cs89x0.c revision 1.5 1 /* $NetBSD: cs89x0.c,v 1.5 2002/05/14 19:23:45 augustss Exp $ */
2
3 /*
4 * Copyright 1997
5 * Digital Equipment Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and
8 * copied only in accordance with the following terms and conditions.
9 * Subject to these conditions, you may download, copy, install,
10 * use, modify and distribute this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce
14 * and retain this copyright notice and list of conditions as
15 * they appear in the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Digital Equipment Corporation. Neither the "Digital Equipment
19 * Corporation" name nor any trademark or logo of Digital Equipment
20 * Corporation may be used to endorse or promote products derived
21 * from this software without the prior written permission of
22 * Digital Equipment Corporation.
23 *
24 * 3) This software is provided "AS-IS" and any express or implied
25 * warranties, including but not limited to, any implied warranties
26 * of merchantability, fitness for a particular purpose, or
27 * non-infringement are disclaimed. In no event shall DIGITAL be
28 * liable for any damages whatsoever, and in particular, DIGITAL
29 * shall not be liable for special, indirect, consequential, or
30 * incidental damages or damages for lost profits, loss of
31 * revenue or loss of use, whether such damages arise in contract,
32 * negligence, tort, under statute, in equity, at law or otherwise,
33 * even if advised of the possibility of such damage.
34 */
35
36 /*
37 **++
38 ** FACILITY
39 **
40 ** Device Driver for the Crystal CS8900 ISA Ethernet Controller.
41 **
42 ** ABSTRACT
43 **
44 ** This module provides standard ethernet access for INET protocols
45 ** only.
46 **
47 ** AUTHORS
48 **
49 ** Peter Dettori SEA - Software Engineering.
50 **
51 ** CREATION DATE:
52 **
53 ** 13-Feb-1997.
54 **
55 ** MODIFICATION HISTORY (Digital):
56 **
57 ** Revision 1.27 1998/01/20 17:59:40 cgd
58 ** update for moved headers
59 **
60 ** Revision 1.26 1998/01/12 19:29:36 cgd
61 ** use arm32/isa versions of isadma code.
62 **
63 ** Revision 1.25 1997/12/12 01:35:27 cgd
64 ** convert to use new arp code (from Brini)
65 **
66 ** Revision 1.24 1997/12/10 22:31:56 cgd
67 ** trim some fat (get rid of ability to explicitly supply enet addr, since
68 ** it was never used and added a bunch of code which really doesn't belong in
69 ** an enet driver), and clean up slightly.
70 **
71 ** Revision 1.23 1997/10/06 16:42:12 cgd
72 ** copyright notices
73 **
74 ** Revision 1.22 1997/06/20 19:38:01 chaiken
75 ** fixes some smartcard problems
76 **
77 ** Revision 1.21 1997/06/10 02:56:20 grohn
78 ** Added call to ledNetActive
79 **
80 ** Revision 1.20 1997/06/05 00:47:06 dettori
81 ** Changed cs_process_rx_dma to reset and re-initialise the
82 ** ethernet chip when DMA gets out of sync, or mbufs
83 ** can't be allocated.
84 **
85 ** Revision 1.19 1997/06/03 03:09:58 dettori
86 ** Turn off sc_txbusy flag when a transmit underrun
87 ** occurs.
88 **
89 ** Revision 1.18 1997/06/02 00:04:35 dettori
90 ** redefined the transmit table to get around the nfs_timer bug while we are
91 ** looking into it further.
92 **
93 ** Also changed interrupts from EDGE to LEVEL.
94 **
95 ** Revision 1.17 1997/05/27 23:31:01 dettori
96 ** Pulled out changes to DMAMODE defines.
97 **
98 ** Revision 1.16 1997/05/23 04:25:16 cgd
99 ** reformat log so it fits in 80cols
100 **
101 ** Revision 1.15 1997/05/23 04:22:18 cgd
102 ** remove the existing copyright notice (which Peter Dettori indicated
103 ** was incorrect, copied from an existing NetBSD file only so that the
104 ** file would have a copyright notice on it, and which he'd intended to
105 ** replace). Replace it with a Digital copyright notice, cloned from
106 ** ess.c. It's not really correct either (it indicates that the source
107 ** is Digital confidential!), but is better than nothing and more
108 ** correct than what was there before.
109 **
110 ** Revision 1.14 1997/05/23 04:12:50 cgd
111 ** use an adaptive transmit start algorithm: start by telling the chip
112 ** to start transmitting after 381 bytes have been fed to it. if that
113 ** gets transmit underruns, ramp down to 1021 bytes then "whole
114 ** packet." If successful at a given level for a while, try the next
115 ** more agressive level. This code doesn't ever try to start
116 ** transmitting after 5 bytes have been sent to the NIC, because
117 ** that underruns rather regularly. The back-off and ramp-up mechanism
118 ** could probably be tuned a little bit, but this works well enough to
119 ** support > 1MB/s transmit rates on a clear ethernet (which is about
120 ** 20-25% better than the driver had previously been getting).
121 **
122 ** Revision 1.13 1997/05/22 21:06:54 cgd
123 ** redo cs_copy_tx_frame() from scratch. It had a fatal flaw: it was blindly
124 ** casting from u_int8_t * to u_int16_t * without worrying about alignment
125 ** issues. This would cause bogus data to be spit out for mbufs with
126 ** misaligned data. For instance, it caused the following bits to appear
127 ** on the wire:
128 ** ... etBND 1S2C .SHA(K) R ...
129 ** 11112222333344445555
130 ** which should have appeared as:
131 ** ... NetBSD 1.2C (SHARK) ...
132 ** 11112222333344445555
133 ** Note the apparent 'rotate' of the bytes in the word, which was due to
134 ** incorrect unaligned accesses. This data corruption was the cause of
135 ** incoming telnet/rlogin hangs.
136 **
137 ** Revision 1.12 1997/05/22 01:55:32 cgd
138 ** reformat log so it fits in 80cols
139 **
140 ** Revision 1.11 1997/05/22 01:50:27 cgd
141 ** * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
142 ** so packets aimed at other hosts don't get sent to ether_input().
143 ** * Add a static const char *rcsid initialized with an RCS Id tag, so that
144 ** you can easily tell (`strings`) what version of the driver is in your
145 ** kernel binary.
146 ** * get rid of ether_cmp(). It was inconsistently used, not necessarily
147 ** safe, and not really a performance win anyway. (It was only used when
148 ** setting up the multicast logical address filter, which is an
149 ** infrequent event. It could have been used in the IFF_PROMISCUOUS
150 ** address check above, but the benefit of it vs. memcmp would be
151 ** inconsequential, there.) Use memcmp() instead.
152 ** * restructure csStartOuput to avoid the following bugs in the case where
153 ** txWait was being set:
154 ** * it would accidentally drop the outgoing packet if told to wait
155 ** but the outgoing packet queue was empty.
156 ** * it would bpf_mtap() the outgoing packet multiple times (once for
157 ** each time it was told to wait), and would also recalculate
158 ** the length of the outgoing packet each time it was told to
159 ** wait.
160 ** While there, rename txWait to txLoop, since with the new structure of
161 ** the code, the latter name makes more sense.
162 **
163 ** Revision 1.10 1997/05/19 02:03:20 cgd
164 ** Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip(). cs_initChip()
165 ** is the only caller of cs_set_ladr_filt(), and always calls it, so this
166 ** ends up being logically the same. In cs_set_ladr_filt(), if IFF_PROMISC
167 ** is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
168 ** as before.
169 **
170 ** Revision 1.9 1997/05/19 01:45:37 cgd
171 ** create a new function, cs_ether_input(), which does received-packet
172 ** BPF and ether_input processing. This code used to be in three places,
173 ** and centralizing it will make adding IFF_PROMISC support much easier.
