Home | History | Annotate | Line # | Download | only in ic
cs89x0.c revision 1.9
      1 /*	$NetBSD: cs89x0.c,v 1.9 2003/05/03 18:11:16 wiz Exp $	*/
      2 
      3 /*
      4  * Copyright 1997
      5  * Digital Equipment Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and
      8  * copied only in accordance with the following terms and conditions.
      9  * Subject to these conditions, you may download, copy, install,
     10  * use, modify and distribute this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce
     14  *    and retain this copyright notice and list of conditions as
     15  *    they appear in the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Digital Equipment Corporation. Neither the "Digital Equipment
     19  *    Corporation" name nor any trademark or logo of Digital Equipment
     20  *    Corporation may be used to endorse or promote products derived
     21  *    from this software without the prior written permission of
     22  *    Digital Equipment Corporation.
     23  *
     24  * 3) This software is provided "AS-IS" and any express or implied
     25  *    warranties, including but not limited to, any implied warranties
     26  *    of merchantability, fitness for a particular purpose, or
     27  *    non-infringement are disclaimed. In no event shall DIGITAL be
     28  *    liable for any damages whatsoever, and in particular, DIGITAL
     29  *    shall not be liable for special, indirect, consequential, or
     30  *    incidental damages or damages for lost profits, loss of
     31  *    revenue or loss of use, whether such damages arise in contract,
     32  *    negligence, tort, under statute, in equity, at law or otherwise,
     33  *    even if advised of the possibility of such damage.
     34  */
     35 
     36 /*
     37 **++
     38 **  FACILITY
     39 **
     40 **     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
     41 **
     42 **  ABSTRACT
     43 **
     44 **     This module provides standard ethernet access for INET protocols
     45 **     only.
     46 **
     47 **  AUTHORS
     48 **
     49 **     Peter Dettori     SEA - Software Engineering.
     50 **
     51 **  CREATION DATE:
     52 **
     53 **     13-Feb-1997.
     54 **
     55 **  MODIFICATION HISTORY (Digital):
     56 **
     57 **     Revision 1.27  1998/01/20  17:59:40  cgd
     58 **     update for moved headers
     59 **
     60 **     Revision 1.26  1998/01/12  19:29:36  cgd
     61 **     use arm32/isa versions of isadma code.
     62 **
     63 **     Revision 1.25  1997/12/12  01:35:27  cgd
     64 **     convert to use new arp code (from Brini)
     65 **
     66 **     Revision 1.24  1997/12/10  22:31:56  cgd
     67 **     trim some fat (get rid of ability to explicitly supply enet addr, since
     68 **     it was never used and added a bunch of code which really doesn't belong in
     69 **     an enet driver), and clean up slightly.
     70 **
     71 **     Revision 1.23  1997/10/06  16:42:12  cgd
     72 **     copyright notices
     73 **
     74 **     Revision 1.22  1997/06/20  19:38:01  chaiken
     75 **     fixes some smartcard problems
     76 **
     77 **     Revision 1.21  1997/06/10 02:56:20  grohn
     78 **     Added call to ledNetActive
     79 **
     80 **     Revision 1.20  1997/06/05 00:47:06  dettori
     81 **     Changed cs_process_rx_dma to reset and re-initialise the
     82 **     ethernet chip when DMA gets out of sync, or mbufs
     83 **     can't be allocated.
     84 **
     85 **     Revision 1.19  1997/06/03 03:09:58  dettori
     86 **     Turn off sc_txbusy flag when a transmit underrun
     87 **     occurs.
     88 **
     89 **     Revision 1.18  1997/06/02 00:04:35  dettori
     90 **     redefined the transmit table to get around the nfs_timer bug while we are
     91 **     looking into it further.
     92 **
     93 **     Also changed interrupts from EDGE to LEVEL.
     94 **
     95 **     Revision 1.17  1997/05/27 23:31:01  dettori
     96 **     Pulled out changes to DMAMODE defines.
     97 **
     98 **     Revision 1.16  1997/05/23 04:25:16  cgd
     99 **     reformat log so it fits in 80cols
    100 **
    101 **     Revision 1.15  1997/05/23  04:22:18  cgd
    102 **     remove the existing copyright notice (which Peter Dettori indicated
    103 **     was incorrect, copied from an existing NetBSD file only so that the
    104 **     file would have a copyright notice on it, and which he'd intended to
    105 **     replace).  Replace it with a Digital copyright notice, cloned from
    106 **     ess.c.  It's not really correct either (it indicates that the source
    107 **     is Digital confidential!), but is better than nothing and more
    108 **     correct than what was there before.
    109 **
    110 **     Revision 1.14  1997/05/23  04:12:50  cgd
    111 **     use an adaptive transmit start algorithm: start by telling the chip
    112 **     to start transmitting after 381 bytes have been fed to it.  if that
    113 **     gets transmit underruns, ramp down to 1021 bytes then "whole
    114 **     packet."  If successful at a given level for a while, try the next
    115 **     more agressive level.  This code doesn't ever try to start
    116 **     transmitting after 5 bytes have been sent to the NIC, because
    117 **     that underruns rather regularly.  The back-off and ramp-up mechanism
    118 **     could probably be tuned a little bit, but this works well enough to
    119 **     support > 1MB/s transmit rates on a clear ethernet (which is about
    120 **     20-25% better than the driver had previously been getting).
    121 **
    122 **     Revision 1.13  1997/05/22  21:06:54  cgd
    123 **     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
    124 **     casting from u_int8_t * to u_int16_t * without worrying about alignment
    125 **     issues.  This would cause bogus data to be spit out for mbufs with
    126 **     misaligned data.  For instance, it caused the following bits to appear
    127 **     on the wire:
    128 **     	... etBND 1S2C .SHA(K) R ...
    129 **     	    11112222333344445555
    130 **     which should have appeared as:
    131 **     	... NetBSD 1.2C (SHARK) ...
    132 **     	    11112222333344445555
    133 **     Note the apparent 'rotate' of the bytes in the word, which was due to
    134 **     incorrect unaligned accesses.  This data corruption was the cause of
    135 **     incoming telnet/rlogin hangs.
    136 **
    137 **     Revision 1.12  1997/05/22  01:55:32  cgd
    138 **     reformat log so it fits in 80cols
    139 **
    140 **     Revision 1.11  1997/05/22  01:50:27  cgd
    141 **     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
    142 **       so packets aimed at other hosts don't get sent to ether_input().
    143 **     * Add a static const char *rcsid initialized with an RCS Id tag, so that
    144 **       you can easily tell (`strings`) what version of the driver is in your
    145 **       kernel binary.
    146 **     * get rid of ether_cmp().  It was inconsistently used, not necessarily
    147 **       safe, and not really a performance win anyway.  (It was only used when
    148 **       setting up the multicast logical address filter, which is an
    149 **       infrequent event.  It could have been used in the IFF_PROMISCUOUS
    150 **       address check above, but the benefit of it vs. memcmp would be
    151 **       inconsequential, there.)  Use memcmp() instead.
    152 **     * restructure csStartOuput to avoid the following bugs in the case where
    153 **       txWait was being set:
    154 **         * it would accidentally drop the outgoing packet if told to wait
    155 **           but the outgoing packet queue was empty.
    156 **         * it would bpf_mtap() the outgoing packet multiple times (once for
    157 **           each time it was told to wait), and would also recalculate
    158 **           the length of the outgoing packet each time it was told to
    159 **           wait.
    160 **       While there, rename txWait to txLoop, since with the new structure of
    161 **       the code, the latter name makes more sense.
    162 **
    163 **     Revision 1.10  1997/05/19  02:03:20  cgd
    164 **     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
    165 **     is the only caller of cs_set_ladr_filt(), and always calls it, so this
    166 **     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
    167 **     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
    168 **     as before.
    169 **
    170 **     Revision 1.9  1997/05/19  01:45:37  cgd
    171 **     create a new function, cs_ether_input(), which does received-packet
    172 **     BPF and ether_input processing.  This code used to be in three places,
    173 **     and centralizing it will make adding IFF_PROMISC support much easier.
    174 **     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
    175 **     do copies with bus_space_write_region_2().  It's more correct, and
    176 **     potentially more efficient.  That function needs to be gutted (to
    177 **     deal properly with alignment issues, which it currently does wrong),
    178 **     however, and the change doesn't gain much, so there's no point in
    179 **     enabling it now.
    180 **
    181 **     Revision 1.8  1997/05/19  01:17:10  cgd
    182 **     fix a comment re: the setting of the TxConfig register.  Clean up
    183 **     interface counter maintenance (make it use standard idiom).
