cs89x0.c revision 1.46 1 /* $NetBSD: cs89x0.c,v 1.46 2019/05/28 07:41:48 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2004 Christopher Gilbert
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright 1997
31 * Digital Equipment Corporation. All rights reserved.
32 *
33 * This software is furnished under license and may be used and
34 * copied only in accordance with the following terms and conditions.
35 * Subject to these conditions, you may download, copy, install,
36 * use, modify and distribute this software in source and/or binary
37 * form. No title or ownership is transferred hereby.
38 *
39 * 1) Any source code used, modified or distributed must reproduce
40 * and retain this copyright notice and list of conditions as
41 * they appear in the source file.
42 *
43 * 2) No right is granted to use any trade name, trademark, or logo of
44 * Digital Equipment Corporation. Neither the "Digital Equipment
45 * Corporation" name nor any trademark or logo of Digital Equipment
46 * Corporation may be used to endorse or promote products derived
47 * from this software without the prior written permission of
48 * Digital Equipment Corporation.
49 *
50 * 3) This software is provided "AS-IS" and any express or implied
51 * warranties, including but not limited to, any implied warranties
52 * of merchantability, fitness for a particular purpose, or
53 * non-infringement are disclaimed. In no event shall DIGITAL be
54 * liable for any damages whatsoever, and in particular, DIGITAL
55 * shall not be liable for special, indirect, consequential, or
56 * incidental damages or damages for lost profits, loss of
57 * revenue or loss of use, whether such damages arise in contract,
58 * negligence, tort, under statute, in equity, at law or otherwise,
59 * even if advised of the possibility of such damage.
60 */
61
62 /*
63 **++
64 ** FACILITY
65 **
66 ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
67 **
68 ** ABSTRACT
69 **
70 ** This module provides standard ethernet access for INET protocols
71 ** only.
72 **
73 ** AUTHORS
74 **
75 ** Peter Dettori SEA - Software Engineering.
76 **
77 ** CREATION DATE:
78 **
79 ** 13-Feb-1997.
80 **
81 ** MODIFICATION HISTORY (Digital):
82 **
83 ** Revision 1.27 1998/01/20 17:59:40 cgd
84 ** update for moved headers
85 **
86 ** Revision 1.26 1998/01/12 19:29:36 cgd
87 ** use arm32/isa versions of isadma code.
88 **
89 ** Revision 1.25 1997/12/12 01:35:27 cgd
90 ** convert to use new arp code (from Brini)
91 **
92 ** Revision 1.24 1997/12/10 22:31:56 cgd
93 ** trim some fat (get rid of ability to explicitly supply enet addr, since
94 ** it was never used and added a bunch of code which really doesn't belong in
95 ** an enet driver), and clean up slightly.
96 **
97 ** Revision 1.23 1997/10/06 16:42:12 cgd
98 ** copyright notices
99 **
100 ** Revision 1.22 1997/06/20 19:38:01 chaiken
101 ** fixes some smartcard problems
102 **
103 ** Revision 1.21 1997/06/10 02:56:20 grohn
104 ** Added call to ledNetActive
105 **
106 ** Revision 1.20 1997/06/05 00:47:06 dettori
107 ** Changed cs_process_rx_dma to reset and re-initialise the
108 ** ethernet chip when DMA gets out of sync, or mbufs
109 ** can't be allocated.
110 **
111 ** Revision 1.19 1997/06/03 03:09:58 dettori
112 ** Turn off sc_txbusy flag when a transmit underrun
113 ** occurs.
114 **
115 ** Revision 1.18 1997/06/02 00:04:35 dettori
116 ** redefined the transmit table to get around the nfs_timer bug while we are
117 ** looking into it further.
118 **
119 ** Also changed interrupts from EDGE to LEVEL.
120 **
121 ** Revision 1.17 1997/05/27 23:31:01 dettori
122 ** Pulled out changes to DMAMODE defines.
123 **
124 ** Revision 1.16 1997/05/23 04:25:16 cgd
125 ** reformat log so it fits in 80cols
126 **
127 ** Revision 1.15 1997/05/23 04:22:18 cgd
128 ** remove the existing copyright notice (which Peter Dettori indicated
129 ** was incorrect, copied from an existing NetBSD file only so that the
130 ** file would have a copyright notice on it, and which he'd intended to
131 ** replace). Replace it with a Digital copyright notice, cloned from
132 ** ess.c. It's not really correct either (it indicates that the source
133 ** is Digital confidential!), but is better than nothing and more
134 ** correct than what was there before.
135 **
136 ** Revision 1.14 1997/05/23 04:12:50 cgd
137 ** use an adaptive transmit start algorithm: start by telling the chip
138 ** to start transmitting after 381 bytes have been fed to it. if that
139 ** gets transmit underruns, ramp down to 1021 bytes then "whole
140 ** packet." If successful at a given level for a while, try the next
141 ** more agressive level. This code doesn't ever try to start
142 ** transmitting after 5 bytes have been sent to the NIC, because
143 ** that underruns rather regularly. The back-off and ramp-up mechanism
144 ** could probably be tuned a little bit, but this works well enough to
145 ** support > 1MB/s transmit rates on a clear ethernet (which is about
146 ** 20-25% better than the driver had previously been getting).
147 **
148 ** Revision 1.13 1997/05/22 21:06:54 cgd
149 ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
150 ** casting from uint8_t * to uint16_t * without worrying about alignment
151 ** issues. This would cause bogus data to be spit out for mbufs with
152 ** misaligned data. For instance, it caused the following bits to appear
153 ** on the wire:
154 ** ... etBND 1S2C .SHA(K) R ...
155 ** 11112222333344445555
156 ** which should have appeared as:
157 ** ... NetBSD 1.2C (SHARK) ...
158 ** 11112222333344445555
159 ** Note the apparent 'rotate' of the bytes in the word, which was due to
160 ** incorrect unaligned accesses. This data corruption was the cause of
161 ** incoming telnet/rlogin hangs.
162 **
163 ** Revision 1.12 1997/05/22 01:55:32 cgd
164 ** reformat log so it fits in 80cols
165 **
166 ** Revision 1.11 1997/05/22 01:50:27 cgd
167 ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
168 ** so packets aimed at other hosts don't get sent to ether_input().
169 ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
170 ** you can easily tell (`strings`) what version of the driver is in your
171 ** kernel binary.
172 ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
173 ** safe, and not really a performance win anyway. (It was only used when
174 ** setting up the multicast logical address filter, which is an
175 ** infrequent event. It could have been used in the IFF_PROMISCUOUS
176 ** address check above, but the benefit of it vs. memcmp would be
177 ** inconsequential, there.) Use memcmp() instead.
178 ** * restructure csStartOuput to avoid the following bugs in the case where
179 ** txWait was being set:
180 ** * it would accidentally drop the outgoing packet if told to wait
181 ** but the outgoing packet queue was empty.
182 ** * it would bpf_mtap() the outgoing packet multiple times (once for
183 ** each time it was told to wait), and would also recalculate
184 ** the length of the outgoing packet each time it was told to
185 ** wait.
186 ** While there, rename txWait to txLoop, since with the new structure of
187 ** the code, the latter name makes more sense.
188 **
189 ** Revision 1.10 1997/05/19 02:03:20 cgd
190 ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
191 ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
192 ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
193 ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
194 ** as before.
195 **
196 ** Revision 1.9 1997/05/19 01:45:37 cgd
197 ** create a new function, cs_ether_input(), which does received-packet
198 ** BPF and ether_input processing. This code used to be in three places,
199 ** and centralizing it will make adding IFF_PROMISC support much easier.
200 ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
201 ** do copies with bus_space_write_region_2(). It's more correct, and
202 ** potentially more efficient. That function needs to be gutted (to
203 ** deal properly with alignment issues, which it currently does wrong),
204 ** however, and the change doesn't gain much, so there's no point in
205 ** enabling it now.
206 **
207 ** Revision 1.8 1997/05/19 01:17:10 cgd
208 ** fix a comment re: the setting of the TxConfig register. Clean up
209 ** interface counter maintenance (make it use standard idiom).
