Home | History | Annotate | Line # | Download | only in ic
dm9000.c revision 1.3.6.1
      1  1.3.6.1    mrg /*	$NetBSD: dm9000.c,v 1.3.6.1 2012/02/18 07:34:16 mrg Exp $	*/
      2      1.1  ahoka 
      3      1.1  ahoka /*
      4      1.1  ahoka  * Copyright (c) 2009 Paul Fleischer
      5      1.1  ahoka  * All rights reserved.
      6      1.1  ahoka  *
      7      1.1  ahoka  * 1. Redistributions of source code must retain the above copyright
      8      1.1  ahoka  *    notice, this list of conditions and the following disclaimer.
      9      1.1  ahoka  * 2. Redistributions in binary form must reproduce the above copyright
     10      1.1  ahoka  *    notice, this list of conditions and the following disclaimer in the
     11      1.1  ahoka  *    documentation and/or other materials provided with the distribution.
     12      1.1  ahoka  * 3. The name of the company nor the name of the author may be used to
     13      1.1  ahoka  *    endorse or promote products derived from this software without specific
     14      1.1  ahoka  *    prior written permission.
     15      1.1  ahoka  *
     16      1.1  ahoka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     17      1.1  ahoka  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     18      1.1  ahoka  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19      1.1  ahoka  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     20      1.1  ahoka  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     21      1.1  ahoka  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22      1.1  ahoka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23      1.1  ahoka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24      1.1  ahoka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25      1.1  ahoka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26      1.1  ahoka  * SUCH DAMAGE.
     27      1.1  ahoka  */
     28      1.1  ahoka 
     29      1.1  ahoka /* based on sys/dev/ic/cs89x0.c */
     30      1.1  ahoka /*
     31      1.1  ahoka  * Copyright (c) 2004 Christopher Gilbert
     32      1.1  ahoka  * All rights reserved.
     33      1.1  ahoka  *
     34      1.1  ahoka  * 1. Redistributions of source code must retain the above copyright
     35      1.1  ahoka  *    notice, this list of conditions and the following disclaimer.
     36      1.1  ahoka  * 2. Redistributions in binary form must reproduce the above copyright
     37      1.1  ahoka  *    notice, this list of conditions and the following disclaimer in the
     38      1.1  ahoka  *    documentation and/or other materials provided with the distribution.
     39      1.1  ahoka  * 3. The name of the company nor the name of the author may be used to
     40      1.1  ahoka  *    endorse or promote products derived from this software without specific
     41      1.1  ahoka  *    prior written permission.
     42      1.1  ahoka  *
     43      1.1  ahoka  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     44      1.1  ahoka  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     45      1.1  ahoka  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     46      1.1  ahoka  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     47      1.1  ahoka  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     48      1.1  ahoka  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     49      1.1  ahoka  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     50      1.1  ahoka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     51      1.1  ahoka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     52      1.1  ahoka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     53      1.1  ahoka  * SUCH DAMAGE.
     54      1.1  ahoka  */
     55      1.1  ahoka 
     56      1.1  ahoka /*
     57      1.1  ahoka  * Copyright 1997
     58      1.1  ahoka  * Digital Equipment Corporation. All rights reserved.
     59      1.1  ahoka  *
     60      1.1  ahoka  * This software is furnished under license and may be used and
     61      1.1  ahoka  * copied only in accordance with the following terms and conditions.
     62      1.1  ahoka  * Subject to these conditions, you may download, copy, install,
     63      1.1  ahoka  * use, modify and distribute this software in source and/or binary
     64      1.1  ahoka  * form. No title or ownership is transferred hereby.
     65      1.1  ahoka  *
     66      1.1  ahoka  * 1) Any source code used, modified or distributed must reproduce
     67      1.1  ahoka  *    and retain this copyright notice and list of conditions as
     68      1.1  ahoka  *    they appear in the source file.
