dm9000.c revision 1.15 1 1.15 msaitoh /* $NetBSD: dm9000.c,v 1.15 2018/06/26 06:48:00 msaitoh Exp $ */
2 1.1 ahoka
3 1.1 ahoka /*
4 1.1 ahoka * Copyright (c) 2009 Paul Fleischer
5 1.1 ahoka * All rights reserved.
6 1.1 ahoka *
7 1.1 ahoka * 1. Redistributions of source code must retain the above copyright
8 1.1 ahoka * notice, this list of conditions and the following disclaimer.
9 1.1 ahoka * 2. Redistributions in binary form must reproduce the above copyright
10 1.1 ahoka * notice, this list of conditions and the following disclaimer in the
11 1.1 ahoka * documentation and/or other materials provided with the distribution.
12 1.1 ahoka * 3. The name of the company nor the name of the author may be used to
13 1.1 ahoka * endorse or promote products derived from this software without specific
14 1.1 ahoka * prior written permission.
15 1.1 ahoka *
16 1.1 ahoka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 1.1 ahoka * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 1.1 ahoka * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 ahoka * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 1.1 ahoka * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 1.1 ahoka * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 1.1 ahoka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 ahoka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 ahoka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 ahoka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 ahoka * SUCH DAMAGE.
27 1.1 ahoka */
28 1.1 ahoka
29 1.1 ahoka /* based on sys/dev/ic/cs89x0.c */
30 1.1 ahoka /*
31 1.1 ahoka * Copyright (c) 2004 Christopher Gilbert
32 1.1 ahoka * All rights reserved.
33 1.1 ahoka *
34 1.1 ahoka * 1. Redistributions of source code must retain the above copyright
35 1.1 ahoka * notice, this list of conditions and the following disclaimer.
36 1.1 ahoka * 2. Redistributions in binary form must reproduce the above copyright
37 1.1 ahoka * notice, this list of conditions and the following disclaimer in the
38 1.1 ahoka * documentation and/or other materials provided with the distribution.
39 1.1 ahoka * 3. The name of the company nor the name of the author may be used to
40 1.1 ahoka * endorse or promote products derived from this software without specific
41 1.1 ahoka * prior written permission.
42 1.1 ahoka *
43 1.1 ahoka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44 1.1 ahoka * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45 1.1 ahoka * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46 1.1 ahoka * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47 1.1 ahoka * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48 1.1 ahoka * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49 1.1 ahoka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 1.1 ahoka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 1.1 ahoka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 1.1 ahoka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 1.1 ahoka * SUCH DAMAGE.
54 1.1 ahoka */
55 1.1 ahoka
56 1.1 ahoka /*
57 1.1 ahoka * Copyright 1997
58 1.1 ahoka * Digital Equipment Corporation. All rights reserved.
59 1.1 ahoka *
60 1.1 ahoka * This software is furnished under license and may be used and
61 1.1 ahoka * copied only in accordance with the following terms and conditions.
62 1.1 ahoka * Subject to these conditions, you may download, copy, install,
63 1.1 ahoka * use, modify and distribute this software in source and/or binary
64 1.1 ahoka * form. No title or ownership is transferred hereby.
65 1.1 ahoka *
66 1.1 ahoka * 1) Any source code used, modified or distributed must reproduce
67 1.1 ahoka * and retain this copyright notice and list of conditions as
68 1.1 ahoka * they appear in the source file.
69 1.1 ahoka *
70 1.1 ahoka * 2) No right is granted to use any trade name, trademark, or logo of
71 1.1 ahoka * Digital Equipment Corporation. Neither the "Digital Equipment
72 1.1 ahoka * Corporation" name nor any trademark or logo of Digital Equipment
73 1.1 ahoka * Corporation may be used to endorse or promote products derived
74 1.1 ahoka * from this software without the prior written permission of
75 1.1 ahoka * Digital Equipment Corporation.
76 1.1 ahoka *
77 1.1 ahoka * 3) This software is provided "AS-IS" and any express or implied
78 1.1 ahoka * warranties, including but not limited to, any implied warranties
79 1.1 ahoka * of merchantability, fitness for a particular purpose, or
80 1.1 ahoka * non-infringement are disclaimed. In no event shall DIGITAL be
81 1.1 ahoka * liable for any damages whatsoever, and in particular, DIGITAL
82 1.1 ahoka * shall not be liable for special, indirect, consequential, or
83 1.1 ahoka * incidental damages or damages for lost profits, loss of
84 1.1 ahoka * revenue or loss of use, whether such damages arise in contract,
85 1.1 ahoka * negligence, tort, under statute, in equity, at law or otherwise,
86 1.1 ahoka * even if advised of the possibility of such damage.
87 1.1 ahoka */
88 1.1 ahoka
89 1.1 ahoka #include <sys/cdefs.h>
90 1.1 ahoka
91 1.1 ahoka #include <sys/param.h>
92 1.4 nisimura #include <sys/kernel.h>
93 1.1 ahoka #include <sys/systm.h>
94 1.1 ahoka #include <sys/mbuf.h>
95 1.1 ahoka #include <sys/syslog.h>
96 1.1 ahoka #include <sys/socket.h>
97 1.1 ahoka #include <sys/device.h>
98 1.1 ahoka #include <sys/malloc.h>
99 1.1 ahoka #include <sys/ioctl.h>
100 1.1 ahoka #include <sys/errno.h>
101 1.1 ahoka
102 1.1 ahoka #include <net/if.h>
103 1.1 ahoka #include <net/if_ether.h>
104 1.1 ahoka #include <net/if_media.h>
105 1.13 msaitoh #include <net/bpf.h>
106 1.13 msaitoh
107 1.1 ahoka #ifdef INET
108 1.1 ahoka #include <netinet/in.h>
109 1.1 ahoka #include <netinet/if_inarp.h>
110 1.1 ahoka #endif
111 1.1 ahoka
112 1.1 ahoka #include <sys/bus.h>
113 1.1 ahoka #include <sys/intr.h>
114 1.1 ahoka
115 1.1 ahoka #include <dev/ic/dm9000var.h>
116 1.1 ahoka #include <dev/ic/dm9000reg.h>
117 1.1 ahoka
118 1.1 ahoka #if 1
119 1.1 ahoka #undef DM9000_DEBUG
120 1.4 nisimura #undef DM9000_TX_DEBUG
121 1.1 ahoka #undef DM9000_TX_DATA_DEBUG
122 1.1 ahoka #undef DM9000_RX_DEBUG
123 1.1 ahoka #undef DM9000_RX_DATA_DEBUG
124 1.1 ahoka #else
125 1.1 ahoka #define DM9000_DEBUG
126 1.1 ahoka #define DM9000_TX_DEBUG
127 1.1 ahoka #define DM9000_TX_DATA_DEBUG
128 1.1 ahoka #define DM9000_RX_DEBUG
129 1.1 ahoka #define DM9000_RX_DATA_DEBUG
130 1.1 ahoka #endif
131 1.1 ahoka