    184 **
    185 **--
    186 */
    187 
    188 #include <sys/cdefs.h>
    189 __KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.9 2003/05/03 18:11:16 wiz Exp $");
    190 
    191 #include "opt_inet.h"
    192 
    193 #include <sys/param.h>
    194 #include <sys/systm.h>
    195 #include <sys/mbuf.h>
    196 #include <sys/syslog.h>
    197 #include <sys/socket.h>
    198 #include <sys/device.h>
    199 #include <sys/malloc.h>
    200 #include <sys/ioctl.h>
    201 #include <sys/errno.h>
    202 
    203 #include "rnd.h"
    204 #if NRND > 0
    205 #include <sys/rnd.h>
    206 #endif
    207 
    208 #include <net/if.h>
    209 #include <net/if_ether.h>
    210 #include <net/if_media.h>
    211 #ifdef INET
    212 #include <netinet/in.h>
    213 #include <netinet/if_inarp.h>
    214 #endif
    215 
    216 #include "bpfilter.h"
    217 #if NBPFILTER > 0
    218 #include <net/bpf.h>
    219 #include <net/bpfdesc.h>
    220 #endif
    221 
    222 #include <uvm/uvm_extern.h>
    223 
    224 #include <machine/bus.h>
    225 #include <machine/intr.h>
    226 
    227 #include <dev/ic/cs89x0reg.h>
    228 #include <dev/ic/cs89x0var.h>
    229 
    230 #ifdef SHARK
    231 #include <shark/shark/sequoia.h>
    232 #endif
    233 
    234 /*
    235  * MACRO DEFINITIONS
    236  */
    237 #define CS_OUTPUT_LOOP_MAX 100	/* max times round notorious tx loop */
    238 
    239 /*
    240  * FUNCTION PROTOTYPES
    241  */
    242 void	cs_get_default_media(struct cs_softc *);
    243 int	cs_get_params(struct cs_softc *);
    244 int	cs_get_enaddr(struct cs_softc *);
    245 int	cs_reset_chip(struct cs_softc *);
    246 void	cs_reset(void *);
    247 int	cs_ioctl(struct ifnet *, u_long, caddr_t);
    248 void	cs_initChip(struct cs_softc *);
    249 void	cs_buffer_event(struct cs_softc *, u_int16_t);
    250 void	cs_transmit_event(struct cs_softc *, u_int16_t);
    251 void	cs_receive_event(struct cs_softc *, u_int16_t);
    252 void	cs_process_receive(struct cs_softc *);
    253 void	cs_process_rx_early(struct cs_softc *);
    254 void	cs_start_output(struct ifnet *);
    255 void	cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
    256 void	cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
    257 u_int16_t cs_hash_index(char *);
    258 void	cs_counter_event(struct cs_softc *, u_int16_t);
    259 
    260 int	cs_mediachange(struct ifnet *);
    261 void	cs_mediastatus(struct ifnet *, struct ifmediareq *);
    262 
    263 static int cs_enable(struct cs_softc *);
    264 static void cs_disable(struct cs_softc *);
    265 static void cs_stop(struct ifnet *, int);
    266 static void cs_power(int, void *);
    267 
    268 /*
    269  * GLOBAL DECLARATIONS
    270  */
    271 
    272 /*
    273  * Xmit-early table.
    274  *
    275  * To get better performance, we tell the chip to start packet
    276  * transmission before the whole packet is copied to the chip.
    277  * However, this can fail under load.  When it fails, we back off
    278  * to a safer setting for a little while.
    279  *
    280  * txcmd is the value of txcmd used to indicate when to start transmission.
    281  * better is the next 'better' state in the table.
    282  * better_count is the number of output packets before transition to the
    283  *   better state.
    284  * worse is the next 'worse' state in the table.
    285  *
    286  * Transition to the next worse state happens automatically when a
    287  * transmittion underrun occurs.
    288  */
    289 struct cs_xmit_early {
    290 	u_int16_t       txcmd;
    291 	int             better;
    292 	int             better_count;
    293 	int             worse;
    294 } cs_xmit_early_table[3] = {
    295 	{ TX_CMD_START_381,	0,	INT_MAX,	1, },
    296 	{ TX_CMD_START_1021,	0,	50000,		2, },
    297 	{ TX_CMD_START_ALL,	1,	5000,		2, },
    298 };
    299 
    300 int cs_default_media[] = {
    301 	IFM_ETHER|IFM_10_2,
    302 	IFM_ETHER|IFM_10_5,
    303 	IFM_ETHER|IFM_10_T,
    304 	IFM_ETHER|IFM_10_T|IFM_FDX,
    305 };
    306 int cs_default_nmedia = sizeof(cs_default_media) / sizeof(cs_default_media[0]);
    307 
    308 int
    309 cs_attach(struct cs_softc *sc, u_int8_t *enaddr, int *media,
    310 	  int nmedia, int defmedia)
    311 {
    312 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    313 	const char *chipname, *medname;
    314 	u_int16_t reg;
    315 	int i;
    316 
    317 	/* Start out in IO mode */
    318 	sc->sc_memorymode = FALSE;
    319 
    320 	/* make sure we're right */
    321 	for (i = 0; i < 10000; i++) {
    322 		reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
    323 		if (reg == EISA_NUM_CRYSTAL) {
    324 			break;
    325 		}
    326 	}
    327 	if (i == 10000) {
    328 		printf("%s: wrong id(0x%x)\n", sc->sc_dev.dv_xname, reg);
    329 		return 1; /* XXX should panic? */
    330 	}
    331 
    332 	reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
    333 	sc->sc_prodid = reg & PROD_ID_MASK;
    334 	sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;
    335 
    336 	switch (sc->sc_prodid) {
    337 	case PROD_ID_CS8900:
    338 		chipname = "CS8900";
    339 		break;
    340 	case PROD_ID_CS8920:
    341 		chipname = "CS8920";
    342 		break;
    343 	case PROD_ID_CS8920M:
    344 		chipname = "CS8920M";
    345 		break;
    346 	default:
    347 		panic("cs_attach: impossible");
    348 	}
    349 
    350 	/*
    351 	 * the first thing to do is check that the mbuf cluster size is
    352 	 * greater than the MTU for an ethernet frame. The code depends on
    353 	 * this and to port this to a OS where this was not the case would
    354 	 * not be straightforward.
    355 	 *
    356 	 * we need 1 byte spare because our
    357 	 * packet read loop can overrun.
    358 	 * and we may need pad bytes to align ip header.
    359 	 */
    360 	if (MCLBYTES < ETHER_MAX_LEN + 1 +
    361 		ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header)) {
    362 		printf("%s: MCLBYTES too small for Ethernet frame\n",
    363 		    sc->sc_dev.dv_xname);
    364 		return 1;
    365 	}
    366 
    367 	/* Start out not transmitting */
    368 	sc->sc_txbusy = FALSE;
    369 
    370 	/* Set up early transmit threshhold */
    371 	sc->sc_xe_ent = 0;
    372 	sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;
    373 
    374 	/* Initialize ifnet structure. */
    375 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    376 	ifp->if_softc = sc;
    377 	ifp->if_start = cs_start_output;
    378 	ifp->if_init = cs_init;
    379 	ifp->if_ioctl = cs_ioctl;
    380 	ifp->if_stop = cs_stop;
    381 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
    382 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS |
    383 	    IFF_BROADCAST | IFF_MULTICAST;
    384 	IFQ_SET_READY(&ifp->if_snd);
    385 
    386 	/* Initialize ifmedia structures. */
    387 	ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);
    388 
    389 	if (media != NULL) {
    390 		for (i = 0; i < nmedia; i++)
    391 			ifmedia_add(&sc->sc_media, media[i], 0, NULL);
    392 		ifmedia_set(&sc->sc_media, defmedia);
    393 	} else {
    394 		for (i = 0; i < cs_default_nmedia; i++)
    395 			ifmedia_add(&sc->sc_media, cs_default_media[i],
    396 			    0, NULL);
    397 		cs_get_default_media(sc);
    398 	}
    399 
    400 	if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
    401 		/* Get parameters from the EEPROM */
    402 		if (cs_get_params(sc) == CS_ERROR) {
    403 			printf("%s: unable to get settings from EEPROM\n",
    404 			    sc->sc_dev.dv_xname);
    405 			return 1;
    406 		}
    407 	}
    408 
    409 	if (enaddr != NULL)
    410 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
    411 	else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
    412 		/* Get and store the Ethernet address */
    413 		if (cs_get_enaddr(sc) == CS_ERROR) {
    414 			printf("%s: unable to read Ethernet address\n",
    415 			    sc->sc_dev.dv_xname);
    416 			return 1;
    417 		}
    418 	} else {
    419 #if 1
    420 		int i;
    421 		uint v;
    422 
    423 		for (i = 0; i < 6; i += 2) {