     69      1.1  ahoka  *
     70      1.1  ahoka  * 2) No right is granted to use any trade name, trademark, or logo of
     71      1.1  ahoka  *    Digital Equipment Corporation. Neither the "Digital Equipment
     72      1.1  ahoka  *    Corporation" name nor any trademark or logo of Digital Equipment
     73      1.1  ahoka  *    Corporation may be used to endorse or promote products derived
     74      1.1  ahoka  *    from this software without the prior written permission of
     75      1.1  ahoka  *    Digital Equipment Corporation.
     76      1.1  ahoka  *
     77      1.1  ahoka  * 3) This software is provided "AS-IS" and any express or implied
     78      1.1  ahoka  *    warranties, including but not limited to, any implied warranties
     79      1.1  ahoka  *    of merchantability, fitness for a particular purpose, or
     80      1.1  ahoka  *    non-infringement are disclaimed. In no event shall DIGITAL be
     81      1.1  ahoka  *    liable for any damages whatsoever, and in particular, DIGITAL
     82      1.1  ahoka  *    shall not be liable for special, indirect, consequential, or
     83      1.1  ahoka  *    incidental damages or damages for lost profits, loss of
     84      1.1  ahoka  *    revenue or loss of use, whether such damages arise in contract,
     85      1.1  ahoka  *    negligence, tort, under statute, in equity, at law or otherwise,
     86      1.1  ahoka  *    even if advised of the possibility of such damage.
     87      1.1  ahoka  */
     88      1.1  ahoka 
     89      1.1  ahoka #include <sys/cdefs.h>
     90      1.1  ahoka 
     91      1.1  ahoka #include <sys/param.h>
     92  1.3.6.1    mrg #include <sys/kernel.h>
     93      1.1  ahoka #include <sys/systm.h>
     94      1.1  ahoka #include <sys/mbuf.h>
     95      1.1  ahoka #include <sys/syslog.h>
     96      1.1  ahoka #include <sys/socket.h>
     97      1.1  ahoka #include <sys/device.h>
     98      1.1  ahoka #include <sys/malloc.h>
     99      1.1  ahoka #include <sys/ioctl.h>
    100      1.1  ahoka #include <sys/errno.h>
    101      1.1  ahoka 
    102      1.1  ahoka #include <net/if.h>
    103      1.1  ahoka #include <net/if_ether.h>
    104      1.1  ahoka #include <net/if_media.h>
    105      1.1  ahoka #ifdef INET
    106      1.1  ahoka #include <netinet/in.h>
    107      1.1  ahoka #include <netinet/if_inarp.h>
    108      1.1  ahoka #endif
    109      1.1  ahoka 
    110      1.1  ahoka #include <net/bpf.h>
    111      1.1  ahoka #include <net/bpfdesc.h>
    112      1.1  ahoka 
    113      1.1  ahoka #include <sys/bus.h>
    114      1.1  ahoka #include <sys/intr.h>
    115      1.1  ahoka 
    116      1.1  ahoka #include <dev/ic/dm9000var.h>
    117      1.1  ahoka #include <dev/ic/dm9000reg.h>
    118      1.1  ahoka 
    119      1.1  ahoka #if 1
    120      1.1  ahoka #undef DM9000_DEBUG
    121  1.3.6.1    mrg #undef DM9000_TX_DEBUG
    122      1.1  ahoka #undef DM9000_TX_DATA_DEBUG
    123      1.1  ahoka #undef DM9000_RX_DEBUG
    124      1.1  ahoka #undef  DM9000_RX_DATA_DEBUG
    125      1.1  ahoka #else
    126      1.1  ahoka #define DM9000_DEBUG
    127      1.1  ahoka #define  DM9000_TX_DEBUG
    128      1.1  ahoka #define DM9000_TX_DATA_DEBUG
    129      1.1  ahoka #define DM9000_RX_DEBUG
    130      1.1  ahoka #define  DM9000_RX_DATA_DEBUG
    131      1.1  ahoka #endif