210 **
211 **--
212 */
213
214 #include <sys/cdefs.h>
215 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.46 2019/05/28 07:41:48 msaitoh Exp $");
216
217 #include "opt_inet.h"
218
219 #include <sys/param.h>
220 #include <sys/systm.h>
221 #include <sys/mbuf.h>
222 #include <sys/syslog.h>
223 #include <sys/socket.h>
224 #include <sys/device.h>
225 #include <sys/malloc.h>
226 #include <sys/ioctl.h>
227 #include <sys/errno.h>
228 #include <sys/bus.h>
229 #include <sys/intr.h>
230 #include <sys/rndsource.h>
231
232 #include <net/if.h>
233 #include <net/if_ether.h>
234 #include <net/if_media.h>
235 #include <net/bpf.h>
236
237 #ifdef INET
238 #include <netinet/in.h>
239 #include <netinet/if_inarp.h>
240 #endif
241
242 #include <dev/ic/cs89x0reg.h>
243 #include <dev/ic/cs89x0var.h>
244
245 #ifdef SHARK
246 #include <shark/shark/sequoia.h>
247 #endif
248
249 /*
250 * MACRO DEFINITIONS
251 */
252 #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
253
254 /*
255 * FUNCTION PROTOTYPES
256 */
257 static void cs_get_default_media(struct cs_softc *);
258 static int cs_get_params(struct cs_softc *);
259 static int cs_get_enaddr(struct cs_softc *);
260 static int cs_reset_chip(struct cs_softc *);
261 static void cs_reset(struct cs_softc *);
262 static int cs_ioctl(struct ifnet *, u_long, void *);
263 static void cs_initChip(struct cs_softc *);
264 static void cs_buffer_event(struct cs_softc *, uint16_t);
265 static void cs_transmit_event(struct cs_softc *, uint16_t);
266 static void cs_receive_event(struct cs_softc *, uint16_t);
267 static void cs_process_receive(struct cs_softc *);
268 static void cs_process_rx_early(struct cs_softc *);
269 static void cs_start_output(struct ifnet *);
270 static void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
271 static void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
272 static uint16_t cs_hash_index(char *);
273 static void cs_counter_event(struct cs_softc *, uint16_t);
274
275 static int cs_mediachange(struct ifnet *);
276 static void cs_mediastatus(struct ifnet *, struct ifmediareq *);
277
278 static bool cs_shutdown(device_t, int);
279 static int cs_enable(struct cs_softc *);
280 static void cs_disable(struct cs_softc *);
281 static void cs_stop(struct ifnet *, int);
282 static int cs_scan_eeprom(struct cs_softc *);
283 static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, uint16_t *);
284
285
286 /*
287 * GLOBAL DECLARATIONS
288 */
289
290 /*
291 * Xmit-early table.
292 *
293 * To get better performance, we tell the chip to start packet
294 * transmission before the whole packet is copied to the chip.
295 * However, this can fail under load. When it fails, we back off
296 * to a safer setting for a little while.
297 *
298 * txcmd is the value of txcmd used to indicate when to start transmission.
299 * better is the next 'better' state in the table.
300 * better_count is the number of output packets before transition to the
301 * better state.
302 * worse is the next 'worse' state in the table.
303 *
304 * Transition to the next worse state happens automatically when a
305 * transmittion underrun occurs.
306 */
307 struct cs_xmit_early {
308 uint16_t txcmd;
309 int better;
310 int better_count;
311 int worse;
312 } cs_xmit_early_table[3] = {
313 { TX_CMD_START_381, 0, INT_MAX, 1, },
314 { TX_CMD_START_1021, 0, 50000, 2, },
315 { TX_CMD_START_ALL, 1, 5000, 2, },
316 };
317
318 int cs_default_media[] = {
319 IFM_ETHER | IFM_10_2,
320 IFM_ETHER | IFM_10_5,
321 IFM_ETHER | IFM_10_T,
322 IFM_ETHER | IFM_10_T | IFM_FDX,
323 };
324 int cs_default_nmedia = __arraycount(cs_default_media);
325
326 int
327 cs_attach(struct cs_softc *sc, uint8_t *enaddr, int *media,
328 int nmedia, int defmedia)
329 {
330 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
331 const char *chipname, *medname;
332 uint16_t reg;
333 int i;
334
335 /* Start out in IO mode */
336 sc->sc_memorymode = FALSE;
337
338 /* Make sure we're right */
339 for (i = 0; i < 10000; i++) {
340 reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
341 if (reg == EISA_NUM_CRYSTAL)
342 break;
343 }
344 if (i == 10000) {
345 aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
346 return 1; /* XXX should panic? */
347 }
348
349 reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
350 sc->sc_prodid = reg & PROD_ID_MASK;
351 sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
352
353 switch (sc->sc_prodid) {
354 case PROD_ID_CS8900:
355 chipname = "CS8900";
356 break;
357 case PROD_ID_CS8920:
358 chipname = "CS8920";
359 break;
360 case PROD_ID_CS8920M:
361 chipname = "CS8920M";
362 break;
363 default:
364 panic("cs_attach: impossible");
365 }
366
367 /*
368 * The first thing to do is check that the mbuf cluster size is
369 * greater than the MTU for an ethernet frame. The code depends on
370 * this and to port this to a OS where this was not the case would
371 * not be straightforward.
372 *
373 * We need 1 byte spare because our packet read loop can overrun.
374 * and we may need pad bytes to align ip header.
375 */
376 if (MCLBYTES < ETHER_MAX_LEN + 1 + ALIGN(sizeof(struct ether_header))
377 - sizeof(struct ether_header)) {
378 printf("%s: MCLBYTES too small for Ethernet frame\n",
379 device_xname(sc->sc_dev));
380 return 1;
381 }
382
383 /* Start out not transmitting */
384 sc->sc_txbusy = FALSE;
385
386 /* Set up early transmit threshhold */
387 sc->sc_xe_ent = 0;
388 sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
389
390 /* Initialize ifnet structure. */
391 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
392 ifp->if_softc = sc;
393 ifp->if_start = cs_start_output;
394 ifp->if_init = cs_init;
395 ifp->if_ioctl = cs_ioctl;
396 ifp->if_stop = cs_stop;
397 ifp->if_watchdog = NULL; /* No watchdog at this stage */
398 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
399 IFQ_SET_READY(&ifp->if_snd);
400
401 /* Initialize ifmedia structures. */
402 ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
403
404 if (media != NULL) {
405 for (i = 0; i < nmedia; i++)
406 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
407 ifmedia_set(&sc->sc_media, defmedia);
408 } else {
409 for (i = 0; i < cs_default_nmedia; i++)
410 ifmedia_add(&sc->sc_media, cs_default_media[i],
411 0, NULL);
412 cs_get_default_media(sc);
413 }
414
415 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
416 if (cs_scan_eeprom(sc) == CS_ERROR) {
417 /*
418 * Failed to scan the eeprom, pretend there isn't an
419 * eeprom
420 */
421 aprint_error_dev(sc->sc_dev,
422 "unable to scan EEPROM\n");
423 sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
424 }
425 }
426
427 if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
428 /* Get parameters from the EEPROM */
429 if (cs_get_params(sc) == CS_ERROR) {
430 aprint_error_dev(sc->sc_dev,
431 "unable to get settings from EEPROM\n");
432 return 1;
433 }
434 }
435
436 if (enaddr != NULL)
437 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
438 else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
439 /* Get and store the Ethernet address */
440 if (cs_get_enaddr(sc) == CS_ERROR) {
441 aprint_error_dev(sc->sc_dev,
442 "unable to read Ethernet address\n");
443 return 1;
444 }
445 } else {
446 #if 1
447 int j;
448 uint v;
449
450 for (j = 0; j < 6; j += 2) {
451 v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
452 sc->sc_enaddr[j + 0] = v;
453 sc->sc_enaddr[j + 1] = v >> 8;
454 }
455 #else
456 printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
457 return 1;
458 #endif
459 }
460
461 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
462 case IFM_10_2:
463 medname = "BNC";
464 break;
465 case IFM_10_5:
466 medname = "AUI";
467 break;
468 case IFM_10_T:
469 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
470 medname = "UTP <full-duplex>";
471 else
472 medname = "UTP";
473 break;
474 default:
475 panic("cs_attach: impossible");
476 }
477 printf("%s: %s rev. %c, address %s, media %s\n",
478 device_xname(sc->sc_dev),
479 chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
480 medname);