    424 			v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + i);
    425 			sc->sc_enaddr[i + 0] = v;
    426 			sc->sc_enaddr[i + 1] = v >> 8;
    427 		}
    428 #else
    429 		printf("%s: no Ethernet address!\n", sc->sc_dev.dv_xname);
    430 		return 1;
    431 #endif
    432 	}
    433 
    434 	switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
    435 	case IFM_10_2:
    436 		medname = "BNC";
    437 		break;
    438 	case IFM_10_5:
    439 		medname = "AUI";
    440 		break;
    441 	case IFM_10_T:
    442 		if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
    443 			medname = "UTP <full-duplex>";
    444 		else
    445 			medname = "UTP";
    446 		break;
    447 	default:
    448 		panic("cs_attach: impossible");
    449 	}
    450 	printf("%s: %s rev. %c, address %s, media %s\n", sc->sc_dev.dv_xname,
    451 	    chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
    452 	    medname);
    453 
    454 	if (sc->sc_dma_attach)
    455 		(*sc->sc_dma_attach)(sc);
    456 
    457 	sc->sc_sh = shutdownhook_establish(cs_reset, sc);
    458 	if (sc->sc_sh == NULL) {
    459 		printf("%s: unable to establish shutdownhook\n",
    460 		    sc->sc_dev.dv_xname);
    461 		cs_detach(sc);
    462 		return 1;
    463 	}
    464 
    465 	/* Attach the interface. */
    466 	if_attach(ifp);
    467 	ether_ifattach(ifp, sc->sc_enaddr);
    468 
    469 #if NRND > 0
    470 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    471 			  RND_TYPE_NET, 0);
    472 #endif
    473 	sc->sc_cfgflags |= CFGFLG_ATTACHED;
    474 
    475 	/* Reset the chip */
    476 	if (cs_reset_chip(sc) == CS_ERROR) {
    477 		printf("%s: reset failed\n", sc->sc_dev.dv_xname);
    478 		cs_detach(sc);
    479 		return 1;
    480 	}
    481 
    482 	sc->sc_powerhook = powerhook_establish(cs_power, sc);
    483 	if (sc->sc_powerhook == 0)
    484 		printf("%s: warning: powerhook_establish failed\n",
    485 			sc->sc_dev.dv_xname);
    486 
    487 	return 0;
    488 }
    489 
    490 int
    491 cs_detach(struct cs_softc *sc)
    492 {
    493 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    494 
    495 	if (sc->sc_powerhook) {
    496 		powerhook_disestablish(sc->sc_powerhook);
    497 		sc->sc_powerhook = 0;
    498 	}
    499 
    500 	if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
    501 #if NRND > 0
    502 		rnd_detach_source(&sc->rnd_source);
    503 #endif
    504 		ether_ifdetach(ifp);
    505 		if_detach(ifp);
    506 		sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
    507 	}
    508 
    509 	if (sc->sc_sh != NULL)
    510 		shutdownhook_disestablish(sc->sc_sh);
    511 
    512 #if 0
    513 	/*
    514 	 * XXX not necessary
    515 	 */
    516 	if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
    517 		isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase, sc->sc_dmasize);
    518 		isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr, sc->sc_dmasize);
    519 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
    520 		sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
    521 	}
    522 #endif
    523 
    524 	return 0;
    525 }
    526 
    527 void
    528 cs_get_default_media(struct cs_softc *sc)
    529 {
    530 	u_int16_t adp_cfg, xmit_ctl;
    531 
    532 	if (cs_verify_eeprom(sc) == CS_ERROR) {
    533 		printf("%s: cs_get_default_media: EEPROM missing or bad\n",
    534 		    sc->sc_dev.dv_xname);
    535 		goto fakeit;
    536 	}
    537 
    538 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
    539 		printf("%s: unable to read adapter config from EEPROM\n",
    540 		    sc->sc_dev.dv_xname);
    541 		goto fakeit;
    542 	}
    543 
    544 	if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
    545 		printf("%s: unable to read transmit control from EEPROM\n",
    546 		    sc->sc_dev.dv_xname);
    547 		goto fakeit;
    548 	}
    549 
    550 	switch (adp_cfg & ADPTR_CFG_MEDIA) {
    551 	case ADPTR_CFG_AUI:
    552 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_5);
    553 		break;
    554 	case ADPTR_CFG_10BASE2:
    555 		ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_2);
    556 		break;
    557 	case ADPTR_CFG_10BASET:
    558 	default:
    559 		if (xmit_ctl & XMIT_CTL_FDX)
    560 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX);
    561 		else
    562 			ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
    563 		break;
    564 	}
    565 	return;
    566 
    567  fakeit:
    568 	printf("%s: WARNING: default media setting may be inaccurate\n",
    569 	    sc->sc_dev.dv_xname);
    570 	/* XXX Arbitrary... */
    571 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10_T);
    572 }
    573 
    574 int
    575 cs_get_params(struct cs_softc *sc)
    576 {
    577 	u_int16_t isaConfig;
    578 	u_int16_t adapterConfig;
    579 
    580 	if (cs_verify_eeprom(sc) == CS_ERROR) {
    581 		printf("%s: cs_get_params: EEPROM missing or bad\n",
    582 		    sc->sc_dev.dv_xname);
    583 		return (CS_ERROR);
    584 	}
    585 
    586 	/* Get ISA configuration from the EEPROM */
    587 	if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
    588 		goto eeprom_bad;
    589 
    590 	/* Get adapter configuration from the EEPROM */
    591 	if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig) == CS_ERROR)
    592 		goto eeprom_bad;
    593 
    594 	/* Copy the USE_SA flag */
    595 	if (isaConfig & ISA_CFG_USE_SA)
    596 		sc->sc_cfgflags |= CFGFLG_USE_SA;
    597 
    598 	/* Copy the IO Channel Ready flag */
    599 	if (isaConfig & ISA_CFG_IOCHRDY)
    600 		sc->sc_cfgflags |= CFGFLG_IOCHRDY;
    601 
    602 	/* Copy the DC/DC Polarity flag */
    603 	if (adapterConfig & ADPTR_CFG_DCDC_POL)
    604 		sc->sc_cfgflags |= CFGFLG_DCDC_POL;
    605 
    606 	return (CS_OK);
    607 
    608  eeprom_bad:
    609 	printf("%s: cs_get_params: unable to read from EEPROM\n",
    610 	    sc->sc_dev.dv_xname);
    611 	return (CS_ERROR);
    612 }
    613 
    614 int
    615 cs_get_enaddr(struct cs_softc *sc)
    616 {
    617 	u_int16_t *myea;
    618 
    619 	if (cs_verify_eeprom(sc) == CS_ERROR) {
    620 		printf("%s: cs_get_enaddr: EEPROM missing or bad\n",
    621 		    sc->sc_dev.dv_xname);
    622 		return (CS_ERROR);
    623 	}
    624 
    625 	myea = (u_int16_t *)sc->sc_enaddr;
    626 
    627 	/* Get Ethernet address from the EEPROM */
    628 	/* XXX this will likely lose on a big-endian machine. -- cgd */
    629 	if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
    630 		goto eeprom_bad;
    631 	if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
    632 		goto eeprom_bad;
    633 	if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
    634 		goto eeprom_bad;
    635 
    636 	return (CS_OK);
    637 
    638  eeprom_bad:
    639 	printf("%s: cs_get_enaddr: unable to read from EEPROM\n",
    640 	    sc->sc_dev.dv_xname);
    641 	return (CS_ERROR);
    642 }
    643 
    644 int
    645 cs_reset_chip(struct cs_softc *sc)
    646 {
    647 	int intState;
    648 	int x;
    649 
    650 	/* Disable interrupts at the CPU so reset command is atomic */
    651 	intState = splnet();
    652 
    653 	/*
    654 	 * We are now resetting the chip
    655 	 *
    656 	 * A spurious interrupt is generated by the chip when it is reset. This
    657 	 * variable informs the interrupt handler to ignore this interrupt.
    658 	 */
    659 	sc->sc_resetting = TRUE;
    660 
    661 	/* Issue a reset command to the chip */
    662 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);
    663 
    664 	/* Re-enable interrupts at the CPU */
    665 	splx(intState);
    666 
    667 	/* The chip is always in IO mode after a reset */
    668 	sc->sc_memorymode = FALSE;
    669 
    670 	/* If transmission was in progress, it is not now */
    671 	sc->sc_txbusy = FALSE;
    672 
    673 	/*
    674 	 * there was a delay(125); here, but it seems uneccesary 125 usec is
    675 	 * 1/8000 of a second, not 1/8 of a second. the data sheet advises
    676 	 * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
    677 	 * should be sufficient.
