cs89x0.c revision 1.43 1 /* $NetBSD: cs89x0.c,v 1.43 2019/04/25 10:08:45 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2004 Christopher Gilbert
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright 1997
31 * Digital Equipment Corporation. All rights reserved.
32 *
33 * This software is furnished under license and may be used and
34 * copied only in accordance with the following terms and conditions.
35 * Subject to these conditions, you may download, copy, install,
36 * use, modify and distribute this software in source and/or binary
37 * form. No title or ownership is transferred hereby.
38 *
39 * 1) Any source code used, modified or distributed must reproduce
40 * and retain this copyright notice and list of conditions as
41 * they appear in the source file.
42 *
43 * 2) No right is granted to use any trade name, trademark, or logo of
44 * Digital Equipment Corporation. Neither the "Digital Equipment
45 * Corporation" name nor any trademark or logo of Digital Equipment
46 * Corporation may be used to endorse or promote products derived
47 * from this software without the prior written permission of
48 * Digital Equipment Corporation.
49 *
50 * 3) This software is provided "AS-IS" and any express or implied
51 * warranties, including but not limited to, any implied warranties
52 * of merchantability, fitness for a particular purpose, or
53 * non-infringement are disclaimed. In no event shall DIGITAL be
54 * liable for any damages whatsoever, and in particular, DIGITAL
55 * shall not be liable for special, indirect, consequential, or
56 * incidental damages or damages for lost profits, loss of
57 * revenue or loss of use, whether such damages arise in contract,
58 * negligence, tort, under statute, in equity, at law or otherwise,
59 * even if advised of the possibility of such damage.
60 */
61
62 /*
63 **++
64 ** FACILITY
65 **
66 ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 ** ABSTRACT
69 **
70 ** This module provides standard ethernet access for INET protocols
71 ** only.
72 **
73 ** AUTHORS
74 **
75 ** Peter Dettori SEA - Software Engineering.
76 **
77 ** CREATION DATE:
78 **
79 ** 13-Feb-1997.
80 **
81 ** MODIFICATION HISTORY (Digital):
82 **
83 ** Revision 1.27 1998/01/20 17:59:40 cgd
84 ** update for moved headers
85 **
86 ** Revision 1.26 1998/01/12 19:29:36 cgd
87 ** use arm32/isa versions of isadma code.
88 **
89 ** Revision 1.25 1997/12/12 01:35:27 cgd
90 ** convert to use new arp code (from Brini)
91 **
92 ** Revision 1.24 1997/12/10 22:31:56 cgd
93 ** trim some fat (get rid of ability to explicitly supply enet addr, since
94 ** it was never used and added a bunch of code which really doesn't belong in
95 ** an enet driver), and clean up slightly.
96 **
97 ** Revision 1.23 1997/10/06 16:42:12 cgd
98 ** copyright notices
99 **
100 ** Revision 1.22 1997/06/20 19:38:01 chaiken
101 ** fixes some smartcard problems
102 **
103 ** Revision 1.21 1997/06/10 02:56:20 grohn
104 ** Added call to ledNetActive
105 **
106 ** Revision 1.20 1997/06/05 00:47:06 dettori
107 ** Changed cs_process_rx_dma to reset and re-initialise the
108 ** ethernet chip when DMA gets out of sync, or mbufs
109 ** can't be allocated.
110 **
111 ** Revision 1.19 1997/06/03 03:09:58 dettori
112 ** Turn off sc_txbusy flag when a transmit underrun
113 ** occurs.
114 **
115 ** Revision 1.18 1997/06/02 00:04:35 dettori
116 ** redefined the transmit table to get around the nfs_timer bug while we are
117 ** looking into it further.
118 **
119 ** Also changed interrupts from EDGE to LEVEL.
120 **
121 ** Revision 1.17 1997/05/27 23:31:01 dettori
122 ** Pulled out changes to DMAMODE defines.
123 **
124 ** Revision 1.16 1997/05/23 04:25:16 cgd
125 ** reformat log so it fits in 80cols
126 **
127 ** Revision 1.15 1997/05/23 04:22:18 cgd
128 ** remove the existing copyright notice (which Peter Dettori indicated
129 ** was incorrect, copied from an existing NetBSD file only so that the
130 ** file would have a copyright notice on it, and which he'd intended to
131 ** replace). Replace it with a Digital copyright notice, cloned from
132 ** ess.c. It's not really correct either (it indicates that the source
133 ** is Digital confidential!), but is better than nothing and more
134 ** correct than what was there before.
135 **
136 ** Revision 1.14 1997/05/23 04:12:50 cgd
137 ** use an adaptive transmit start algorithm: start by telling the chip
138 ** to start transmitting after 381 bytes have been fed to it. if that
139 ** gets transmit underruns, ramp down to 1021 bytes then "whole
140 ** packet." If successful at a given level for a while, try the next
141 ** more agressive level. This code doesn't ever try to start
142 ** transmitting after 5 bytes have been sent to the NIC, because
143 ** that underruns rather regularly. The back-off and ramp-up mechanism
144 ** could probably be tuned a little bit, but this works well enough to
145 ** support > 1MB/s transmit rates on a clear ethernet (which is about
146 ** 20-25% better than the driver had previously been getting).
147 **
148 ** Revision 1.13 1997/05/22 21:06:54 cgd
149 ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
150 ** casting from uint8_t * to uint16_t * without worrying about alignment
151 ** issues. This would cause bogus data to be spit out for mbufs with
152 ** misaligned data. For instance, it caused the following bits to appear
153 ** on the wire:
154 ** ... etBND 1S2C .SHA(K) R ...
155 ** 11112222333344445555
156 ** which should have appeared as:
157 ** ... NetBSD 1.2C (SHARK) ...
158 ** 11112222333344445555
159 ** Note the apparent 'rotate' of the bytes in the word, which was due to
160 ** incorrect unaligned accesses. This data corruption was the cause of
161 ** incoming telnet/rlogin hangs.
162 **
163 ** Revision 1.12 1997/05/22 01:55:32 cgd
164 ** reformat log so it fits in 80cols
165 **
166 ** Revision 1.11 1997/05/22 01:50:27 cgd
167 ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 ** so packets aimed at other hosts don't get sent to ether_input().
169 ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 ** you can easily tell (`strings`) what version of the driver is in your
171 ** kernel binary.
172 ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
173 ** safe, and not really a performance win anyway. (It was only used when
174 ** setting up the multicast logical address filter, which is an
175 ** infrequent event. It could have been used in the IFF_PROMISCUOUS
176 ** address check above, but the benefit of it vs. memcmp would be
177 ** inconsequential, there.) Use memcmp() instead.
178 ** * restructure csStartOuput to avoid the following bugs in the case where
179 ** txWait was being set:
180 ** * it would accidentally drop the outgoing packet if told to wait
181 ** but the outgoing packet queue was empty.
182 ** * it would bpf_mtap() the outgoing packet multiple times (once for
183 ** each time it was told to wait), and would also recalculate
184 ** the length of the outgoing packet each time it was told to
185 ** wait.
186 ** While there, rename txWait to txLoop, since with the new structure of
187 ** the code, the latter name makes more sense.
188 **
189 ** Revision 1.10 1997/05/19 02:03:20 cgd
190 ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
191 ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
193 ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 ** as before.
195 **
196 ** Revision 1.9 1997/05/19 01:45:37 cgd
197 ** create a new function, cs_ether_input(), which does received-packet
198 ** BPF and ether_input processing. This code used to be in three places,
199 ** and centralizing it will make adding IFF_PROMISC support much easier.
200 ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 ** do copies with bus_space_write_region_2(). It's more correct, and
202 ** potentially more efficient. That function needs to be gutted (to
203 ** deal properly with alignment issues, which it currently does wrong),
204 ** however, and the change doesn't gain much, so there's no point in
205 ** enabling it now.