481
482 if (sc->sc_dma_attach)
483 (*sc->sc_dma_attach)(sc);
484
485 /* Attach the interface. */
486 if_attach(ifp);
487 if_deferred_start_init(ifp, NULL);
488 ether_ifattach(ifp, sc->sc_enaddr);
489
490 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
491 RND_TYPE_NET, RND_FLAG_DEFAULT);
492 sc->sc_cfgflags |= CFGFLG_ATTACHED;
493
494 if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
495 pmf_class_network_register(sc->sc_dev, ifp);
496 else
497 aprint_error_dev(sc->sc_dev,
498 "couldn't establish power handler\n");
499
500 /* Reset the chip */
501 if (cs_reset_chip(sc) == CS_ERROR) {
502 aprint_error_dev(sc->sc_dev, "reset failed\n");
503 cs_detach(sc);
504 return 1;
505 }
506
507 return 0;
508 }
509
510 int
511 cs_detach(struct cs_softc *sc)
512 {
513 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
514
515 if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
516 rnd_detach_source(&sc->rnd_source);
517 ether_ifdetach(ifp);
518 if_detach(ifp);
519 sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
520 }
521
522 #if 0
523 /* XXX not necessary */
524 if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
525 isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase,
526 sc->sc_dmasize);
527 isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr,
528 sc->sc_dmasize);
529 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
530 sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
531 }
532 #endif
533
534 pmf_device_deregister(sc->sc_dev);
535
536 return 0;
537 }
538
539 bool
540 cs_shutdown(device_t self, int howto)
541 {
542 struct cs_softc *sc;
543
544 sc = device_private(self);
545 cs_reset(sc);
546
547 return true;
548 }
549
550 void
551 cs_get_default_media(struct cs_softc *sc)
552 {
553 uint16_t adp_cfg, xmit_ctl;
554
555 if (cs_verify_eeprom(sc) == CS_ERROR) {
556 aprint_error_dev(sc->sc_dev,
557 "cs_get_default_media: EEPROM missing or bad\n");
558 goto fakeit;
559 }
560
561 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
562 aprint_error_dev(sc->sc_dev,
563 "unable to read adapter config from EEPROM\n");
564 goto fakeit;
565 }
566
567 if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
568 aprint_error_dev(sc->sc_dev,
569 "unable to read transmit control from EEPROM\n");
570 goto fakeit;
571 }
572
573 switch (adp_cfg & ADPTR_CFG_MEDIA) {
574 case ADPTR_CFG_AUI:
575 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_5);
576 break;
577 case ADPTR_CFG_10BASE2:
578 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_2);
579 break;
580 case ADPTR_CFG_10BASET:
581 default:
582 if (xmit_ctl & XMIT_CTL_FDX)
583 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_T
584 | IFM_FDX);
585 else
586 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_T);
587 break;
588 }
589 return;
590
591 fakeit:
592 aprint_error_dev(sc->sc_dev,
593 "WARNING: default media setting may be inaccurate\n");
594 /* XXX Arbitrary... */
595 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_T);
596 }
597
598 /*
599 * cs_scan_eeprom
600 *
601 * Attempt to take a complete copy of the eeprom into main memory.
602 * this will allow faster parsing of the eeprom data.
603 *
604 * Only tested against a 8920M's eeprom, but the data sheet for the
605 * 8920A indicates that is uses the same layout.
606 */
607 int
608 cs_scan_eeprom(struct cs_softc *sc)
609 {
610 uint16_t result;
611 int i;
612 int eeprom_size;
613 uint8_t checksum = 0;
614
615 if (cs_verify_eeprom(sc) == CS_ERROR) {
616 aprint_error_dev(sc->sc_dev,
617 "cs_scan_params: EEPROM missing or bad\n");
618 return CS_ERROR;
619 }
620
621 /*
622 * Read the 0th word from the eeprom, it will tell us the length
623 * and if the eeprom is valid
624 */
625 cs_read_eeprom(sc, 0, &result);
626
627 /* Check the eeprom signature */
628 if ((result & 0xE000) != 0xA000) {
629 /* Empty eeprom */
630 return CS_ERROR;
631 }
632
633 /*
634 * Take the eeprom size (note the read value doesn't include the header
635 * word)
636 */
637 eeprom_size = (result & 0xff) + 2;
638
639 sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
640 if (sc->eeprom_data == NULL) {
641 /* No memory, treat this as if there's no eeprom */
642 return CS_ERROR;
643 }
644
645 sc->eeprom_size = eeprom_size;
646
647 /* Read the eeprom into the buffer, also calculate the checksum */
648 for (i = 0; i < (eeprom_size >> 1); i++) {
649 cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
650 checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
651 checksum += (sc->eeprom_data[i] & 0x00ff);
652 }
653
654 /*
655 * Validate checksum calculation, the sum of all the bytes should be 0,
656 * as the high byte of the last word is the 2's complement of the
657 * sum to that point.
658 */
659 if (checksum != 0) {
660 aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
661 return CS_ERROR;
662 }
663
664 return CS_OK;
665 }
666
667 static int
668 cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, uint16_t *pValue)
669 {
670 int x, maxword;
671
672 /* Check that we have eeprom data */
673 if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
674 return CS_ERROR;
675
676 /*
677 * We only want to read the data words, the last word contains the
678 * checksum
679 */
680 maxword = (sc->eeprom_size - 2) >> 1;
681
682 /* Start 1 word in, as the first word is the length and signature */
683 x = 1;
684
685 while ( x < (maxword)) {
686 uint16_t header;
687 int group_size;
688 int offset;
689 int offset_max;
690
691 /* Read in the group header word */
692 header = sc->eeprom_data[x];
693 x++; /* Skip group header */
694
695 /*
696 * Size of group in words is in the top 4 bits, note that it
697 * is one less than the number of words
698 */
699 group_size = header & 0xF000;
700
701 /*
702 * CS8900 Data sheet says this should be 0x01ff,
703 * but my cs8920 eeprom has higher offsets,
704 * perhaps the 8920 allows higher offsets, otherwise
705 * it's writing to places that it shouldn't
706 */
707 /* Work out the offsets this group covers */
708 offset = header & 0x0FFF;
709 offset_max = offset + (group_size << 1);
710
711 /* Check if the pkgpg we're after is in this group */
712 if ((offset <= pktpg) && (pktpg <= offset_max)) {
713 /* The pkgpg value we want is in here */
714 int eeprom_location;
715
716 eeprom_location = ((pktpg - offset) >> 1) ;
717
718 *pValue = sc->eeprom_data[x + eeprom_location];
719 return CS_OK;
720 } else {
721 /* Skip this group (+ 1 for first entry) */
722 x += group_size + 1;
723 }
724 }
725
726 /*
727 * If we've fallen out here then we don't have a value in the EEPROM
728 * for this pktpg so return an error
729 */
730 return CS_ERROR;
731 }
732
733 int
734 cs_get_params(struct cs_softc *sc)
735 {
736 uint16_t isaConfig;
737 uint16_t adapterConfig;
738
739 if (cs_verify_eeprom(sc) == CS_ERROR) {
740 aprint_error_dev(sc->sc_dev,
741 "cs_get_params: EEPROM missing or bad\n");
742 return CS_ERROR;
743 }
744
745 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
746 /* Get ISA configuration from the EEPROM */
747 if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
748 == CS_ERROR) {
749 /*
750 * Eeprom doesn't have this value, use data sheet
751 * default
752 */
753 isaConfig = 0x0017;
754 }
755
756 /* Get adapter configuration from the EEPROM */
757 if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL,
758 &adapterConfig) == CS_ERROR) {
759 /*
760 * Eeprom doesn't have this value, use data sheet
761 * default
762 */
763 adapterConfig = 0x0015;
764 }
765
766 /* Copy the USE_SA flag */
767 if (isaConfig & BUS_CTL_USE_SA)
768 sc->sc_cfgflags |= CFGFLG_USE_SA;
769
770 /* Copy the IO Channel Ready flag */
771 if (isaConfig & BUS_CTL_IOCHRDY)
772 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
773
774 /* Copy the DC/DC Polarity flag */
775 if (adapterConfig & SELF_CTL_HCB1)
776 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
777 } else {
778 /* Get ISA configuration from the EEPROM */
779 if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
780 goto eeprom_bad;
781
782 /* Get adapter configuration from the EEPROM */