    132      1.1  ahoka 
    133      1.1  ahoka #ifdef DM9000_DEBUG
    134      1.1  ahoka #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    135      1.1  ahoka #else
    136      1.1  ahoka #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
    137      1.1  ahoka #endif
    138      1.1  ahoka 
    139      1.1  ahoka #ifdef DM9000_TX_DEBUG
    140      1.1  ahoka #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    141      1.1  ahoka #else
    142      1.1  ahoka #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    143      1.1  ahoka #endif
    144      1.1  ahoka 
    145      1.1  ahoka #ifdef DM9000_RX_DEBUG
    146      1.1  ahoka #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    147      1.1  ahoka #else
    148      1.1  ahoka #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    149      1.1  ahoka #endif
    150      1.1  ahoka 
    151      1.1  ahoka #ifdef DM9000_RX_DATA_DEBUG
    152      1.1  ahoka #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    153      1.1  ahoka #else
    154      1.1  ahoka #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    155      1.1  ahoka #endif
    156      1.1  ahoka 
    157      1.1  ahoka #ifdef DM9000_TX_DATA_DEBUG
    158      1.1  ahoka #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    159      1.1  ahoka #else
    160      1.1  ahoka #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    161      1.1  ahoka #endif
    162      1.1  ahoka 
    163  1.3.6.1    mrg /*** Internal PHY functions ***/
    164      1.1  ahoka uint16_t dme_phy_read(struct dme_softc *sc, int reg);
    165  1.3.6.1    mrg void	dme_phy_write(struct dme_softc *sc, int reg, uint16_t value);
    166  1.3.6.1    mrg void	dme_phy_init(struct dme_softc *sc);
    167  1.3.6.1    mrg void	dme_phy_reset(struct dme_softc *sc);
    168  1.3.6.1    mrg void	dme_phy_update_media(struct dme_softc *sc);
    169  1.3.6.1    mrg void	dme_phy_check_link(void *arg);
    170      1.1  ahoka 
    171      1.1  ahoka /*** Methods registered in struct ifnet ***/
    172      1.1  ahoka void	dme_start_output(struct ifnet *ifp);
    173      1.1  ahoka int	dme_init(struct ifnet *ifp);
    174      1.1  ahoka int	dme_ioctl(struct ifnet *ifp, u_long cmd, void *data);
    175      1.1  ahoka void	dme_stop(struct ifnet *ifp, int disable);
    176      1.1  ahoka 
    177      1.1  ahoka int	dme_mediachange(struct ifnet *ifp);
    178      1.1  ahoka void	dme_mediastatus(struct ifnet *ufp, struct ifmediareq *ifmr);
    179      1.1  ahoka 
    180      1.1  ahoka /*** Internal methods ***/
    181      1.1  ahoka 
    182      1.1  ahoka /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
    183      1.1  ahoka void    dme_prepare(struct dme_softc *sc, struct ifnet *ifp);
    184      1.1  ahoka 
    185      1.1  ahoka /* Transmit prepared data */
    186      1.1  ahoka void    dme_transmit(struct dme_softc *sc);
    187      1.1  ahoka 
    188      1.1  ahoka /* Receive data */
    189      1.1  ahoka void    dme_receive(struct dme_softc *sc, struct ifnet *ifp);
    190      1.1  ahoka 
    191      1.1  ahoka /* Software Initialize/Reset of the DM9000 */
    192      1.1  ahoka void    dme_reset(struct dme_softc *sc);
    193      1.1  ahoka 
    194  1.3.6.1    mrg /* Configure multicast filter */
    195  1.3.6.1    mrg void	dme_set_addr_filter(struct dme_softc *sc);