132 1.1 ahoka #ifdef DM9000_DEBUG
133 1.1 ahoka #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
134 1.1 ahoka #else
135 1.1 ahoka #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
136 1.1 ahoka #endif
137 1.1 ahoka
138 1.1 ahoka #ifdef DM9000_TX_DEBUG
139 1.1 ahoka #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
140 1.1 ahoka #else
141 1.1 ahoka #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
142 1.1 ahoka #endif
143 1.1 ahoka
144 1.1 ahoka #ifdef DM9000_RX_DEBUG
145 1.1 ahoka #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
146 1.1 ahoka #else
147 1.1 ahoka #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
148 1.1 ahoka #endif
149 1.1 ahoka
150 1.1 ahoka #ifdef DM9000_RX_DATA_DEBUG
151 1.1 ahoka #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
152 1.1 ahoka #else
153 1.1 ahoka #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
154 1.1 ahoka #endif
155 1.1 ahoka
156 1.1 ahoka #ifdef DM9000_TX_DATA_DEBUG
157 1.1 ahoka #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
158 1.1 ahoka #else
159 1.1 ahoka #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
160 1.1 ahoka #endif
161 1.1 ahoka
162 1.4 nisimura /*** Internal PHY functions ***/
163 1.7 macallan uint16_t dme_phy_read(struct dme_softc *, int );
164 1.7 macallan void dme_phy_write(struct dme_softc *, int, uint16_t);
165 1.7 macallan void dme_phy_init(struct dme_softc *);
166 1.7 macallan void dme_phy_reset(struct dme_softc *);
167 1.7 macallan void dme_phy_update_media(struct dme_softc *);
168 1.7 macallan void dme_phy_check_link(void *);
169 1.1 ahoka
170 1.1 ahoka /*** Methods registered in struct ifnet ***/
171 1.7 macallan void dme_start_output(struct ifnet *);
172 1.7 macallan int dme_init(struct ifnet *);
173 1.7 macallan int dme_ioctl(struct ifnet *, u_long, void *);
174 1.7 macallan void dme_stop(struct ifnet *, int);
175 1.1 ahoka
176 1.7 macallan int dme_mediachange(struct ifnet *);
177 1.7 macallan void dme_mediastatus(struct ifnet *, struct ifmediareq *);
178 1.1 ahoka
179 1.1 ahoka /*** Internal methods ***/
180 1.1 ahoka
181 1.1 ahoka /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
182 1.7 macallan void dme_prepare(struct dme_softc *, struct ifnet *);
183 1.1 ahoka
184 1.1 ahoka /* Transmit prepared data */
185 1.7 macallan void dme_transmit(struct dme_softc *);
186 1.1 ahoka
187 1.1 ahoka /* Receive data */
188 1.7 macallan void dme_receive(struct dme_softc *, struct ifnet *);
189 1.1 ahoka
190 1.1 ahoka /* Software Initialize/Reset of the DM9000 */
191 1.7 macallan void dme_reset(struct dme_softc *);
192 1.1 ahoka
193 1.4 nisimura /* Configure multicast filter */
194 1.7 macallan void dme_set_addr_filter(struct dme_softc *);
195 1.4 nisimura
196 1.4 nisimura /* Set media */
197 1.7 macallan int dme_set_media(struct dme_softc *, int );
198 1.4 nisimura
199 1.4 nisimura /* Read/write packet data from/to DM9000 IC in various transfer sizes */
200 1.7 macallan int dme_pkt_read_2(struct dme_softc *, struct ifnet *, struct mbuf **);
201 1.7 macallan int dme_pkt_write_2(struct dme_softc *, struct mbuf *);
202 1.7 macallan int dme_pkt_read_1(struct dme_softc *, struct ifnet *, struct mbuf **);
203 1.7 macallan int dme_pkt_write_1(struct dme_softc *, struct mbuf *);
204 1.6 macallan /* TODO: Implement 32 bit read/write functions */
205 1.4 nisimura
206 1.1 ahoka uint16_t
207 1.1 ahoka dme_phy_read(struct dme_softc *sc, int reg)
208 1.1 ahoka {
209 1.1 ahoka uint16_t val;
210 1.1 ahoka /* Select Register to read*/
211 1.1 ahoka dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
212 1.1 ahoka (reg & DM9000_EPAR_EROA_MASK));
213 1.1 ahoka /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
214 1.1 ahoka dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
215 1.1 ahoka
216 1.1 ahoka /* Wait until access to PHY has completed */
217 1.1 ahoka while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
218 1.1 ahoka
219 1.1 ahoka /* Reset ERPRR-bit */
220 1.1 ahoka dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
221 1.1 ahoka
222 1.1 ahoka val = dme_read(sc, DM9000_EPDRL);
223 1.1 ahoka val += dme_read(sc, DM9000_EPDRH) << 8;
224 1.1 ahoka
225 1.1 ahoka return val;
226 1.1 ahoka }
227 1.1 ahoka
228 1.1 ahoka void
229 1.1 ahoka dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
230 1.1 ahoka {
231 1.1 ahoka /* Select Register to write*/
232 1.1 ahoka dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
233 1.1 ahoka (reg & DM9000_EPAR_EROA_MASK));
234 1.1 ahoka
235 1.1 ahoka /* Write data to the two data registers */
236 1.1 ahoka dme_write(sc, DM9000_EPDRL, value & 0xFF);
237 1.1 ahoka dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
238 1.1 ahoka
239 1.1 ahoka /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
240 1.1 ahoka dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
241 1.1 ahoka
242 1.1 ahoka /* Wait until access to PHY has completed */
243 1.1 ahoka while(dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
244 1.1 ahoka
245 1.4 nisimura /* Reset ERPRR-bit */
246 1.4 nisimura dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
247 1.4 nisimura }
248 1.4 nisimura
249 1.4 nisimura void
250 1.4 nisimura dme_phy_init(struct dme_softc *sc)
251 1.4 nisimura {
252 1.4 nisimura u_int ifm_media = sc->sc_media.ifm_media;
253 1.4 nisimura uint32_t bmcr, anar;
254 1.4 nisimura
255 1.4 nisimura bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
256 1.4 nisimura anar = dme_phy_read(sc, DM9000_PHY_ANAR);
257 1.4 nisimura
258 1.4 nisimura anar = anar & ~DM9000_PHY_ANAR_10_HDX
259 1.4 nisimura & ~DM9000_PHY_ANAR_10_FDX
260 1.4 nisimura & ~DM9000_PHY_ANAR_TX_HDX
261 1.4 nisimura & ~DM9000_PHY_ANAR_TX_FDX;
262 1.4 nisimura
263 1.4 nisimura switch (IFM_SUBTYPE(ifm_media)) {
264 1.4 nisimura case IFM_AUTO:
265 1.4 nisimura bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
266 1.4 nisimura anar |= DM9000_PHY_ANAR_10_HDX |
267 1.4 nisimura DM9000_PHY_ANAR_10_FDX |
268 1.4 nisimura DM9000_PHY_ANAR_TX_HDX |
269 1.4 nisimura DM9000_PHY_ANAR_TX_FDX;
270 1.4 nisimura break;
271 1.4 nisimura case IFM_10_T:
272 1.4 nisimura //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
273 1.4 nisimura bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
274 1.4 nisimura if (ifm_media & IFM_FDX)
275 1.4 nisimura anar |= DM9000_PHY_ANAR_10_FDX;
276 1.4 nisimura else
277 1.4 nisimura anar |= DM9000_PHY_ANAR_10_HDX;
278 1.4 nisimura break;
279 1.4 nisimura case IFM_100_TX:
