564 }
1565 else {
1566 /* Transmission successful, carrier is up. */
1567 sc->sc_carrier = 1;
1568 #ifdef SHARK
1569 ledNetActive();
1570 #endif
1571 }
1572
1573 /* Add the number of collisions for this frame */
1574 if (txEvent & TX_EVENT_16_COLL) {
1575 ifp->if_collisions += 16;
1576 } else {
1577 ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1578 }
1579
1580 ifp->if_opackets++;
1581
1582 /* Transmission is no longer in progress */
1583 sc->sc_txbusy = FALSE;
1584
1585 /* If there is more to transmit, start the next transmission */
1586 if_schedule_deferred_start(ifp);
1587 }
1588
1589 void
1590 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1591 {
1592
1593 if (rxEvent & RX_EVENT_RUNT)
1594 aprint_error_dev(sc->sc_dev, "runt\n");
1595
1596 if (rxEvent & RX_EVENT_X_DATA)
1597 aprint_error_dev(sc->sc_dev, "extra data\n");
1598
1599 if (rxEvent & RX_EVENT_CRC_ERR) {
1600 if (rxEvent & RX_EVENT_DRIBBLE)
1601 aprint_error_dev(sc->sc_dev, "alignment error\n");
1602 else
1603 aprint_error_dev(sc->sc_dev, "CRC error\n");
1604 } else {
1605 if (rxEvent & RX_EVENT_DRIBBLE)
1606 aprint_error_dev(sc->sc_dev, "dribble bits\n");
1607 }
1608 }
1609
1610 void
1611 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1612 {
1613 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1614
1615 /* If the frame was not received OK */
1616 if (!(rxEvent & RX_EVENT_RX_OK)) {
1617 /* Increment the input error count */
1618 ifp->if_ierrors++;
1619
1620 /*
1621 * If debugging is enabled then log error messages.
1622 */
1623 if (ifp->if_flags & IFF_DEBUG) {
1624 if (rxEvent != REG_NUM_RX_EVENT) {
1625 cs_print_rx_errors(sc, rxEvent);
1626
1627 /*
1628 * Must read the length of all received
1629 * frames
1630 */
1631 CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1632
1633 /* Skip the received frame */
1634 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1635 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1636 RX_CFG_SKIP);
1637 } else {
1638 aprint_error_dev(sc->sc_dev, "implied skip\n");
1639 }
1640 }
1641 } else {
1642 /*
1643 * process the received frame and pass it up to the upper
1644 * layers.
1645 */
1646 cs_process_receive(sc);
1647 }
1648 }
1649
1650 void
1651 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1652 {
1653 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1654
1655 /* Pass the packet up. */
1656 if_percpuq_enqueue(ifp->if_percpuq, m);
1657 }
1658
1659 void
1660 cs_process_receive(struct cs_softc *sc)
1661 {
1662 struct ifnet *ifp;
1663 struct mbuf *m;
1664 int totlen;
1665 u_int16_t *pBuff, *pBuffLimit;
1666 int pad;
1667 unsigned int frameOffset = 0; /* XXX: gcc */
1668
1669 #ifdef SHARK
1670 ledNetActive();
1671 #endif
1672
1673 ifp = &sc->sc_ethercom.ec_if;
1674
1675 /* Received a packet; carrier is up. */
1676 sc->sc_carrier = 1;
1677
1678 if (sc->sc_memorymode) {
1679 /* Initialize the frame offset */
1680 frameOffset = PKTPG_RX_LENGTH;
1681
1682 /* Get the length of the received frame */
1683 totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1684 frameOffset += 2;
1685 }
1686 else {
1687 /* drop status */
1688 CS_READ_PORT(sc, PORT_RXTX_DATA);
1689
1690 /* Get the length of the received frame */
1691 totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1692 }
1693
1694 if (totlen > ETHER_MAX_LEN) {
1695 aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1696 totlen);
1697
1698 /* skip the received frame */
1699 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1700 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1701 return;
1702 }
1703
1704 MGETHDR(m, M_DONTWAIT, MT_DATA);
1705 if (m == 0) {
1706 aprint_error_dev(sc->sc_dev,
1707 "cs_process_receive: unable to allocate mbuf\n");
1708 ifp->if_ierrors++;
1709 /*
1710 * couldn't allocate an mbuf so things are not good, may as
1711 * well drop the packet I think.