174 ** Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
175 ** do copies with bus_space_write_region_2(). It's more correct, and
176 ** potentially more efficient. That function needs to be gutted (to
177 ** deal properly with alignment issues, which it currently does wrong),
178 ** however, and the change doesn't gain much, so there's no point in
179 ** enabling it now.
180 **
181 ** Revision 1.8 1997/05/19 01:17:10 cgd
182 ** fix a comment re: the setting of the TxConfig register. Clean up
183 ** interface counter maintenance (make it use standard idiom).
184 **
185 **--
186 */
187
188 #include <sys/cdefs.h>
189 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.5 2002/05/14 19:23:45 augustss Exp $");
190
191 #include "opt_inet.h"
192
193 #include <sys/param.h>
194 #include <sys/systm.h>
195 #include <sys/mbuf.h>
196 #include <sys/syslog.h>
197 #include <sys/socket.h>
198 #include <sys/device.h>
199 #include <sys/malloc.h>
200 #include <sys/ioctl.h>
201 #include <sys/errno.h>
202
203 #include "rnd.h"
204 #if NRND > 0
205 #include <sys/rnd.h>
206 #endif
207
208 #include <net/if.h>
209 #include <net/if_ether.h>
210 #include <net/if_media.h>
211 #ifdef INET
212 #include <netinet/in.h>
213 #include <netinet/if_inarp.h>
214 #endif
215
216 #include "bpfilter.h"
217 #if NBPFILTER > 0
218 #include <net/bpf.h>
219 #include <net/bpfdesc.h>
220 #endif
221
222 #include <uvm/uvm_extern.h>
223
224 #include <machine/bus.h>
225 #include <machine/intr.h>
226
227 #include <dev/ic/cs89x0reg.h>
228 #include <dev/ic/cs89x0var.h>
229
230 #ifdef SHARK
231 #include <shark/shark/sequoia.h>
232 #endif
233
234 /*
235 * MACRO DEFINITIONS
236 */
237 #define CS_OUTPUT_LOOP_MAX 100 /* max times round notorious tx loop */
238
239 /*
240 * FUNCTION PROTOTYPES
241 */
242 void cs_get_default_media(struct cs_softc *);
243 int cs_get_params(struct cs_softc *);
244 int cs_get_enaddr(struct cs_softc *);
245 int cs_reset_chip(struct cs_softc *);
246 void cs_reset(void *);
247 int cs_ioctl(struct ifnet *, u_long, caddr_t);
248 void cs_initChip(struct cs_softc *);
249 void cs_buffer_event(struct cs_softc *, u_int16_t);
250 void cs_transmit_event(struct cs_softc *, u_int16_t);
251 void cs_receive_event(struct cs_softc *, u_int16_t);
252 void cs_process_receive(struct cs_softc *);
253 void cs_process_rx_early(struct cs_softc *);
254 void cs_start_output(struct ifnet *);
255 void cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
256 void cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
257 u_int16_t cs_hash_index(char *);
258 void cs_counter_event(struct cs_softc *, u_int16_t);
259
260 int cs_mediachange(struct ifnet *);
261 void cs_mediastatus(struct ifnet *, struct ifmediareq *);
262
263 static int cs_enable(struct cs_softc *);
264 static void cs_disable(struct cs_softc *);
265 static void cs_stop(struct ifnet *, int);
266 static void cs_power(int, void *);
267
268 /*
269 * GLOBAL DECLARATIONS
270 */
271
272 /*
273 * Xmit-early table.
274 *
275 * To get better performance, we tell the chip to start packet
276 * transmission before the whole packet is copied to the chip.
277 * However, this can fail under load. When it fails, we back off
278 * to a safer setting for a little while.
279 *
280 * txcmd is the value of txcmd used to indicate when to start transmission.
281 * better is the next 'better' state in the table.
282 * better_count is the number of output packets before transition to the
283 * better state.
284 * worse is the next 'worse' state in the table.
285 *
286 * Transition to the next worse state happens automatically when a
287 * transmittion underrun occurs.
288 */
289 struct cs_xmit_early {
290 u_int16_t txcmd;
291 int better;
292 int better_count;
293 int worse;
294 } cs_xmit_early_table[3] = {
295 { TX_CMD_START_381, 0, INT_MAX, 1, },
296 { TX_CMD_START_1021, 0, 50000, 2, },
297 { TX_CMD_START_ALL, 1, 5000, 2, },
298 };
299
300 int cs_default_media[] = {
301 IFM_ETHER|IFM_10_2,
302 IFM_ETHER|IFM_10_5,
303 IFM_ETHER|IFM_10_T,
304 IFM_ETHER|IFM_10_T|IFM_FDX,
305 };
306 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
307
308 int
309 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
310 int nmedia, int defmedia)
311 {
312 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
313 const char *chipname, *medname;
314 u_int16_t reg;
315 int i;
316
317 /* Start out in IO mode */
318 sc->sc_memorymode = FALSE;
319
320 /* make sure we're right */
321 for (i = 0; i < 10000; i++) {
322 reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
323 if (reg == EISA_NUM_CRYSTAL) {
324 break;
325 }
326 }
327 if (i == 10000) {
328 printf("%s: wrong id(0x%x)\n", sc->sc_dev.dv_xname, reg);
329 return 1; /* XXX should panic? */
330 }
331
332 reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
333 sc->sc_prodid = reg & PROD_ID_MASK;
334 sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
335
336 switch (sc->sc_prodid) {
337 case PROD_ID_CS8900:
338 chipname = "CS8900";
339 break;
340 case PROD_ID_CS8920:
341 chipname = "CS8920";
342 break;
343 case PROD_ID_CS8920M:
344 chipname = "CS8920M";
345 break;
346 default:
347 panic("cs_attach: impossible");
348 }
349
350 /*
351 * the first thing to do is check that the mbuf cluster size is
352 * greater than the MTU for an ethernet frame. The code depends on
353 * this and to port this to a OS where this was not the case would
354 * not be straightforward.
355 *
356 * we need 1 byte spare because our
357 * packet read loop can overrun.
358 * and we may need pad bytes to align ip header.