280 1.4 nisimura //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
281 1.4 nisimura bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
282 1.4 nisimura if (ifm_media & IFM_FDX)
283 1.4 nisimura anar |= DM9000_PHY_ANAR_TX_FDX;
284 1.4 nisimura else
285 1.4 nisimura anar |= DM9000_PHY_ANAR_TX_HDX;
286 1.4 nisimura
287 1.4 nisimura break;
288 1.4 nisimura }
289 1.4 nisimura
290 1.4 nisimura if(ifm_media & IFM_FDX) {
291 1.4 nisimura bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
292 1.4 nisimura } else {
293 1.4 nisimura bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
294 1.4 nisimura }
295 1.4 nisimura
296 1.4 nisimura dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
297 1.4 nisimura dme_phy_write(sc, DM9000_PHY_ANAR, anar);
298 1.4 nisimura }
299 1.4 nisimura
300 1.4 nisimura void
301 1.4 nisimura dme_phy_reset(struct dme_softc *sc)
302 1.4 nisimura {
303 1.4 nisimura uint32_t reg;
304 1.4 nisimura
305 1.4 nisimura /* PHY Reset */
306 1.4 nisimura dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
307 1.4 nisimura
308 1.4 nisimura reg = dme_read(sc, DM9000_GPCR);
309 1.4 nisimura dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
310 1.4 nisimura reg = dme_read(sc, DM9000_GPR);
311 1.4 nisimura dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
312 1.4 nisimura
313 1.4 nisimura dme_phy_init(sc);
314 1.1 ahoka
315 1.4 nisimura reg = dme_read(sc, DM9000_GPR);
316 1.4 nisimura dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
317 1.4 nisimura reg = dme_read(sc, DM9000_GPCR);
318 1.4 nisimura dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
319 1.1 ahoka
320 1.4 nisimura dme_phy_update_media(sc);
321 1.4 nisimura }
322 1.4 nisimura
323 1.4 nisimura void
324 1.4 nisimura dme_phy_update_media(struct dme_softc *sc)
325 1.4 nisimura {
326 1.4 nisimura u_int ifm_media = sc->sc_media.ifm_media;
327 1.4 nisimura uint32_t reg;
328 1.4 nisimura
329 1.4 nisimura if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
330 1.4 nisimura /* If auto-negotiation is used, ensures that it is completed
331 1.4 nisimura before trying to extract any media information. */
332 1.4 nisimura reg = dme_phy_read(sc, DM9000_PHY_BMSR);
333 1.4 nisimura if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
334 1.4 nisimura /* Auto-negotation not possible, therefore there is no
335 1.4 nisimura reason to try obtain any media information. */
336 1.4 nisimura return;
337 1.4 nisimura }
338 1.4 nisimura
339 1.4 nisimura /* Then loop until the negotiation is completed. */
340 1.4 nisimura while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
341 1.4 nisimura /* TODO: Bail out after a finite number of attempts
342 1.4 nisimura in case something goes wrong. */
343 1.4 nisimura preempt();
344 1.4 nisimura reg = dme_phy_read(sc, DM9000_PHY_BMSR);
345 1.4 nisimura }
346 1.4 nisimura }
347 1.4 nisimura
348 1.4 nisimura
349 1.4 nisimura sc->sc_media_active = IFM_ETHER;
350 1.4 nisimura reg = dme_phy_read(sc, DM9000_PHY_BMCR);
351 1.4 nisimura
352 1.4 nisimura if (reg & DM9000_PHY_BMCR_SPEED_SELECT) {
353 1.4 nisimura sc->sc_media_active |= IFM_100_TX;
354 1.4 nisimura } else {
355 1.4 nisimura sc->sc_media_active |= IFM_10_T;
356 1.4 nisimura }
357 1.4 nisimura
358 1.4 nisimura if (reg & DM9000_PHY_BMCR_DUPLEX_MODE) {
359 1.4 nisimura sc->sc_media_active |= IFM_FDX;
360 1.4 nisimura }
361 1.4 nisimura }
362 1.4 nisimura
363 1.4 nisimura void
364 1.4 nisimura dme_phy_check_link(void *arg)
365 1.4 nisimura {
366 1.4 nisimura struct dme_softc *sc = arg;
367 1.4 nisimura uint32_t reg;
368 1.4 nisimura int s;
369 1.4 nisimura
370 1.4 nisimura s = splnet();
371 1.4 nisimura
372 1.4 nisimura reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
373 1.4 nisimura
374 1.4 nisimura if( reg )
375 1.4 nisimura reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
376 1.4 nisimura else {
377 1.4 nisimura reg = IFM_ETHER | IFM_AVALID;
378 1.4 nisimura sc->sc_media_active = IFM_NONE;
379 1.4 nisimura }
380 1.4 nisimura
381 1.4 nisimura if ( (sc->sc_media_status != reg) && (reg & IFM_ACTIVE)) {
382 1.4 nisimura dme_phy_reset(sc);
383 1.4 nisimura }
384 1.4 nisimura
385 1.4 nisimura sc->sc_media_status = reg;
386 1.4 nisimura
387 1.4 nisimura callout_schedule(&sc->sc_link_callout, mstohz(2000));
388 1.4 nisimura splx(s);
389 1.4 nisimura }
390 1.4 nisimura
391 1.4 nisimura int
392 1.4 nisimura dme_set_media(struct dme_softc *sc, int media)
393 1.4 nisimura {
394 1.4 nisimura int s;
395 1.4 nisimura
396 1.4 nisimura s = splnet();
397 1.4 nisimura sc->sc_media.ifm_media = media;
398 1.4 nisimura dme_phy_reset(sc);
399 1.4 nisimura
400 1.4 nisimura splx(s);
401 1.4 nisimura
402 1.4 nisimura return 0;
403 1.1 ahoka }
404 1.1 ahoka
405 1.1 ahoka int
406 1.4 nisimura dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
407 1.1 ahoka {
408 1.4 nisimura struct ifnet *ifp = &sc->sc_ethercom.ec_if;
409 1.4 nisimura uint8_t b[2];
410 1.4 nisimura uint16_t io_mode;
411 1.1 ahoka
412 1.1 ahoka dme_read_c(sc, DM9000_VID0, b, 2);
413 1.1 ahoka #if BYTE_ORDER == BIG_ENDIAN
414 1.1 ahoka sc->sc_vendor_id = (b[0] << 8) | b[1];
415 1.1 ahoka #else
416 1.1 ahoka sc->sc_vendor_id = b[0] | (b[1] << 8);
417 1.1 ahoka #endif
418 1.1 ahoka dme_read_c(sc, DM9000_PID0, b, 2);
419 1.1 ahoka #if BYTE_ORDER == BIG_ENDIAN
420 1.1 ahoka sc->sc_product_id = (b[0] << 8) | b[1];
421 1.1 ahoka #else
422 1.1 ahoka sc->sc_product_id = b[0] | (b[1] << 8);
423 1.1 ahoka #endif
424 1.1 ahoka /* TODO: Check the vendor ID as well */
425 1.1 ahoka if (sc->sc_product_id != 0x9000) {
426 1.1 ahoka panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
427 1.1 ahoka sc->sc_product_id);
428 1.1 ahoka }
429 1.1 ahoka
430 1.1 ahoka /* Initialize ifnet structure. */
431 1.1 ahoka strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
432 1.1 ahoka ifp->if_softc = sc;
433 1.1 ahoka ifp->if_start = dme_start_output;
434 1.1 ahoka ifp->if_init = dme_init;
435 1.1 ahoka ifp->if_ioctl = dme_ioctl;
436 1.1 ahoka ifp->if_stop = dme_stop;
437 1.1 ahoka ifp->if_watchdog = NULL; /* no watchdog at this stage */
438 1.4 nisimura ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_BROADCAST |
439 1.4 nisimura IFF_MULTICAST;
440 1.1 ahoka IFQ_SET_READY(&ifp->if_snd);
441 1.1 ahoka
442 1.1 ahoka /* Initialize ifmedia structures. */
443 1.1 ahoka ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
444 1.4 nisimura ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