1712 *
1713 * have already read the length so we should be right to skip
1714 * the packet.
1715 */
1716 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1717 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1718 return;
1719 }
1720 m_set_rcvif(m, ifp);
1721 m->m_pkthdr.len = totlen;
1722
1723 /* number of bytes to align ip header on word boundary for ipintr */
1724 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1725
1726 /*
1727 * alloc mbuf cluster if we need.
1728 * we need 1 byte spare because following
1729 * packet read loop can overrun.
1730 */
1731 if (totlen + pad + 1 > MHLEN) {
1732 MCLGET(m, M_DONTWAIT);
1733 if ((m->m_flags & M_EXT) == 0) {
1734 /* couldn't allocate an mbuf cluster */
1735 aprint_error_dev(sc->sc_dev,
1736 "cs_process_receive: "
1737 "unable to allocate a cluster\n");
1738 m_freem(m);
1739
1740 /* skip the received frame */
1741 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1742 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1743 return;
1744 }
1745 }
1746
1747 /* align ip header on word boundary for ipintr */
1748 m->m_data += pad;
1749
1750 m->m_len = totlen;
1751 pBuff = mtod(m, u_int16_t *);
1752
1753 /* now read the data from the chip */
1754 if (sc->sc_memorymode) {
1755 pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
1756 while (pBuff < pBuffLimit) {
1757 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1758 frameOffset += 2;
1759 }
1760 }
1761 else {
1762 IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1763 }
1764
1765 cs_ether_input(sc, m);
1766 }
1767
1768 void
1769 cs_process_rx_early(struct cs_softc *sc)
1770 {
1771 struct ifnet *ifp;
1772 struct mbuf *m;
1773 u_int16_t frameCount, oldFrameCount;
1774 u_int16_t rxEvent;
1775 u_int16_t *pBuff;
1776 int pad;
1777 unsigned int frameOffset;
1778
1779
1780 ifp = &sc->sc_ethercom.ec_if;
1781
1782 /* Initialize the frame offset */
1783 frameOffset = PKTPG_RX_FRAME;
1784 frameCount = 0;
1785
1786 MGETHDR(m, M_DONTWAIT, MT_DATA);
1787 if (m == 0) {
1788 aprint_error_dev(sc->sc_dev,
1789 "cs_process_rx_early: unable to allocate mbuf\n");
1790 ifp->if_ierrors++;
1791 /*
1792 * couldn't allocate an mbuf so things are not good, may as
1793 * well drop the packet I think.
1794 *
1795 * have already read the length so we should be right to skip
1796 * the packet.
1797 */
1798 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1799 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1800 return;
1801 }
1802 m_set_rcvif(m, ifp);
1803 /*
1804 * save processing by always using a mbuf cluster, guaranteed to fit
1805 * packet
1806 */
1807 MCLGET(m, M_DONTWAIT);
1808 if ((m->m_flags & M_EXT) == 0) {
1809 /* couldn't allocate an mbuf cluster */
1810 aprint_error_dev(sc->sc_dev,
1811 "cs_process_rx_early: unable to allocate a cluster\n");
1812 m_freem(m);
1813 /* skip the frame */
1814 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1815 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1816 return;
1817 }
1818
1819 /* align ip header on word boundary for ipintr */
1820 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1821 m->m_data += pad;
1822
1823 /* set up the buffer pointer to point to the data area */
1824 pBuff = mtod(m, u_int16_t *);
1825
1826 /*
1827 * now read the frame byte counter until we have finished reading the
1828 * frame
1829 */
1830 oldFrameCount = 0;
1831 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1832 while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1833 for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1834 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1835 frameOffset += 2;
1836 }
1837
1838 /* read the new count from the chip */
1839 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1840 }
1841
1842 /* update the mbuf counts */
1843 m->m_len = oldFrameCount;
1844 m->m_pkthdr.len = oldFrameCount;
1845
1846 /* now check the Rx Event register */
1847 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1848
1849 if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1850 /*
1851 * do an implied skip, it seems to be more reliable than a
1852 * forced skip.
1853 */
1854 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1855 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1856
1857 /*
1858 * now read the RX_EVENT register to perform an implied skip.