    678 	 */
    679 
    680 	/* Transition SBHE to switch chip from 8-bit to 16-bit */
    681 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
    682 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
    683 	IO_READ_1(sc, PORT_PKTPG_PTR + 0);
    684 	IO_READ_1(sc, PORT_PKTPG_PTR + 1);
    685 
    686 	/* Wait until the EEPROM is not busy */
    687 	for (x = 0; x < MAXLOOP; x++) {
    688 		if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
    689 			break;
    690 	}
    691 
    692 	if (x == MAXLOOP)
    693 		return CS_ERROR;
    694 
    695 	/* Wait until initialization is done */
    696 	for (x = 0; x < MAXLOOP; x++) {
    697 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
    698 			break;
    699 	}
    700 
    701 	if (x == MAXLOOP)
    702 		return CS_ERROR;
    703 
    704 	/* Reset is no longer in progress */
    705 	sc->sc_resetting = FALSE;
    706 
    707 	return CS_OK;
    708 }
    709 
    710 int
    711 cs_verify_eeprom(struct cs_softc *sc)
    712 {
    713 	u_int16_t self_status;
    714 
    715 	/* Verify that the EEPROM is present and OK */
    716 	self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
    717 	if (((self_status & SELF_ST_EEP_PRES) &&
    718 	     (self_status & SELF_ST_EEP_OK)) == 0)
    719 		return (CS_ERROR);
    720 
    721 	return (CS_OK);
    722 }
    723 
    724 int
    725 cs_read_eeprom(struct cs_softc *sc, int offset, u_int16_t *pValue)
    726 {
    727 	int x;
    728 
    729 	/* Ensure that the EEPROM is not busy */
    730 	for (x = 0; x < MAXLOOP; x++) {
    731 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
    732 		      SELF_ST_SI_BUSY))
    733 			break;
    734 	}
    735 
    736 	if (x == MAXLOOP)
    737 		return (CS_ERROR);
    738 
    739 	/* Issue the command to read the offset within the EEPROM */
    740 	CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
    741 	    offset | EEPROM_CMD_READ);
    742 
    743 	/* Wait until the command is completed */
    744 	for (x = 0; x < MAXLOOP; x++) {
    745 		if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
    746 		      SELF_ST_SI_BUSY))
    747 			break;
    748 	}
    749 
    750 	if (x == MAXLOOP)
    751 		return (CS_ERROR);
    752 
    753 	/* Get the EEPROM data from the EEPROM Data register */
    754 	*pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);
    755 
    756 	return (CS_OK);
    757 }
    758 
    759 void
    760 cs_initChip(struct cs_softc *sc)
    761 {
    762 	u_int16_t busCtl;
    763 	u_int16_t selfCtl;
    764 	u_int16_t v;
    765 	u_int16_t isaId;
    766 	int i;
    767 	int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);
    768 
    769 	/* Disable reception and transmission of frames */
    770 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
    771 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
    772 	    ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);
    773 
    774 	/* Disable interrupt at the chip */
    775 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    776 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);
    777 
    778 	/* If IOCHRDY is enabled then clear the bit in the busCtl register */
    779 	busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
    780 	if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
    781 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    782 		    busCtl & ~BUS_CTL_IOCHRDY);
    783 	} else {
    784 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    785 		    busCtl | BUS_CTL_IOCHRDY);
    786 	}
    787 
    788 	/* Set the Line Control register to match the media type */
    789 	if (media == IFM_10_T)
    790 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
    791 	else
    792 		CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);
    793 
    794 	/*
    795 	 * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
    796 	 * enable the DC/DC converter
    797 	 */
    798 	selfCtl = SELF_CTL_HC1E;
    799 
    800 	/* If the media type is 10Base2 */
    801 	if (media == IFM_10_2) {
    802 		/*
    803 		 * Enable the DC/DC converter if it has a low enable.
    804 		 */
    805 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
    806 			/*
    807 			 * Set the HCB1 bit, which causes the HC1 pin to go
    808 			 * low.
    809 			 */
    810 			selfCtl |= SELF_CTL_HCB1;
    811 	} else { /* Media type is 10BaseT or AUI */
    812 		/*
    813 		 * Disable the DC/DC converter if it has a high enable.
    814 		 */
    815 		if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
    816 			/*
    817 			 * Set the HCB1 bit, which causes the HC1 pin to go
    818 			 * low.
    819 			 */
    820 			selfCtl |= SELF_CTL_HCB1;
    821 		}
    822 	}
    823 	CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);
    824 
    825 	/* enable normal link pulse */
    826 	if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
    827 		CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);
    828 
    829 	/* Enable full-duplex, if appropriate */
    830 	if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
    831 		CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);
    832 
    833 	/* RX_CTL set in cs_set_ladr_filt(), below */
    834 
    835 	/* enable all transmission interrupts */
    836 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);
    837 
    838 	/* Accept all receive interrupts */
    839 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);
    840 
    841 	/*
    842 	 * Configure Operational Modes
    843 	 *
    844 	 * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this is
    845 	 * a better way to do it because the card has a counter which can be
    846 	 * read to update the RX_MISS counter. This saves many interrupts.
    847 	 *
    848 	 * I have turned on the tx and rx overflow interrupts to counter using
    849 	 * the receive miss interrupt. This is a better estimate of errors
    850 	 * and requires lower system overhead.
    851 	 */
    852 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
    853 			  BUF_CFG_RX_DMA_IE);
    854 
    855 	if (sc->sc_dma_chipinit)
    856 		(*sc->sc_dma_chipinit)(sc);
    857 
    858 	/* If memory mode is enabled */
    859 	if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
    860 		/* If external logic is present for address decoding */
    861 		if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
    862 			/*
    863 			 * Program the external logic to decode address bits
    864 			 * SA20-SA23
    865 			 */
    866 			CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
    867 			    ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
    868 			    EEPROM_CMD_ELSEL);
    869 		}
    870 
    871 		/*
    872 		 * Write the packet page base physical address to the memory
    873 		 * base register.
    874 		 */
    875 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
    876 		    sc->sc_pktpgaddr & 0xFFFF);
    877 		CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
    878 		    sc->sc_pktpgaddr >> 16);
    879 		busCtl = BUS_CTL_MEM_MODE;
    880 
    881 		/* tell the chip to read the addresses off the SA pins */
    882 		if (sc->sc_cfgflags & CFGFLG_USE_SA) {
    883 			busCtl |= BUS_CTL_USE_SA;
    884 		}
    885 		CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    886 		    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);
    887 
    888 		/* We are in memory mode now! */
    889 		sc->sc_memorymode = TRUE;
    890 
    891 		/*
    892 		 * wait here (10ms) for the chip to swap over. this is the
    893 		 * maximum time that this could take.
    894 		 */
    895 		delay(10000);
    896 
    897 		/* Verify that we can read from the chip */
    898 		isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
    899 
    900 		/*
    901 		 * As a last minute sanity check before actually using mapped
    902 		 * memory we verify that we can read the isa number from the
    903 		 * chip in memory mode.
    904 		 */
    905 		if (isaId != EISA_NUM_CRYSTAL) {
    906 			printf("%s: failed to enable memory mode\n",
    907 			    sc->sc_dev.dv_xname);
    908 			sc->sc_memorymode = FALSE;
    909 		} else {
    910 			/*
    911 			 * we are in memory mode so if we aren't using DMA,
    912 			 * then program the chip to interrupt early.
    913 			 */
    914 			if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
    915 				CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
    916 				    BUF_CFG_RX_DEST_IE |
    917 				    BUF_CFG_RX_MISS_OVER_IE |
    918 				    BUF_CFG_TX_COL_OVER_IE);
    919 			}
    920 		}
    921 
    922 	}
    923 
    924 	/* Put Ethernet address into the Individual Address register */
    925 	for (i = 0; i < 6; i += 2) {
    926 		v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
    927 		CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
    928 	}
    929 
    930 	if (sc->sc_irq != -1) {
    931 		/* Set the interrupt level in the chip */
    932 		if (sc->sc_prodid == PROD_ID_CS8900) {
    933 			if (sc->sc_irq == 5) {
    934 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
    935 			} else {
    936 				CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, (sc->sc_irq) - 10);
    937 			}
    938 		}
    939 		else { /* CS8920 */
    940 			CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM, sc->sc_irq);
    941 		}
    942 	}
    943 
    944 	/* write the multicast mask to the address filter register */
    945 	cs_set_ladr_filt(sc, &sc->sc_ethercom);
    946 
    947 	/* Enable reception and transmission of frames */
    948 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
    949 	    CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
    950 	    LINE_CTL_RX_ON | LINE_CTL_TX_ON);
    951 
    952 	/* Enable interrupt at the chip */
    953 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
    954 	    CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
    955 }
    956 
    957 int
    958 cs_init(struct ifnet *ifp)
    959 {
    960 	int intState;
    961 	int error = CS_OK;
    962 	struct cs_softc *sc = ifp->if_softc;
    963 
    964 	if (cs_enable(sc))
    965 		goto out;
    966 
    967 	cs_stop(ifp, 0);
    968 
    969 	intState = splnet();
    970 
    971 #if 0
    972 	/* Mark the interface as down */
    973 	sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
    974 #endif
    975 
    976 #ifdef CS_DEBUG
    977 	/* Enable debugging */
    978 	sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
    979 #endif
    980 
    981 	/* Reset the chip */
    982 	if ((error = cs_reset_chip(sc)) == CS_OK) {
    983 		/* Initialize the chip */
    984 		cs_initChip(sc);
    985 
    986 		/* Mark the interface as running */
    987 		sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
    988 		sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
    989 		sc->sc_ethercom.ec_if.if_timer = 0;
    990 
    991 		/* Assume we have carrier until we are told otherwise. */
    992 		sc->sc_carrier = 1;
    993 	} else {
    994 		printf("%s: unable to reset chip\n", sc->sc_dev.dv_xname);
    995 	}
    996 
    997 	splx(intState);
    998 out:
    999 	if (error == CS_OK)
   1000 		return 0;
   1001 	return EIO;
   1002 }
   1003 
   1004 void
   1005 cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
   1006 {
   1007 	struct ifnet *ifp = &ec->ec_if;
   1008 	struct ether_multi *enm;
   1009 	struct ether_multistep step;
   1010 	u_int16_t af[4];
   1011 	u_int16_t port, mask, index;
   1012 
   1013 	/*
   1014          * Set up multicast address filter by passing all multicast addresses
   1015          * through a crc generator, and then using the high order 6 bits as an
   1016          * index into the 64 bit logical address filter.  The high order bit
   1017          * selects the word, while the rest of the bits select the bit within
   1018          * the word.