206 **
207 ** Revision 1.8 1997/05/19 01:17:10 cgd
208 ** fix a comment re: the setting of the TxConfig register. Clean up
209 ** interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.43 2019/04/25 10:08:45 msaitoh Exp $");
216
217 #include "opt_inet.h"
218
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228
229 #include <sys/rndsource.h>
230
231 #include <net/if.h>
232 #include <net/if_ether.h>
233 #include <net/if_media.h>
234 #include <net/bpf.h>
235
236 #ifdef INET
237 #include <netinet/in.h>
238 #include <netinet/if_inarp.h>
239 #endif
240
241 #include <sys/bus.h>
242 #include <sys/intr.h>
243
244 #include <dev/ic/cs89x0reg.h>
245 #include <dev/ic/cs89x0var.h>
246
247 #ifdef SHARK
248 #include <shark/shark/sequoia.h>
249 #endif
250
251 /*
252 * MACRO DEFINITIONS
253 */
254 #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
255
256 /*
257 * FUNCTION PROTOTYPES
258 */
259 static void cs_get_default_media(struct cs_softc *);
260 static int cs_get_params(struct cs_softc *);
261 static int cs_get_enaddr(struct cs_softc *);
262 static int cs_reset_chip(struct cs_softc *);
263 static void cs_reset(struct cs_softc *);
264 static int cs_ioctl(struct ifnet *, u_long, void *);
265 static void cs_initChip(struct cs_softc *);
266 static void cs_buffer_event(struct cs_softc *, uint16_t);
267 static void cs_transmit_event(struct cs_softc *, uint16_t);
268 static void cs_receive_event(struct cs_softc *, uint16_t);
269 static void cs_process_receive(struct cs_softc *);
270 static void cs_process_rx_early(struct cs_softc *);
271 static void cs_start_output(struct ifnet *);
272 static void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
273 static void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
274 static uint16_t cs_hash_index(char *);
275 static void cs_counter_event(struct cs_softc *, uint16_t);
276
277 static int cs_mediachange(struct ifnet *);
278 static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
279
280 static bool cs_shutdown(device_t, int);
281 static int cs_enable(struct cs_softc *);
282 static void cs_disable(struct cs_softc *);
283 static void cs_stop(struct ifnet *, int);
284 static int cs_scan_eeprom(struct cs_softc *);
285 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, uint16_t *);
286
287
288 /*
289 * GLOBAL DECLARATIONS
290 */
291
292 /*
293 * Xmit-early table.
294 *
295 * To get better performance, we tell the chip to start packet
296 * transmission before the whole packet is copied to the chip.
297 * However, this can fail under load. When it fails, we back off
298 * to a safer setting for a little while.
299 *
300 * txcmd is the value of txcmd used to indicate when to start transmission.
301 * better is the next 'better' state in the table.
302 * better_count is the number of output packets before transition to the
303 * better state.
304 * worse is the next 'worse' state in the table.
305 *
306 * Transition to the next worse state happens automatically when a
307 * transmittion underrun occurs.
308 */
309 struct cs_xmit_early {
310 uint16_t txcmd;
311 int better;
312 int better_count;
313 int worse;
314 } cs_xmit_early_table[3] = {
315 { TX_CMD_START_381, 0, INT_MAX, 1, },
316 { TX_CMD_START_1021, 0, 50000, 2, },
317 { TX_CMD_START_ALL, 1, 5000, 2, },
318 };
319
320 int cs_default_media[] = {
321 IFM_ETHER | IFM_10_2,
322 IFM_ETHER | IFM_10_5,
323 IFM_ETHER | IFM_10_T,
324 IFM_ETHER | IFM_10_T | IFM_FDX,
325 };
326 int cs_default_nmedia = __arraycount(cs_default_media);
327
328 int
329 cs_attach(struct cs_softc *sc, uint8_t *enaddr, int *media,
330 int nmedia, int defmedia)
331 {
332 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
333 const char *chipname, *medname;
334 uint16_t reg;
335 int i;
336
337 /* Start out in IO mode */
338 sc->sc_memorymode = FALSE;
339
340 /* Make sure we're right */
341 for (i = 0; i < 10000; i++) {
342 reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
343 if (reg == EISA_NUM_CRYSTAL)
344 break;
345 }
346 if (i == 10000) {
347 aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
348 return 1; /* XXX should panic? */
349 }
350
351 reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
352 sc->sc_prodid = reg & PROD_ID_MASK;
353 sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
354
355 switch (sc->sc_prodid) {
356 case PROD_ID_CS8900:
357 chipname = "CS8900";
358 break;
359 case PROD_ID_CS8920:
360 chipname = "CS8920";
361 break;
362 case PROD_ID_CS8920M:
363 chipname = "CS8920M";
364 break;
365 default:
366 panic("cs_attach: impossible");
367 }
368
369 /*
370 * The first thing to do is check that the mbuf cluster size is
371 * greater than the MTU for an ethernet frame. The code depends on
372 * this and to port this to a OS where this was not the case would
373 * not be straightforward.
374 *
375 * We need 1 byte spare because our packet read loop can overrun.
376 * and we may need pad bytes to align ip header.
377 */
378 if (MCLBYTES < ETHER_MAX_LEN + 1 + ALIGN(sizeof(struct ether_header))
379 - sizeof(struct ether_header)) {
380 printf("%s: MCLBYTES too small for Ethernet frame\n",
381 device_xname(sc->sc_dev));
382 return 1;
383 }
384
385 /* Start out not transmitting */
386 sc->sc_txbusy = FALSE;
387
388 /* Set up early transmit threshhold */
389 sc->sc_xe_ent = 0;
390 sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
391
392 /* Initialize ifnet structure. */
393 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
394 ifp->if_softc = sc;
395 ifp->if_start = cs_start_output;
396 ifp->if_init = cs_init;
397 ifp->if_ioctl = cs_ioctl;
398 ifp->if_stop = cs_stop;
399 ifp->if_watchdog = NULL; /* No watchdog at this stage */
400 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
401 IFQ_SET_READY(&ifp->if_snd);
402
403 /* Initialize ifmedia structures. */
404 ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
405
406 if (media != NULL) {
407 for (i = 0; i < nmedia; i++)
408 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
409 ifmedia_set(&sc->sc_media, defmedia);
410 } else {
411 for (i = 0; i < cs_default_nmedia; i++)
412 ifmedia_add(&sc->sc_media, cs_default_media[i],
413 0, NULL);
414 cs_get_default_media(sc);
415 }
416
417 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
418 if (cs_scan_eeprom(sc) == CS_ERROR) {
419 /*
420 * Failed to scan the eeprom, pretend there isn't an
421 * eeprom
422 */
423 aprint_error_dev(sc->sc_dev,
424 "unable to scan EEPROM\n");
425 sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
426 }
427 }
428
429 if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
430 /* Get parameters from the EEPROM */
431 if (cs_get_params(sc) == CS_ERROR) {
432 aprint_error_dev(sc->sc_dev,
433 "unable to get settings from EEPROM\n");
434 return 1;
435 }
436 }
437
438 if (enaddr != NULL)
439 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
440 else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
441 /* Get and store the Ethernet address */
442 if (cs_get_enaddr(sc) == CS_ERROR) {
443 aprint_error_dev(sc->sc_dev,
444 "unable to read Ethernet address\n");
445 return 1;
446 }
447 } else {
448 #if 1
449 int j;
450 uint v;
451
452 for (j = 0; j < 6; j += 2) {
453 v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
454 sc->sc_enaddr[j + 0] = v;
455 sc->sc_enaddr[j + 1] = v >> 8;
456 }
457 #else
458 printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
459 return 1;
460 #endif
461 }
462
463 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
464 case IFM_10_2:
465 medname = "BNC";
466 break;
467 case IFM_10_5:
468 medname = "AUI";
469 break;
470 case IFM_10_T:
471 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
472 medname = "UTP <full-duplex>";
473 else
474 medname = "UTP";
475 break;
476 default:
477 panic("cs_attach: impossible");
478 }
479 printf("%s: %s rev. %c, address %s, media %s\n",
480 device_xname(sc->sc_dev),
481 chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
482 medname);
483
484 if (sc->sc_dma_attach)
485 (*sc->sc_dma_attach)(sc);
486