783 if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig)
784 == CS_ERROR)
785 goto eeprom_bad;
786
787 /* Copy the USE_SA flag */
788 if (isaConfig & ISA_CFG_USE_SA)
789 sc->sc_cfgflags |= CFGFLG_USE_SA;
790
791 /* Copy the IO Channel Ready flag */
792 if (isaConfig & ISA_CFG_IOCHRDY)
793 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
794
795 /* Copy the DC/DC Polarity flag */
796 if (adapterConfig & ADPTR_CFG_DCDC_POL)
797 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
798 }
799
800 return CS_OK;
801 eeprom_bad:
802 aprint_error_dev(sc->sc_dev,
803 "cs_get_params: unable to read from EEPROM\n");
804 return CS_ERROR;
805 }
806
807 int
808 cs_get_enaddr(struct cs_softc *sc)
809 {
810 uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
811 int i;
812
813 if (cs_verify_eeprom(sc) == CS_ERROR) {
814 aprint_error_dev(sc->sc_dev,
815 "cs_get_enaddr: EEPROM missing or bad\n");
816 return CS_ERROR;
817 }
818
819 /* Get Ethernet address from the EEPROM */
820 if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
821 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
822 == CS_ERROR)
823 goto eeprom_bad;
824 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
825 == CS_ERROR)
826 goto eeprom_bad;
827 if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
828 == CS_ERROR)
829 goto eeprom_bad;
830 } else {
831 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
832 goto eeprom_bad;
833 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
834 goto eeprom_bad;
835 if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
836 goto eeprom_bad;
837 }
838
839 for (i = 0; i < __arraycount(myea); i++) {
840 sc->sc_enaddr[i * 2 + 0] = myea[i];
841 sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
842 }
843
844 return CS_OK;
845
846 eeprom_bad:
847 aprint_error_dev(sc->sc_dev,
848 "cs_get_enaddr: unable to read from EEPROM\n");
849 return CS_ERROR;
850 }
851
852 int
853 cs_reset_chip(struct cs_softc *sc)
854 {
855 int intState;
856 int x;
857
858 /* Disable interrupts at the CPU so reset command is atomic */
859 intState = splnet();
860
861 /*
862 * We are now resetting the chip
863 *
864 * A spurious interrupt is generated by the chip when it is reset. This
865 * variable informs the interrupt handler to ignore this interrupt.
866 */
867 sc->sc_resetting = TRUE;
868
869 /* Issue a reset command to the chip */
870 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
871
872 /* Re-enable interrupts at the CPU */
873 splx(intState);
874
875 /* The chip is always in IO mode after a reset */
876 sc->sc_memorymode = FALSE;
877
878 /* If transmission was in progress, it is not now */
879 sc->sc_txbusy = FALSE;
880
881 /*
882 * There was a delay(125); here, but it seems uneccesary 125 usec is
883 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
884 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
885 * should be sufficient.
886 */
887
888 /* Transition SBHE to switch chip from 8-bit to 16-bit */
889 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
890 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
891 IO_READ_1(sc, PORT_PKTPG_PTR + 0);
892 IO_READ_1(sc, PORT_PKTPG_PTR + 1);
893
894 /* Wait until the EEPROM is not busy */
895 for (x = 0; x < MAXLOOP; x++) {
896 if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
897 break;
898 }
899
900 if (x == MAXLOOP)
901 return CS_ERROR;
902
903 /* Wait until initialization is done */
904 for (x = 0; x < MAXLOOP; x++) {
905 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
906 break;
907 }
908
909 if (x == MAXLOOP)
910 return CS_ERROR;
911
912 /* Reset is no longer in progress */
913 sc->sc_resetting = FALSE;
914
915 return CS_OK;
916 }
917
918 int
919 cs_verify_eeprom(struct cs_softc *sc)
920 {
921 uint16_t self_status;
922
923 /* Verify that the EEPROM is present and OK */
924 self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
925 if (((self_status & SELF_ST_EEP_PRES) &&
926 (self_status & SELF_ST_EEP_OK)) == 0)
927 return CS_ERROR;
928
929 return CS_OK;
930 }
931
932 int
933 cs_read_eeprom(struct cs_softc *sc, int offset, uint16_t *pValue)
934 {
935 int x;
936
937 /* Ensure that the EEPROM is not busy */
938 for (x = 0; x < MAXLOOP; x++) {
939 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
940 SELF_ST_SI_BUSY))
941 break;
942 }
943
944 if (x == MAXLOOP)
945 return CS_ERROR;
946
947 /* Issue the command to read the offset within the EEPROM */
948 CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
949 offset | EEPROM_CMD_READ);
950
951 /* Wait until the command is completed */
952 for (x = 0; x < MAXLOOP; x++) {
953 if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
954 SELF_ST_SI_BUSY))
955 break;
956 }
957
958 if (x == MAXLOOP)
959 return CS_ERROR;
960
961 /* Get the EEPROM data from the EEPROM Data register */
962 *pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
963
964 return CS_OK;
965 }
966
967 void
968 cs_initChip(struct cs_softc *sc)
969 {
970 uint16_t busCtl;
971 uint16_t selfCtl;
972 uint16_t v;
973 uint16_t isaId;
974 int i;
975 int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
976
977 /* Disable reception and transmission of frames */
978 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
979 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
980 ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
981
982 /* Disable interrupt at the chip */
983 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
984 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
985
986 /* If IOCHRDY is enabled then clear the bit in the busCtl register */
987 busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
988 if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
989 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
990 busCtl & ~BUS_CTL_IOCHRDY);
991 } else {
992 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
993 busCtl | BUS_CTL_IOCHRDY);
994 }
995
996 /* Set the Line Control register to match the media type */
997 if (media == IFM_10_T)
998 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
999 else
1000 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
1001
1002 /*
1003 * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
1004 * enable the DC/DC converter
1005 */
1006 selfCtl = SELF_CTL_HC1E;
1007
1008 /* If the media type is 10Base2 */
1009 if (media == IFM_10_2) {
1010 /* Enable the DC/DC converter if it has a low enable. */
1011 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
1012 /*
1013 * Set the HCB1 bit, which causes the HC1 pin to go
1014 * low.
1015 */
1016 selfCtl |= SELF_CTL_HCB1;
1017 } else { /* Media type is 10BaseT or AUI */
1018 /* Disable the DC/DC converter if it has a high enable. */
1019 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
1020 /*
1021 * Set the HCB1 bit, which causes the HC1 pin to go
1022 * low.
1023 */
1024 selfCtl |= SELF_CTL_HCB1;
1025 }
1026 }
1027 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
1028
1029 /* Enable normal link pulse */
1030 if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
1031 CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
1032
1033 /* Enable full-duplex, if appropriate */
1034 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
1035 CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
1036
1037 /* RX_CTL set in cs_set_ladr_filt(), below */
1038
1039 /* Enable all transmission interrupts */
1040 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
1041
1042 /* Accept all receive interrupts */
1043 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
1044
1045 /*
1046 * Configure Operational Modes
1047 *
1048 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this
1049 * is a better way to do it because the card has a counter which can be
1050 * read to update the RX_MISS counter. This saves many interrupts.
1051 *
1052 * I have turned on the tx and rx overflow interrupts to counter using
1053 * the receive miss interrupt. This is a better estimate of errors
1054 * and requires lower system overhead.