   1019          */
   1020 	if (ifp->if_flags & IFF_PROMISC) {
   1021 		/* accept all valid frames. */
   1022 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
   1023 		    RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
   1024 		    RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
   1025 		ifp->if_flags |= IFF_ALLMULTI;
   1026 		return;
   1027 	}
   1028 
   1029 	/*
   1030 	 * accept frames if a. crc valid, b. individual address match c.
   1031 	 * broadcast address,and d. multicast addresses matched in the hash
   1032 	 * filter
   1033 	 */
   1034 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
   1035 	    RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
   1036 
   1037 
   1038 	/*
   1039 	 * start off with all multicast flag clear, set it if we need to
   1040 	 * later, otherwise we will leave it.
   1041 	 */
   1042 	ifp->if_flags &= ~IFF_ALLMULTI;
   1043 	af[0] = af[1] = af[2] = af[3] = 0x0000;
   1044 
   1045 	/*
   1046 	 * Loop through all the multicast addresses unless we get a range of
   1047 	 * addresses, in which case we will just accept all packets.
   1048 	 * Justification for this is given in the next comment.
   1049 	 */
   1050 	ETHER_FIRST_MULTI(step, ec, enm);
   1051 	while (enm != NULL) {
   1052 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   1053 		    sizeof enm->enm_addrlo)) {
   1054 			/*
   1055 	                 * We must listen to a range of multicast addresses.
   1056 	                 * For now, just accept all multicasts, rather than
   1057 	                 * trying to set only those filter bits needed to match
   1058 	                 * the range.  (At this time, the only use of address
   1059 	                 * ranges is for IP multicast routing, for which the
   1060 	                 * range is big enough to require all bits set.)
   1061 	                 */
   1062 			ifp->if_flags |= IFF_ALLMULTI;
   1063 			af[0] = af[1] = af[2] = af[3] = 0xffff;
   1064 			break;
   1065 		} else {
   1066 			/*
   1067 	                 * we have got an individual address so just set that
   1068 	                 * bit.
   1069 	                 */
   1070 			index = cs_hash_index(enm->enm_addrlo);
   1071 
   1072 			/* Set the bit the Logical address filter. */
   1073 			port = (u_int16_t) (index >> 4);
   1074 			mask = (u_int16_t) (1 << (index & 0xf));
   1075 			af[port] |= mask;
   1076 
   1077 			ETHER_NEXT_MULTI(step, enm);
   1078 		}
   1079 	}
   1080 
   1081 	/* now program the chip with the addresses */
   1082 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
   1083 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
   1084 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
   1085 	CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
   1086 	return;
   1087 }
   1088 
   1089 u_int16_t
   1090 cs_hash_index(char *addr)
   1091 {
   1092 	uint32_t crc;
   1093 	uint16_t hash_code;
   1094 
   1095 	crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
   1096 
   1097 	hash_code = crc >> 26;
   1098 	return (hash_code);
   1099 }
   1100 
   1101 void
   1102 cs_reset(void *arg)
   1103 {
   1104 	struct cs_softc *sc = arg;
   1105 
   1106 	/* Mark the interface as down */
   1107 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1108 
   1109 	/* Reset the chip */
   1110 	cs_reset_chip(sc);
   1111 }
   1112 
   1113 int
   1114 cs_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1115 {
   1116 	struct cs_softc *sc = ifp->if_softc;
   1117 	struct ifreq *ifr = (struct ifreq *) data;
   1118 	int state;
   1119 	int result;
   1120 
   1121 	state = splnet();
   1122 
   1123 	result = 0;		/* only set if something goes wrong */
   1124 
   1125 	switch (cmd) {
   1126 	case SIOCGIFMEDIA:
   1127 	case SIOCSIFMEDIA:
   1128 		result = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1129 		break;
   1130 
   1131 	default:
   1132 		result = ether_ioctl(ifp, cmd, data);
   1133 		if (result == ENETRESET) {
   1134 			if (CS_IS_ENABLED(sc)) {
   1135 				/*
   1136 				 * Multicast list has changed.  Set the
   1137 				 * hardware filter accordingly.
   1138 				 */
   1139 				cs_set_ladr_filt(sc, &sc->sc_ethercom);
   1140 			}
   1141 			result = 0;
   1142 		}
   1143 		break;
   1144 	}
   1145 
   1146 	splx(state);
   1147 
   1148 	return result;
   1149 }
   1150 
   1151 int
   1152 cs_mediachange(struct ifnet *ifp)
   1153 {
   1154 
   1155 	/*
   1156 	 * Current media is already set up.  Just reset the interface
   1157 	 * to let the new value take hold.
   1158 	 */
   1159 	cs_init(ifp);
   1160 	return (0);
   1161 }
   1162 
   1163 void
   1164 cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   1165 {
   1166 	struct cs_softc *sc = ifp->if_softc;
   1167 
   1168 	/*
   1169 	 * The currently selected media is always the active media.
   1170 	 */
   1171 	ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;
   1172 
   1173 	if (ifp->if_flags & IFF_UP) {
   1174 		/* Interface up, status is valid. */
   1175 		ifmr->ifm_status = IFM_AVALID |
   1176 		    (sc->sc_carrier ? IFM_ACTIVE : 0);
   1177 	}
   1178 		else ifmr->ifm_status = 0;
   1179 }
   1180 
   1181 int
   1182 cs_intr(void *arg)
   1183 {
   1184 	struct cs_softc *sc = arg;
   1185 	u_int16_t Event;
   1186 #if NRND > 0
   1187 	u_int16_t rndEvent;
   1188 #endif
   1189 
   1190 /*printf("cs_intr %p\n", sc);*/
   1191 	/* Ignore any interrupts that happen while the chip is being reset */
   1192 	if (sc->sc_resetting) {
   1193 		printf("%s: cs_intr: reset in progress\n",
   1194 		    sc->sc_dev.dv_xname);
   1195 		return 1;
   1196 	}
   1197 
   1198 	/* Read an event from the Interrupt Status Queue */
   1199 	if (sc->sc_memorymode)
   1200 		Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
   1201 	else
   1202 		Event = CS_READ_PORT(sc, PORT_ISQ);
   1203 
   1204 	if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
   1205 		return 0;	/* not ours */
   1206 
   1207 #if NRND > 0
   1208 	rndEvent = Event;
   1209 #endif
   1210 
   1211 	/* Process all the events in the Interrupt Status Queue */
   1212 	while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
   1213 		/* Dispatch to an event handler based on the register number */
   1214 		switch (Event & REG_NUM_MASK) {
   1215 		case REG_NUM_RX_EVENT:
   1216 			cs_receive_event(sc, Event);
   1217 			break;
   1218 		case REG_NUM_TX_EVENT:
   1219 			cs_transmit_event(sc, Event);
   1220 			break;
   1221 		case REG_NUM_BUF_EVENT:
   1222 			cs_buffer_event(sc, Event);
   1223 			break;
   1224 		case REG_NUM_TX_COL:
   1225 		case REG_NUM_RX_MISS:
   1226 			cs_counter_event(sc, Event);
   1227 			break;
   1228 		default:
   1229 			printf("%s: unknown interrupt event 0x%x\n",
   1230 			    sc->sc_dev.dv_xname, Event);
   1231 			break;
   1232 		}
   1233 
   1234 		/* Read another event from the Interrupt Status Queue */
   1235 		if (sc->sc_memorymode)
   1236 			Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
   1237 		else
   1238 			Event = CS_READ_PORT(sc, PORT_ISQ);
   1239 	}
   1240 
   1241 	/* have handled the interrupt */
   1242 #if NRND > 0
   1243 	rnd_add_uint32(&sc->rnd_source, rndEvent);
   1244 #endif
   1245 	return 1;
   1246 }
   1247 
   1248 void
   1249 cs_counter_event(struct cs_softc *sc, u_int16_t cntEvent)
   1250 {
   1251 	struct ifnet *ifp;
   1252 	u_int16_t errorCount;
   1253 
   1254 	ifp = &sc->sc_ethercom.ec_if;
   1255 
   1256 	switch (cntEvent & REG_NUM_MASK) {
   1257 	case REG_NUM_TX_COL:
   1258 		/*
   1259 		 * the count should be read before an overflow occurs.