    196  1.3.6.1    mrg 
    197  1.3.6.1    mrg /* Set media */
    198  1.3.6.1    mrg int	dme_set_media(struct dme_softc *sc, int media);
    199  1.3.6.1    mrg 
    200  1.3.6.1    mrg /* Read/write packet data from/to DM9000 IC in various transfer sizes */
    201  1.3.6.1    mrg int	dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf);
    202  1.3.6.1    mrg int	dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain);
    203  1.3.6.1    mrg /* TODO: Implement 8 and 32 bit read/write functions */
    204  1.3.6.1    mrg 
    205      1.1  ahoka uint16_t
    206      1.1  ahoka dme_phy_read(struct dme_softc *sc, int reg)
    207      1.1  ahoka {
    208      1.1  ahoka 	uint16_t val;
    209      1.1  ahoka 	/* Select Register to read*/
    210      1.1  ahoka 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
    211      1.1  ahoka 	    (reg & DM9000_EPAR_EROA_MASK));
    212      1.1  ahoka 	/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
    213      1.1  ahoka 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
    214      1.1  ahoka 
    215      1.1  ahoka 	/* Wait until access to PHY has completed */
    216      1.1  ahoka 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
    217      1.1  ahoka 
    218      1.1  ahoka 	/* Reset ERPRR-bit */
    219      1.1  ahoka 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
    220      1.1  ahoka 
    221      1.1  ahoka 	val = dme_read(sc, DM9000_EPDRL);
    222      1.1  ahoka 	val += dme_read(sc, DM9000_EPDRH) << 8;
    223      1.1  ahoka 
    224      1.1  ahoka 	return val;
    225      1.1  ahoka }
    226      1.1  ahoka 
    227      1.1  ahoka void
    228      1.1  ahoka dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
    229      1.1  ahoka {
    230      1.1  ahoka 	/* Select Register to write*/
    231      1.1  ahoka 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
    232      1.1  ahoka 	    (reg & DM9000_EPAR_EROA_MASK));
    233      1.1  ahoka 
    234      1.1  ahoka 	/* Write data to the two data registers */
    235      1.1  ahoka 	dme_write(sc, DM9000_EPDRL, value & 0xFF);
    236      1.1  ahoka 	dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
    237      1.1  ahoka 
    238      1.1  ahoka 	/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
    239      1.1  ahoka 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
    240      1.1  ahoka 
    241      1.1  ahoka 	/* Wait until access to PHY has completed */
    242      1.1  ahoka 	while(dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
    243      1.1  ahoka 
    244      1.1  ahoka 	/* Reset ERPRR-bit */
    245      1.1  ahoka 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
    246      1.1  ahoka }
    247      1.1  ahoka 
    248  1.3.6.1    mrg void
    249  1.3.6.1    mrg dme_phy_init(struct dme_softc *sc)
    250  1.3.6.1    mrg {
    251  1.3.6.1    mrg 	u_int ifm_media = sc->sc_media.ifm_media;
    252  1.3.6.1    mrg 	uint32_t bmcr, anar;
    253  1.3.6.1    mrg 
    254  1.3.6.1    mrg 	bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
    255  1.3.6.1    mrg 	anar = dme_phy_read(sc, DM9000_PHY_ANAR);
    256  1.3.6.1    mrg 
    257  1.3.6.1    mrg 	anar = anar & ~DM9000_PHY_ANAR_10_HDX
    258  1.3.6.1    mrg 		& ~DM9000_PHY_ANAR_10_FDX
    259  1.3.6.1    mrg 		& ~DM9000_PHY_ANAR_TX_HDX