359 */
360 if (MCLBYTES < ETHER_MAX_LEN + 1 +
361 ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
362 printf("%s: MCLBYTES too small for Ethernet frame\n",
363 sc->sc_dev.dv_xname);
364 return 1;
365 }
366
367 /* Start out not transmitting */
368 sc->sc_txbusy = FALSE;
369
370 /* Set up early transmit threshhold */
371 sc->sc_xe_ent = 0;
372 sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
373
374 /* Initialize ifnet structure. */
375 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
376 ifp->if_softc = sc;
377 ifp->if_start = cs_start_output;
378 ifp->if_init = cs_init;
379 ifp->if_ioctl = cs_ioctl;
380 ifp->if_stop = cs_stop;
381 ifp->if_watchdog = NULL; /* no watchdog at this stage */
382 ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
383 IFF_BROADCAST | IFF_MULTICAST;
384 IFQ_SET_READY(&ifp->if_snd);
385
386 /* Initialize ifmedia structures. */
387 ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
388
389 if (media != NULL) {
390 for (i = 0; i < nmedia; i++)
391 ifmedia_add(&sc->sc_media, media[i], 0, NULL);
392 ifmedia_set(&sc->sc_media, defmedia);
393 } else {
394 for (i = 0; i < cs_default_nmedia; i++)
395 ifmedia_add(&sc->sc_media, cs_default_media[i],
396 0, NULL);
397 cs_get_default_media(sc);
398 }
399
400 if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
401 /* Get parameters from the EEPROM */
402 if (cs_get_params(sc) == CS_ERROR) {
403 printf("%s: unable to get settings from EEPROM\n",
404 sc->sc_dev.dv_xname);
405 return 1;
406 }
407 }
408
409 if (enaddr != NULL)
410 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
411 else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
412 /* Get and store the Ethernet address */
413 if (cs_get_enaddr(sc) == CS_ERROR) {
414 printf("%s: unable to read Ethernet address\n",
415 sc->sc_dev.dv_xname);
416 return 1;
417 }
418 } else {
419 printf("%s: no Ethernet address!\n", sc->sc_dev.dv_xname);
420 return 1;
421 }
422
423 switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
424 case IFM_10_2:
425 medname = "BNC";
426 break;
427 case IFM_10_5:
428 medname = "AUI";
429 break;
430 case IFM_10_T:
431 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
432 medname = "UTP <full-duplex>";
433 else
434 medname = "UTP";
435 break;
436 default:
437 panic("cs_attach: impossible");
438 }
439 printf("%s: %s rev. %c, address %s, media %s\n", sc->sc_dev.dv_xname,
440 chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
441 medname);
442
443 if (sc->sc_dma_attach)
444 (*sc->sc_dma_attach)(sc);
445
446 sc->sc_sh = shutdownhook_establish(cs_reset, sc);
447 if (sc->sc_sh == NULL) {
448 printf("%s: unable to establish shutdownhook\n",
449 sc->sc_dev.dv_xname);
450 cs_detach(sc);
451 return 1;
452 }
453
454 /* Attach the interface. */
455 if_attach(ifp);
456 ether_ifattach(ifp, sc->sc_enaddr);
457
458 #if NRND > 0
459 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
460 RND_TYPE_NET, 0);
461 #endif
462 sc->sc_cfgflags |= CFGFLG_ATTACHED;
463
464 /* Reset the chip */
465 if (cs_reset_chip(sc) == CS_ERROR) {
466 printf("%s: reset failed\n", sc->sc_dev.dv_xname);
467 cs_detach(sc);
468 return 1;
469 }
470
471 sc->sc_powerhook = powerhook_establish(cs_power, sc);
472 if (sc->sc_powerhook == 0)
473 printf("%s: warning: powerhook_establish failed\n",
474 sc->sc_dev.dv_xname);
475
476 return 0;
477 }
478
479 int
480 cs_detach(struct cs_softc *sc)
481 {
482 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
483
484 if (sc->sc_powerhook) {
485 powerhook_disestablish(sc->sc_powerhook);
486 sc->sc_powerhook = 0;
487 }
488
489 if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
490 #if NRND > 0
491 rnd_detach_source(&sc->rnd_source);
492 #endif
493 ether_ifdetach(ifp);
494 if_detach(ifp);
495 sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
496 }
497
498 if (sc->sc_sh != NULL)
499 shutdownhook_disestablish(sc->sc_sh);
500
501 #if 0
502 /*
503 * XXX not necessary
504 */
505 if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
506 isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
507 isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
508 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
509 sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
510 }
511 #endif
512
513 return 0;
514 }
515
516 void
517 cs_get_default_media(struct cs_softc *sc)
518 {
519 u_int16_t adp_cfg, xmit_ctl;
520
521 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
522 printf("%s: cs_get_default_media: EEPROM missing or bad\n",
523 sc->sc_dev.dv_xname);
524 goto fakeit;
525 }
526
527 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
528 &adp_cfg) == CS_ERROR) {
529 printf("%s: unable to read adapter config from EEPROM\n",
530 sc->sc_dev.dv_xname);
531 goto fakeit;
532 }
533
534 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_XMIT_CTL,
535 &xmit_ctl) == CS_ERROR) {
536 printf("%s: unable to read transmit control from EEPROM\n",
537 sc->sc_dev.dv_xname);
538 goto fakeit;
539 }
540
541 switch (adp_cfg & ADPTR_CFG_MEDIA) {
542 case ADPTR_CFG_AUI:
543 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
544 break;
545 case ADPTR_CFG_10BASE2:
546 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
547 break;
548 case ADPTR_CFG_10BASET:
549 default:
550 if (xmit_ctl & XMIT_CTL_FDX)
551 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
552 else
553 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
554 break;
555 }
556 return;
557
558 fakeit:
559 printf("%s: WARNING: default media setting may be inaccurate\n",
560 sc->sc_dev.dv_xname);
561 /* XXX Arbitrary... */
562 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
563 }
564
565 int
566 cs_get_params(struct cs_softc *sc)
567 {
568 u_int16_t isaConfig;
569 u_int16_t adapterConfig;
570
571 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
572 printf("%s: cs_get_params: EEPROM missing or bad\n",
573 sc->sc_dev.dv_xname);
574 return (CS_ERROR);
575 }
576
577 /* Get ISA configuration from the EEPROM */
578 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ISA_CFG,
579 &isaConfig) == CS_ERROR)
580 goto eeprom_bad;
581
582 /* Get adapter configuration from the EEPROM */
583 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_ADPTR_CFG,
584 &adapterConfig) == CS_ERROR)
585 goto eeprom_bad;
586
587 /* Copy the USE_SA flag */
588 if (isaConfig & ISA_CFG_USE_SA)
589 sc->sc_cfgflags |= CFGFLG_USE_SA;
590
591 /* Copy the IO Channel Ready flag */
592 if (isaConfig & ISA_CFG_IOCHRDY)
593 sc->sc_cfgflags |= CFGFLG_IOCHRDY;
594
595 /* Copy the DC/DC Polarity flag */
596 if (adapterConfig & ADPTR_CFG_DCDC_POL)
597 sc->sc_cfgflags |= CFGFLG_DCDC_POL;
598
599 return (CS_OK);
600
601 eeprom_bad:
602 printf("%s: cs_get_params: unable to read from EEPROM\n",
603 sc->sc_dev.dv_xname);
604 return (CS_ERROR);
605 }
606
607 int
608 cs_get_enaddr(struct cs_softc *sc)
609 {
610 u_int16_t *myea;
611
612 if (cs_verify_eeprom(sc->sc_iot, sc->sc_ioh) == CS_ERROR) {
613 printf("%s: cs_get_enaddr: EEPROM missing or bad\n",
614 sc->sc_dev.dv_xname);
615 return (CS_ERROR);
616 }
617
618 myea = (u_int16_t *)sc->sc_enaddr;
619
620 /* Get Ethernet address from the EEPROM */
621 /* XXX this will likely lose on a big-endian machine. -- cgd */
622 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_H,
623 &myea[0]) == CS_ERROR)
624 goto eeprom_bad;
625 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_M,
626 &myea[1]) == CS_ERROR)
627 goto eeprom_bad;
628 if (cs_read_eeprom(sc->sc_iot, sc->sc_ioh, EEPROM_IND_ADDR_L,
629 &myea[2]) == CS_ERROR)
630 goto eeprom_bad;
631
632 return (CS_OK);
633
634 eeprom_bad:
635 printf("%s: cs_get_enaddr: unable to read from EEPROM\n",
636 sc->sc_dev.dv_xname);
637 return (CS_ERROR);
638 }
639
640 int
641 cs_reset_chip(struct cs_softc *sc)
642 {
643 int intState;
644 int x;
645
646 /* Disable interrupts at the CPU so reset command is atomic */
647 intState = splnet();
648
649 /*
650 * We are now resetting the chip
651 *
652 * A spurious interrupt is generated by the chip when it is reset. This
653 * variable informs the interrupt handler to ignore this interrupt.
654 */
655 sc->sc_resetting = TRUE;
656
657 /* Issue a reset command to the chip */
658 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
659
660 /* Re-enable interrupts at the CPU */
661 splx(intState);
662
663 /* The chip is always in IO mode after a reset */
664 sc->sc_memorymode = FALSE;
665
666 /* If transmission was in progress, it is not now */
667 sc->sc_txbusy = FALSE;
668
669 /*
670 * there was a delay(125); here, but it seems uneccesary 125 usec is
671 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
672 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
673 * should be sufficient.