   1260 		 */
   1261 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
   1262 		/*
   1263 		 * the tramsit event routine always checks the number of
   1264 		 * collisions for any packet so we don't increment any
   1265 		 * counters here, as they should already have been
   1266 		 * considered.
   1267 		 */
   1268 		break;
   1269 	case REG_NUM_RX_MISS:
   1270 		/*
   1271 		 * the count should be read before an overflow occurs.
   1272 		 */
   1273 		errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
   1274 		/*
   1275 		 * Increment the input error count, the first 6bits are the
   1276 		 * register id.
   1277 		 */
   1278 		ifp->if_ierrors += ((errorCount & 0xffC0) >> 6);
   1279 		break;
   1280 	default:
   1281 		/* do nothing */
   1282 		break;
   1283 	}
   1284 }
   1285 
   1286 void
   1287 cs_buffer_event(struct cs_softc *sc, u_int16_t bufEvent)
   1288 {
   1289 	struct ifnet *ifp;
   1290 
   1291 	ifp = &sc->sc_ethercom.ec_if;
   1292 
   1293 	/*
   1294 	 * multiple events can be in the buffer event register at one time so
   1295 	 * a standard switch statement will not suffice, here every event
   1296 	 * must be checked.
   1297 	 */
   1298 
   1299 	/*
   1300 	 * if 128 bits have been rxed by the time we get here, the dest event
   1301 	 * will be cleared and 128 event will be set.
   1302 	 */
   1303 	if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0) {
   1304 		cs_process_rx_early(sc);
   1305 	}
   1306 
   1307 	if (bufEvent & BUF_EVENT_RX_DMA) {
   1308 		/* process the receive data */
   1309 		if (sc->sc_dma_process_rx)
   1310 			(*sc->sc_dma_process_rx)(sc);
   1311 		else
   1312 			/* should panic? */
   1313 			printf("%s: unexpected DMA event\n", sc->sc_dev.dv_xname);
   1314 	}
   1315 
   1316 	if (bufEvent & BUF_EVENT_TX_UNDR) {
   1317 #if 0
   1318 		/*
   1319 		 * This can happen occasionally, and it's not worth worrying
   1320 		 * about.
   1321 		 */
   1322 		printf("%s: transmit underrun (%d -> %d)\n",
   1323 		    sc->sc_dev.dv_xname, sc->sc_xe_ent,
   1324 		    cs_xmit_early_table[sc->sc_xe_ent].worse);
   1325 #endif
   1326 		sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
   1327 		sc->sc_xe_togo =
   1328 		    cs_xmit_early_table[sc->sc_xe_ent].better_count;
   1329 
   1330 		/* had an underrun, transmit is finished */
   1331 		sc->sc_txbusy = FALSE;
   1332 	}
   1333 
   1334 	if (bufEvent & BUF_EVENT_SW_INT) {
   1335 		printf("%s: software initiated interrupt\n",
   1336 		    sc->sc_dev.dv_xname);
   1337 	}
   1338 }
   1339 
   1340 void
   1341 cs_transmit_event(struct cs_softc *sc, u_int16_t txEvent)
   1342 {
   1343 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1344 
   1345 	/* If there were any errors transmitting this frame */
   1346 	if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR | TX_EVENT_OUT_WIN |
   1347 		       TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
   1348 		/* Increment the output error count */
   1349 		ifp->if_oerrors++;
   1350 
   1351 		/* Note carrier loss. */
   1352 		if (txEvent & TX_EVENT_LOSS_CRS)
   1353 			sc->sc_carrier = 0;
   1354 
   1355 		/* If debugging is enabled then log error messages */
   1356 		if (ifp->if_flags & IFF_DEBUG) {
   1357 			if (txEvent & TX_EVENT_LOSS_CRS) {
   1358 				printf("%s: lost carrier\n",
   1359 				    sc->sc_dev.dv_xname);
   1360 			}
   1361 			if (txEvent & TX_EVENT_SQE_ERR) {
   1362 				printf("%s: SQE error\n",
   1363 				    sc->sc_dev.dv_xname);
   1364 			}
   1365 			if (txEvent & TX_EVENT_OUT_WIN) {
   1366 				printf("%s: out-of-window collision\n",
   1367 				    sc->sc_dev.dv_xname);
   1368 			}
   1369 			if (txEvent & TX_EVENT_JABBER) {
   1370 				printf("%s: jabber\n", sc->sc_dev.dv_xname);
   1371 			}
   1372 			if (txEvent & TX_EVENT_16_COLL) {
   1373 				printf("%s: 16 collisions\n",
   1374 				    sc->sc_dev.dv_xname);
   1375 			}
   1376 		}
   1377 	}
   1378 	else {
   1379 		/* Transmission successful, carrier is up. */
   1380 		sc->sc_carrier = 1;
   1381 #ifdef SHARK
   1382 		ledNetActive();
   1383 #endif
   1384 	}
   1385 
   1386 	/* Add the number of collisions for this frame */
   1387 	if (txEvent & TX_EVENT_16_COLL) {
   1388 		ifp->if_collisions += 16;
   1389 	} else {
   1390 		ifp->if_collisions += ((txEvent & TX_EVENT_COLL_MASK) >> 11);
   1391 	}
   1392 
   1393 	ifp->if_opackets++;
   1394 
   1395 	/* Transmission is no longer in progress */
   1396 	sc->sc_txbusy = FALSE;
   1397 
   1398 	/* If there is more to transmit */
   1399 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
   1400 		/* Start the next transmission */
   1401 		cs_start_output(ifp);
   1402 	}
   1403 }
   1404 
   1405 void
   1406 cs_print_rx_errors(struct cs_softc *sc, u_int16_t rxEvent)
   1407 {
   1408 
   1409 	if (rxEvent & RX_EVENT_RUNT)
   1410 		printf("%s: runt\n", sc->sc_dev.dv_xname);
   1411 
   1412 	if (rxEvent & RX_EVENT_X_DATA)
   1413 		printf("%s: extra data\n", sc->sc_dev.dv_xname);
   1414 
   1415 	if (rxEvent & RX_EVENT_CRC_ERR) {
   1416 		if (rxEvent & RX_EVENT_DRIBBLE)
   1417 			printf("%s: alignment error\n", sc->sc_dev.dv_xname);
   1418 		else
   1419 			printf("%s: CRC error\n", sc->sc_dev.dv_xname);
   1420 	} else {
   1421 		if (rxEvent & RX_EVENT_DRIBBLE)
   1422 			printf("%s: dribble bits\n", sc->sc_dev.dv_xname);
   1423 	}
   1424 }
   1425 
   1426 void
   1427 cs_receive_event(struct cs_softc *sc, u_int16_t rxEvent)
   1428 {
   1429 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1430 
   1431 	/* If the frame was not received OK */
   1432 	if (!(rxEvent & RX_EVENT_RX_OK)) {
   1433 		/* Increment the input error count */
   1434 		ifp->if_ierrors++;
   1435 
   1436 		/*
   1437 		 * If debugging is enabled then log error messages.
   1438 		 */
   1439 		if (ifp->if_flags & IFF_DEBUG) {
   1440 			if (rxEvent != REG_NUM_RX_EVENT) {
   1441 				cs_print_rx_errors(sc, rxEvent);
   1442 
   1443 				/*
   1444 				 * Must read the length of all received
   1445 				 * frames
   1446 				 */
   1447 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
   1448 
   1449 				/* Skip the received frame */
   1450 				CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1451 					CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
   1452 						  RX_CFG_SKIP);
   1453 			} else {
   1454 				printf("%s: implied skip\n",
   1455 				    sc->sc_dev.dv_xname);
   1456 			}
   1457 		}
   1458 	} else {
   1459 		/*
   1460 		 * process the received frame and pass it up to the upper
   1461 		 * layers.
   1462 		 */
   1463 		cs_process_receive(sc);
   1464 	}
   1465 }
   1466 
   1467 void
   1468 cs_ether_input(struct cs_softc *sc, struct mbuf *m)
   1469 {
   1470 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1471 
   1472 	ifp->if_ipackets++;
   1473 
   1474 #if NBPFILTER > 0
   1475 	/*
   1476 	 * Check if there's a BPF listener on this interface.
   1477 	 * If so, hand off the raw packet to BPF.