1055 */
1056 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
1057 BUF_CFG_RX_DMA_IE);
1058
1059 if (sc->sc_dma_chipinit)
1060 (*sc->sc_dma_chipinit)(sc);
1061
1062 /* If memory mode is enabled */
1063 if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
1064 /* If external logic is present for address decoding */
1065 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
1066 /*
1067 * Program the external logic to decode address bits
1068 * SA20-SA23
1069 */
1070 CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
1071 ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
1072 EEPROM_CMD_ELSEL);
1073 }
1074
1075 /*
1076 * Write the packet page base physical address to the memory
1077 * base register.
1078 */
1079 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
1080 sc->sc_pktpgaddr & 0xFFFF);
1081 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
1082 sc->sc_pktpgaddr >> 16);
1083 busCtl = BUS_CTL_MEM_MODE;
1084
1085 /* Tell the chip to read the addresses off the SA pins */
1086 if (sc->sc_cfgflags & CFGFLG_USE_SA) {
1087 busCtl |= BUS_CTL_USE_SA;
1088 }
1089 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1090 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
1091
1092 /* We are in memory mode now! */
1093 sc->sc_memorymode = TRUE;
1094
1095 /*
1096 * Wait here (10ms) for the chip to swap over. this is the
1097 * maximum time that this could take.
1098 */
1099 delay(10000);
1100
1101 /* Verify that we can read from the chip */
1102 isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
1103
1104 /*
1105 * As a last minute sanity check before actually using mapped
1106 * memory we verify that we can read the isa number from the
1107 * chip in memory mode.
1108 */
1109 if (isaId != EISA_NUM_CRYSTAL) {
1110 aprint_error_dev(sc->sc_dev,
1111 "failed to enable memory mode\n");
1112 sc->sc_memorymode = FALSE;
1113 } else {
1114 /*
1115 * We are in memory mode so if we aren't using DMA,
1116 * then program the chip to interrupt early.
1117 */
1118 if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
1119 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
1120 BUF_CFG_RX_DEST_IE |
1121 BUF_CFG_RX_MISS_OVER_IE |
1122 BUF_CFG_TX_COL_OVER_IE);
1123 }
1124 }
1125
1126 }
1127
1128 /* Put Ethernet address into the Individual Address register */
1129 for (i = 0; i < 6; i += 2) {
1130 v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
1131 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
1132 }
1133
1134 if (sc->sc_irq != -1) {
1135 /* Set the interrupt level in the chip */
1136 if (sc->sc_prodid == PROD_ID_CS8900) {
1137 if (sc->sc_irq == 5)
1138 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
1139 else
1140 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM,
1141 (sc->sc_irq) - 10);
1142 } else { /* CS8920 */
1143 CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM,
1144 sc->sc_irq);
1145 }
1146 }
1147
1148 /* Write the multicast mask to the address filter register */
1149 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1150
1151 /* Enable reception and transmission of frames */
1152 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
1153 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
1154 LINE_CTL_RX_ON | LINE_CTL_TX_ON);
1155
1156 /* Enable interrupt at the chip */
1157 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
1158 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
1159 }
1160
1161 int
1162 cs_init(struct ifnet *ifp)
1163 {
1164 int intState;
1165 int error = CS_OK;
1166 struct cs_softc *sc = ifp->if_softc;
1167
1168 if (cs_enable(sc))
1169 goto out;
1170
1171 cs_stop(ifp, 0);
1172
1173 intState = splnet();
1174
1175 #if 0
1176 /* Mark the interface as down */
1177 sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
1178 #endif
1179
1180 #ifdef CS_DEBUG
1181 /* Enable debugging */
1182 sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
1183 #endif
1184
1185 /* Reset the chip */
1186 if ((error = cs_reset_chip(sc)) == CS_OK) {
1187 /* Initialize the chip */
1188 cs_initChip(sc);
1189
1190 /* Mark the interface as running */
1191 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1192 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1193 sc->sc_ethercom.ec_if.if_timer = 0;
1194
1195 /* Assume we have carrier until we are told otherwise. */
1196 sc->sc_carrier = 1;
1197 } else
1198 aprint_error_dev(sc->sc_dev, "unable to reset chip\n");
1199
1200 splx(intState);
1201 out:
1202 if (error == CS_OK)
1203 return 0;
1204 return EIO;
1205 }
1206
1207 void
1208 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1209 {
1210 struct ifnet *ifp = &ec->ec_if;
1211 struct ether_multi *enm;
1212 struct ether_multistep step;
1213 uint16_t af[4];
1214 uint16_t port, mask, index;
1215
1216 /*
1217 * Set up multicast address filter by passing all multicast addresses
1218 * through a crc generator, and then using the high order 6 bits as an
1219 * index into the 64 bit logical address filter. The high order bit
1220 * selects the word, while the rest of the bits select the bit within
1221 * the word.
1222 */
1223 if (ifp->if_flags & IFF_PROMISC) {
1224 /* Accept all valid frames. */
1225 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1226 RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1227 RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1228 ifp->if_flags |= IFF_ALLMULTI;
1229 return;
1230 }
1231
1232 /*
1233 * Accept frames if a. crc valid, b. individual address match c.
1234 * broadcast address,and d. multicast addresses matched in the hash
1235 * filter
1236 */
1237 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1238 RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1239
1240
1241 /*
1242 * Start off with all multicast flag clear, set it if we need to
1243 * later, otherwise we will leave it.
1244 */
1245 ifp->if_flags &= ~IFF_ALLMULTI;
1246 af[0] = af[1] = af[2] = af[3] = 0x0000;
1247
1248 /*
1249 * Loop through all the multicast addresses unless we get a range of
1250 * addresses, in which case we will just accept all packets.
1251 * Justification for this is given in the next comment.
1252 */
1253 ETHER_LOCK(ec);
1254 ETHER_FIRST_MULTI(step, ec, enm);
1255 while (enm != NULL) {
1256 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1257 sizeof enm->enm_addrlo)) {
1258 /*
1259 * We must listen to a range of multicast addresses.
1260 * For now, just accept all multicasts, rather than
1261 * trying to set only those filter bits needed to match
1262 * the range. (At this time, the only use of address
1263 * ranges is for IP multicast routing, for which the
1264 * range is big enough to require all bits set.)
1265 */
1266 ifp->if_flags |= IFF_ALLMULTI;
1267 af[0] = af[1] = af[2] = af[3] = 0xffff;
1268 break;
1269 } else {
1270 /*
1271 * We have got an individual address so just set that
1272 * bit.
1273 */
1274 index = cs_hash_index(enm->enm_addrlo);
1275
1276 /* Set the bit the Logical address filter. */
1277 port = (uint16_t) (index >> 4);
1278 mask = (uint16_t) (1 << (index & 0xf));
1279 af[port] |= mask;
1280
1281 ETHER_NEXT_MULTI(step, enm);
1282 }
1283 }
1284 ETHER_UNLOCK(ec);
1285
1286 /* Now program the chip with the addresses */
1287 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1288 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1289 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1290 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1291 return;
1292 }
1293
1294 uint16_t
1295 cs_hash_index(char *addr)
1296 {
1297 uint32_t crc;
1298 uint16_t hash_code;
1299
1300 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1301
1302 hash_code = crc >> 26;
1303 return hash_code;
1304 }
1305
1306 void
1307 cs_reset(struct cs_softc *sc)
1308 {
1309
1310 /* Mark the interface as down */
1311 sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1312
1313 /* Reset the chip */
1314 cs_reset_chip(sc);
1315 }
1316
1317 int
1318 cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1319 {
1320 struct cs_softc *sc = ifp->if_softc;
1321 struct ifreq *ifr = data;
1322 int state;
1323 int result;
1324
1325 state = splnet();
1326
1327 result = 0; /* Only set if something goes wrong */
1328
1329 switch (cmd) {
1330 case SIOCGIFMEDIA:
1331 case SIOCSIFMEDIA:
1332 result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1333 break;
1334
1335 default:
1336 result = ether_ioctl(ifp, cmd, data);
1337 if (result == ENETRESET) {
1338 if (ifp->if_flags & IFF_RUNNING) {
1339 /*
1340 * Multicast list has changed. Set the
1341 * hardware filter accordingly.