674 */
675
676 /* Transition SBHE to switch chip from 8-bit to 16-bit */
677 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
678 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
679 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 0);
680 bus_space_read_1(sc->sc_iot, sc->sc_ioh, PORT_PKTPG_PTR + 1);
681
682 /* Wait until the EEPROM is not busy */
683 for (x = 0; x < MAXLOOP; x++) {
684 if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
685 break;
686 }
687
688 if (x == MAXLOOP)
689 return CS_ERROR;
690
691 /* Wait until initialization is done */
692 for (x = 0; x < MAXLOOP; x++) {
693 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
694 break;
695 }
696
697 if (x == MAXLOOP)
698 return CS_ERROR;
699
700 /* Reset is no longer in progress */
701 sc->sc_resetting = FALSE;
702
703 return CS_OK;
704 }
705
706 int
707 cs_verify_eeprom(bus_space_tag_t iot, bus_space_handle_t ioh)
708 {
709 u_int16_t self_status;
710
711 /* Verify that the EEPROM is present and OK */
712 self_status = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST);
713 if (((self_status & SELF_ST_EEP_PRES) &&
714 (self_status & SELF_ST_EEP_OK)) == 0)
715 return (CS_ERROR);
716
717 return (CS_OK);
718 }
719
720 int
721 cs_read_eeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset,
722 u_int16_t *pValue)
723 {
724 int x;
725
726 /* Ensure that the EEPROM is not busy */
727 for (x = 0; x < MAXLOOP; x++) {
728 if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
729 SELF_ST_SI_BUSY))
730 break;
731 }
732
733 if (x == MAXLOOP)
734 return (CS_ERROR);
735
736 /* Issue the command to read the offset within the EEPROM */
737 CS_WRITE_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_CMD,
738 offset | EEPROM_CMD_READ);
739
740 /* Wait until the command is completed */
741 for (x = 0; x < MAXLOOP; x++) {
742 if (!(CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_SELF_ST) &
743 SELF_ST_SI_BUSY))
744 break;
745 }
746
747 if (x == MAXLOOP)
748 return (CS_ERROR);
749
750 /* Get the EEPROM data from the EEPROM Data register */
751 *pValue = CS_READ_PACKET_PAGE_IO(iot, ioh, PKTPG_EEPROM_DATA);
752
753 return (CS_OK);
754 }
755
756 void
757 cs_initChip(struct cs_softc *sc)
758 {
759 u_int16_t busCtl;
760 u_int16_t selfCtl;
761 u_int16_t *myea;
762 u_int16_t isaId;
763 int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
764
765 /* Disable reception and transmission of frames */
766 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
767 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
768 ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
769
770 /* Disable interrupt at the chip */
771 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
772 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
773
774 /* If IOCHRDY is enabled then clear the bit in the busCtl register */
775 busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
776 if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
777 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
778 busCtl & ~BUS_CTL_IOCHRDY);
779 } else {
780 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
781 busCtl | BUS_CTL_IOCHRDY);
782 }
783
784 /* Set the Line Control register to match the media type */
785 if (media == IFM_10_T)
786 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
787 else
788 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
789
790 /*
791 * Set the BSTATUS/HC1 pin to be used as HC1. HC1 is used to
792 * enable the DC/DC converter
793 */
794 selfCtl = SELF_CTL_HC1E;
795
796 /* If the media type is 10Base2 */
797 if (media == IFM_10_2) {
798 /*
799 * Enable the DC/DC converter if it has a low enable.
800 */
801 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
802 /*
803 * Set the HCB1 bit, which causes the HC1 pin to go
804 * low.
805 */
806 selfCtl |= SELF_CTL_HCB1;
807 } else { /* Media type is 10BaseT or AUI */
808 /*
809 * Disable the DC/DC converter if it has a high enable.
810 */
811 if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
812 /*
813 * Set the HCB1 bit, which causes the HC1 pin to go
814 * low.
815 */
816 selfCtl |= SELF_CTL_HCB1;
817 }
818 }
819 CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
820
821 /* enable normal link pulse */
822 if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
823 CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
824
825 /* Enable full-duplex, if appropriate */
826 if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
827 CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
828
829 /* RX_CTL set in cs_set_ladr_filt(), below */
830
831 /* enable all transmission interrupts */
832 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
833
834 /* Accept all receive interrupts */
835 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
836
837 /*
838 * Configure Operational Modes
839 *
840 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
841 * a better way to do it because the card has a counter which can be
842 * read to update the RX_MISS counter. This saves many interupts.
843 *
844 * I have turned on the tx and rx overflow interupts to counter using
845 * the receive miss interrupt. This is a better estimate of errors
846 * and requires lower system overhead.
847 */
848 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
849 BUF_CFG_RX_DMA_IE);
850
851 if (sc->sc_dma_chipinit)
852 (*sc->sc_dma_chipinit)(sc);
853
854 /* If memory mode is enabled */
855 if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
856 /* If external logic is present for address decoding */
857 if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
858 /*
859 * Program the external logic to decode address bits
860 * SA20-SA23
861 */
862 CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
863 ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
864 EEPROM_CMD_ELSEL);
865 }
866
867 /*
868 * Write the packet page base physical address to the memory
869 * base register.
870 */
871 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
872 sc->sc_pktpgaddr & 0xFFFF);
873 CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
874 sc->sc_pktpgaddr >> 16);
875 busCtl = BUS_CTL_MEM_MODE;
876
877 /* tell the chip to read the addresses off the SA pins */
878 if (sc->sc_cfgflags & CFGFLG_USE_SA) {
879 busCtl |= BUS_CTL_USE_SA;
880 }
881 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
882 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
883
884 /* We are in memory mode now! */
885 sc->sc_memorymode = TRUE;
886
887 /*
888 * wait here (10ms) for the chip to swap over. this is the
889 * maximum time that this could take.
890 */
891 delay(10000);
892
893 /* Verify that we can read from the chip */
894 isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
895
896 /*
897 * As a last minute sanity check before actually using mapped
898 * memory we verify that we can read the isa number from the
899 * chip in memory mode.
900 */
901 if (isaId != EISA_NUM_CRYSTAL) {
902 printf("%s: failed to enable memory mode\n",
903 sc->sc_dev.dv_xname);
904 sc->sc_memorymode = FALSE;
905 } else {
906 /*
907 * we are in memory mode so if we aren't using DMA,
908 * then program the chip to interrupt early.