    260  1.3.6.1    mrg 		& ~DM9000_PHY_ANAR_TX_FDX;
    261  1.3.6.1    mrg 
    262  1.3.6.1    mrg 	switch (IFM_SUBTYPE(ifm_media)) {
    263  1.3.6.1    mrg 	case IFM_AUTO:
    264  1.3.6.1    mrg 		bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
    265  1.3.6.1    mrg 		anar |= DM9000_PHY_ANAR_10_HDX |
    266  1.3.6.1    mrg 			DM9000_PHY_ANAR_10_FDX |
    267  1.3.6.1    mrg 			DM9000_PHY_ANAR_TX_HDX |
    268  1.3.6.1    mrg 			DM9000_PHY_ANAR_TX_FDX;
    269  1.3.6.1    mrg 		break;
    270  1.3.6.1    mrg 	case IFM_10_T:
    271  1.3.6.1    mrg 		//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
    272  1.3.6.1    mrg 		bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
    273  1.3.6.1    mrg 		if (ifm_media & IFM_FDX)
    274  1.3.6.1    mrg 			anar |= DM9000_PHY_ANAR_10_FDX;
    275  1.3.6.1    mrg 		else
    276  1.3.6.1    mrg 			anar |= DM9000_PHY_ANAR_10_HDX;
    277  1.3.6.1    mrg 		break;
    278  1.3.6.1    mrg 	case IFM_100_TX:
    279  1.3.6.1    mrg 		//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
    280  1.3.6.1    mrg 		bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
    281  1.3.6.1    mrg 		if (ifm_media & IFM_FDX)
    282  1.3.6.1    mrg 			anar |= DM9000_PHY_ANAR_TX_FDX;
    283  1.3.6.1    mrg 		else
    284  1.3.6.1    mrg 			anar |= DM9000_PHY_ANAR_TX_HDX;
    285  1.3.6.1    mrg 
    286  1.3.6.1    mrg 		break;
    287  1.3.6.1    mrg 	}
    288  1.3.6.1    mrg 
    289  1.3.6.1    mrg 	if(ifm_media & IFM_FDX) {
    290  1.3.6.1    mrg 		bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
    291  1.3.6.1    mrg 	} else {
    292  1.3.6.1    mrg 		bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
    293  1.3.6.1    mrg 	}
    294  1.3.6.1    mrg 
    295  1.3.6.1    mrg 	dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
    296  1.3.6.1    mrg 	dme_phy_write(sc, DM9000_PHY_ANAR, anar);
    297  1.3.6.1    mrg }
    298  1.3.6.1    mrg 
    299  1.3.6.1    mrg void
    300  1.3.6.1    mrg dme_phy_reset(struct dme_softc *sc)
    301  1.3.6.1    mrg {
    302  1.3.6.1    mrg 	uint32_t reg;
    303  1.3.6.1    mrg 
    304  1.3.6.1    mrg 	/* PHY Reset */
    305  1.3.6.1    mrg 	dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
    306  1.3.6.1    mrg 
    307  1.3.6.1    mrg 	reg = dme_read(sc, DM9000_GPCR);
    308  1.3.6.1    mrg 	dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
    309  1.3.6.1    mrg 	reg = dme_read(sc, DM9000_GPR);
    310  1.3.6.1    mrg 	dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
    311  1.3.6.1    mrg 
    312  1.3.6.1    mrg 	dme_phy_init(sc);
    313  1.3.6.1    mrg 
    314  1.3.6.1    mrg 	reg = dme_read(sc, DM9000_GPR);
    315  1.3.6.1    mrg 	dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
    316  1.3.6.1    mrg 	reg = dme_read(sc, DM9000_GPCR);
    317  1.3.6.1    mrg 	dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
    318  1.3.6.1    mrg 
    319  1.3.6.1    mrg 	dme_phy_update_media(sc);
    320  1.3.6.1    mrg }
    321  1.3.6.1    mrg 
    322  1.3.6.1    mrg void
    323  1.3.6.1    mrg dme_phy_update_media(struct dme_softc *sc)
    324  1.3.6.1    mrg {
    325  1.3.6.1    mrg 	u_int ifm_media = sc->sc_media.ifm_media;
    326  1.3.6.1    mrg 	uint32_t reg;
    327  1.3.6.1    mrg 
    328  1.3.6.1    mrg 	if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