445 1.4 nisimura ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
446 1.4 nisimura ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
447 1.4 nisimura ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
448 1.4 nisimura ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
449 1.4 nisimura
450 1.4 nisimura ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
451 1.1 ahoka
452 1.1 ahoka if (enaddr != NULL)
453 1.1 ahoka memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
454 1.4 nisimura /* TODO: Support an EEPROM attached to the DM9000 chip */
455 1.4 nisimura
456 1.4 nisimura callout_init(&sc->sc_link_callout, 0);
457 1.4 nisimura callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
458 1.4 nisimura
459 1.4 nisimura sc->sc_media_status = 0;
460 1.1 ahoka
461 1.1 ahoka /* Configure DM9000 with the MAC address */
462 1.1 ahoka dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
463 1.1 ahoka
464 1.1 ahoka #ifdef DM9000_DEBUG
465 1.1 ahoka {
466 1.1 ahoka uint8_t macAddr[6];
467 1.1 ahoka dme_read_c(sc, DM9000_PAB0, macAddr, 6);
468 1.1 ahoka printf("DM9000 configured with MAC address: ");
469 1.1 ahoka for (int i = 0; i < 6; i++) {
470 1.1 ahoka printf("%02X:", macAddr[i]);
471 1.1 ahoka }
472 1.1 ahoka printf("\n");
473 1.1 ahoka }
474 1.1 ahoka #endif
475 1.1 ahoka
476 1.1 ahoka if_attach(ifp);
477 1.1 ahoka ether_ifattach(ifp, sc->sc_enaddr);
478 1.1 ahoka
479 1.1 ahoka #ifdef DM9000_DEBUG
480 1.1 ahoka {
481 1.1 ahoka uint8_t network_state;
482 1.1 ahoka network_state = dme_read(sc, DM9000_NSR);
483 1.1 ahoka printf("DM9000 Link status: ");
484 1.1 ahoka if (network_state & DM9000_NSR_LINKST) {
485 1.1 ahoka if (network_state & DM9000_NSR_SPEED)
486 1.1 ahoka printf("10Mbps");
487 1.1 ahoka else
488 1.1 ahoka printf("100Mbps");
489 1.1 ahoka } else {
490 1.1 ahoka printf("Down");
491 1.1 ahoka }
492 1.1 ahoka printf("\n");
493 1.1 ahoka }
494 1.1 ahoka #endif
495 1.1 ahoka
496 1.4 nisimura io_mode = (dme_read(sc, DM9000_ISR) &
497 1.1 ahoka DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
498 1.4 nisimura
499 1.4 nisimura DPRINTF(("DM9000 Operation Mode: "));
500 1.4 nisimura switch( io_mode) {
501 1.1 ahoka case DM9000_MODE_16BIT:
502 1.4 nisimura DPRINTF(("16-bit mode"));
503 1.4 nisimura sc->sc_data_width = 2;
504 1.4 nisimura sc->sc_pkt_write = dme_pkt_write_2;
505 1.4 nisimura sc->sc_pkt_read = dme_pkt_read_2;
506 1.1 ahoka break;
507 1.1 ahoka case DM9000_MODE_32BIT:
508 1.4 nisimura DPRINTF(("32-bit mode"));
509 1.4 nisimura sc->sc_data_width = 4;
510 1.6 macallan panic("32bit mode is unsupported\n");
511 1.1 ahoka break;
512 1.1 ahoka case DM9000_MODE_8BIT:
513 1.4 nisimura DPRINTF(("8-bit mode"));
514 1.4 nisimura sc->sc_data_width = 1;
515 1.6 macallan sc->sc_pkt_write = dme_pkt_write_1;
516 1.6 macallan sc->sc_pkt_read = dme_pkt_read_1;
517 1.1 ahoka break;
518 1.4 nisimura default:
519 1.4 nisimura DPRINTF(("Invalid mode"));
520 1.1 ahoka break;
521 1.1 ahoka }
522 1.4 nisimura DPRINTF(("\n"));
523 1.4 nisimura
524 1.4 nisimura callout_schedule(&sc->sc_link_callout, mstohz(2000));
525 1.1 ahoka
526 1.1 ahoka return 0;
527 1.1 ahoka }
528 1.1 ahoka
529 1.1 ahoka int dme_intr(void *arg)
530 1.1 ahoka {
531 1.1 ahoka struct dme_softc *sc = arg;
532 1.1 ahoka struct ifnet *ifp = &sc->sc_ethercom.ec_if;
533 1.1 ahoka uint8_t status;
534 1.1 ahoka
535 1.4 nisimura
536 1.4 nisimura DPRINTF(("dme_intr: Begin\n"));
537 1.4 nisimura
538 1.1 ahoka /* Disable interrupts */
539 1.1 ahoka dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
540 1.1 ahoka
541 1.1 ahoka status = dme_read(sc, DM9000_ISR);
542 1.1 ahoka dme_write(sc, DM9000_ISR, status);
543 1.1 ahoka
544 1.1 ahoka if (status & DM9000_ISR_PRS) {
545 1.1 ahoka if (ifp->if_flags & IFF_RUNNING )
546 1.1 ahoka dme_receive(sc, ifp);
547 1.1 ahoka }
548 1.1 ahoka if (status & DM9000_ISR_PTS) {
549 1.1 ahoka uint8_t nsr;
550 1.1 ahoka uint8_t tx_status = 0x01; /* Initialize to an error value */
551 1.1 ahoka
552 1.1 ahoka /* A packet has been transmitted */
553 1.1 ahoka sc->txbusy = 0;
554 1.1 ahoka
555 1.1 ahoka nsr = dme_read(sc, DM9000_NSR);
556 1.1 ahoka
557 1.1 ahoka if (nsr & DM9000_NSR_TX1END) {
558 1.1 ahoka tx_status = dme_read(sc, DM9000_TSR1);
559 1.1 ahoka TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
560 1.1 ahoka } else if (nsr & DM9000_NSR_TX2END) {
561 1.1 ahoka tx_status = dme_read(sc, DM9000_TSR2);
562 1.1 ahoka TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
563 1.1 ahoka }
564 1.1 ahoka
565 1.1 ahoka if (tx_status == 0x0) {
566 1.1 ahoka /* Frame successfully sent */
567 1.1 ahoka ifp->if_opackets++;
568 1.1 ahoka } else {
569 1.1 ahoka ifp->if_oerrors++;
570 1.1 ahoka }
571 1.1 ahoka
572 1.1 ahoka /* If we have nothing ready to transmit, prepare something */
573 1.1 ahoka if (!sc->txready) {
574 1.1 ahoka dme_prepare(sc, ifp);
575 1.1 ahoka }
576 1.1 ahoka
577 1.1 ahoka if (sc->txready)
578 1.1 ahoka dme_transmit(sc);
579 1.1 ahoka
580 1.1 ahoka /* Prepare the next frame */
581 1.1 ahoka dme_prepare(sc, ifp);
582 1.1 ahoka
583 1.1 ahoka }
584 1.1 ahoka #ifdef notyet
585 1.1 ahoka if (status & DM9000_ISR_LNKCHNG) {
586 1.1 ahoka }
587 1.1 ahoka #endif
588 1.1 ahoka
589 1.1 ahoka /* Enable interrupts again */
590 1.1 ahoka dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM |
591 1.1 ahoka DM9000_IMR_PTM);
592 1.1 ahoka
593 1.4 nisimura DPRINTF(("dme_intr: End\n"));
594 1.4 nisimura
595 1.1 ahoka return 1;
596 1.1 ahoka }
597 1.1 ahoka
598 1.1 ahoka void
599 1.1 ahoka dme_start_output(struct ifnet *ifp)
600 1.1 ahoka {
601 1.1 ahoka struct dme_softc *sc;
602 1.1 ahoka
603 1.1 ahoka sc = ifp->if_softc;
604 1.1 ahoka
605 1.4 nisimura DPRINTF(("dme_start_output: Begin\n"));
606 1.4 nisimura
607 1.1 ahoka if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
608 1.1 ahoka printf("No output\n");
609 1.1 ahoka return;
610 1.1 ahoka }
611 1.1 ahoka
612 1.1 ahoka if (sc->txbusy && sc->txready) {
613 1.1 ahoka panic("DM9000: Internal error, trying to send without"
614 1.1 ahoka " any empty queue\n");
615 1.1 ahoka }
616 1.1 ahoka
617 1.1 ahoka dme_prepare(sc, ifp);
618 1.1 ahoka
619 1.1 ahoka if (sc->txbusy == 0) {
620 1.1 ahoka /* We are ready to transmit right away */
621 1.1 ahoka dme_transmit(sc);
622 1.1 ahoka dme_prepare(sc, ifp); /* Prepare next one */
623 1.1 ahoka } else {
624 1.1 ahoka /* We need to wait until the current packet has
625 1.1 ahoka * been transmitted.