487 /* Attach the interface. */
488 if_attach(ifp);
489 if_deferred_start_init(ifp, NULL);
490 ether_ifattach(ifp, sc->sc_enaddr);
491
492 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
493 RND_TYPE_NET, RND_FLAG_DEFAULT);
494 sc->sc_cfgflags |= CFGFLG_ATTACHED;
495
496 if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
497 pmf_class_network_register(sc->sc_dev, ifp);
498 else
499 aprint_error_dev(sc->sc_dev,
500 "couldn't establish power handler\n");
501
502 /* Reset the chip */
503 if (cs_reset_chip(sc) == CS_ERROR) {
504 aprint_error_dev(sc->sc_dev, "reset failed\n");
505 cs_detach(sc);
506 return 1;
507 }
508
509 return 0;
510 }
511
512 int
513 cs_detach(struct cs_softc *sc)
514 {
515 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
516
517 if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
518 rnd_detach_source(&sc->rnd_source);
519 ether_ifdetach(ifp);
520 if_detach(ifp);
521 sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
522 }
523
524 #if 0
525 /* XXX not necessary */
526 if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
527 isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase,
528 sc->sc_dmasize);
529 isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr,
530 sc->sc_dmasize);
531 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
532 sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
533 }
534 #endif
535
536 pmf_device_deregister(sc->sc_dev);
537
538 return 0;
539 }
540
541 bool
542 cs_shutdown(device_t self, int howto)
543 {
544 struct cs_softc *sc;
545
546 sc = device_private(self);
547 cs_reset(sc);
548
549 return true;
550 }
551
552 void
553 cs_get_default_media(struct cs_softc *sc)
554 {
555 uint16_t adp_cfg, xmit_ctl;
556
557 if (cs_verify_eeprom(sc) == CS_ERROR) {
558 aprint_error_dev(sc->sc_dev,
559 "cs_get_default_media: EEPROM missing or bad\n");
560 goto fakeit;
561 }
562
563 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
564 aprint_error_dev(sc->sc_dev,
565 "unable to read adapter config from EEPROM\n");
566 goto fakeit;
567 }
568
569 if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
570 aprint_error_dev(sc->sc_dev,
571 "unable to read transmit control from EEPROM\n");
572 goto fakeit;
573 }
574
575 switch (adp_cfg & ADPTR_CFG_MEDIA) {
576 case ADPTR_CFG_AUI:
577 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
578 break;
579 case ADPTR_CFG_10BASE2:
580 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
581 break;
582 case ADPTR_CFG_10BASET:
583 default:
584 if (xmit_ctl & XMIT_CTL_FDX)
585 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
586 else
587 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
588 break;
589 }
590 return;
591
592 fakeit:
593 aprint_error_dev(sc->sc_dev,
594 "WARNING: default media setting may be inaccurate\n");
595 /* XXX Arbitrary... */
596 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
597 }
598
599 /*
600 * cs_scan_eeprom
601 *
602 * Attempt to take a complete copy of the eeprom into main memory.
603 * this will allow faster parsing of the eeprom data.
604 *
605 * Only tested against a 8920M's eeprom, but the data sheet for the
606 * 8920A indicates that is uses the same layout.
607 */
608 int
609 cs_scan_eeprom(struct cs_softc *sc)
610 {
611 uint16_t result;
612 int i;
613 int eeprom_size;
614 uint8_t checksum = 0;
615
616 if (cs_verify_eeprom(sc) == CS_ERROR) {
617 aprint_error_dev(sc->sc_dev,
618 "cs_scan_params: EEPROM missing or bad\n");
619 return CS_ERROR;
620 }
621
622 /*
623 * Read the 0th word from the eeprom, it will tell us the length
624 * and if the eeprom is valid
625 */
626 cs_read_eeprom(sc, 0, &result);
627
628 /* Check the eeprom signature */
629 if ((result & 0xE000) != 0xA000) {
630 /* Empty eeprom */
631 return CS_ERROR;
632 }
633
634 /*
635 * Take the eeprom size (note the read value doesn't include the header
636 * word)
637 */
638 eeprom_size = (result & 0xff) + 2;
639
640 sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
641 if (sc->eeprom_data == NULL) {
642 /* No memory, treat this as if there's no eeprom */
643 return CS_ERROR;
644 }
645
646 sc->eeprom_size = eeprom_size;
647
648 /* Read the eeprom into the buffer, also calculate the checksum */
649 for (i = 0; i < (eeprom_size >> 1); i++) {
650 cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
651 checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
652 checksum += (sc->eeprom_data[i] & 0x00ff);
653 }
654
655 /*
656 * Validate checksum calculation, the sum of all the bytes should be 0,
657 * as the high byte of the last word is the 2's complement of the
658 * sum to that point.
659 */
660 if (checksum != 0) {
661 aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
662 return CS_ERROR;
663 }
664
665 return CS_OK;
666 }
667
668 static int
669 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, uint16_t *pValue)
670 {
671 int x, maxword;
672
673 /* Check that we have eeprom data */
674 if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
675 return CS_ERROR;
676
677 /*
678 * We only want to read the data words, the last word contains the
679 * checksum
680 */
681 maxword = (sc->eeprom_size - 2) >> 1;
682
683 /* Start 1 word in, as the first word is the length and signature */
684 x = 1;
685
686 while ( x < (maxword)) {
687 uint16_t header;
688 int group_size;
689 int offset;
690 int offset_max;
691
692 /* Read in the group header word */
693 header = sc->eeprom_data[x];
694 x++; /* Skip group header */
695
696 /*
697 * Size of group in words is in the top 4 bits, note that it
698 * is one less than the number of words
699 */
700 group_size = header & 0xF000;
701
702 /*
703 * CS8900 Data sheet says this should be 0x01ff,
704 * but my cs8920 eeprom has higher offsets,
705 * perhaps the 8920 allows higher offsets, otherwise
706 * it's writing to places that it shouldn't
707 */
708 /* Work out the offsets this group covers */
709 offset = header & 0x0FFF;
710 offset_max = offset + (group_size << 1);
711
712 /* Check if the pkgpg we're after is in this group */
713 if ((offset <= pktpg) && (pktpg <= offset_max)) {
714 /* The pkgpg value we want is in here */
715 int eeprom_location;
716
717 eeprom_location = ((pktpg - offset) >> 1) ;
718
719 *pValue = sc->eeprom_data[x + eeprom_location];
720 return CS_OK;
721 } else {
722 /* Skip this group (+ 1 for first entry) */
723 x += group_size + 1;
724 }
725 }
726
727 /*
728 * If we've fallen out here then we don't have a value in the EEPROM
729 * for this pktpg so return an error
730 */
731 return CS_ERROR;
732 }
733
734 int
735 cs_get_params(struct cs_softc *sc)
736 {
737 uint16_t isaConfig;
738 uint16_t adapterConfig;
739
740 if (cs_verify_eeprom(sc) == CS_ERROR) {
741 aprint_error_dev(sc->sc_dev,
742 "cs_get_params: EEPROM missing or bad\n");
743 return CS_ERROR;
744 }
745
746 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
747 /* Get ISA configuration from the EEPROM */
748 if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
749 == CS_ERROR) {
750 /*
751 * Eeprom doesn't have this value, use data sheet
752 * default
753 */
754 isaConfig = 0x0017;
755 }
756
757 /* Get adapter configuration from the EEPROM */
758 if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL,
759 &adapterConfig) == CS_ERROR) {
760 /*
761 * Eeprom doesn't have this value, use data sheet
762 * default
763 */
764 adapterConfig = 0x0015;
765 }
766
767 /* Copy the USE_SA flag */
768 if (isaConfig & BUS_CTL_USE_SA)
769 sc->sc_cfgflags |= CFGFLG_USE_SA;
770
771 /* Copy the IO Channel Ready flag */
772 if (isaConfig & BUS_CTL_IOCHRDY)
773 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
774
775 /* Copy the DC/DC Polarity flag */
776 if (adapterConfig & SELF_CTL_HCB1)
777 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
778 } else {
779 /* Get ISA configuration from the EEPROM */
780 if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
781 goto eeprom_bad;
782
783 /* Get adapter configuration from the EEPROM */
784 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig)