909 */
910 if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
911 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
912 BUF_CFG_RX_DEST_IE |
913 BUF_CFG_RX_MISS_OVER_IE |
914 BUF_CFG_TX_COL_OVER_IE);
915 }
916 }
917
918 }
919
920 /* Put Ethernet address into the Individual Address register */
921 myea = (u_int16_t *)sc->sc_enaddr;
922 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 0, myea[0]);
923 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 2, myea[1]);
924 CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + 4, myea[2]);
925
926 if (sc->sc_irq != -1) {
927 /* Set the interrupt level in the chip */
928 if (sc->sc_prodid == PROD_ID_CS8900) {
929 if (sc->sc_irq == 5) {
930 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
931 } else {
932 CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
933 }
934 }
935 else { /* CS8920 */
936 CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
937 }
938 }
939
940 /* write the multicast mask to the address filter register */
941 cs_set_ladr_filt(sc, &sc->sc_ethercom);
942
943 /* Enable reception and transmission of frames */
944 CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
945 CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
946 LINE_CTL_RX_ON | LINE_CTL_TX_ON);
947
948 /* Enable interrupt at the chip */
949 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
950 CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
951 }
952
953 int
954 cs_init(struct ifnet *ifp)
955 {
956 int intState;
957 int error = CS_OK;
958 struct cs_softc *sc = ifp->if_softc;
959
960 if (cs_enable(sc))
961 goto out;
962
963 cs_stop(ifp, 0);
964
965 intState = splnet();
966
967 #if 0
968 /* Mark the interface as down */
969 sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
970 #endif
971
972 #ifdef CS_DEBUG
973 /* Enable debugging */
974 sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
975 #endif
976
977 /* Reset the chip */
978 if ((error = cs_reset_chip(sc)) == CS_OK) {
979 /* Initialize the chip */
980 cs_initChip(sc);
981
982 /* Mark the interface as running */
983 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
984 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
985 sc->sc_ethercom.ec_if.if_timer = 0;
986
987 /* Assume we have carrier until we are told otherwise. */
988 sc->sc_carrier = 1;
989 } else {
990 printf("%s: unable to reset chip\n", sc->sc_dev.dv_xname);
991 }
992
993 splx(intState);
994 out:
995 if (error == CS_OK)
996 return 0;
997 return EIO;
998 }
999
1000 void
1001 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
1002 {
1003 struct ifnet *ifp = &ec->ec_if;
1004 struct ether_multi *enm;
1005 struct ether_multistep step;
1006 u_int16_t af[4];
1007 u_int16_t port, mask, index;
1008
1009 /*
1010 * Set up multicast address filter by passing all multicast addresses
1011 * through a crc generator, and then using the high order 6 bits as an
1012 * index into the 64 bit logical address filter. The high order bit
1013 * selects the word, while the rest of the bits select the bit within
1014 * the word.
1015 */
1016 if (ifp->if_flags & IFF_PROMISC) {
1017 /* accept all valid frames. */
1018 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1019 RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
1020 RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1021 ifp->if_flags |= IFF_ALLMULTI;
1022 return;
1023 }
1024
1025 /*
1026 * accept frames if a. crc valid, b. individual address match c.
1027 * broadcast address,and d. multicast addresses matched in the hash
1028 * filter
1029 */
1030 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
1031 RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
1032
1033
1034 /*
1035 * start off with all multicast flag clear, set it if we need to
1036 * later, otherwise we will leave it.
1037 */
1038 ifp->if_flags &= ~IFF_ALLMULTI;
1039 af[0] = af[1] = af[2] = af[3] = 0x0000;
1040
1041 /*
1042 * Loop through all the multicast addresses unless we get a range of
1043 * addresses, in which case we will just accept all packets.
1044 * Justification for this is given in the next comment.
1045 */
1046 ETHER_FIRST_MULTI(step, ec, enm);
1047 while (enm != NULL) {
1048 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
1049 sizeof enm->enm_addrlo)) {
1050 /*
1051 * We must listen to a range of multicast addresses.
1052 * For now, just accept all multicasts, rather than
1053 * trying to set only those filter bits needed to match
1054 * the range. (At this time, the only use of address
1055 * ranges is for IP multicast routing, for which the
1056 * range is big enough to require all bits set.)
1057 */
1058 ifp->if_flags |= IFF_ALLMULTI;
1059 af[0] = af[1] = af[2] = af[3] = 0xffff;
1060 break;
1061 } else {
1062 /*
1063 * we have got an individual address so just set that
1064 * bit.
1065 */
1066 index = cs_hash_index(enm->enm_addrlo);
1067
1068 /* Set the bit the Logical address filter. */
1069 port = (u_int16_t) (index >> 4);
1070 mask = (u_int16_t) (1 << (index & 0xf));
1071 af[port] |= mask;
1072
1073 ETHER_NEXT_MULTI(step, enm);
1074 }
1075 }
1076
1077 /* now program the chip with the addresses */
1078 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
1079 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
1080 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
1081 CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
1082 return;
1083 }
1084
1085 u_int16_t
1086 cs_hash_index(char *addr)
1087 {
1088 uint32_t crc;
1089 uint16_t hash_code;
1090
1091 crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
1092
1093 hash_code = crc >> 26;
1094 return (hash_code);
1095 }
1096
1097 void
1098 cs_reset(void *arg)
1099 {
1100 struct cs_softc *sc = arg;
1101
1102 /* Mark the interface as down */
1103 sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1104
1105 /* Reset the chip */
1106 cs_reset_chip(sc);
1107 }
1108
1109 int
1110 cs_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1111 {
1112 struct cs_softc *sc = ifp->if_softc;
1113 struct ifreq *ifr = (struct ifreq *) data;
1114 int state;
1115 int result;
1116
1117 state = splnet();
1118
1119 result = 0; /* only set if something goes wrong */
1120
1121 switch (cmd) {
1122 case SIOCGIFMEDIA:
1123 case SIOCSIFMEDIA:
1124 result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1125 break;
1126
1127 default:
1128 result = ether_ioctl(ifp, cmd, data);
1129 if (result == ENETRESET) {
1130 if (CS_IS_ENABLED(sc)) {
1131 /*
1132 * Multicast list has changed. Set the
1133 * hardware filter accordingly.
1134 */
1135 cs_set_ladr_filt(sc, &sc->sc_ethercom);
1136 }
1137 result = 0;
1138 }
1139 break;
1140 }
1141
1142 splx(state);
1143
1144 return result;
1145 }
1146
1147 int
1148 cs_mediachange(struct ifnet *ifp)
1149 {
1150
1151 /*
1152 * Current media is already set up. Just reset the interface
1153 * to let the new value take hold.
1154 */
1155 cs_init(ifp);
1156 return (0);
1157 }
1158
1159 void
1160 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1161 {
1162 struct cs_softc *sc = ifp->if_softc;
1163
1164 /*
1165 * The currently selected media is always the active media.
1166 */
1167 ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
1168
1169 if (ifp->if_flags & IFF_UP) {
1170 /* Interface up, status is valid. */
1171 ifmr->ifm_status = IFM_AVALID |
1172 (sc->sc_carrier ? IFM_ACTIVE : 0);
1173 }
1174 else ifmr->ifm_status = 0;
1175 }
1176
1177 int
1178 cs_intr(void *arg)
1179 {
1180 struct cs_softc *sc = arg;
1181 u_int16_t Event;
1182 #if NRND > 0
1183 u_int16_t rndEvent;
1184 #endif
1185
1186 /* Ignore any interrupts that happen while the chip is being reset */
1187 if (sc->sc_resetting) {
1188 printf("%s: cs_intr: reset in progress\n",
1189 sc->sc_dev.dv_xname);
1190 return 1;
1191 }
1192
1193 /* Read an event from the Interrupt Status Queue */
1194 if (sc->sc_memorymode)
1195 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1196 else
1197 Event = CS_READ_PORT(sc, PORT_ISQ);
1198
1199 if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
1200 return 0; /* not ours */
1201
1202 #if NRND > 0
1203 rndEvent = Event;
1204 #endif
1205
1206 /* Process all the events in the Interrupt Status Queue */
1207 while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
1208 /* Dispatch to an event handler based on the register number */
1209 switch (Event & REG_NUM_MASK) {
1210 case REG_NUM_RX_EVENT:
1211 cs_receive_event(sc, Event);
1212 break;
1213 case REG_NUM_TX_EVENT:
1214 cs_transmit_event(sc, Event);
1215 break;
1216 case REG_NUM_BUF_EVENT:
1217 cs_buffer_event(sc, Event);
1218 break;
1219 case REG_NUM_TX_COL:
1220 case REG_NUM_RX_MISS:
1221 cs_counter_event(sc, Event);
1222 break;
1223 default:
1224 printf("%s: unknown interrupt event 0x%x\n",
1225 sc->sc_dev.dv_xname, Event);
1226 break;
1227 }
1228
1229 /* Read another event from the Interrupt Status Queue */
1230 if (sc->sc_memorymode)
1231 Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
1232 else
1233 Event = CS_READ_PORT(sc, PORT_ISQ);
1234 }
1235
1236 /* have handled the interupt */
1237 #if NRND > 0
1238 rnd_add_uint32(&sc->rnd_source, rndEvent);
1239 #endif
1240 return 1;
1241 }
1242
1243 void
1244 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
1245 {
1246 struct ifnet *ifp;
1247 u_int16_t errorCount;
1248
1249 ifp = &sc->sc_ethercom.ec_if;
1250
1251 switch (cntEvent & REG_NUM_MASK) {
1252 case REG_NUM_TX_COL:
1253 /*
1254 * the count should be read before an overflow occurs.