1342 */
1343 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1344 }
1345 result = 0;
1346 }
1347 break;
1348 }
1349
1350 splx(state);
1351
1352 return result;
1353 }
1354
1355 int
1356 cs_mediachange(struct ifnet *ifp)
1357 {
1358
1359 /*
1360 * Current media is already set up. Just reset the interface
1361 * to let the new value take hold.
1362 */
1363 cs_init(ifp);
1364 return 0;
1365 }
1366
1367 void
1368 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1369 {
1370 struct cs_softc *sc = ifp->if_softc;
1371
1372 /* The currently selected media is always the active media. */
1373 ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1374
1375 if (ifp->if_flags & IFF_UP) {
1376 /* Interface up, status is valid. */
1377 ifmr->ifm_status = IFM_AVALID |
1378 (sc->sc_carrier ? IFM_ACTIVE : 0);
1379 }
1380 else ifmr->ifm_status = 0;
1381 }
1382
1383 int
1384 cs_intr(void *arg)
1385 {
1386 struct cs_softc *sc = arg;
1387 uint16_t Event;
1388 uint16_t rndEvent;
1389
1390 /*printf("cs_intr %p\n", sc);*/
1391 /* Ignore any interrupts that happen while the chip is being reset */
1392 if (sc->sc_resetting) {
1393 printf("%s: cs_intr: reset in progress\n",
1394 device_xname(sc->sc_dev));
1395 return 1;
1396 }
1397
1398 /* Read an event from the Interrupt Status Queue */
1399 if (sc->sc_memorymode)
1400 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1401 else
1402 Event = CS_READ_PORT(sc, PORT_ISQ);
1403
1404 if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1405 return 0; /* Not ours */
1406
1407 rndEvent = Event;
1408
1409 /* Process all the events in the Interrupt Status Queue */
1410 while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1411 /* Dispatch to an event handler based on the register number */
1412 switch (Event & REG_NUM_MASK) {
1413 case REG_NUM_RX_EVENT:
1414 cs_receive_event(sc, Event);
1415 break;
1416 case REG_NUM_TX_EVENT:
1417 cs_transmit_event(sc, Event);
1418 break;
1419 case REG_NUM_BUF_EVENT:
1420 cs_buffer_event(sc, Event);
1421 break;
1422 case REG_NUM_TX_COL:
1423 case REG_NUM_RX_MISS:
1424 cs_counter_event(sc, Event);
1425 break;
1426 default:
1427 printf("%s: unknown interrupt event 0x%x\n",
1428 device_xname(sc->sc_dev), Event);
1429 break;
1430 }
1431
1432 /* Read another event from the Interrupt Status Queue */
1433 if (sc->sc_memorymode)
1434 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1435 else
1436 Event = CS_READ_PORT(sc, PORT_ISQ);
1437 }
1438
1439 /* have handled the interrupt */
1440 rnd_add_uint32(&sc->rnd_source, rndEvent);
1441 return 1;
1442 }
1443
1444 void
1445 cs_counter_event(struct cs_softc *sc, uint16_t cntEvent)
1446 {
1447 struct ifnet *ifp;
1448 uint16_t errorCount;
1449
1450 ifp = &sc->sc_ethercom.ec_if;
1451
1452 switch (cntEvent & REG_NUM_MASK) {
1453 case REG_NUM_TX_COL:
1454 /* The count should be read before an overflow occurs. */
1455 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1456 /*
1457 * The tramsit event routine always checks the number of
1458 * collisions for any packet so we don't increment any
1459 * counters here, as they should already have been
1460 * considered.
1461 */
1462 break;
1463 case REG_NUM_RX_MISS:
1464 /* The count should be read before an overflow occurs. */
1465 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1466 /*
1467 * Increment the input error count, the first 6bits are the
1468 * register id.
1469 */
1470 ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1471 break;
1472 default:
1473 /* Do nothing */
1474 break;
1475 }
1476 }
1477
1478 void
1479 cs_buffer_event(struct cs_softc *sc, uint16_t bufEvent)
1480 {
1481
1482 /*
1483 * Multiple events can be in the buffer event register at one time so
1484 * a standard switch statement will not suffice, here every event
1485 * must be checked.
1486 */
1487
1488 /*
1489 * If 128 bits have been rxed by the time we get here, the dest event
1490 * will be cleared and 128 event will be set.
1491 */
1492 if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0)
1493 cs_process_rx_early(sc);
1494
1495 if (bufEvent & BUF_EVENT_RX_DMA) {
1496 /* Process the receive data */
1497 if (sc->sc_dma_process_rx)
1498 (*sc->sc_dma_process_rx)(sc);
1499 else
1500 /* Should panic? */
1501 aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
1502 }
1503
1504 if (bufEvent & BUF_EVENT_TX_UNDR) {
1505 #if 0
1506 /*
1507 * This can happen occasionally, and it's not worth worrying
1508 * about.
1509 */
1510 printf("%s: transmit underrun (%d -> %d)\n",
1511 device_xname(sc->sc_dev), sc->sc_xe_ent,
1512 cs_xmit_early_table[sc->sc_xe_ent].worse);
1513 #endif
1514 sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1515 sc->sc_xe_togo =
1516 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1517
1518 /* had an underrun, transmit is finished */
1519 sc->sc_txbusy = FALSE;
1520 }
1521
1522 if (bufEvent & BUF_EVENT_SW_INT)
1523 printf("%s: software initiated interrupt\n",
1524 device_xname(sc->sc_dev));
1525 }
1526
1527 void
1528 cs_transmit_event(struct cs_softc *sc, uint16_t txEvent)
1529 {
1530 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1531
1532 /* If there were any errors transmitting this frame */
1533 if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR |
1534 TX_EVENT_OUT_WIN | TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1535 /* Increment the output error count */
1536 ifp->if_oerrors++;
1537
1538 /* Note carrier loss. */
1539 if (txEvent & TX_EVENT_LOSS_CRS)
1540 sc->sc_carrier = 0;
1541
1542 /* If debugging is enabled then log error messages */
1543 if (ifp->if_flags & IFF_DEBUG) {
1544 if (txEvent & TX_EVENT_LOSS_CRS)
1545 aprint_error_dev(sc->sc_dev, "lost carrier\n");
1546
1547 if (txEvent & TX_EVENT_SQE_ERR)
1548 aprint_error_dev(sc->sc_dev, "SQE error\n");
1549
1550 if (txEvent & TX_EVENT_OUT_WIN)
1551 aprint_error_dev(sc->sc_dev,
1552 "out-of-window collision\n");
1553
1554 if (txEvent & TX_EVENT_JABBER)
1555 aprint_error_dev(sc->sc_dev, "jabber\n");
1556
1557 if (txEvent & TX_EVENT_16_COLL)
1558 aprint_error_dev(sc->sc_dev,
1559 "16 collisions\n");
1560 }
1561 } else {
1562 /* Transmission successful, carrier is up. */
1563 sc->sc_carrier = 1;
1564 #ifdef SHARK
1565 ledNetActive();
1566 #endif
1567 }
1568
1569 /* Add the number of collisions for this frame */
1570 if (txEvent & TX_EVENT_16_COLL)
1571 ifp->if_collisions += 16;
1572 else
1573 ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1574
1575 ifp->if_opackets++;
1576
1577 /* Transmission is no longer in progress */
1578 sc->sc_txbusy = FALSE;
1579
1580 /* If there is more to transmit, start the next transmission */
1581 if_schedule_deferred_start(ifp);
1582 }
1583
1584 void
1585 cs_print_rx_errors(struct cs_softc *sc, uint16_t rxEvent)
1586 {
1587
1588 if (rxEvent & RX_EVENT_RUNT)
1589 aprint_error_dev(sc->sc_dev, "runt\n");
1590
1591 if (rxEvent & RX_EVENT_X_DATA)
1592 aprint_error_dev(sc->sc_dev, "extra data\n");
1593
1594 if (rxEvent & RX_EVENT_CRC_ERR) {
1595 if (rxEvent & RX_EVENT_DRIBBLE)
1596 aprint_error_dev(sc->sc_dev, "alignment error\n");
1597 else
1598 aprint_error_dev(sc->sc_dev, "CRC error\n");
1599 } else {
1600 if (rxEvent & RX_EVENT_DRIBBLE)
1601 aprint_error_dev(sc->sc_dev, "dribble bits\n");
1602 }
1603 }
1604
1605 void
1606 cs_receive_event(struct cs_softc *sc, uint16_t rxEvent)
1607 {
1608 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1609
1610 /* If the frame was not received OK */
1611 if (!(rxEvent & RX_EVENT_RX_OK)) {
1612 /* Increment the input error count */
1613 ifp->if_ierrors++;
1614
1615 /* If debugging is enabled then log error messages. */
1616 if (ifp->if_flags & IFF_DEBUG) {
1617 if (rxEvent != REG_NUM_RX_EVENT) {
1618 cs_print_rx_errors(sc, rxEvent);
1619
1620 /*
1621 * Must read the length of all received
1622 * frames
1623 */
1624 CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1625
1626 /* Skip the received frame */
1627 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1628 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1629 RX_CFG_SKIP);
1630 } else
1631 aprint_error_dev(sc->sc_dev, "implied skip\n");
1632 }
1633 } else {
1634 /*
1635 * Process the received frame and pass it up to the upper
1636 * layers.