1859 */
1860 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1861
1862 cs_ether_input(sc, m);
1863 } else {
1864 m_freem(m);
1865 ifp->if_ierrors++;
1866 }
1867 }
1868
1869 void
1870 cs_start_output(struct ifnet *ifp)
1871 {
1872 struct cs_softc *sc;
1873 struct mbuf *pMbuf;
1874 struct mbuf *pMbufChain;
1875 u_int16_t BusStatus;
1876 u_int16_t Length;
1877 int txLoop = 0;
1878 int dropout = 0;
1879
1880 sc = ifp->if_softc;
1881
1882 /* check that the interface is up and running */
1883 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1884 return;
1885 }
1886
1887 /* Don't interrupt a transmission in progress */
1888 if (sc->sc_txbusy) {
1889 return;
1890 }
1891
1892 /* this loop will only run through once if transmission is successful */
1893 /*
1894 * While there are packets to transmit and a transmit is not in
1895 * progress
1896 */
1897 while (sc->sc_txbusy == 0 && dropout == 0) {
1898 IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1899 if (pMbufChain == NULL)
1900 break;
1901
1902 /*
1903 * If BPF is listening on this interface, let it see the packet
1904 * before we commit it to the wire.
1905 */
1906 bpf_mtap(ifp, pMbufChain, BPF_D_OUT);
1907
1908 /* Find the total length of the data to transmit */
1909 Length = 0;
1910 for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1911 Length += pMbuf->m_len;
1912
1913 do {
1914 /*
1915 * Request that the transmit be started after all
1916 * data has been copied
1917 *
1918 * In IO mode must write to the IO port not the packet
1919 * page address
1920 *
1921 * If this is changed to start transmission after a
1922 * small amount of data has been copied you tend to
1923 * get packet missed errors i think because the ISA
1924 * bus is too slow. Or possibly the copy routine is
1925 * not streamlined enough.
1926 */
1927 if (sc->sc_memorymode) {
1928 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1929 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1930 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1931 }
1932 else {
1933 CS_WRITE_PORT(sc, PORT_TX_CMD,
1934 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1935 CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1936 }
1937
1938 /*
1939 * Adjust early-transmit machinery.
1940 */
1941 if (--sc->sc_xe_togo == 0) {
1942 sc->sc_xe_ent =
1943 cs_xmit_early_table[sc->sc_xe_ent].better;
1944 sc->sc_xe_togo =
1945 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1946 }
1947 /*
1948 * Read the BusStatus register which indicates
1949 * success of the request
1950 */
1951 BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1952
1953 /*
1954 * If there was an error in the transmit bid free the
1955 * mbuf and go on. This is presuming that mbuf is
1956 * corrupt.
1957 */
1958 if (BusStatus & BUS_ST_TX_BID_ERR) {
1959 aprint_error_dev(sc->sc_dev,
1960 "transmit bid error (too big)");
1961
1962 /* Discard the bad mbuf chain */
1963 m_freem(pMbufChain);
1964 sc->sc_ethercom.ec_if.if_oerrors++;
1965
1966 /* Loop up to transmit the next chain */
1967 txLoop = 0;
1968 } else {
1969 if (BusStatus & BUS_ST_RDY4TXNOW) {
1970 /*
1971 * The chip is ready for transmission
1972 * now
1973 */
1974 /*
1975 * Copy the frame to the chip to
1976 * start transmission
1977 */
1978 cs_copy_tx_frame(sc, pMbufChain);
1979
1980 /* Free the mbuf chain */
1981 m_freem(pMbufChain);
1982
1983 /* Transmission is now in progress */
1984 sc->sc_txbusy = TRUE;
1985 txLoop = 0;
1986 } else {
1987 /*
1988 * if we get here we want to try
1989 * again with the same mbuf, until
1990 * the chip lets us transmit.
1991 */
1992 txLoop++;
1993 if (txLoop > CS_OUTPUT_LOOP_MAX) {
1994 /* Free the mbuf chain */
1995 m_freem(pMbufChain);
1996 /*
1997 * Transmission is not in
1998 * progress
1999 */
2000 sc->sc_txbusy = FALSE;
2001 /*
2002 * Increment the output error
2003 * count
2004 */
2005 ifp->if_oerrors++;
2006 /*
2007 * exit the routine and drop
2008 * the packet.