    329  1.3.6.1    mrg 		/* If auto-negotiation is used, ensures that it is completed
    330  1.3.6.1    mrg 		 before trying to extract any media information. */
    331  1.3.6.1    mrg 		reg = dme_phy_read(sc, DM9000_PHY_BMSR);
    332  1.3.6.1    mrg 		if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
    333  1.3.6.1    mrg 			/* Auto-negotation not possible, therefore there is no
    334  1.3.6.1    mrg 			   reason to try obtain any media information. */
    335  1.3.6.1    mrg 			return;
    336  1.3.6.1    mrg 		}
    337  1.3.6.1    mrg 
    338  1.3.6.1    mrg 		/* Then loop until the negotiation is completed. */
    339  1.3.6.1    mrg 		while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
    340  1.3.6.1    mrg 			/* TODO: Bail out after a finite number of attempts
    341  1.3.6.1    mrg 			 in case something goes wrong. */
    342  1.3.6.1    mrg 			preempt();
    343  1.3.6.1    mrg 			reg = dme_phy_read(sc, DM9000_PHY_BMSR);
    344  1.3.6.1    mrg 		}
    345  1.3.6.1    mrg 	}
    346  1.3.6.1    mrg 
    347  1.3.6.1    mrg 
    348  1.3.6.1    mrg 	sc->sc_media_active = IFM_ETHER;
    349  1.3.6.1    mrg 	reg = dme_phy_read(sc, DM9000_PHY_BMCR);
    350  1.3.6.1    mrg 
    351  1.3.6.1    mrg 	if (reg & DM9000_PHY_BMCR_SPEED_SELECT) {
    352  1.3.6.1    mrg 		sc->sc_media_active |= IFM_100_TX;
    353  1.3.6.1    mrg 	} else {
    354  1.3.6.1    mrg 		sc->sc_media_active |= IFM_10_T;
    355  1.3.6.1    mrg 	}
    356  1.3.6.1    mrg 
    357  1.3.6.1    mrg 	if (reg & DM9000_PHY_BMCR_DUPLEX_MODE) {
    358  1.3.6.1    mrg 		sc->sc_media_active |= IFM_FDX;
    359  1.3.6.1    mrg 	}
    360  1.3.6.1    mrg }
    361  1.3.6.1    mrg 
    362  1.3.6.1    mrg void
    363  1.3.6.1    mrg dme_phy_check_link(void *arg)
    364  1.3.6.1    mrg {
    365  1.3.6.1    mrg 	struct dme_softc *sc = arg;
    366  1.3.6.1    mrg 	uint32_t reg;
    367  1.3.6.1    mrg 	int s;
    368  1.3.6.1    mrg 
    369  1.3.6.1    mrg 	s = splnet();
    370  1.3.6.1    mrg 
    371  1.3.6.1    mrg 	reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
    372  1.3.6.1    mrg 
    373  1.3.6.1    mrg 	if( reg )
    374  1.3.6.1    mrg 		reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
    375  1.3.6.1    mrg 	else {
    376  1.3.6.1    mrg 		reg = IFM_ETHER | IFM_AVALID;
    377  1.3.6.1    mrg 		sc->sc_media_active = IFM_NONE;
    378  1.3.6.1    mrg 	}
    379  1.3.6.1    mrg 
    380  1.3.6.1    mrg 	if ( (sc->sc_media_status != reg) && (reg & IFM_ACTIVE)) {
    381  1.3.6.1    mrg 		dme_phy_reset(sc);
    382  1.3.6.1    mrg 	}
    383  1.3.6.1    mrg 
    384  1.3.6.1    mrg 	sc->sc_media_status = reg;
    385  1.3.6.1    mrg 
    386  1.3.6.1    mrg 	callout_schedule(&sc->sc_link_callout, mstohz(2000));
    387  1.3.6.1    mrg 	splx(s);
    388  1.3.6.1    mrg }
    389  1.3.6.1    mrg 
    390      1.1  ahoka int
    391  1.3.6.1    mrg dme_set_media(struct dme_softc *sc, int media)
    392      1.1  ahoka {
    393  1.3.6.1    mrg 	int s;
    394  1.3.6.1    mrg 
    395  1.3.6.1    mrg 	s = splnet();
    396  1.3.6.1    mrg 	sc->sc_media.ifm_media = media;
    397  1.3.6.1    mrg 	dme_phy_reset(sc);
    398  1.3.6.1    mrg 
    399  1.3.6.1    mrg 	splx(s);
    400  1.3.6.1    mrg 
    401  1.3.6.1    mrg 	return 0;
    402  1.3.6.1    mrg }
    403  1.3.6.1    mrg 