785 == CS_ERROR)
786 goto eeprom_bad;
787
788 /* Copy the USE_SA flag */
789 if (isaConfig & ISA_CFG_USE_SA)
790 sc->sc_cfgflags |= CFGFLG_USE_SA;
791
792 /* Copy the IO Channel Ready flag */
793 if (isaConfig & ISA_CFG_IOCHRDY)
794 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
795
796 /* Copy the DC/DC Polarity flag */
797 if (adapterConfig & ADPTR_CFG_DCDC_POL)
798 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
799 }
800
801 return CS_OK;
802 eeprom_bad:
803 aprint_error_dev(sc->sc_dev,
804 "cs_get_params: unable to read from EEPROM\n");
805 return CS_ERROR;
806 }
807
808 int
809 cs_get_enaddr(struct cs_softc *sc)
810 {
811 uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
812 int i;
813
814 if (cs_verify_eeprom(sc) == CS_ERROR) {
815 aprint_error_dev(sc->sc_dev,
816 "cs_get_enaddr: EEPROM missing or bad\n");
817 return CS_ERROR;
818 }
819
820 /* Get Ethernet address from the EEPROM */
821 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
822 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
823 == CS_ERROR)
824 goto eeprom_bad;
825 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
826 == CS_ERROR)
827 goto eeprom_bad;
828 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
829 == CS_ERROR)
830 goto eeprom_bad;
831 } else {
832 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
833 goto eeprom_bad;
834 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
835 goto eeprom_bad;
836 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
837 goto eeprom_bad;
838 }
839
840 for (i = 0; i < __arraycount(myea); i++) {
841 sc->sc_enaddr[i * 2 + 0] = myea[i];
842 sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
843 }
844
845 return CS_OK;
846
847 eeprom_bad:
848 aprint_error_dev(sc->sc_dev,
849 "cs_get_enaddr: unable to read from EEPROM\n");
850 return CS_ERROR;
851 }
852
853 int
854 cs_reset_chip(struct cs_softc *sc)
855 {
856 int intState;
857 int x;
858
859 /* Disable interrupts at the CPU so reset command is atomic */
860 intState = splnet();
861
862 /*
863 * We are now resetting the chip
864 *
865 * A spurious interrupt is generated by the chip when it is reset. This
866 * variable informs the interrupt handler to ignore this interrupt.
867 */
868 sc->sc_resetting = TRUE;
869
870 /* Issue a reset command to the chip */
871 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
872
873 /* Re-enable interrupts at the CPU */
874 splx(intState);
875
876 /* The chip is always in IO mode after a reset */
877 sc->sc_memorymode = FALSE;
878
879 /* If transmission was in progress, it is not now */
880 sc->sc_txbusy = FALSE;
881
882 /*
883 * There was a delay(125); here, but it seems uneccesary 125 usec is
884 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
885 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
886 * should be sufficient.
887 */
888
889 /* Transition SBHE to switch chip from 8-bit to 16-bit */
890 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
891 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
892 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
893 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
894
895 /* Wait until the EEPROM is not busy */
896 for (x = 0; x < MAXLOOP; x++) {
897 if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
898 break;
899 }
900
901 if (x == MAXLOOP)
902 return CS_ERROR;
903
904 /* Wait until initialization is done */
905 for (x = 0; x < MAXLOOP; x++) {
906 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
907 break;
908 }
909
910 if (x == MAXLOOP)
911 return CS_ERROR;
912
913 /* Reset is no longer in progress */
914 sc->sc_resetting = FALSE;
915
916 return CS_OK;
917 }
918
919 int
920 cs_verify_eeprom(struct cs_softc *sc)
921 {
922 uint16_t self_status;
923
924 /* Verify that the EEPROM is present and OK */
925 self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
926 if (((self_status & SELF_ST_EEP_PRES) &&
927 (self_status & SELF_ST_EEP_OK)) == 0)
928 return CS_ERROR;
929
930 return CS_OK;
931 }
932
933 int
934 cs_read_eeprom(struct cs_softc *sc, int offset, uint16_t *pValue)
935 {
936 int x;
937
938 /* Ensure that the EEPROM is not busy */
939 for (x = 0; x < MAXLOOP; x++) {
940 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
941 SELF_ST_SI_BUSY))
942 break;
943 }
944
945 if (x == MAXLOOP)
946 return CS_ERROR;
947
948 /* Issue the command to read the offset within the EEPROM */
949 CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
950 offset | EEPROM_CMD_READ);
951
952 /* Wait until the command is completed */
953 for (x = 0; x < MAXLOOP; x++) {
954 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
955 SELF_ST_SI_BUSY))
956 break;
957 }
958
959 if (x == MAXLOOP)
960 return CS_ERROR;
961
962 /* Get the EEPROM data from the EEPROM Data register */
963 *pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
964
965 return CS_OK;
966 }
967
968 void
969 cs_initChip(struct cs_softc *sc)
970 {
971 uint16_t busCtl;
972 uint16_t selfCtl;
973 uint16_t v;
974 uint16_t isaId;
975 int i;
976 int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
977
978 /* Disable reception and transmission of frames */
979 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
980 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
981 ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
982
983 /* Disable interrupt at the chip */
984 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
985 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
986
987 /* If IOCHRDY is enabled then clear the bit in the busCtl register */
988 busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
989 if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
990 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
991 busCtl & ~BUS_CTL_IOCHRDY);
992 } else {
993 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
994 busCtl | BUS_CTL_IOCHRDY);
995 }
996
997 /* Set the Line Control register to match the media type */
998 if (media == IFM_10_T)
999 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
1000 else
1001 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
1002
1003 /*
1004 * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
1005 * enable the DC/DC converter
1006 */
1007 selfCtl = SELF_CTL_HC1E;
1008
1009 /* If the media type is 10Base2 */
1010 if (media == IFM_10_2) {
1011 /* Enable the DC/DC converter if it has a low enable. */
1012 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1013 /*
1014 * Set the HCB1 bit, which causes the HC1 pin to go
1015 * low.
1016 */
1017 selfCtl |= SELF_CTL_HCB1;
1018 } else { /* Media type is 10BaseT or AUI */
1019 /* Disable the DC/DC converter if it has a high enable. */
1020 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1021 /*
1022 * Set the HCB1 bit, which causes the HC1 pin to go
1023 * low.
1024 */
1025 selfCtl |= SELF_CTL_HCB1;
1026 }
1027 }
1028 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1029
1030 /* Enable normal link pulse */
1031 if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1032 CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1033
1034 /* Enable full-duplex, if appropriate */
1035 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1036 CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1037
1038 /* RX_CTL set in cs_set_ladr_filt(), below */
1039
1040 /* Enable all transmission interrupts */
1041 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1042
1043 /* Accept all receive interrupts */
1044 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1045
1046 /*
1047 * Configure Operational Modes
1048 *
1049 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this
1050 * is a better way to do it because the card has a counter which can be
1051 * read to update the RX_MISS counter. This saves many interrupts.
1052 *
1053 * I have turned on the tx and rx overflow interrupts to counter using
1054 * the receive miss interrupt. This is a better estimate of errors
1055 * and requires lower system overhead.