   1478 	 */
   1479 	if (ifp->if_bpf)
   1480 		bpf_mtap(ifp->if_bpf, m);
   1481 #endif
   1482 
   1483 	/* Pass the packet up. */
   1484 	(*ifp->if_input)(ifp, m);
   1485 }
   1486 
   1487 void
   1488 cs_process_receive(struct cs_softc *sc)
   1489 {
   1490 	struct ifnet *ifp;
   1491 	struct mbuf *m;
   1492 	int totlen;
   1493 	u_int16_t *pBuff, *pBuffLimit;
   1494 	int pad;
   1495 	unsigned int frameOffset;
   1496 
   1497 #ifdef SHARK
   1498 	ledNetActive();
   1499 #endif
   1500 
   1501 	ifp = &sc->sc_ethercom.ec_if;
   1502 
   1503 	/* Received a packet; carrier is up. */
   1504 	sc->sc_carrier = 1;
   1505 
   1506 	if (sc->sc_memorymode) {
   1507 		/* Initialize the frame offset */
   1508 		frameOffset = PKTPG_RX_LENGTH;
   1509 
   1510 		/* Get the length of the received frame */
   1511 		totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
   1512 		frameOffset += 2;
   1513 	}
   1514 	else {
   1515 		/* drop status */
   1516 		CS_READ_PORT(sc, PORT_RXTX_DATA);
   1517 
   1518 		/* Get the length of the received frame */
   1519 		totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
   1520 	}
   1521 
   1522 	if (totlen > ETHER_MAX_LEN) {
   1523 		printf("%s: invalid packet length\n", sc->sc_dev.dv_xname);
   1524 
   1525 		/* skip the received frame */
   1526 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1527 			CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1528 		return;
   1529 	}
   1530 
   1531 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1532 	if (m == 0) {
   1533 		printf("%s: cs_process_receive: unable to allocate mbuf\n",
   1534 		    sc->sc_dev.dv_xname);
   1535 		ifp->if_ierrors++;
   1536 		/*
   1537 		 * couldn't allocate an mbuf so things are not good, may as
   1538 		 * well drop the packet I think.
   1539 		 *
   1540 		 * have already read the length so we should be right to skip
   1541 		 * the packet.
   1542 		 */
   1543 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1544 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1545 		return;
   1546 	}
   1547 	m->m_pkthdr.rcvif = ifp;
   1548 	m->m_pkthdr.len = totlen;
   1549 
   1550 	/* number of bytes to align ip header on word boundary for ipintr */
   1551 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
   1552 
   1553 	/*
   1554 	 * alloc mbuf cluster if we need.
   1555 	 * we need 1 byte spare because following
   1556 	 * packet read loop can overrun.
   1557 	 */
   1558 	if (totlen + pad + 1 > MHLEN) {
   1559 		MCLGET(m, M_DONTWAIT);
   1560 		if ((m->m_flags & M_EXT) == 0) {
   1561 			/* couldn't allocate an mbuf cluster */
   1562 			printf("%s: cs_process_receive: unable to allocate a cluster\n",
   1563 				sc->sc_dev.dv_xname);
   1564 			m_freem(m);
   1565 
   1566 			/* skip the received frame */
   1567 			CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1568 				CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1569 			return;
   1570 		}
   1571 	}
   1572 
   1573 	/* align ip header on word boundary for ipintr */
   1574 	m->m_data += pad;
   1575 
   1576 	m->m_len = totlen;
   1577 	pBuff = mtod(m, u_int16_t *);
   1578 
   1579 	/* now read the data from the chip */
   1580 	if (sc->sc_memorymode) {
   1581 		pBuffLimit = pBuff + (totlen + 1) / 2;	/* don't want to go over */
   1582 		while (pBuff < pBuffLimit) {
   1583 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
   1584 			frameOffset += 2;
   1585 		}
   1586 	}
   1587 	else {
   1588 		IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);
   1589 	}
   1590 
   1591 	cs_ether_input(sc, m);
   1592 }
   1593 
   1594 void
   1595 cs_process_rx_early(struct cs_softc *sc)
   1596 {
   1597 	struct ifnet *ifp;
   1598 	struct mbuf *m;
   1599 	u_int16_t frameCount, oldFrameCount;
   1600 	u_int16_t rxEvent;
   1601 	u_int16_t *pBuff;
   1602 	int pad;
   1603 	unsigned int frameOffset;
   1604 
   1605 
   1606 	ifp = &sc->sc_ethercom.ec_if;
   1607 
   1608 	/* Initialize the frame offset */
   1609 	frameOffset = PKTPG_RX_FRAME;
   1610 	frameCount = 0;
   1611 
   1612 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1613 	if (m == 0) {
   1614 		printf("%s: cs_process_rx_early: unable to allocate mbuf\n",
   1615 		    sc->sc_dev.dv_xname);
   1616 		ifp->if_ierrors++;
   1617 		/*
   1618 		 * couldn't allocate an mbuf so things are not good, may as
   1619 		 * well drop the packet I think.
   1620 		 *
   1621 		 * have already read the length so we should be right to skip
   1622 		 * the packet.
   1623 		 */
   1624 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1625 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1626 		return;
   1627 	}
   1628 	m->m_pkthdr.rcvif = ifp;
   1629 	/*
   1630 	 * save processing by always using a mbuf cluster, guaranteed to fit
   1631 	 * packet
   1632 	 */
   1633 	MCLGET(m, M_DONTWAIT);
   1634 	if ((m->m_flags & M_EXT) == 0) {
   1635 		/* couldn't allocate an mbuf cluster */
   1636 		printf("%s: cs_process_rx_early: unable to allocate a cluster\n",
   1637 		    sc->sc_dev.dv_xname);
   1638 		m_freem(m);
   1639 		/* skip the frame */
   1640 		CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
   1641 		    CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
   1642 		return;
   1643 	}
   1644 
   1645 	/* align ip header on word boundary for ipintr */
   1646 	pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
   1647 	m->m_data += pad;
   1648 
   1649 	/* set up the buffer pointer to point to the data area */
   1650 	pBuff = mtod(m, u_int16_t *);
   1651 
   1652 	/*
   1653 	 * now read the frame byte counter until we have finished reading the
   1654 	 * frame
   1655 	 */
   1656 	oldFrameCount = 0;
   1657 	frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
   1658 	while ((frameCount != 0) && (frameCount < MCLBYTES)) {
   1659 		for (; oldFrameCount < frameCount; oldFrameCount += 2) {
   1660 			*pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
   1661 			frameOffset += 2;
   1662 		}
   1663 
   1664 		/* read the new count from the chip */
   1665 		frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
   1666 	}
   1667 
   1668 	/* update the mbuf counts */
   1669 	m->m_len = oldFrameCount;
   1670 	m->m_pkthdr.len = oldFrameCount;
   1671 
   1672 	/* now check the Rx Event register */
   1673 	rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
   1674 
   1675 	if ((rxEvent & RX_EVENT_RX_OK) != 0) {
   1676 		/*
   1677 		 * do an implied skip, it seems to be more reliable than a
   1678 		 * forced skip.
   1679 		 */
   1680 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
   1681 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);
   1682 
   1683 		/*
   1684 		 * now read the RX_EVENT register to perform an implied skip.
   1685 		 */
   1686 		rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);
   1687 
   1688 		cs_ether_input(sc, m);
   1689 	} else {
   1690 		m_freem(m);
   1691 		ifp->if_ierrors++;
   1692 	}
   1693 }
   1694 
   1695 void
   1696 cs_start_output(struct ifnet *ifp)
   1697 {
   1698 	struct cs_softc *sc;
   1699 	struct mbuf *pMbuf;
   1700 	struct mbuf *pMbufChain;
   1701 	u_int16_t BusStatus;
   1702 	u_int16_t Length;
   1703 	int txLoop = 0;
   1704 	int dropout = 0;
   1705 
   1706 	sc = ifp->if_softc;
   1707 
   1708 	/* check that the interface is up and running */
   1709 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
   1710 		return;
   1711 	}
   1712 
   1713 	/* Don't interrupt a transmission in progress */
   1714 	if (sc->sc_txbusy) {
   1715 		return;
   1716 	}
   1717 
   1718 	/* this loop will only run through once if transmission is successful */
   1719 	/*
   1720 	 * While there are packets to transmit and a transmit is not in
   1721 	 * progress
   1722 	 */
   1723 	while (sc->sc_txbusy == 0 && dropout == 0) {
   1724 		IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
   1725 		if (pMbufChain == NULL)
   1726 			break;
   1727 
   1728 #if NBPFILTER > 0
   1729 		/*
   1730 	         * If BPF is listening on this interface, let it see the packet
   1731 	         * before we commit it to the wire.
   1732 	         */
   1733 		if (ifp->if_bpf)
   1734 			bpf_mtap(ifp->if_bpf, pMbufChain);
   1735 #endif
   1736 
   1737 		/* Find the total length of the data to transmit */
   1738 		Length = 0;
   1739 		for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
   1740 			Length += pMbuf->m_len;
   1741 
   1742 		do {
   1743 			/*
   1744 			 * Request that the transmit be started after all
   1745 			 * data has been copied
   1746 			 *
   1747 			 * In IO mode must write to the IO port not the packet
   1748 			 * page address
   1749 			 *
   1750 			 * If this is changed to start transmission after a
   1751 			 * small amount of data has been copied you tend to
   1752 			 * get packet missed errors i think because the ISA
   1753 			 * bus is too slow. Or possibly the copy routine is
   1754 			 * not streamlined enough.