2009 */
2010 txLoop = 0;
2011 dropout = 1;
2012 }
2013 }
2014 }
2015 } while (txLoop);
2016 }
2017 }
2018
2019 void
2020 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2021 {
2022 struct mbuf *m;
2023 int len, leftover, frameoff;
2024 u_int16_t dbuf;
2025 u_int8_t *p;
2026 #ifdef DIAGNOSTIC
2027 u_int8_t *lim;
2028 #endif
2029
2030 /* Initialize frame pointer and data port address */
2031 frameoff = PKTPG_TX_FRAME;
2032
2033 /* start out with no leftover data */
2034 leftover = 0;
2035 dbuf = 0;
2036
2037 /* Process the chain of mbufs */
2038 for (m = m0; m != NULL; m = m->m_next) {
2039 /*
2040 * Process all of the data in a single mbuf.
2041 */
2042 p = mtod(m, u_int8_t *);
2043 len = m->m_len;
2044 #ifdef DIAGNOSTIC
2045 lim = p + len;
2046 #endif
2047
2048 while (len > 0) {
2049 if (leftover) {
2050 /*
2051 * Data left over (from mbuf or realignment).
2052 * Buffer the next byte, and write it and
2053 * the leftover data out.
2054 */
2055 dbuf |= *p++ << 8;
2056 len--;
2057 if (sc->sc_memorymode) {
2058 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2059 frameoff += 2;
2060 }
2061 else {
2062 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2063 }
2064 leftover = 0;
2065 } else if ((long) p & 1) {
2066 /*
2067 * Misaligned data. Buffer the next byte.
2068 */
2069 dbuf = *p++;
2070 len--;
2071 leftover = 1;
2072 } else {
2073 /*
2074 * Aligned data. This is the case we like.
2075 *
2076 * Write-region out as much as we can, then
2077 * buffer the remaining byte (if any).
2078 */
2079 leftover = len & 1;
2080 len &= ~1;
2081 if (sc->sc_memorymode) {
2082 MEM_WRITE_REGION_2(sc, frameoff,
2083 (u_int16_t *) p, len >> 1);
2084 frameoff += len;
2085 }
2086 else {
2087 IO_WRITE_MULTI_2(sc,
2088 PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
2089 }
2090 p += len;
2091
2092 if (leftover)
2093 dbuf = *p++;
2094 len = 0;
2095 }
2096 }
2097 if (len < 0)
2098 panic("cs_copy_tx_frame: negative len");
2099 #ifdef DIAGNOSTIC
2100 if (p != lim)
2101 panic("cs_copy_tx_frame: p != lim");
2102 #endif
2103 }
2104 if (leftover) {
2105 if (sc->sc_memorymode) {
2106 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2107 }
2108 else {
2109 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2110 }
2111 }
2112 }
2113
2114 static int
2115 cs_enable(struct cs_softc *sc)
2116 {
2117
2118 if (CS_IS_ENABLED(sc) == 0) {
2119 if (sc->sc_enable != NULL) {
2120 int error;
2121
2122 error = (*sc->sc_enable)(sc);
2123 if (error)
2124 return (error);
2125 }
2126 sc->sc_cfgflags |= CFGFLG_ENABLED;
2127 }
2128
2129 return (0);
2130 }
2131
2132 static void
2133 cs_disable(struct cs_softc *sc)
2134 {
2135
2136 if (CS_IS_ENABLED(sc)) {
2137 if (sc->sc_disable != NULL)
2138 (*sc->sc_disable)(sc);
2139
2140 sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2141 }
2142 }
2143
2144 static void
2145 cs_stop(struct ifnet *ifp, int disable)
2146 {
2147 struct cs_softc *sc = ifp->if_softc;
2148
2149 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2150 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2151 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2152 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2153
2154 if (disable) {
2155 cs_disable(sc);
2156 }
2157
2158 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2159 }
2160
2161 int
2162 cs_activate(device_t self, enum devact act)
2163 {
2164 struct cs_softc *sc = device_private(self);
2165
2166 switch (act) {
2167 case DVACT_DEACTIVATE:
2168 if_deactivate(&sc->sc_ethercom.ec_if);
2169 return 0;
2170 default:
2171 return EOPNOTSUPP;
2172 }
2173 }
2174