    404  1.3.6.1    mrg int
    405  1.3.6.1    mrg dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
    406  1.3.6.1    mrg {
    407  1.3.6.1    mrg 	struct ifnet	*ifp = &sc->sc_ethercom.ec_if;
    408  1.3.6.1    mrg 	uint8_t		b[2];
    409  1.3.6.1    mrg 	uint16_t	io_mode;
    410      1.1  ahoka 
    411      1.1  ahoka 	dme_read_c(sc, DM9000_VID0, b, 2);
    412      1.1  ahoka #if BYTE_ORDER == BIG_ENDIAN
    413      1.1  ahoka 	sc->sc_vendor_id = (b[0] << 8) | b[1];
    414      1.1  ahoka #else
    415      1.1  ahoka 	sc->sc_vendor_id = b[0] | (b[1] << 8);
    416      1.1  ahoka #endif
    417      1.1  ahoka 	dme_read_c(sc, DM9000_PID0, b, 2);
    418      1.1  ahoka #if BYTE_ORDER == BIG_ENDIAN
    419      1.1  ahoka 	sc->sc_product_id = (b[0] << 8) | b[1];
    420      1.1  ahoka #else
    421      1.1  ahoka 	sc->sc_product_id = b[0] | (b[1] << 8);
    422      1.1  ahoka #endif
    423      1.1  ahoka 	/* TODO: Check the vendor ID as well */
    424      1.1  ahoka 	if (sc->sc_product_id != 0x9000) {
    425      1.1  ahoka 		panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
    426      1.1  ahoka 		    sc->sc_product_id);
    427      1.1  ahoka 	}
    428      1.1  ahoka 
    429      1.1  ahoka 	/* Initialize ifnet structure. */
    430      1.1  ahoka 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    431      1.1  ahoka 	ifp->if_softc = sc;
    432      1.1  ahoka 	ifp->if_start = dme_start_output;
    433      1.1  ahoka 	ifp->if_init = dme_init;
    434      1.1  ahoka 	ifp->if_ioctl = dme_ioctl;
    435      1.1  ahoka 	ifp->if_stop = dme_stop;
    436      1.1  ahoka 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
    437  1.3.6.1    mrg 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_BROADCAST |
    438  1.3.6.1    mrg 			IFF_MULTICAST;
    439      1.1  ahoka 	IFQ_SET_READY(&ifp->if_snd);
    440      1.1  ahoka 
    441      1.1  ahoka 	/* Initialize ifmedia structures. */
    442      1.1  ahoka 	ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
    443  1.3.6.1    mrg 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    444  1.3.6.1    mrg 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    445  1.3.6.1    mrg 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
    446  1.3.6.1    mrg 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    447  1.3.6.1    mrg 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
    448  1.3.6.1    mrg 
    449  1.3.6.1    mrg 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    450      1.1  ahoka 
    451      1.1  ahoka 	if (enaddr != NULL)
    452      1.1  ahoka 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
    453  1.3.6.1    mrg 	/* TODO: Support an EEPROM attached to the DM9000 chip */
    454  1.3.6.1    mrg 
    455  1.3.6.1    mrg 	callout_init(&sc->sc_link_callout, 0);
    456  1.3.6.1    mrg 	callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
    457  1.3.6.1    mrg 
    458  1.3.6.1    mrg 	sc->sc_media_status = 0;
    459      1.1  ahoka 
    460      1.1  ahoka 	/* Configure DM9000 with the MAC address */
    461      1.1  ahoka 	dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
    462      1.1  ahoka 
    463      1.1  ahoka #ifdef DM9000_DEBUG
    464      1.1  ahoka 	{
    465      1.1  ahoka 		uint8_t macAddr[6];
    466      1.1  ahoka 		dme_read_c(sc, DM9000_PAB0, macAddr, 6);