626 1.1 ahoka */
627 1.1 ahoka ifp->if_flags |= IFF_OACTIVE;
628 1.1 ahoka }
629 1.4 nisimura
630 1.4 nisimura DPRINTF(("dme_start_output: End\n"));
631 1.1 ahoka }
632 1.1 ahoka
633 1.1 ahoka void
634 1.1 ahoka dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
635 1.1 ahoka {
636 1.1 ahoka struct mbuf *bufChain;
637 1.1 ahoka uint16_t length;
638 1.1 ahoka
639 1.1 ahoka TX_DPRINTF(("dme_prepare: Entering\n"));
640 1.1 ahoka
641 1.1 ahoka if (sc->txready)
642 1.1 ahoka panic("dme_prepare: Someone called us with txready set\n");
643 1.1 ahoka
644 1.1 ahoka IFQ_DEQUEUE(&ifp->if_snd, bufChain);
645 1.1 ahoka if (bufChain == NULL) {
646 1.1 ahoka TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
647 1.1 ahoka ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
648 1.1 ahoka return; /* Nothing to transmit */
649 1.1 ahoka }
650 1.1 ahoka
651 1.1 ahoka /* Element has now been removed from the queue, so we better send it */
652 1.1 ahoka
653 1.15 msaitoh bpf_mtap(ifp, bufChain, BPF_D_OUT);
654 1.1 ahoka
655 1.1 ahoka /* Setup the DM9000 to accept the writes, and then write each buf in
656 1.1 ahoka the chain. */
657 1.1 ahoka
658 1.1 ahoka TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
659 1.1 ahoka bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
660 1.4 nisimura length = sc->sc_pkt_write(sc, bufChain);
661 1.1 ahoka TX_DATA_DPRINTF(("\n"));
662 1.1 ahoka
663 1.4 nisimura if (length % sc->sc_data_width != 0) {
664 1.4 nisimura panic("dme_prepare: length is not compatible with IO_MODE");
665 1.1 ahoka }
666 1.1 ahoka
667 1.1 ahoka sc->txready_length = length;
668 1.1 ahoka sc->txready = 1;
669 1.1 ahoka
670 1.1 ahoka TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
671 1.1 ahoka "txready: %d, txready_length: %d\n",
672 1.1 ahoka sc->txbusy, sc->txready, sc->txready_length));
673 1.1 ahoka
674 1.1 ahoka m_freem(bufChain);
675 1.1 ahoka
676 1.1 ahoka TX_DPRINTF(("dme_prepare: Leaving\n"));
677 1.1 ahoka }
678 1.1 ahoka
679 1.1 ahoka int
680 1.1 ahoka dme_init(struct ifnet *ifp)
681 1.1 ahoka {
682 1.1 ahoka int s;
683 1.1 ahoka struct dme_softc *sc = ifp->if_softc;
684 1.1 ahoka
685 1.1 ahoka dme_stop(ifp, 0);
686 1.1 ahoka
687 1.1 ahoka s = splnet();
688 1.1 ahoka
689 1.1 ahoka dme_reset(sc);
690 1.1 ahoka
691 1.1 ahoka sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
692 1.1 ahoka sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
693 1.1 ahoka sc->sc_ethercom.ec_if.if_timer = 0;
694 1.1 ahoka
695 1.1 ahoka splx(s);
696 1.1 ahoka
697 1.1 ahoka return 0;
698 1.1 ahoka }
699 1.1 ahoka
700 1.1 ahoka int
701 1.1 ahoka dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
702 1.1 ahoka {
703 1.1 ahoka struct dme_softc *sc = ifp->if_softc;
704 1.1 ahoka struct ifreq *ifr = data;
705 1.1 ahoka int s, error = 0;
706 1.1 ahoka
707 1.1 ahoka s = splnet();
708 1.1 ahoka
709 1.1 ahoka switch(cmd) {
710 1.1 ahoka case SIOCGIFMEDIA:
711 1.1 ahoka case SIOCSIFMEDIA:
712 1.1 ahoka error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
713 1.1 ahoka break;
714 1.1 ahoka default:
715 1.1 ahoka error = ether_ioctl(ifp, cmd, data);
716 1.4 nisimura if (error == ENETRESET) {
717 1.4 nisimura if (ifp->if_flags && IFF_RUNNING) {
718 1.4 nisimura /* Address list has changed, reconfigure
719 1.4 nisimura filter */
720 1.4 nisimura dme_set_addr_filter(sc);
721 1.4 nisimura }
722 1.4 nisimura error = 0;
723 1.4 nisimura }
724 1.1 ahoka break;
725 1.1 ahoka }
726 1.1 ahoka
727 1.1 ahoka splx(s);
728 1.1 ahoka return error;
729 1.1 ahoka }
730 1.1 ahoka
731 1.1 ahoka void
732 1.1 ahoka dme_stop(struct ifnet *ifp, int disable)
733 1.1 ahoka {
734 1.1 ahoka struct dme_softc *sc = ifp->if_softc;
735 1.1 ahoka
736 1.1 ahoka /* Not quite sure what to do when called with disable == 0 */
737 1.1 ahoka if (disable) {
738 1.1 ahoka /* Disable RX */
739 1.1 ahoka dme_write(sc, DM9000_RCR, 0x0);
740 1.1 ahoka }
741 1.1 ahoka
742 1.1 ahoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
743 1.1 ahoka ifp->if_timer = 0;
744 1.1 ahoka }
745 1.1 ahoka
746 1.1 ahoka int
747 1.1 ahoka dme_mediachange(struct ifnet *ifp)
748 1.1 ahoka {
749 1.4 nisimura struct dme_softc *sc = ifp->if_softc;
750 1.4 nisimura
751 1.4 nisimura return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
752 1.1 ahoka }
753 1.1 ahoka
754 1.1 ahoka void
755 1.1 ahoka dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
756 1.1 ahoka {
757 1.1 ahoka struct dme_softc *sc = ifp->if_softc;
758 1.1 ahoka
759 1.4 nisimura ifmr->ifm_active = sc->sc_media_active;
760 1.4 nisimura ifmr->ifm_status = sc->sc_media_status;
761 1.1 ahoka }
762 1.1 ahoka
763 1.1 ahoka void
764 1.1 ahoka dme_transmit(struct dme_softc *sc)
765 1.1 ahoka {
766 1.1 ahoka
767 1.1 ahoka TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
768 1.1 ahoka sc->txready, sc->txbusy));
769 1.1 ahoka
770 1.1 ahoka dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
771 1.1 ahoka dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
772 1.1 ahoka
773 1.1 ahoka /* Request to send the packet */
774 1.5 skrll dme_read(sc, DM9000_ISR);
775 1.1 ahoka
776 1.1 ahoka dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
777 1.1 ahoka
778 1.1 ahoka sc->txready = 0;
779 1.1 ahoka sc->txbusy = 1;
780 1.1 ahoka sc->txready_length = 0;
781 1.1 ahoka }
782 1.1 ahoka
783 1.1 ahoka void
784 1.1 ahoka dme_receive(struct dme_softc *sc, struct ifnet *ifp)
785 1.1 ahoka {
786 1.1 ahoka uint8_t ready = 0x01;
787 1.1 ahoka
788 1.1 ahoka DPRINTF(("inside dme_receive\n"));
789 1.1 ahoka
790 1.1 ahoka while (ready == 0x01) {
791 1.1 ahoka /* Packet received, retrieve it */
792 1.1 ahoka
793 1.7 macallan /* Read without address increment to get the ready byte without