1255 */
1256 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
1257 /*
1258 * the tramsit event routine always checks the number of
1259 * collisions for any packet so we don't increment any
1260 * counters here, as they should already have been
1261 * considered.
1262 */
1263 break;
1264 case REG_NUM_RX_MISS:
1265 /*
1266 * the count should be read before an overflow occurs.
1267 */
1268 errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
1269 /*
1270 * Increment the input error count, the first 6bits are the
1271 * register id.
1272 */
1273 ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
1274 break;
1275 default:
1276 /* do nothing */
1277 break;
1278 }
1279 }
1280
1281 void
1282 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
1283 {
1284 struct ifnet *ifp;
1285
1286 ifp = &sc->sc_ethercom.ec_if;
1287
1288 /*
1289 * multiple events can be in the buffer event register at one time so
1290 * a standard switch statement will not suffice, here every event
1291 * must be checked.
1292 */
1293
1294 /*
1295 * if 128 bits have been rxed by the time we get here, the dest event
1296 * will be cleared and 128 event will be set.
1297 */
1298 if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
1299 cs_process_rx_early(sc);
1300 }
1301
1302 if (bufEvent & BUF_EVENT_RX_DMA) {
1303 /* process the receive data */
1304 if (sc->sc_dma_process_rx)
1305 (*sc->sc_dma_process_rx)(sc);
1306 else
1307 /* should panic? */
1308 printf("%s: unexpected dma event\n", sc->sc_dev.dv_xname);
1309 }
1310
1311 if (bufEvent & BUF_EVENT_TX_UNDR) {
1312 #if 0
1313 /*
1314 * This can happen occasionally, and it's not worth worrying
1315 * about.
1316 */
1317 printf("%s: transmit underrun (%d -> %d)\n",
1318 sc->sc_dev.dv_xname, sc->sc_xe_ent,
1319 cs_xmit_early_table[sc->sc_xe_ent].worse);
1320 #endif
1321 sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
1322 sc->sc_xe_togo =
1323 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1324
1325 /* had an underrun, transmit is finished */
1326 sc->sc_txbusy = FALSE;
1327 }
1328
1329 if (bufEvent & BUF_EVENT_SW_INT) {
1330 printf("%s: software initiated interrupt\n",
1331 sc->sc_dev.dv_xname);
1332 }
1333 }
1334
1335 void
1336 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
1337 {
1338 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1339
1340 /* If there were any errors transmitting this frame */
1341 if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
1342 TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
1343 /* Increment the output error count */
1344 ifp->if_oerrors++;
1345
1346 /* Note carrier loss. */
1347 if (txEvent & TX_EVENT_LOSS_CRS)
1348 sc->sc_carrier = 0;
1349
1350 /* If debugging is enabled then log error messages */
1351 if (ifp->if_flags & IFF_DEBUG) {
1352 if (txEvent & TX_EVENT_LOSS_CRS) {
1353 printf("%s: lost carrier\n",
1354 sc->sc_dev.dv_xname);
1355 }
1356 if (txEvent & TX_EVENT_SQE_ERR) {
1357 printf("%s: SQE error\n",
1358 sc->sc_dev.dv_xname);
1359 }
1360 if (txEvent & TX_EVENT_OUT_WIN) {
1361 printf("%s: out-of-window collision\n",
1362 sc->sc_dev.dv_xname);
1363 }
1364 if (txEvent & TX_EVENT_JABBER) {
1365 printf("%s: jabber\n", sc->sc_dev.dv_xname);
1366 }
1367 if (txEvent & TX_EVENT_16_COLL) {
1368 printf("%s: 16 collisions\n",
1369 sc->sc_dev.dv_xname);
1370 }
1371 }
1372 }
1373 else {
1374 /* Transmission successful, carrier is up. */
1375 sc->sc_carrier = 1;
1376 #ifdef SHARK
1377 ledNetActive();
1378 #endif
1379 }
1380
1381 /* Add the number of collisions for this frame */
1382 if (txEvent & TX_EVENT_16_COLL) {
1383 ifp->if_collisions += 16;
1384 } else {
1385 ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
1386 }
1387
1388 ifp->if_opackets++;
1389
1390 /* Transmission is no longer in progress */
1391 sc->sc_txbusy = FALSE;
1392
1393 /* If there is more to transmit */
1394 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
1395 /* Start the next transmission */
1396 cs_start_output(ifp);
1397 }
1398 }
1399
1400 void
1401 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
1402 {
1403
1404 if (rxEvent & RX_EVENT_RUNT)
1405 printf("%s: runt\n", sc->sc_dev.dv_xname);
1406
1407 if (rxEvent & RX_EVENT_X_DATA)
1408 printf("%s: extra data\n", sc->sc_dev.dv_xname);
1409
1410 if (rxEvent & RX_EVENT_CRC_ERR) {
1411 if (rxEvent & RX_EVENT_DRIBBLE)
1412 printf("%s: alignment error\n", sc->sc_dev.dv_xname);
1413 else
1414 printf("%s: CRC error\n", sc->sc_dev.dv_xname);
1415 } else {
1416 if (rxEvent & RX_EVENT_DRIBBLE)
1417 printf("%s: dribble bits\n", sc->sc_dev.dv_xname);
1418 }
1419 }
1420
1421 void
1422 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
1423 {
1424 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1425
1426 /* If the frame was not received OK */
1427 if (!(rxEvent & RX_EVENT_RX_OK)) {
1428 /* Increment the input error count */
1429 ifp->if_ierrors++;
1430
1431 /*
1432 * If debugging is enabled then log error messages.
1433 */
1434 if (ifp->if_flags & IFF_DEBUG) {
1435 if (rxEvent != REG_NUM_RX_EVENT) {
1436 cs_print_rx_errors(sc, rxEvent);
1437
1438 /*
1439 * Must read the length of all received
1440 * frames
1441 */
1442 CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1443
1444 /* Skip the received frame */
1445 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1446 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
1447 RX_CFG_SKIP);
1448 } else {
1449 printf("%s: implied skip\n",
1450 sc->sc_dev.dv_xname);
1451 }
1452 }
1453 } else {
1454 /*
1455 * process the received frame and pass it up to the upper
1456 * layers.
1457 */
1458 cs_process_receive(sc);
1459 }
1460 }
1461
1462 void
1463 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
1464 {
1465 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1466
1467 ifp->if_ipackets++;
1468
1469 #if NBPFILTER > 0
1470 /*
1471 * Check if there's a BPF listener on this interface.
1472 * If so, hand off the raw packet to BPF.