1056 */
1057 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1058 BUF_CFG_RX_DMA_IE);
1059
1060 if (sc->sc_dma_chipinit)
1061 (*sc->sc_dma_chipinit)(sc);
1062
1063 /* If memory mode is enabled */
1064 if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1065 /* If external logic is present for address decoding */
1066 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1067 /*
1068 * Program the external logic to decode address bits
1069 * SA20-SA23
1070 */
1071 CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1072 ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1073 EEPROM_CMD_ELSEL);
1074 }
1075
1076 /*
1077 * Write the packet page base physical address to the memory
1078 * base register.
1079 */
1080 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1081 sc->sc_pktpgaddr & 0xFFFF);
1082 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1083 sc->sc_pktpgaddr >> 16);
1084 busCtl = BUS_CTL_MEM_MODE;
1085
1086 /* Tell the chip to read the addresses off the SA pins */
1087 if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1088 busCtl |= BUS_CTL_USE_SA;
1089 }
1090 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1091 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1092
1093 /* We are in memory mode now! */
1094 sc->sc_memorymode = TRUE;
1095
1096 /*
1097 * Wait here (10ms) for the chip to swap over. this is the
1098 * maximum time that this could take.
1099 */
1100 delay(10000);
1101
1102 /* Verify that we can read from the chip */
1103 isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1104
1105 /*
1106 * As a last minute sanity check before actually using mapped
1107 * memory we verify that we can read the isa number from the
1108 * chip in memory mode.
1109 */
1110 if (isaId != EISA_NUM_CRYSTAL) {
1111 aprint_error_dev(sc->sc_dev,
1112 "failed to enable memory mode\n");
1113 sc->sc_memorymode = FALSE;
1114 } else {
1115 /*
1116 * We are in memory mode so if we aren't using DMA,
1117 * then program the chip to interrupt early.
1118 */
1119 if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1120 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1121 BUF_CFG_RX_DEST_IE |
1122 BUF_CFG_RX_MISS_OVER_IE |
1123 BUF_CFG_TX_COL_OVER_IE);
1124 }
1125 }
1126
1127 }
1128
1129 /* Put Ethernet address into the Individual Address register */
1130 for (i = 0; i < 6; i += 2) {
1131 v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1132 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1133 }
1134
1135 if (sc->sc_irq != -1) {
1136 /* Set the interrupt level in the chip */
1137 if (sc->sc_prodid == PROD_ID_CS8900) {
1138 if (sc->sc_irq == 5)
1139 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1140 else
1141 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM,
1142 (sc->sc_irq) - 10);
1143 } else { /* CS8920 */
1144 CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM,
1145 sc->sc_irq);
1146 }
1147 }
1148
1149 /* Write the multicast mask to the address filter register */
1150 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1151
1152 /* Enable reception and transmission of frames */
1153 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1154 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1155 LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1156
1157 /* Enable interrupt at the chip */
1158 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1159 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1160 }
1161
1162 int
1163 cs_init(struct ifnet *ifp)
1164 {
1165 int intState;
1166 int error = CS_OK;
1167 struct cs_softc *sc = ifp->if_softc;
1168
1169 if (cs_enable(sc))
1170 goto out;
1171
1172 cs_stop(ifp, 0);
1173
1174 intState = splnet();
1175
1176 #if 0
1177 /* Mark the interface as down */
1178 sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1179 #endif
1180
1181 #ifdef CS_DEBUG
1182 /* Enable debugging */
1183 sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1184 #endif
1185
1186 /* Reset the chip */
1187 if ((error = cs_reset_chip(sc)) == CS_OK) {
1188 /* Initialize the chip */
1189 cs_initChip(sc);
1190
1191 /* Mark the interface as running */
1192 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1193 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1194 sc->sc_ethercom.ec_if.if_timer = 0;
1195
1196 /* Assume we have carrier until we are told otherwise. */
1197 sc->sc_carrier = 1;
1198 } else
1199 aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1200
1201 splx(intState);
1202 out:
1203 if (error == CS_OK)
1204 return 0;
1205 return EIO;
1206 }
1207
1208 void
1209 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1210 {
1211 struct ifnet *ifp = &ec->ec_if;
1212 struct ether_multi *enm;
1213 struct ether_multistep step;
1214 uint16_t af[4];
1215 uint16_t port, mask, index;
1216
1217 /*
1218 * Set up multicast address filter by passing all multicast addresses
1219 * through a crc generator, and then using the high order 6 bits as an
1220 * index into the 64 bit logical address filter. The high order bit
1221 * selects the word, while the rest of the bits select the bit within
1222 * the word.
1223 */
1224 if (ifp->if_flags & IFF_PROMISC) {
1225 /* Accept all valid frames. */
1226 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1227 RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1228 RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1229 ifp->if_flags |= IFF_ALLMULTI;
1230 return;
1231 }
1232
1233 /*
1234 * Accept frames if a. crc valid, b. individual address match c.
1235 * broadcast address,and d. multicast addresses matched in the hash
1236 * filter
1237 */
1238 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1239 RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1240
1241
1242 /*
1243 * Start off with all multicast flag clear, set it if we need to
1244 * later, otherwise we will leave it.
1245 */
1246 ifp->if_flags &= ~IFF_ALLMULTI;
1247 af[0] = af[1] = af[2] = af[3] = 0x0000;
1248
1249 /*
1250 * Loop through all the multicast addresses unless we get a range of
1251 * addresses, in which case we will just accept all packets.
1252 * Justification for this is given in the next comment.
1253 */
1254 ETHER_FIRST_MULTI(step, ec, enm);
1255 while (enm != NULL) {
1256 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1257 sizeof enm->enm_addrlo)) {
1258 /*
1259 * We must listen to a range of multicast addresses.
1260 * For now, just accept all multicasts, rather than
1261 * trying to set only those filter bits needed to match
1262 * the range. (At this time, the only use of address
1263 * ranges is for IP multicast routing, for which the
1264 * range is big enough to require all bits set.)
1265 */
1266 ifp->if_flags |= IFF_ALLMULTI;
1267 af[0] = af[1] = af[2] = af[3] = 0xffff;
1268 break;
1269 } else {
1270 /*
1271 * We have got an individual address so just set that
1272 * bit.
1273 */
1274 index = cs_hash_index(enm->enm_addrlo);
1275
1276 /* Set the bit the Logical address filter. */
1277 port = (uint16_t) (index >> 4);
1278 mask = (uint16_t) (1 << (index & 0xf));
1279 af[port] |= mask;
1280
1281 ETHER_NEXT_MULTI(step, enm);
1282 }
1283 }
1284
1285 /* Now program the chip with the addresses */
1286 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1287 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1288 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1289 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1290 return;
1291 }
1292
1293 uint16_t
1294 cs_hash_index(char *addr)
1295 {
1296 uint32_t crc;
1297 uint16_t hash_code;
1298
1299 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1300
1301 hash_code = crc >> 26;
1302 return hash_code;
1303 }
1304
1305 void
1306 cs_reset(struct cs_softc *sc)
1307 {
1308
1309 /* Mark the interface as down */
1310 sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1311
1312 /* Reset the chip */
1313 cs_reset_chip(sc);
1314 }
1315
1316 int
1317 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1318 {
1319 struct cs_softc *sc = ifp->if_softc;
1320 struct ifreq *ifr = data;
1321 int state;
1322 int result;
1323
1324 state = splnet();
1325
1326 result = 0; /* Only set if something goes wrong */
1327
1328 switch (cmd) {
1329 case SIOCGIFMEDIA:
1330 case SIOCSIFMEDIA:
1331 result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1332 break;
1333
1334 default:
1335 result = ether_ioctl(ifp, cmd, data);
1336 if (result == ENETRESET) {
1337 if (ifp->if_flags & IFF_RUNNING) {
1338 /*
1339 * Multicast list has changed. Set the
1340 * hardware filter accordingly.