794 1.7 macallan moving past it. */
795 1.1 ahoka bus_space_write_1(sc->sc_iot, sc->sc_ioh,
796 1.1 ahoka sc->dme_io, DM9000_MRCMDX);
797 1.1 ahoka /* Dummy ready */
798 1.1 ahoka ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
799 1.1 ahoka ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
800 1.1 ahoka ready &= 0x03; /* we only want bits 1:0 */
801 1.1 ahoka if (ready == 0x01) {
802 1.4 nisimura uint8_t rx_status;
803 1.4 nisimura struct mbuf *m;
804 1.1 ahoka
805 1.1 ahoka /* Read with address increment. */
806 1.1 ahoka bus_space_write_1(sc->sc_iot, sc->sc_ioh,
807 1.4 nisimura sc->dme_io, DM9000_MRCMD);
808 1.1 ahoka
809 1.4 nisimura rx_status = sc->sc_pkt_read(sc, ifp, &m);
810 1.8 macallan if (m == NULL) {
811 1.8 macallan /* failed to allocate a receive buffer */
812 1.8 macallan ifp->if_ierrors++;
813 1.8 macallan RX_DPRINTF(("dme_receive: "
814 1.8 macallan "Error allocating buffer\n"));
815 1.8 macallan } else if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
816 1.1 ahoka /* Error while receiving the packet,
817 1.1 ahoka * discard it and keep track of counters
818 1.1 ahoka */
819 1.1 ahoka ifp->if_ierrors++;
820 1.1 ahoka RX_DPRINTF(("dme_receive: "
821 1.1 ahoka "Error reciving packet\n"));
822 1.1 ahoka } else if (rx_status & DM9000_RSR_LCS) {
823 1.1 ahoka ifp->if_collisions++;
824 1.1 ahoka } else {
825 1.9 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
826 1.1 ahoka }
827 1.1 ahoka
828 1.1 ahoka } else if (ready != 0x00) {
829 1.1 ahoka /* Should this be logged somehow? */
830 1.4 nisimura printf("%s: Resetting chip\n",
831 1.4 nisimura device_xname(sc->sc_dev));
832 1.1 ahoka dme_reset(sc);
833 1.1 ahoka }
834 1.1 ahoka }
835 1.1 ahoka }
836 1.1 ahoka
837 1.1 ahoka void
838 1.1 ahoka dme_reset(struct dme_softc *sc)
839 1.1 ahoka {
840 1.1 ahoka uint8_t var;
841 1.1 ahoka
842 1.4 nisimura /* We only re-initialized the PHY in this function the first time it is
843 1.4 nisimura called. */
844 1.4 nisimura if( !sc->sc_phy_initialized) {
845 1.4 nisimura /* PHY Reset */
846 1.4 nisimura dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
847 1.4 nisimura
848 1.4 nisimura /* PHY Power Down */
849 1.4 nisimura var = dme_read(sc, DM9000_GPR);
850 1.4 nisimura dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
851 1.4 nisimura }
852 1.1 ahoka
853 1.4 nisimura /* Reset the DM9000 twice, as described in section 2 of the Programming
854 1.4 nisimura Guide.
855 1.4 nisimura The PHY is initialized and enabled between those two resets.
856 1.1 ahoka */
857 1.4 nisimura
858 1.4 nisimura /* Software Reset*/
859 1.1 ahoka dme_write(sc, DM9000_NCR,
860 1.1 ahoka DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
861 1.1 ahoka delay(20);
862 1.1 ahoka dme_write(sc, DM9000_NCR, 0x0);
863 1.4 nisimura
864 1.4 nisimura if( !sc->sc_phy_initialized) {
865 1.4 nisimura /* PHY Initialization */
866 1.4 nisimura dme_phy_init(sc);
867 1.4 nisimura
868 1.4 nisimura /* PHY Enable */
869 1.4 nisimura var = dme_read(sc, DM9000_GPR);
870 1.4 nisimura dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
871 1.4 nisimura var = dme_read(sc, DM9000_GPCR);
872 1.4 nisimura dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
873 1.4 nisimura
874 1.4 nisimura dme_write(sc, DM9000_NCR,
875 1.4 nisimura DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
876 1.4 nisimura delay(20);
877 1.4 nisimura dme_write(sc, DM9000_NCR, 0x0);
878 1.4 nisimura }
879 1.1 ahoka
880 1.1 ahoka /* Select internal PHY, no wakeup event, no collosion mode,
881 1.4 nisimura * normal loopback mode.
882 1.1 ahoka */
883 1.1 ahoka dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
884 1.1 ahoka
885 1.1 ahoka /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
886 1.1 ahoka dme_read(sc, DM9000_NSR);
887 1.1 ahoka
888 1.1 ahoka /* Enable wraparound of read/write pointer, packet received latch,
889 1.1 ahoka * and packet transmitted latch.
890 1.1 ahoka */
891 1.1 ahoka dme_write(sc, DM9000_IMR,
892 1.1 ahoka DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
893 1.1 ahoka
894 1.4 nisimura /* Setup multicast address filter, and enable RX. */
895 1.4 nisimura dme_set_addr_filter(sc);
896 1.4 nisimura
897 1.4 nisimura /* Obtain media information from PHY */
898 1.4 nisimura dme_phy_update_media(sc);
899 1.1 ahoka
900 1.1 ahoka sc->txbusy = 0;
901 1.1 ahoka sc->txready = 0;
902 1.4 nisimura sc->sc_phy_initialized = 1;
903 1.4 nisimura }
904 1.4 nisimura
905 1.4 nisimura void
906 1.4 nisimura dme_set_addr_filter(struct dme_softc *sc)
907 1.4 nisimura {
908 1.4 nisimura struct ether_multi *enm;
909 1.4 nisimura struct ether_multistep step;
910 1.4 nisimura struct ethercom *ec;
911 1.4 nisimura struct ifnet *ifp;
912 1.4 nisimura uint16_t af[4];
913 1.4 nisimura int i;
914 1.4 nisimura
915 1.4 nisimura ec = &sc->sc_ethercom;
916 1.4 nisimura ifp = &ec->ec_if;
917 1.4 nisimura
918 1.4 nisimura if (ifp->if_flags & IFF_PROMISC) {
919 1.4 nisimura dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN |
920 1.4 nisimura DM9000_RCR_WTDIS |
921 1.4 nisimura DM9000_RCR_PRMSC);
922 1.4 nisimura ifp->if_flags |= IFF_ALLMULTI;
923 1.4 nisimura return;
924 1.4 nisimura }
925 1.4 nisimura
926 1.4 nisimura af[0] = af[1] = af[2] = af[3] = 0x0000;
927 1.4 nisimura ifp->if_flags &= ~IFF_ALLMULTI;
928 1.4 nisimura
929 1.4 nisimura ETHER_FIRST_MULTI(step, ec, enm);
930 1.4 nisimura while (enm != NULL) {
931 1.4 nisimura uint16_t hash;
932 1.4 nisimura if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
933 1.4 nisimura sizeof(enm->enm_addrlo))) {
934 1.4 nisimura /*
935 1.4 nisimura * We must listen to a range of multicast addresses.