1473 */
1474 if (ifp->if_bpf)
1475 bpf_mtap(ifp->if_bpf, m);
1476 #endif
1477
1478 /* Pass the packet up. */
1479 (*ifp->if_input)(ifp, m);
1480 }
1481
1482 void
1483 cs_process_receive(struct cs_softc *sc)
1484 {
1485 struct ifnet *ifp;
1486 struct mbuf *m;
1487 int totlen;
1488 u_int16_t *pBuff, *pBuffLimit;
1489 int pad;
1490 unsigned int frameOffset;
1491
1492 #ifdef SHARK
1493 ledNetActive();
1494 #endif
1495
1496 ifp = &sc->sc_ethercom.ec_if;
1497
1498 /* Received a packet; carrier is up. */
1499 sc->sc_carrier = 1;
1500
1501 if (sc->sc_memorymode) {
1502 /* Initialize the frame offset */
1503 frameOffset = PKTPG_RX_LENGTH;
1504
1505 /* Get the length of the received frame */
1506 totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
1507 frameOffset += 2;
1508 }
1509 else {
1510 /* drop status */
1511 CS_READ_PORT(sc, PORT_RXTX_DATA);
1512
1513 /* Get the length of the received frame */
1514 totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
1515 }
1516
1517 if (totlen > ETHER_MAX_LEN) {
1518 printf("%s: invalid packet length\n", sc->sc_dev.dv_xname);
1519
1520 /* skip the received frame */
1521 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1522 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1523 return;
1524 }
1525
1526 MGETHDR(m, M_DONTWAIT, MT_DATA);
1527 if (m == 0) {
1528 printf("%s: cs_process_receive: unable to allocate mbuf\n",
1529 sc->sc_dev.dv_xname);
1530 ifp->if_ierrors++;
1531 /*
1532 * couldn't allocate an mbuf so things are not good, may as
1533 * well drop the packet I think.
1534 *
1535 * have already read the length so we should be right to skip
1536 * the packet.
1537 */
1538 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1539 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1540 return;
1541 }
1542 m->m_pkthdr.rcvif = ifp;
1543 m->m_pkthdr.len = totlen;
1544
1545 /* number of bytes to align ip header on word boundary for ipintr */
1546 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1547
1548 /*
1549 * alloc mbuf cluster if we need.
1550 * we need 1 byte spare because following
1551 * packet read loop can overrun.
1552 */
1553 if (totlen + pad + 1 > MHLEN) {
1554 MCLGET(m, M_DONTWAIT);
1555 if ((m->m_flags & M_EXT) == 0) {
1556 /* couldn't allocate an mbuf cluster */
1557 printf("%s: cs_process_receive: unable to allocate a cluster\n",
1558 sc->sc_dev.dv_xname);
1559 m_freem(m);
1560
1561 /* skip the received frame */
1562 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1563 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1564 return;
1565 }
1566 }
1567
1568 /* align ip header on word boundary for ipintr */
1569 m->m_data += pad;
1570
1571 m->m_len = totlen;
1572 pBuff = mtod(m, u_int16_t *);
1573
1574 /* now read the data from the chip */
1575 if (sc->sc_memorymode) {
1576 pBuffLimit = pBuff + (totlen + 1) / 2; /* don't want to go over */
1577 while (pBuff < pBuffLimit) {
1578 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1579 frameOffset += 2;
1580 }
1581 }
1582 else {
1583 bus_space_read_multi_2(sc->sc_iot, sc->sc_ioh, PORT_RXTX_DATA,
1584 pBuff, (totlen + 1)>>1);
1585 }
1586
1587 cs_ether_input(sc, m);
1588 }
1589
1590 void
1591 cs_process_rx_early(struct cs_softc *sc)
1592 {
1593 struct ifnet *ifp;
1594 struct mbuf *m;
1595 u_int16_t frameCount, oldFrameCount;
1596 u_int16_t rxEvent;
1597 u_int16_t *pBuff;
1598 int pad;
1599 unsigned int frameOffset;
1600
1601
1602 ifp = &sc->sc_ethercom.ec_if;
1603
1604 /* Initialize the frame offset */
1605 frameOffset = PKTPG_RX_FRAME;
1606 frameCount = 0;
1607
1608 MGETHDR(m, M_DONTWAIT, MT_DATA);
1609 if (m == 0) {
1610 printf("%s: cs_process_rx_early: unable to allocate mbuf\n",
1611 sc->sc_dev.dv_xname);
1612 ifp->if_ierrors++;
1613 /*
1614 * couldn't allocate an mbuf so things are not good, may as
1615 * well drop the packet I think.
1616 *
1617 * have already read the length so we should be right to skip
1618 * the packet.
1619 */
1620 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1621 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1622 return;
1623 }
1624 m->m_pkthdr.rcvif = ifp;
1625 /*
1626 * save processing by always using a mbuf cluster, guarenteed to fit
1627 * packet
1628 */
1629 MCLGET(m, M_DONTWAIT);
1630 if ((m->m_flags & M_EXT) == 0) {
1631 /* couldn't allocate an mbuf cluster */
1632 printf("%s: cs_process_rx_early: unable to allocate a cluster\n",
1633 sc->sc_dev.dv_xname);
1634 m_freem(m);
1635 /* skip the frame */
1636 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
1637 CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
1638 return;
1639 }
1640
1641 /* align ip header on word boundary for ipintr */
1642 pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
1643 m->m_data += pad;
1644
1645 /* set up the buffer pointer to point to the data area */
1646 pBuff = mtod(m, u_int16_t *);
1647
1648 /*
1649 * now read the frame byte counter until we have finished reading the
1650 * frame
1651 */
1652 oldFrameCount = 0;
1653 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1654 while ((frameCount != 0) && (frameCount < MCLBYTES)) {
1655 for (; oldFrameCount < frameCount; oldFrameCount += 2) {
1656 *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
1657 frameOffset += 2;
1658 }
1659
1660 /* read the new count from the chip */
1661 frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
1662 }
1663
1664 /* update the mbuf counts */
1665 m->m_len = oldFrameCount;
1666 m->m_pkthdr.len = oldFrameCount;
1667
1668 /* now check the Rx Event register */
1669 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1670
1671 if ((rxEvent & RX_EVENT_RX_OK) != 0) {
1672 /*
1673 * do an implied skip, it seems to be more reliable than a
1674 * forced skip.
1675 */
1676 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
1677 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
1678
1679 /*
1680 * now read the RX_EVENT register to perform an implied skip.
1681 */
1682 rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
1683
1684 cs_ether_input(sc, m);
1685 } else {
1686 m_freem(m);
1687 ifp->if_ierrors++;
1688 }
1689 }
1690
1691 void
1692 cs_start_output(struct ifnet *ifp)
1693 {
1694 struct cs_softc *sc;
1695 struct mbuf *pMbuf;
1696 struct mbuf *pMbufChain;
1697 u_int16_t BusStatus;
1698 u_int16_t Length;
1699 int txLoop = 0;
1700 int dropout = 0;
1701
1702 sc = ifp->if_softc;
1703
1704 /* check that the interface is up and running */
1705 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1706 return;
1707 }
1708
1709 /* Don't interrupt a transmission in progress */
1710 if (sc->sc_txbusy) {
1711 return;
1712 }
1713
1714 /* this loop will only run through once if transmission is successful */
1715 /*
1716 * While there are packets to transmit and a transmit is not in
1717 * progress
1718 */
1719 while (sc->sc_txbusy == 0 && dropout == 0) {
1720 IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
1721 if (pMbufChain == NULL)
1722 break;
1723
1724 #if NBPFILTER > 0
1725 /*
1726 * If BPF is listening on this interface, let it see the packet
1727 * before we commit it to the wire.
1728 */
1729 if (ifp->if_bpf)
1730 bpf_mtap(ifp->if_bpf, pMbufChain);
1731 #endif
1732
1733 /* Find the total length of the data to transmit */
1734 Length = 0;
1735 for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
1736 Length += pMbuf->m_len;
1737
1738 do {
1739 /*
1740 * Request that the transmit be started after all
1741 * data has been copied
1742 *
1743 * In IO mode must write to the IO port not the packet
1744 * page address
1745 *
1746 * If this is changed to start transmission after a
1747 * small amount of data has been copied you tend to
1748 * get packet missed errors i think because the ISA
1749 * bus is too slow. Or possibly the copy routine is
1750 * not streamlined enough.