1341 */
1342 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1343 }
1344 result = 0;
1345 }
1346 break;
1347 }
1348
1349 splx(state);
1350
1351 return result;
1352 }
1353
1354 int
1355 cs_mediachange(struct ifnet *ifp)
1356 {
1357
1358 /*
1359 * Current media is already set up. Just reset the interface
1360 * to let the new value take hold.
1361 */
1362 cs_init(ifp);
1363 return 0;
1364 }
1365
1366 void
1367 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1368 {
1369 struct cs_softc *sc = ifp->if_softc;
1370
1371 /* The currently selected media is always the active media. */
1372 ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1373
1374 if (ifp->if_flags & IFF_UP) {
1375 /* Interface up, status is valid. */
1376 ifmr->ifm_status = IFM_AVALID |
1377 (sc->sc_carrier ? IFM_ACTIVE : 0);
1378 }
1379 else ifmr->ifm_status = 0;
1380 }
1381
1382 int
1383 cs_intr(void *arg)
1384 {
1385 struct cs_softc *sc = arg;
1386 uint16_t Event;
1387 uint16_t rndEvent;
1388
1389 /*printf("cs_intr %p\n", sc);*/
1390 /* Ignore any interrupts that happen while the chip is being reset */
1391 if (sc->sc_resetting) {
1392 printf("%s: cs_intr: reset in progress\n",
1393 device_xname(sc->sc_dev));
1394 return 1;
1395 }
1396
1397 /* Read an event from the Interrupt Status Queue */
1398 if (sc->sc_memorymode)
1399 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1400 else
1401 Event = CS_READ_PORT(sc, PORT_ISQ);
1402
1403 if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1404 return 0; /* Not ours */
1405
1406 rndEvent = Event;
1407
1408 /* Process all the events in the Interrupt Status Queue */
1409 while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1410 /* Dispatch to an event handler based on the register number */
1411 switch (Event & REG_NUM_MASK) {
1412 case REG_NUM_RX_EVENT:
1413 cs_receive_event(sc, Event);
1414 break;
1415 case REG_NUM_TX_EVENT:
1416 cs_transmit_event(sc, Event);
1417 break;
1418 case REG_NUM_BUF_EVENT:
1419 cs_buffer_event(sc, Event);
1420 break;
1421 case REG_NUM_TX_COL:
1422 case REG_NUM_RX_MISS:
1423 cs_counter_event(sc, Event);
1424 break;
1425 default:
1426 printf("%s: unknown interrupt event 0x%x\n",
1427 device_xname(sc->sc_dev), Event);
1428 break;
1429 }
1430
1431 /* Read another event from the Interrupt Status Queue */
1432 if (sc->sc_memorymode)
1433 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1434 else
1435 Event = CS_READ_PORT(sc, PORT_ISQ);
1436 }
1437
1438 /* have handled the interrupt */
1439 rnd_add_uint32(&sc->rnd_source, rndEvent);
1440 return 1;
1441 }
1442
1443 void
1444 cs_counter_event(struct cs_softc *sc, uint16_t cntEvent)
1445 {
1446 struct ifnet *ifp;
1447 uint16_t errorCount;
1448
1449 ifp = &sc->sc_ethercom.ec_if;
1450
1451 switch (cntEvent & REG_NUM_MASK) {
1452 case REG_NUM_TX_COL:
1453 /* The count should be read before an overflow occurs. */
1454 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1455 /*
1456 * The tramsit event routine always checks the number of
1457 * collisions for any packet so we don't increment any
1458 * counters here, as they should already have been
1459 * considered.
1460 */
1461 break;
1462 case REG_NUM_RX_MISS:
1463 /*
1464 * the count should be read before an overflow occurs.
1465 */
1466 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1467 /*
1468 * Increment the input error count, the first 6bits are the
1469 * register id.
1470 */
1471 ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1472 break;
1473 default:
1474 /* do nothing */
1475 break;
1476 }
1477 }
1478
1479 void
1480 cs_buffer_event(struct cs_softc *sc, uint16_t bufEvent)
1481 {
1482
1483 /*
1484 * Multiple events can be in the buffer event register at one time so
1485 * a standard switch statement will not suffice, here every event
1486 * must be checked.
1487 */
1488
1489 /*
1490 * If 128 bits have been rxed by the time we get here, the dest event
1491 * will be cleared and 128 event will be set.
1492 */
1493 if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0)
1494 cs_process_rx_early(sc);
1495
1496 if (bufEvent & BUF_EVENT_RX_DMA) {
1497 /* Process the receive data */
1498 if (sc->sc_dma_process_rx)
1499 (*sc->sc_dma_process_rx)(sc);
1500 else
1501 /* Should panic? */
1502 aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1503 }
1504
1505 if (bufEvent & BUF_EVENT_TX_UNDR) {
1506 #if 0
1507 /*
1508 * This can happen occasionally, and it's not worth worrying
1509 * about.
1510 */
1511 printf("%s: transmit underrun (%d -> %d)\n",
1512 device_xname(sc->sc_dev), sc->sc_xe_ent,
1513 cs_xmit_early_table[sc->sc_xe_ent].worse);
1514 #endif
1515 sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1516 sc->sc_xe_togo =
1517 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1518
1519 /* had an underrun, transmit is finished */
1520 sc->sc_txbusy = FALSE;
1521 }
1522
1523 if (bufEvent & BUF_EVENT_SW_INT)
1524 printf("%s: software initiated interrupt\n",
1525 device_xname(sc->sc_dev));
1526 }
1527
1528 void
1529 cs_transmit_event(struct cs_softc *sc, uint16_t txEvent)
1530 {
1531 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1532
1533 /* If there were any errors transmitting this frame */
1534 if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR |
1535 TX_EVENT_OUT_WIN | TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1536 /* Increment the output error count */
1537 ifp->if_oerrors++;
1538
1539 /* Note carrier loss. */
1540 if (txEvent & TX_EVENT_LOSS_CRS)
1541 sc->sc_carrier = 0;
1542
1543 /* If debugging is enabled then log error messages */
1544 if (ifp->if_flags & IFF_DEBUG) {
1545 if (txEvent & TX_EVENT_LOSS_CRS)
1546 aprint_error_dev(sc->sc_dev, "lost carrier\n");
1547
1548 if (txEvent & TX_EVENT_SQE_ERR)
1549 aprint_error_dev(sc->sc_dev, "SQE error\n");
1550
1551 if (txEvent & TX_EVENT_OUT_WIN)
1552 aprint_error_dev(sc->sc_dev,
1553 "out-of-window collision\n");
1554
1555 if (txEvent & TX_EVENT_JABBER)
1556 aprint_error_dev(sc->sc_dev, "jabber\n");
1557
1558 if (txEvent & TX_EVENT_16_COLL)
1559 aprint_error_dev(sc->sc_dev,
1560 "16 collisions\n");
1561 }
1562 } else {
1563 /* Transmission successful, carrier is up. */
1564 sc->sc_carrier = 1;
1565 #ifdef SHARK
1566 ledNetActive();
1567 #endif
1568 }
1569
1570 /* Add the number of collisions for this frame */
1571 if (txEvent & TX_EVENT_16_COLL)
1572 ifp->if_collisions += 16;
1573 else
1574 ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1575
1576 ifp->if_opackets++;
1577
1578 /* Transmission is no longer in progress */
1579 sc->sc_txbusy = FALSE;
1580
1581 /* If there is more to transmit, start the next transmission */
1582 if_schedule_deferred_start(ifp);
1583 }
1584
1585 void
1586 cs_print_rx_errors(struct cs_softc *sc, uint16_t rxEvent)
1587 {
1588
1589 if (rxEvent & RX_EVENT_RUNT)
1590 aprint_error_dev(sc->sc_dev, "runt\n");
1591
1592 if (rxEvent & RX_EVENT_X_DATA)
1593 aprint_error_dev(sc->sc_dev, "extra data\n");
1594
1595 if (rxEvent & RX_EVENT_CRC_ERR) {
1596 if (rxEvent & RX_EVENT_DRIBBLE)
1597 aprint_error_dev(sc->sc_dev, "alignment error\n");
1598 else
1599 aprint_error_dev(sc->sc_dev, "CRC error\n");
1600 } else {
1601 if (rxEvent & RX_EVENT_DRIBBLE)
1602 aprint_error_dev(sc->sc_dev, "dribble bits\n");
1603 }
1604 }
1605
1606 void
1607 cs_receive_event(struct cs_softc *sc, uint16_t rxEvent)
1608 {
1609 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1610
1611 /* If the frame was not received OK */
1612 if (!(rxEvent & RX_EVENT_RX_OK)) {
1613 /* Increment the input error count */
1614 ifp->if_ierrors++;
1615
1616 /* If debugging is enabled then log error messages. */
1617 if (ifp->if_flags & IFF_DEBUG) {
1618 if (rxEvent != REG_NUM_RX_EVENT) {
1619 cs_print_rx_errors(sc, rxEvent);
1620
1621 /*
1622 * Must read the length of all received
1623 * frames
1624 */
1625 CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1626
1627 /* Skip the received frame */
1628 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1629 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1630 RX_CFG_SKIP);
1631 } else
1632 aprint_error_dev(sc->sc_dev, "implied skip\n");
1633 }
1634 } else {
1635 /*
1636 * process the received frame and pass it up to the upper
1637 * layers.