   1755 			 */
   1756 			if (sc->sc_memorymode) {
   1757 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
   1758 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
   1759 				CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
   1760 			}
   1761 			else {
   1762 				CS_WRITE_PORT(sc, PORT_TX_CMD,
   1763 					cs_xmit_early_table[sc->sc_xe_ent].txcmd);
   1764 				CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
   1765 			}
   1766 
   1767 			/*
   1768 			 * Adjust early-transmit machinery.
   1769 			 */
   1770 			if (--sc->sc_xe_togo == 0) {
   1771 				sc->sc_xe_ent =
   1772 				    cs_xmit_early_table[sc->sc_xe_ent].better;
   1773 				sc->sc_xe_togo =
   1774 			    cs_xmit_early_table[sc->sc_xe_ent].better_count;
   1775 			}
   1776 			/*
   1777 			 * Read the BusStatus register which indicates
   1778 			 * success of the request
   1779 			 */
   1780 			BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);
   1781 
   1782 			/*
   1783 			 * If there was an error in the transmit bid free the
   1784 			 * mbuf and go on. This is presuming that mbuf is
   1785 			 * corrupt.
   1786 			 */
   1787 			if (BusStatus & BUS_ST_TX_BID_ERR) {
   1788 				printf("%s: transmit bid error (too big)",
   1789 				    sc->sc_dev.dv_xname);
   1790 
   1791 				/* Discard the bad mbuf chain */
   1792 				m_freem(pMbufChain);
   1793 				sc->sc_ethercom.ec_if.if_oerrors++;
   1794 
   1795 				/* Loop up to transmit the next chain */
   1796 				txLoop = 0;
   1797 			} else {
   1798 				if (BusStatus & BUS_ST_RDY4TXNOW) {
   1799 					/*
   1800 					 * The chip is ready for transmission
   1801 					 * now
   1802 					 */
   1803 					/*
   1804 					 * Copy the frame to the chip to
   1805 					 * start transmission
   1806 					 */
   1807 					cs_copy_tx_frame(sc, pMbufChain);
   1808 
   1809 					/* Free the mbuf chain */
   1810 					m_freem(pMbufChain);
   1811 
   1812 					/* Transmission is now in progress */
   1813 					sc->sc_txbusy = TRUE;
   1814 					txLoop = 0;
   1815 				} else {
   1816 					/*
   1817 					 * if we get here we want to try
   1818 					 * again with the same mbuf, until
   1819 					 * the chip lets us transmit.
   1820 					 */
   1821 					txLoop++;
   1822 					if (txLoop > CS_OUTPUT_LOOP_MAX) {
   1823 						/* Free the mbuf chain */
   1824 						m_freem(pMbufChain);
   1825 						/*
   1826 						 * Transmission is not in
   1827 						 * progress
   1828 						 */
   1829 						sc->sc_txbusy = FALSE;
   1830 						/*
   1831 						 * Increment the output error
   1832 						 * count
   1833 						 */
   1834 						ifp->if_oerrors++;
   1835 						/*
   1836 						 * exit the routine and drop
   1837 						 * the packet.
   1838 						 */
   1839 						txLoop = 0;
   1840 						dropout = 1;
   1841 					}
   1842 				}
   1843 			}
   1844 		} while (txLoop);
   1845 	}
   1846 }
   1847 
   1848 void
   1849 cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
   1850 {
   1851 	struct mbuf *m;
   1852 	int len, leftover, frameoff;
   1853 	u_int16_t dbuf;
   1854 	u_int8_t *p;
   1855 #ifdef DIAGNOSTIC
   1856 	u_int8_t *lim;
   1857 #endif
   1858 
   1859 	/* Initialize frame pointer and data port address */
   1860 	frameoff = PKTPG_TX_FRAME;
   1861 
   1862 	/* start out with no leftover data */
   1863 	leftover = 0;
   1864 	dbuf = 0;
   1865 
   1866 	/* Process the chain of mbufs */
   1867 	for (m = m0; m != NULL; m = m->m_next) {
   1868 		/*
   1869 		 * Process all of the data in a single mbuf.
   1870 		 */
   1871 		p = mtod(m, u_int8_t *);
   1872 		len = m->m_len;
   1873 #ifdef DIAGNOSTIC
   1874 		lim = p + len;
   1875 #endif
   1876 
   1877 		while (len > 0) {
   1878 			if (leftover) {
   1879 				/*
   1880 				 * Data left over (from mbuf or realignment).
   1881 				 * Buffer the next byte, and write it and
   1882 				 * the leftover data out.
   1883 				 */
   1884 				dbuf |= *p++ << 8;
   1885 				len--;
   1886 				if (sc->sc_memorymode) {
   1887 					CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
   1888 					frameoff += 2;
   1889 				}
   1890 				else {
   1891 					CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
   1892 				}
   1893 				leftover = 0;
   1894 			} else if ((long) p & 1) {
   1895 				/*
   1896 				 * Misaligned data.  Buffer the next byte.
   1897 				 */
   1898 				dbuf = *p++;
   1899 				len--;
   1900 				leftover = 1;
   1901 			} else {
   1902 				/*
   1903 				 * Aligned data.  This is the case we like.
   1904 				 *
   1905 				 * Write-region out as much as we can, then
   1906 				 * buffer the remaining byte (if any).
   1907 				 */
   1908 				leftover = len & 1;
   1909 				len &= ~1;
   1910 				if (sc->sc_memorymode) {
   1911 					MEM_WRITE_REGION_2(sc, frameoff,
   1912 						(u_int16_t *) p, len >> 1);
   1913 					frameoff += len;
   1914 				}
   1915 				else {
   1916 					IO_WRITE_MULTI_2(sc,
   1917 						PORT_RXTX_DATA, (u_int16_t *)p, len >> 1);
   1918 				}
   1919 				p += len;
   1920 
   1921 				if (leftover)
   1922 					dbuf = *p++;
   1923 				len = 0;
   1924 			}
   1925 		}
   1926 		if (len < 0)
   1927 			panic("cs_copy_tx_frame: negative len");
   1928 #ifdef DIAGNOSTIC
   1929 		if (p != lim)
   1930 			panic("cs_copy_tx_frame: p != lim");
   1931 #endif
   1932 	}
   1933 	if (leftover) {
   1934 		if (sc->sc_memorymode) {
   1935 			CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
   1936 		}
   1937 		else {
   1938 			CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
   1939 		}
   1940 	}
   1941 }
   1942 
   1943 static int
   1944 cs_enable(struct cs_softc *sc)
   1945 {
   1946 
   1947 	if (CS_IS_ENABLED(sc) == 0) {
   1948 		if (sc->sc_enable != NULL) {
   1949 			int error;
   1950 
   1951 			error = (*sc->sc_enable)(sc);
   1952 			if (error)
   1953 				return (error);
   1954 		}
   1955 		sc->sc_cfgflags |= CFGFLG_ENABLED;
   1956 	}
   1957 
   1958 	return (0);
   1959 }
   1960 
   1961 static void
   1962 cs_disable(struct cs_softc *sc)
   1963 {
   1964 
   1965 	if (CS_IS_ENABLED(sc)) {
   1966 		if (sc->sc_disable != NULL)
   1967 			(*sc->sc_disable)(sc);
   1968 
   1969 		sc->sc_cfgflags &= ~CFGFLG_ENABLED;
   1970 	}
   1971 }
   1972 
   1973 static void
   1974 cs_stop(struct ifnet *ifp, int disable)
   1975 {
   1976 	struct cs_softc *sc = ifp->if_softc;
   1977 
   1978 	CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
   1979 	CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
   1980 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
   1981 	CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);
   1982 
   1983 	if (disable) {
   1984 		cs_disable(sc);
   1985 	}
   1986 
   1987 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1988 }
   1989 
   1990 int
   1991 cs_activate(struct device *self, enum devact act)
   1992 {
   1993 	struct cs_softc *sc = (void *)self;
   1994 	int s, error = 0;
   1995 
   1996 	s = splnet();
   1997 	switch (act) {
   1998 	case DVACT_ACTIVATE:
   1999 		error = EOPNOTSUPP;
   2000 		break;
   2001 
   2002 	case DVACT_DEACTIVATE:
   2003 		if_deactivate(&sc->sc_ethercom.ec_if);
   2004 		break;
   2005 	}
   2006 	splx(s);
   2007 
   2008 	return error;
   2009 }
   2010 
   2011 static void
   2012 cs_power(int why, void *arg)
   2013 {
   2014 	struct cs_softc *sc = arg;
   2015 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2016 	int s;
   2017 
   2018 	s = splnet();
   2019 	switch (why) {
   2020 	case PWR_STANDBY:
   2021 	case PWR_SUSPEND:
   2022 		cs_stop(ifp, 0);
   2023 		break;
   2024 	case PWR_RESUME:
   2025 		if (ifp->if_flags & IFF_UP) {
   2026 			cs_init(ifp);
   2027 		}
   2028 		break;
   2029 	case PWR_SOFTSUSPEND:
   2030 	case PWR_SOFTSTANDBY:
   2031 	case PWR_SOFTRESUME:
   2032 		break;
   2033 	}
   2034 	splx(s);
   2035 }
   2036