1751 */
1752 if (sc->sc_memorymode) {
1753 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
1754 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1755 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
1756 }
1757 else {
1758 CS_WRITE_PORT(sc, PORT_TX_CMD,
1759 cs_xmit_early_table[sc->sc_xe_ent].txcmd);
1760 CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
1761 }
1762
1763 /*
1764 * Adjust early-transmit machinery.
1765 */
1766 if (--sc->sc_xe_togo == 0) {
1767 sc->sc_xe_ent =
1768 cs_xmit_early_table[sc->sc_xe_ent].better;
1769 sc->sc_xe_togo =
1770 cs_xmit_early_table[sc->sc_xe_ent].better_count;
1771 }
1772 /*
1773 * Read the BusStatus register which indicates
1774 * success of the request
1775 */
1776 BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
1777
1778 /*
1779 * If there was an error in the transmit bid free the
1780 * mbuf and go on. This is presuming that mbuf is
1781 * corrupt.
1782 */
1783 if (BusStatus & BUS_ST_TX_BID_ERR) {
1784 printf("%s: transmit bid error (too big)",
1785 sc->sc_dev.dv_xname);
1786
1787 /* Discard the bad mbuf chain */
1788 m_freem(pMbufChain);
1789 sc->sc_ethercom.ec_if.if_oerrors++;
1790
1791 /* Loop up to transmit the next chain */
1792 txLoop = 0;
1793 } else {
1794 if (BusStatus & BUS_ST_RDY4TXNOW) {
1795 /*
1796 * The chip is ready for transmission
1797 * now
1798 */
1799 /*
1800 * Copy the frame to the chip to
1801 * start transmission
1802 */
1803 cs_copy_tx_frame(sc, pMbufChain);
1804
1805 /* Free the mbuf chain */
1806 m_freem(pMbufChain);
1807
1808 /* Transmission is now in progress */
1809 sc->sc_txbusy = TRUE;
1810 txLoop = 0;
1811 } else {
1812 /*
1813 * if we get here we want to try
1814 * again with the same mbuf, until
1815 * the chip lets us transmit.
1816 */
1817 txLoop++;
1818 if (txLoop > CS_OUTPUT_LOOP_MAX) {
1819 /* Free the mbuf chain */
1820 m_freem(pMbufChain);
1821 /*
1822 * Transmission is not in
1823 * progress
1824 */
1825 sc->sc_txbusy = FALSE;
1826 /*
1827 * Increment the output error
1828 * count
1829 */
1830 ifp->if_oerrors++;
1831 /*
1832 * exit the routine and drop
1833 * the packet.
1834 */
1835 txLoop = 0;
1836 dropout = 1;
1837 }
1838 }
1839 }
1840 } while (txLoop);
1841 }
1842 }
1843
1844 void
1845 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
1846 {
1847 struct mbuf *m;
1848 int len, leftover, frameoff;
1849 u_int16_t dbuf;
1850 u_int8_t *p;
1851 #ifdef DIAGNOSTIC
1852 u_int8_t *lim;
1853 #endif
1854
1855 /* Initialize frame pointer and data port address */
1856 frameoff = PKTPG_TX_FRAME;
1857
1858 /* start out with no leftover data */
1859 leftover = 0;
1860 dbuf = 0;
1861
1862 /* Process the chain of mbufs */
1863 for (m = m0; m != NULL; m = m->m_next) {
1864 /*
1865 * Process all of the data in a single mbuf.
1866 */
1867 p = mtod(m, u_int8_t *);
1868 len = m->m_len;
1869 #ifdef DIAGNOSTIC
1870 lim = p + len;
1871 #endif
1872
1873 while (len > 0) {
1874 if (leftover) {
1875 /*
1876 * Data left over (from mbuf or realignment).
1877 * Buffer the next byte, and write it and
1878 * the leftover data out.
1879 */
1880 dbuf |= *p++ << 8;
1881 len--;
1882 if (sc->sc_memorymode) {
1883 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
1884 frameoff += 2;
1885 }
1886 else {
1887 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
1888 }
1889 leftover = 0;
1890 } else if ((long) p & 1) {
1891 /*
1892 * Misaligned data. Buffer the next byte.
1893 */
1894 dbuf = *p++;
1895 len--;
1896 leftover = 1;
1897 } else {
1898 /*
1899 * Aligned data. This is the case we like.
1900 *
1901 * Write-region out as much as we can, then
1902 * buffer the remaining byte (if any).
1903 */
1904 leftover = len & 1;
1905 len &= ~1;
1906 if (sc->sc_memorymode) {
1907 bus_space_write_region_2(sc->sc_memt, sc->sc_memh, frameoff,
1908 (u_int16_t *) p, len >> 1);
1909 frameoff += len;
1910 }
1911 else {
1912 bus_space_write_multi_2(sc->sc_iot, sc->sc_ioh,
1913 PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
1914 }
1915 p += len;
1916
1917 if (leftover)
1918 dbuf = *p++;
1919 len = 0;
1920 }
1921 }
1922 if (len < 0)
1923 panic("cs_copy_tx_frame: negative len");
1924 #ifdef DIAGNOSTIC
1925 if (p != lim)
1926 panic("cs_copy_tx_frame: p != lim");
1927 #endif
1928 }
1929 if (leftover) {
1930 if (sc->sc_memorymode) {
1931 CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
1932 }
1933 else {
1934 CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
1935 }
1936 }
1937 }
1938
1939 static int
1940 cs_enable(struct cs_softc *sc)
1941 {
1942
1943 if (CS_IS_ENABLED(sc) == 0) {
1944 if (sc->sc_enable != NULL) {
1945 int error;
1946
1947 error = (*sc->sc_enable)(sc);
1948 if (error)
1949 return (error);
1950 }
1951 sc->sc_cfgflags |= CFGFLG_ENABLED;
1952 }
1953
1954 return (0);
1955 }
1956
1957 static void
1958 cs_disable(struct cs_softc *sc)
1959 {
1960
1961 if (CS_IS_ENABLED(sc)) {
1962 if (sc->sc_disable != NULL)
1963 (*sc->sc_disable)(sc);
1964
1965 sc->sc_cfgflags &= ~CFGFLG_ENABLED;
1966 }
1967 }
1968
1969 static void
1970 cs_stop(struct ifnet *ifp, int disable)
1971 {
1972 struct cs_softc *sc = ifp->if_softc;
1973
1974 CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
1975 CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
1976 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
1977 CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
1978
1979 if (disable) {
1980 cs_disable(sc);
1981 }
1982
1983 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1984 }
1985
1986 int
1987 cs_activate(struct device *self, enum devact act)
1988 {
1989 struct cs_softc *sc = (void *)self;
1990 int s, error = 0;
1991
1992 s = splnet();
1993 switch (act) {
1994 case DVACT_ACTIVATE:
1995 error = EOPNOTSUPP;
1996 break;
1997
1998 case DVACT_DEACTIVATE:
1999 if_deactivate(&sc->sc_ethercom.ec_if);
2000 break;
2001 }
2002 splx(s);
2003
2004 return error;
2005 }
2006
2007 static void
2008 cs_power(int why, void *arg)
2009 {
2010 struct cs_softc *sc = arg;
2011 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2012 int s;
2013
2014 s = splnet();
2015 switch (why) {
2016 case PWR_STANDBY:
2017 case PWR_SUSPEND:
2018 cs_stop(ifp, 0);
2019 break;
2020 case PWR_RESUME:
2021 if (ifp->if_flags & IFF_UP) {
2022 cs_init(ifp);
2023 }
2024 break;
2025 case PWR_SOFTSUSPEND:
2026 case PWR_SOFTSTANDBY:
2027 case PWR_SOFTRESUME:
2028 break;
2029 }
2030 splx(s);
2031 }
2032