1638 */
1639 cs_process_receive(sc);
1640 }
1641 }
1642
1643 void
1644 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1645 {
1646 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1647
1648 /* Pass the packet up. */
1649 if_percpuq_enqueue(ifp->if_percpuq, m);
1650 }
1651
1652 void
1653 cs_process_receive(struct cs_softc *sc)
1654 {
1655 struct ifnet *ifp;
1656 struct mbuf *m;
1657 int totlen;
1658 uint16_t *pBuff, *pBuffLimit;
1659 int pad;
1660 unsigned int frameOffset = 0; /* XXX: gcc */
1661
1662 #ifdef SHARK
1663 ledNetActive();
1664 #endif
1665
1666 ifp = &sc->sc_ethercom.ec_if;
1667
1668 /* Received a packet; carrier is up. */
1669 sc->sc_carrier = 1;
1670
1671 if (sc->sc_memorymode) {
1672 /* Initialize the frame offset */
1673 frameOffset = PKTPG_RX_LENGTH;
1674
1675 /* Get the length of the received frame */
1676 totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1677 frameOffset += 2;
1678 } else {
1679 /* Drop status */
1680 CS_READ_PORT(sc, PORT_RXTX_DATA);
1681
1682 /* Get the length of the received frame */
1683 totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1684 }
1685
1686 if (totlen > ETHER_MAX_LEN) {
1687 aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1688 totlen);
1689
1690 /* Skip the received frame */
1691 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1692 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1693 return;
1694 }
1695
1696 MGETHDR(m, M_DONTWAIT, MT_DATA);
1697 if (m == 0) {
1698 aprint_error_dev(sc->sc_dev,
1699 "cs_process_receive: unable to allocate mbuf\n");
1700 ifp->if_ierrors++;
1701 /*
1702 * Couldn't allocate an mbuf so things are not good, may as
1703 * well drop the packet I think.
1704 *
1705 * have already read the length so we should be right to skip
1706 * the packet.
1707 */
1708 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1709 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1710 return;
1711 }
1712 m_set_rcvif(m, ifp);
1713 m->m_pkthdr.len = totlen;
1714
1715 /* Number of bytes to align ip header on word boundary for ipintr */
1716 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1717
1718 /*
1719 * Alloc mbuf cluster if we need.
1720 * We need 1 byte spare because following packet read loop can overrun.
1721 */
1722 if (totlen + pad + 1 > MHLEN) {
1723 MCLGET(m, M_DONTWAIT);
1724 if ((m->m_flags & M_EXT) == 0) {
1725 /* Couldn't allocate an mbuf cluster */
1726 aprint_error_dev(sc->sc_dev,
1727 "cs_process_receive: "
1728 "unable to allocate a cluster\n");
1729 m_freem(m);
1730
1731 /* Skip the received frame */
1732 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1733 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG)
1734 | RX_CFG_SKIP);
1735 return;
1736 }
1737 }
1738
1739 /* Align ip header on word boundary for ipintr */
1740 m->m_data += pad;
1741
1742 m->m_len = totlen;
1743 pBuff = mtod(m, uint16_t *);
1744
1745 /* Now read the data from the chip */
1746 if (sc->sc_memorymode) {
1747 /* don't want to go over */
1748 pBuffLimit = pBuff + (totlen + 1) / 2;
1749
1750 while (pBuff < pBuffLimit) {
1751 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1752 frameOffset += 2;
1753 }
1754 } else
1755 IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1756
1757 cs_ether_input(sc, m);
1758 }
1759
1760 void
1761 cs_process_rx_early(struct cs_softc *sc)
1762 {
1763 struct ifnet *ifp;
1764 struct mbuf *m;
1765 uint16_t frameCount, oldFrameCount;
1766 uint16_t rxEvent;
1767 uint16_t *pBuff;
1768 int pad;
1769 unsigned int frameOffset;
1770
1771
1772 ifp = &sc->sc_ethercom.ec_if;
1773
1774 /* Initialize the frame offset */
1775 frameOffset = PKTPG_RX_FRAME;
1776 frameCount = 0;
1777
1778 MGETHDR(m, M_DONTWAIT, MT_DATA);
1779 if (m == 0) {
1780 aprint_error_dev(sc->sc_dev,
1781 "cs_process_rx_early: unable to allocate mbuf\n");
1782 ifp->if_ierrors++;
1783 /*
1784 * Couldn't allocate an mbuf so things are not good, may as
1785 * well drop the packet I think.
1786 *
1787 * have already read the length so we should be right to skip
1788 * the packet.
1789 */
1790 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1791 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1792 return;
1793 }
1794 m_set_rcvif(m, ifp);
1795 /*
1796 * Save processing by always using a mbuf cluster, guaranteed to fit
1797 * packet
1798 */
1799 MCLGET(m, M_DONTWAIT);
1800 if ((m->m_flags & M_EXT) == 0) {
1801 /* Couldn't allocate an mbuf cluster */
1802 aprint_error_dev(sc->sc_dev,
1803 "cs_process_rx_early: unable to allocate a cluster\n");
1804 m_freem(m);
1805 /* Skip the frame */
1806 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1807 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1808 return;
1809 }
1810
1811 /* Align ip header on word boundary for ipintr */
1812 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1813 m->m_data += pad;
1814
1815 /* Set up the buffer pointer to point to the data area */
1816 pBuff = mtod(m, uint16_t *);
1817
1818 /*
1819 * Now read the frame byte counter until we have finished reading the
1820 * frame
1821 */
1822 oldFrameCount = 0;
1823 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1824 while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1825 for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1826 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1827 frameOffset += 2;
1828 }
1829
1830 /* Read the new count from the chip */
1831 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1832 }
1833
1834 /* Update the mbuf counts */
1835 m->m_len = oldFrameCount;
1836 m->m_pkthdr.len = oldFrameCount;
1837
1838 /* Now check the Rx Event register */
1839 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1840
1841 if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1842 /*
1843 * Do an implied skip, it seems to be more reliable than a
1844 * forced skip.
1845 */
1846 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1847 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1848
1849 /*
1850 * Now read the RX_EVENT register to perform an implied skip.