1637 */
1638 cs_process_receive(sc);
1639 }
1640 }
1641
1642 void
1643 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1644 {
1645 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1646
1647 /* Pass the packet up. */
1648 if_percpuq_enqueue(ifp->if_percpuq, m);
1649 }
1650
1651 void
1652 cs_process_receive(struct cs_softc *sc)
1653 {
1654 struct ifnet *ifp;
1655 struct mbuf *m;
1656 int totlen;
1657 uint16_t *pBuff, *pBuffLimit;
1658 int pad;
1659 unsigned int frameOffset = 0; /* XXX: gcc */
1660
1661 #ifdef SHARK
1662 ledNetActive();
1663 #endif
1664
1665 ifp = &sc->sc_ethercom.ec_if;
1666
1667 /* Received a packet; carrier is up. */
1668 sc->sc_carrier = 1;
1669
1670 if (sc->sc_memorymode) {
1671 /* Initialize the frame offset */
1672 frameOffset = PKTPG_RX_LENGTH;
1673
1674 /* Get the length of the received frame */
1675 totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1676 frameOffset += 2;
1677 } else {
1678 /* Drop status */
1679 CS_READ_PORT(sc, PORT_RXTX_DATA);
1680
1681 /* Get the length of the received frame */
1682 totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1683 }
1684
1685 if (totlen > ETHER_MAX_LEN) {
1686 aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
1687 totlen);
1688
1689 /* Skip the received frame */
1690 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1691 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1692 return;
1693 }
1694
1695 MGETHDR(m, M_DONTWAIT, MT_DATA);
1696 if (m == 0) {
1697 aprint_error_dev(sc->sc_dev,
1698 "cs_process_receive: unable to allocate mbuf\n");
1699 ifp->if_ierrors++;
1700 /*
1701 * Couldn't allocate an mbuf so things are not good, may as
1702 * well drop the packet I think.
1703 *
1704 * have already read the length so we should be right to skip
1705 * the packet.
1706 */
1707 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1708 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1709 return;
1710 }
1711 m_set_rcvif(m, ifp);
1712 m->m_pkthdr.len = totlen;
1713
1714 /* Number of bytes to align ip header on word boundary for ipintr */
1715 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1716
1717 /*
1718 * Alloc mbuf cluster if we need.
1719 * We need 1 byte spare because following packet read loop can overrun.
1720 */
1721 if (totlen + pad + 1 > MHLEN) {
1722 MCLGET(m, M_DONTWAIT);
1723 if ((m->m_flags & M_EXT) == 0) {
1724 /* Couldn't allocate an mbuf cluster */
1725 aprint_error_dev(sc->sc_dev,
1726 "cs_process_receive: "
1727 "unable to allocate a cluster\n");
1728 m_freem(m);
1729
1730 /* Skip the received frame */
1731 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1732 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG)
1733 | RX_CFG_SKIP);
1734 return;
1735 }
1736 }
1737
1738 /* Align ip header on word boundary for ipintr */
1739 m->m_data += pad;
1740
1741 m->m_len = totlen;
1742 pBuff = mtod(m, uint16_t *);
1743
1744 /* Now read the data from the chip */
1745 if (sc->sc_memorymode) {
1746 /* Don't want to go over */
1747 pBuffLimit = pBuff + (totlen + 1) / 2;
1748
1749 while (pBuff < pBuffLimit) {
1750 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1751 frameOffset += 2;
1752 }
1753 } else
1754 IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
1755
1756 cs_ether_input(sc, m);
1757 }
1758
1759 void
1760 cs_process_rx_early(struct cs_softc *sc)
1761 {
1762 struct ifnet *ifp;
1763 struct mbuf *m;
1764 uint16_t frameCount, oldFrameCount;
1765 uint16_t rxEvent;
1766 uint16_t *pBuff;
1767 int pad;
1768 unsigned int frameOffset;
1769
1770
1771 ifp = &sc->sc_ethercom.ec_if;
1772
1773 /* Initialize the frame offset */
1774 frameOffset = PKTPG_RX_FRAME;
1775 frameCount = 0;
1776
1777 MGETHDR(m, M_DONTWAIT, MT_DATA);
1778 if (m == 0) {
1779 aprint_error_dev(sc->sc_dev,
1780 "cs_process_rx_early: unable to allocate mbuf\n");
1781 ifp->if_ierrors++;
1782 /*
1783 * Couldn't allocate an mbuf so things are not good, may as
1784 * well drop the packet I think.
1785 *
1786 * have already read the length so we should be right to skip
1787 * the packet.
1788 */
1789 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1790 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1791 return;
1792 }
1793 m_set_rcvif(m, ifp);
1794 /*
1795 * Save processing by always using a mbuf cluster, guaranteed to fit
1796 * packet
1797 */
1798 MCLGET(m, M_DONTWAIT);
1799 if ((m->m_flags & M_EXT) == 0) {
1800 /* Couldn't allocate an mbuf cluster */
1801 aprint_error_dev(sc->sc_dev,
1802 "cs_process_rx_early: unable to allocate a cluster\n");
1803 m_freem(m);
1804 /* Skip the frame */
1805 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1806 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1807 return;
1808 }
1809
1810 /* Align ip header on word boundary for ipintr */
1811 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1812 m->m_data += pad;
1813
1814 /* Set up the buffer pointer to point to the data area */
1815 pBuff = mtod(m, uint16_t *);
1816
1817 /*
1818 * Now read the frame byte counter until we have finished reading the
1819 * frame
1820 */
1821 oldFrameCount = 0;
1822 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1823 while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1824 for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1825 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1826 frameOffset += 2;
1827 }
1828
1829 /* Read the new count from the chip */
1830 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1831 }
1832
1833 /* Update the mbuf counts */
1834 m->m_len = oldFrameCount;
1835 m->m_pkthdr.len = oldFrameCount;
1836
1837 /* Now check the Rx Event register */
1838 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1839
1840 if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1841 /*
1842 * Do an implied skip, it seems to be more reliable than a
1843 * forced skip.
1844 */
1845 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1846 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1847
1848 /*
1849 * Now read the RX_EVENT register to perform an implied skip.