936 1.4 nisimura * For now, just accept all multicasts, rather than
937 1.4 nisimura * trying to set only those filter bits needed to match
938 1.4 nisimura * the range. (At this time, the only use of address
939 1.4 nisimura * ranges is for IP multicast routing, for which the
940 1.4 nisimura * range is big enough to require all bits set.)
941 1.4 nisimura */
942 1.4 nisimura ifp->if_flags |= IFF_ALLMULTI;
943 1.4 nisimura af[0] = af[1] = af[2] = af[3] = 0xffff;
944 1.4 nisimura break;
945 1.4 nisimura } else {
946 1.4 nisimura hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
947 1.4 nisimura af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
948 1.4 nisimura ETHER_NEXT_MULTI(step, enm);
949 1.4 nisimura }
950 1.4 nisimura }
951 1.4 nisimura
952 1.4 nisimura /* Write the multicast address filter */
953 1.4 nisimura for(i=0; i<4; i++) {
954 1.4 nisimura dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
955 1.4 nisimura dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
956 1.4 nisimura }
957 1.4 nisimura
958 1.4 nisimura /* Setup RX controls */
959 1.4 nisimura dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
960 1.4 nisimura }
961 1.4 nisimura
962 1.4 nisimura int
963 1.4 nisimura dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
964 1.4 nisimura {
965 1.4 nisimura int left_over_count = 0; /* Number of bytes from previous mbuf, which
966 1.4 nisimura need to be written with the next.*/
967 1.4 nisimura uint16_t left_over_buf = 0;
968 1.4 nisimura int length = 0;
969 1.4 nisimura struct mbuf *buf;
970 1.4 nisimura uint8_t *write_ptr;
971 1.4 nisimura
972 1.4 nisimura /* We expect that the DM9000 has been setup to accept writes before
973 1.4 nisimura this function is called. */
974 1.4 nisimura
975 1.4 nisimura for (buf = bufChain; buf != NULL; buf = buf->m_next) {
976 1.4 nisimura int to_write = buf->m_len;
977 1.4 nisimura
978 1.4 nisimura length += to_write;
979 1.4 nisimura
980 1.4 nisimura write_ptr = buf->m_data;
981 1.4 nisimura while (to_write > 0 ||
982 1.4 nisimura (buf->m_next == NULL && left_over_count > 0)
983 1.4 nisimura ) {
984 1.4 nisimura if (left_over_count > 0) {
985 1.4 nisimura uint8_t b = 0;
986 1.4 nisimura DPRINTF(("dme_pkt_write_16: "
987 1.4 nisimura "Writing left over byte\n"));
988 1.4 nisimura
989 1.4 nisimura if (to_write > 0) {
990 1.4 nisimura b = *write_ptr;
991 1.4 nisimura to_write--;
992 1.4 nisimura write_ptr++;
993 1.4 nisimura
994 1.4 nisimura DPRINTF(("Took single byte\n"));
995 1.4 nisimura } else {
996 1.4 nisimura DPRINTF(("Leftover in last run\n"));
997 1.4 nisimura length++;
998 1.4 nisimura }
999 1.4 nisimura
1000 1.4 nisimura /* Does shift direction depend on endianess? */
1001 1.4 nisimura left_over_buf = left_over_buf | (b << 8);
1002 1.4 nisimura
1003 1.4 nisimura bus_space_write_2(sc->sc_iot, sc->sc_ioh,
1004 1.4 nisimura sc->dme_data, left_over_buf);
1005 1.4 nisimura TX_DATA_DPRINTF(("%02X ", left_over_buf));
1006 1.4 nisimura left_over_count = 0;
1007 1.4 nisimura } else if ((long)write_ptr % 2 != 0) {
1008 1.4 nisimura /* Misaligned data */
1009 1.4 nisimura DPRINTF(("dme_pkt_write_16: "
1010 1.4 nisimura "Detected misaligned data\n"));
1011 1.4 nisimura left_over_buf = *write_ptr;
1012 1.4 nisimura left_over_count = 1;
1013 1.4 nisimura write_ptr++;
1014 1.4 nisimura to_write--;
1015 1.4 nisimura } else {
1016 1.4 nisimura int i;
1017 1.7 macallan uint16_t *dptr = (uint16_t *)write_ptr;
1018 1.4 nisimura
1019 1.4 nisimura /* A block of aligned data. */
1020 1.7 macallan for(i = 0; i < to_write / 2; i++) {
1021 1.4 nisimura /* buf will be half-word aligned
1022 1.4 nisimura * all the time
1023 1.4 nisimura */
1024 1.4 nisimura bus_space_write_2(sc->sc_iot,
1025 1.7 macallan sc->sc_ioh, sc->dme_data, *dptr);
1026 1.4 nisimura TX_DATA_DPRINTF(("%02X %02X ",
1027 1.7 macallan *dptr & 0xFF, (*dptr >> 8) & 0xFF));
1028 1.4 nisimura dptr++;
1029 1.4 nisimura }
1030 1.4 nisimura
1031 1.7 macallan write_ptr += i * 2;
1032 1.4 nisimura if (to_write % 2 != 0) {
1033 1.4 nisimura DPRINTF(("dme_pkt_write_16: "
1034 1.4 nisimura "to_write %% 2: %d\n",
1035 1.4 nisimura to_write % 2));
1036 1.4 nisimura left_over_count = 1;
1037 1.4 nisimura /* XXX: Does this depend on
1038 1.4 nisimura * the endianess?