1851 */
1852 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1853
1854 cs_ether_input(sc, m);
1855 } else {
1856 m_freem(m);
1857 ifp->if_ierrors++;
1858 }
1859 }
1860
1861 void
1862 cs_start_output(struct ifnet *ifp)
1863 {
1864 struct cs_softc *sc;
1865 struct mbuf *pMbuf;
1866 struct mbuf *pMbufChain;
1867 uint16_t BusStatus;
1868 uint16_t Length;
1869 int txLoop = 0;
1870 int dropout = 0;
1871
1872 sc = ifp->if_softc;
1873
1874 /* Check that the interface is up and running */
1875 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1876 return;
1877
1878 /* Don't interrupt a transmission in progress */
1879 if (sc->sc_txbusy)
1880 return;
1881
1882 /* This loop will only run through once if transmission is successful */
1883 /*
1884 * While there are packets to transmit and a transmit is not in
1885 * progress
1886 */
1887 while (sc->sc_txbusy == 0 && dropout == 0) {
1888 IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1889 if (pMbufChain == NULL)
1890 break;
1891
1892 /*
1893 * If BPF is listening on this interface, let it see the packet
1894 * before we commit it to the wire.
1895 */
1896 bpf_mtap(ifp, pMbufChain, BPF_D_OUT);
1897
1898 /* Find the total length of the data to transmit */
1899 Length = 0;
1900 for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1901 Length += pMbuf->m_len;
1902
1903 do {
1904 /*
1905 * Request that the transmit be started after all
1906 * data has been copied
1907 *
1908 * In IO mode must write to the IO port not the packet
1909 * page address
1910 *
1911 * If this is changed to start transmission after a
1912 * small amount of data has been copied you tend to
1913 * get packet missed errors i think because the ISA
1914 * bus is too slow. Or possibly the copy routine is
1915 * not streamlined enough.
1916 */
1917 if (sc->sc_memorymode) {
1918 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1919 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1920 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1921 } else {
1922 CS_WRITE_PORT(sc, PORT_TX_CMD,
1923 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1924 CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1925 }
1926
1927 /* Adjust early-transmit machinery. */
1928 if (--sc->sc_xe_togo == 0) {
1929 sc->sc_xe_ent =
1930 cs_xmit_early_table[sc->sc_xe_ent].better;
1931 sc->sc_xe_togo =
1932 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1933 }
1934 /*
1935 * Read the BusStatus register which indicates
1936 * success of the request
1937 */
1938 BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1939
1940 /*
1941 * If there was an error in the transmit bid free the
1942 * mbuf and go on. This is presuming that mbuf is
1943 * corrupt.
1944 */
1945 if (BusStatus & BUS_ST_TX_BID_ERR) {
1946 aprint_error_dev(sc->sc_dev,
1947 "transmit bid error (too big)");
1948
1949 /* Discard the bad mbuf chain */
1950 m_freem(pMbufChain);
1951 sc->sc_ethercom.ec_if.if_oerrors++;
1952
1953 /* Loop up to transmit the next chain */
1954 txLoop = 0;
1955 } else {
1956 if (BusStatus & BUS_ST_RDY4TXNOW) {
1957 /*
1958 * The chip is ready for transmission
1959 * now
1960 */
1961 /*
1962 * Copy the frame to the chip to
1963 * start transmission
1964 */
1965 cs_copy_tx_frame(sc, pMbufChain);
1966
1967 /* Free the mbuf chain */
1968 m_freem(pMbufChain);
1969
1970 /* Transmission is now in progress */
1971 sc->sc_txbusy = TRUE;
1972 txLoop = 0;
1973 } else {
1974 /*
1975 * If we get here we want to try
1976 * again with the same mbuf, until
1977 * the chip lets us transmit.
1978 */
1979 txLoop++;
1980 if (txLoop > CS_OUTPUT_LOOP_MAX) {
1981 /* Free the mbuf chain */
1982 m_freem(pMbufChain);
1983 /*
1984 * Transmission is not in
1985 * progress
1986 */
1987 sc->sc_txbusy = FALSE;
1988 /*
1989 * Increment the output error
1990 * count
1991 */
1992 ifp->if_oerrors++;
1993 /*
1994 * exit the routine and drop
1995 * the packet.
1996 */
1997 txLoop = 0;
1998 dropout = 1;
1999 }
2000 }
2001 }
2002 } while (txLoop);
2003 }
2004 }
2005
2006 void
2007 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2008 {
2009 struct mbuf *m;
2010 int len, leftover, frameoff;
2011 uint16_t dbuf;
2012 uint8_t *p;
2013 #ifdef DIAGNOSTIC
2014 uint8_t *lim;
2015 #endif
2016
2017 /* Initialize frame pointer and data port address */
2018 frameoff = PKTPG_TX_FRAME;
2019
2020 /* Start out with no leftover data */
2021 leftover = 0;
2022 dbuf = 0;
2023
2024 /* Process the chain of mbufs */
2025 for (m = m0; m != NULL; m = m->m_next) {
2026 /* Process all of the data in a single mbuf. */
2027 p = mtod(m, uint8_t *);
2028 len = m->m_len;
2029 #ifdef DIAGNOSTIC
2030 lim = p + len;
2031 #endif
2032
2033 while (len > 0) {
2034 if (leftover) {
2035 /*
2036 * Data left over (from mbuf or realignment).
2037 * Buffer the next byte, and write it and
2038 * the leftover data out.
2039 */
2040 dbuf |= *p++ << 8;
2041 len--;
2042 if (sc->sc_memorymode) {
2043 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2044 frameoff += 2;
2045 }
2046 else {
2047 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2048 }
2049 leftover = 0;
2050 } else if ((long) p & 1) {
2051 /* Misaligned data. Buffer the next byte. */
2052 dbuf = *p++;
2053 len--;
2054 leftover = 1;
2055 } else {
2056 /*
2057 * Aligned data. This is the case we like.
2058 *
2059 * Write-region out as much as we can, then
2060 * buffer the remaining byte (if any).
2061 */
2062 leftover = len & 1;
2063 len &= ~1;
2064 if (sc->sc_memorymode) {
2065 MEM_WRITE_REGION_2(sc, frameoff,
2066 (uint16_t *) p, len >> 1);
2067 frameoff += len;
2068 } else
2069 IO_WRITE_MULTI_2(sc, PORT_RXTX_DATA,
2070 (uint16_t *)p, len >> 1);
2071 p += len;
2072
2073 if (leftover)
2074 dbuf = *p++;
2075 len = 0;
2076 }
2077 }
2078 if (len < 0)
2079 panic("cs_copy_tx_frame: negative len");
2080 #ifdef DIAGNOSTIC
2081 if (p != lim)
2082 panic("cs_copy_tx_frame: p != lim");
2083 #endif
2084 }
2085 if (leftover) {
2086 if (sc->sc_memorymode)
2087 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2088 else
2089 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2090 }
2091 }
2092
2093 static int
2094 cs_enable(struct cs_softc *sc)
2095 {
2096
2097 if (CS_IS_ENABLED(sc) == 0) {
2098 if (sc->sc_enable != NULL) {
2099 int error;
2100
2101 error = (*sc->sc_enable)(sc);
2102 if (error)
2103 return error;
2104 }
2105 sc->sc_cfgflags |= CFGFLG_ENABLED;
2106 }
2107
2108 return 0;
2109 }
2110
2111 static void
2112 cs_disable(struct cs_softc *sc)
2113 {
2114
2115 if (CS_IS_ENABLED(sc)) {
2116 if (sc->sc_disable != NULL)
2117 (*sc->sc_disable)(sc);
2118
2119 sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2120 }
2121 }
2122
2123 static void
2124 cs_stop(struct ifnet *ifp, int disable)
2125 {
2126 struct cs_softc *sc = ifp->if_softc;
2127
2128 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2129 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2130 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2131 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2132
2133 if (disable)
2134 cs_disable(sc);
2135
2136 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2137 }
2138
2139 int
2140 cs_activate(device_t self, enum devact act)
2141 {
2142 struct cs_softc *sc = device_private(self);
2143
2144 switch (act) {
2145 case DVACT_DEACTIVATE:
2146 if_deactivate(&sc->sc_ethercom.ec_if);
2147 return 0;
2148 default:
2149 return EOPNOTSUPP;
2150 }
2151 }
2152