1850 */
1851 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1852
1853 cs_ether_input(sc, m);
1854 } else {
1855 m_freem(m);
1856 ifp->if_ierrors++;
1857 }
1858 }
1859
1860 void
1861 cs_start_output(struct ifnet *ifp)
1862 {
1863 struct cs_softc *sc;
1864 struct mbuf *pMbuf;
1865 struct mbuf *pMbufChain;
1866 uint16_t BusStatus;
1867 uint16_t Length;
1868 int txLoop = 0;
1869 int dropout = 0;
1870
1871 sc = ifp->if_softc;
1872
1873 /* Check that the interface is up and running */
1874 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1875 return;
1876
1877 /* Don't interrupt a transmission in progress */
1878 if (sc->sc_txbusy)
1879 return;
1880
1881 /* This loop will only run through once if transmission is successful */
1882 /*
1883 * While there are packets to transmit and a transmit is not in
1884 * progress
1885 */
1886 while (sc->sc_txbusy == 0 && dropout == 0) {
1887 IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1888 if (pMbufChain == NULL)
1889 break;
1890
1891 /*
1892 * If BPF is listening on this interface, let it see the packet
1893 * before we commit it to the wire.
1894 */
1895 bpf_mtap(ifp, pMbufChain, BPF_D_OUT);
1896
1897 /* Find the total length of the data to transmit */
1898 Length = 0;
1899 for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1900 Length += pMbuf->m_len;
1901
1902 do {
1903 /*
1904 * Request that the transmit be started after all
1905 * data has been copied
1906 *
1907 * In IO mode must write to the IO port not the packet
1908 * page address
1909 *
1910 * If this is changed to start transmission after a
1911 * small amount of data has been copied you tend to
1912 * get packet missed errors i think because the ISA
1913 * bus is too slow. Or possibly the copy routine is
1914 * not streamlined enough.
1915 */
1916 if (sc->sc_memorymode) {
1917 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1918 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1919 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1920 } else {
1921 CS_WRITE_PORT(sc, PORT_TX_CMD,
1922 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1923 CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1924 }
1925
1926 /* Adjust early-transmit machinery. */
1927 if (--sc->sc_xe_togo == 0) {
1928 sc->sc_xe_ent =
1929 cs_xmit_early_table[sc->sc_xe_ent].better;
1930 sc->sc_xe_togo =
1931 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1932 }
1933 /*
1934 * Read the BusStatus register which indicates
1935 * success of the request
1936 */
1937 BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1938
1939 /*
1940 * If there was an error in the transmit bid free the
1941 * mbuf and go on. This is presuming that mbuf is
1942 * corrupt.
1943 */
1944 if (BusStatus & BUS_ST_TX_BID_ERR) {
1945 aprint_error_dev(sc->sc_dev,
1946 "transmit bid error (too big)");
1947
1948 /* Discard the bad mbuf chain */
1949 m_freem(pMbufChain);
1950 sc->sc_ethercom.ec_if.if_oerrors++;
1951
1952 /* Loop up to transmit the next chain */
1953 txLoop = 0;
1954 } else {
1955 if (BusStatus & BUS_ST_RDY4TXNOW) {
1956 /*
1957 * The chip is ready for transmission
1958 * now
1959 */
1960 /*
1961 * Copy the frame to the chip to
1962 * start transmission
1963 */
1964 cs_copy_tx_frame(sc, pMbufChain);
1965
1966 /* Free the mbuf chain */
1967 m_freem(pMbufChain);
1968
1969 /* Transmission is now in progress */
1970 sc->sc_txbusy = TRUE;
1971 txLoop = 0;
1972 } else {
1973 /*
1974 * If we get here we want to try
1975 * again with the same mbuf, until
1976 * the chip lets us transmit.
1977 */
1978 txLoop++;
1979 if (txLoop > CS_OUTPUT_LOOP_MAX) {
1980 /* Free the mbuf chain */
1981 m_freem(pMbufChain);
1982 /*
1983 * Transmission is not in
1984 * progress
1985 */
1986 sc->sc_txbusy = FALSE;
1987 /*
1988 * Increment the output error
1989 * count
1990 */
1991 ifp->if_oerrors++;
1992 /*
1993 * exit the routine and drop
1994 * the packet.
1995 */
1996 txLoop = 0;
1997 dropout = 1;
1998 }
1999 }
2000 }
2001 } while (txLoop);
2002 }
2003 }
2004
2005 void
2006 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
2007 {
2008 struct mbuf *m;
2009 int len, leftover, frameoff;
2010 uint16_t dbuf;
2011 uint8_t *p;
2012 #ifdef DIAGNOSTIC
2013 uint8_t *lim;
2014 #endif
2015
2016 /* Initialize frame pointer and data port address */
2017 frameoff = PKTPG_TX_FRAME;
2018
2019 /* Start out with no leftover data */
2020 leftover = 0;
2021 dbuf = 0;
2022
2023 /* Process the chain of mbufs */
2024 for (m = m0; m != NULL; m = m->m_next) {
2025 /* Process all of the data in a single mbuf. */
2026 p = mtod(m, uint8_t *);
2027 len = m->m_len;
2028 #ifdef DIAGNOSTIC
2029 lim = p + len;
2030 #endif
2031
2032 while (len > 0) {
2033 if (leftover) {
2034 /*
2035 * Data left over (from mbuf or realignment).
2036 * Buffer the next byte, and write it and
2037 * the leftover data out.
2038 */
2039 dbuf |= *p++ << 8;
2040 len--;
2041 if (sc->sc_memorymode) {
2042 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2043 frameoff += 2;
2044 }
2045 else {
2046 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2047 }
2048 leftover = 0;
2049 } else if ((long) p & 1) {
2050 /* Misaligned data. Buffer the next byte. */
2051 dbuf = *p++;
2052 len--;
2053 leftover = 1;
2054 } else {
2055 /*
2056 * Aligned data. This is the case we like.
2057 *
2058 * Write-region out as much as we can, then
2059 * buffer the remaining byte (if any).
2060 */
2061 leftover = len & 1;
2062 len &= ~1;
2063 if (sc->sc_memorymode) {
2064 MEM_WRITE_REGION_2(sc, frameoff,
2065 (uint16_t *) p, len >> 1);
2066 frameoff += len;
2067 } else
2068 IO_WRITE_MULTI_2(sc, PORT_RXTX_DATA,
2069 (uint16_t *)p, len >> 1);
2070 p += len;
2071
2072 if (leftover)
2073 dbuf = *p++;
2074 len = 0;
2075 }
2076 }
2077 if (len < 0)
2078 panic("cs_copy_tx_frame: negative len");
2079 #ifdef DIAGNOSTIC
2080 if (p != lim)
2081 panic("cs_copy_tx_frame: p != lim");
2082 #endif
2083 }
2084 if (leftover) {
2085 if (sc->sc_memorymode)
2086 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
2087 else
2088 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
2089 }
2090 }
2091
2092 static int
2093 cs_enable(struct cs_softc *sc)
2094 {
2095
2096 if (CS_IS_ENABLED(sc) == 0) {
2097 if (sc->sc_enable != NULL) {
2098 int error;
2099
2100 error = (*sc->sc_enable)(sc);
2101 if (error)
2102 return error;
2103 }
2104 sc->sc_cfgflags |= CFGFLG_ENABLED;
2105 }
2106
2107 return 0;
2108 }
2109
2110 static void
2111 cs_disable(struct cs_softc *sc)
2112 {
2113
2114 if (CS_IS_ENABLED(sc)) {
2115 if (sc->sc_disable != NULL)
2116 (*sc->sc_disable)(sc);
2117
2118 sc->sc_cfgflags &= ~CFGFLG_ENABLED;
2119 }
2120 }
2121
2122 static void
2123 cs_stop(struct ifnet *ifp, int disable)
2124 {
2125 struct cs_softc *sc = ifp->if_softc;
2126
2127 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
2128 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
2129 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
2130 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
2131
2132 if (disable)
2133 cs_disable(sc);
2134
2135 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2136 }
2137
2138 int
2139 cs_activate(device_t self, enum devact act)
2140 {
2141 struct cs_softc *sc = device_private(self);
2142
2143 switch (act) {
2144 case DVACT_DEACTIVATE:
2145 if_deactivate(&sc->sc_ethercom.ec_if);
2146 return 0;
2147 default:
2148 return EOPNOTSUPP;
2149 }
2150 }
2151