1039 1.4 nisimura */
1040 1.4 nisimura left_over_buf = *write_ptr;
1041 1.4 nisimura
1042 1.4 nisimura write_ptr++;
1043 1.4 nisimura to_write--;
1044 1.4 nisimura DPRINTF(("dme_pkt_write_16: "
1045 1.4 nisimura "to_write (after): %d\n",
1046 1.4 nisimura to_write));
1047 1.7 macallan DPRINTF(("dme_pkt_write_16: i * 2: %d\n",
1048 1.4 nisimura i*2));
1049 1.4 nisimura }
1050 1.7 macallan to_write -= i * 2;
1051 1.4 nisimura }
1052 1.4 nisimura } /* while(...) */
1053 1.4 nisimura } /* for(...) */
1054 1.4 nisimura
1055 1.4 nisimura return length;
1056 1.4 nisimura }
1057 1.4 nisimura
1058 1.4 nisimura int
1059 1.4 nisimura dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1060 1.4 nisimura {
1061 1.4 nisimura uint8_t rx_status;
1062 1.4 nisimura struct mbuf *m;
1063 1.4 nisimura uint16_t data;
1064 1.4 nisimura uint16_t frame_length;
1065 1.4 nisimura uint16_t i;
1066 1.4 nisimura uint16_t *buf;
1067 1.4 nisimura
1068 1.7 macallan data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1069 1.4 nisimura
1070 1.4 nisimura rx_status = data & 0xFF;
1071 1.4 nisimura frame_length = bus_space_read_2(sc->sc_iot,
1072 1.4 nisimura sc->sc_ioh, sc->dme_data);
1073 1.4 nisimura if (frame_length > ETHER_MAX_LEN) {
1074 1.4 nisimura printf("Got frame of length: %d\n", frame_length);
1075 1.4 nisimura printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1076 1.4 nisimura panic("Something is rotten");
1077 1.4 nisimura }
1078 1.4 nisimura RX_DPRINTF(("dme_receive: "
1079 1.4 nisimura "rx_statux: 0x%x, frame_length: %d\n",
1080 1.4 nisimura rx_status, frame_length));
1081 1.4 nisimura
1082 1.4 nisimura
1083 1.4 nisimura m = dme_alloc_receive_buffer(ifp, frame_length);
1084 1.8 macallan if (m == NULL) {
1085 1.8 macallan /*
1086 1.8 macallan * didn't get a receive buffer, so we read the rest of the
1087 1.8 macallan * packet, throw it away and return an error
1088 1.8 macallan */
1089 1.8 macallan for (i = 0; i < frame_length; i += 2 ) {
1090 1.8 macallan data = bus_space_read_2(sc->sc_iot,
1091 1.8 macallan sc->sc_ioh, sc->dme_data);
1092 1.8 macallan }
1093 1.8 macallan *outBuf = NULL;
1094 1.8 macallan return 0;
1095 1.8 macallan }
1096 1.4 nisimura
1097 1.4 nisimura buf = mtod(m, uint16_t*);
1098 1.4 nisimura
1099 1.4 nisimura RX_DPRINTF(("dme_receive: "));
1100 1.4 nisimura
1101 1.7 macallan for (i = 0; i < frame_length; i += 2 ) {
1102 1.4 nisimura data = bus_space_read_2(sc->sc_iot,
1103 1.4 nisimura sc->sc_ioh, sc->dme_data);
1104 1.4 nisimura if ( (frame_length % 2 != 0) &&
1105 1.7 macallan (i == frame_length - 1) ) {
1106 1.4 nisimura data = data & 0xff;
1107 1.4 nisimura RX_DPRINTF((" L "));
1108 1.4 nisimura }
1109 1.4 nisimura *buf = data;
1110 1.4 nisimura buf++;
1111 1.4 nisimura RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1112 1.7 macallan (data >> 8) & 0xff));
1113 1.4 nisimura }
1114 1.4 nisimura
1115 1.4 nisimura RX_DATA_DPRINTF(("\n"));
1116 1.4 nisimura RX_DPRINTF(("Read %d bytes\n", i));
1117 1.4 nisimura
1118 1.4 nisimura *outBuf = m;
1119 1.4 nisimura return rx_status;
1120 1.4 nisimura }
1121 1.4 nisimura
1122 1.6 macallan int
1123 1.6 macallan dme_pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
1124 1.6 macallan {
1125 1.6 macallan int length = 0, i;
1126 1.6 macallan struct mbuf *buf;
1127 1.6 macallan uint8_t *write_ptr;
1128 1.6 macallan
1129 1.6 macallan /* We expect that the DM9000 has been setup to accept writes before
1130 1.6 macallan this function is called. */
1131 1.6 macallan
1132 1.6 macallan for (buf = bufChain; buf != NULL; buf = buf->m_next) {
1133 1.6 macallan int to_write = buf->m_len;
1134 1.6 macallan
1135 1.6 macallan length += to_write;
1136 1.6 macallan
1137 1.6 macallan write_ptr = buf->m_data;
1138 1.7 macallan for (i = 0; i < to_write; i++) {
1139 1.6 macallan bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1140 1.6 macallan sc->dme_data, *write_ptr);
1141 1.6 macallan write_ptr++;
1142 1.6 macallan }
1143 1.6 macallan } /* for(...) */
1144 1.6 macallan
1145 1.6 macallan return length;
1146 1.6 macallan }
1147 1.6 macallan
1148 1.6 macallan int
1149 1.6 macallan dme_pkt_read_1(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1150 1.6 macallan {
1151 1.6 macallan uint8_t rx_status;
1152 1.6 macallan struct mbuf *m;
1153 1.6 macallan uint8_t *buf;
1154 1.6 macallan uint16_t frame_length;
1155 1.6 macallan uint16_t i, reg;
1156 1.6 macallan uint8_t data;
1157 1.6 macallan
1158 1.6 macallan reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1159 1.6 macallan reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1160 1.6 macallan rx_status = reg & 0xFF;
1161 1.6 macallan
1162 1.6 macallan reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1163 1.6 macallan reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1164 1.6 macallan frame_length = reg;
1165 1.7 macallan
1166 1.6 macallan if (frame_length > ETHER_MAX_LEN) {
1167 1.6 macallan printf("Got frame of length: %d\n", frame_length);
1168 1.6 macallan printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1169 1.6 macallan panic("Something is rotten");
1170 1.6 macallan }
1171 1.6 macallan RX_DPRINTF(("dme_receive: "
1172 1.6 macallan "rx_statux: 0x%x, frame_length: %d\n",
1173 1.6 macallan rx_status, frame_length));
1174 1.6 macallan
1175 1.6 macallan
1176 1.6 macallan m = dme_alloc_receive_buffer(ifp, frame_length);
1177 1.8 macallan if (m == NULL) {
1178 1.8 macallan /*
1179 1.8 macallan * didn't get a receive buffer, so we read the rest of the
1180 1.8 macallan * packet, throw it away and return an error
1181 1.8 macallan */
1182 1.8 macallan for (i = 0; i < frame_length; i++ ) {
1183 1.8 macallan data = bus_space_read_2(sc->sc_iot,
1184 1.8 macallan sc->sc_ioh, sc->dme_data);
1185 1.8 macallan }
1186 1.8 macallan *outBuf = NULL;
1187 1.8 macallan return 0;
1188 1.8 macallan }
1189 1.6 macallan
1190 1.7 macallan buf = mtod(m, uint8_t *);
1191 1.6 macallan
1192 1.6 macallan RX_DPRINTF(("dme_receive: "));
1193 1.6 macallan
1194 1.7 macallan for (i = 0; i< frame_length; i += 1 ) {
1195 1.7 macallan data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1196 1.6 macallan *buf = data;
1197 1.6 macallan buf++;
1198 1.6 macallan RX_DATA_DPRINTF(("%02X ", data));
1199 1.6 macallan }
1200 1.6 macallan
1201 1.6 macallan RX_DATA_DPRINTF(("\n"));
1202 1.6 macallan RX_DPRINTF(("Read %d bytes\n", i));
1203 1.6 macallan
1204 1.6 macallan *outBuf = m;
1205 1.6 macallan return rx_status;
1206 1.6 macallan }
1207 1.6 macallan
1208 1.4 nisimura struct mbuf*
1209 1.4 nisimura dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
1210 1.4 nisimura {
1211 1.4 nisimura struct dme_softc *sc = ifp->if_softc;
1212 1.4 nisimura struct mbuf *m;
1213 1.4 nisimura int pad;
1214 1.4 nisimura
1215 1.4 nisimura MGETHDR(m, M_DONTWAIT, MT_DATA);
1216 1.8 macallan if (m == NULL) return NULL;
1217 1.8 macallan
1218 1.10 ozaki m_set_rcvif(m, ifp);
1219 1.4 nisimura /* Ensure that we always allocate an even number of
1220 1.4 nisimura * bytes in order to avoid writing beyond the buffer
1221 1.4 nisimura */
1222 1.4 nisimura m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
1223 1.4 nisimura pad = ALIGN(sizeof(struct ether_header)) -
1224 1.4 nisimura sizeof(struct ether_header);
1225 1.4 nisimura /* All our frames have the CRC attached */
1226 1.4 nisimura m->m_flags |= M_HASFCS;
1227 1.12 riastrad if (m->m_pkthdr.len + pad > MHLEN) {
1228 1.4 nisimura MCLGET(m, M_DONTWAIT);
1229 1.12 riastrad if ((m->m_flags & M_EXT) == 0) {
1230 1.12 riastrad m_freem(m);
1231 1.12 riastrad return NULL;
1232 1.12 riastrad }
1233 1.12 riastrad }
1234 1.4 nisimura
1235 1.4 nisimura m->m_data += pad;
1236 1.4 nisimura m->m_len = frame_length + (frame_length % sc->sc_data_width);
1237 1.4 nisimura
1238 1.4 nisimura return m;
1239 1.1 ahoka }
1240