    467      1.1  ahoka 		printf("DM9000 configured with MAC address: ");
    468      1.1  ahoka 		for (int i = 0; i < 6; i++) {
    469      1.1  ahoka 			printf("%02X:", macAddr[i]);
    470      1.1  ahoka 		}
    471      1.1  ahoka 		printf("\n");
    472      1.1  ahoka 	}
    473      1.1  ahoka #endif
    474      1.1  ahoka 
    475      1.1  ahoka 	if_attach(ifp);
    476      1.1  ahoka 	ether_ifattach(ifp, sc->sc_enaddr);
    477      1.1  ahoka 
    478      1.1  ahoka #ifdef DM9000_DEBUG
    479      1.1  ahoka 	{
    480      1.1  ahoka 		uint8_t network_state;
    481      1.1  ahoka 		network_state = dme_read(sc, DM9000_NSR);
    482      1.1  ahoka 		printf("DM9000 Link status: ");
    483      1.1  ahoka 		if (network_state & DM9000_NSR_LINKST) {
    484      1.1  ahoka 			if (network_state & DM9000_NSR_SPEED)
    485      1.1  ahoka 				printf("10Mbps");
    486      1.1  ahoka 			else
    487      1.1  ahoka 				printf("100Mbps");
    488      1.1  ahoka 		} else {
    489      1.1  ahoka 			printf("Down");
    490      1.1  ahoka 		}
    491      1.1  ahoka 		printf("\n");
    492      1.1  ahoka 	}
    493      1.1  ahoka #endif
    494      1.1  ahoka 
    495  1.3.6.1    mrg 	io_mode = (dme_read(sc, DM9000_ISR) &
    496      1.1  ahoka 	    DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
    497  1.3.6.1    mrg 	if (io_mode != DM9000_MODE_16BIT )
    498      1.1  ahoka 		panic("DM9000: Only 16-bit mode is supported!\n");
    499  1.3.6.1    mrg 
    500  1.3.6.1    mrg 	DPRINTF(("DM9000 Operation Mode: "));
    501  1.3.6.1    mrg 	switch( io_mode) {
    502      1.1  ahoka 	case DM9000_MODE_16BIT:
    503  1.3.6.1    mrg 		DPRINTF(("16-bit mode"));
    504  1.3.6.1    mrg 		sc->sc_data_width = 2;
    505  1.3.6.1    mrg 		sc->sc_pkt_write = dme_pkt_write_2;
    506  1.3.6.1    mrg 		sc->sc_pkt_read = dme_pkt_read_2;
    507      1.1  ahoka 		break;
    508      1.1  ahoka 	case DM9000_MODE_32BIT:
    509  1.3.6.1    mrg 		DPRINTF(("32-bit mode"));
    510  1.3.6.1    mrg 		sc->sc_data_width = 4;
    511      1.1  ahoka 		break;
    512      1.1  ahoka 	case DM9000_MODE_8BIT:
    513  1.3.6.1    mrg 		DPRINTF(("8-bit mode"));
    514  1.3.6.1    mrg 		sc->sc_data_width = 1;
    515      1.1  ahoka 		break;
    516  1.3.6.1    mrg 	default:
    517  1.3.6.1    mrg 		DPRINTF(("Invalid mode"));
    518      1.1  ahoka 		break;
    519      1.1  ahoka 	}
    520  1.3.6.1    mrg 	DPRINTF(("\n"));
    521  1.3.6.1    mrg 
    522  1.3.6.1    mrg 	callout_schedule(&sc->sc_link_callout, mstohz(2000));
    523      1.1  ahoka 
    524      1.1  ahoka 	return 0;
    525      1.1  ahoka }
    526      1.1  ahoka 
    527      1.1  ahoka int dme_intr(void *arg)
    528      1.1  ahoka {
    529      1.1  ahoka 	struct dme_softc *sc = arg;
    530      1.1  ahoka 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    531      1.1  ahoka 	uint8_t status;
    532      1.1  ahoka 
    533  1.3.6.1    mrg 
    534  1.3.6.1    mrg 	DPRINTF(("dme_intr: Begin\n"));
    535  1.3.6.1    mrg 
    536      1.1  ahoka 	/* Disable interrupts */
    537      1.1  ahoka 	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
    538      1.1  ahoka 
    539      1.1  ahoka 	status = dme_read(sc, DM9000_ISR);
    540      1.1  ahoka 	dme_write(sc, DM9000_ISR, status);
    541      1.1  ahoka 
    542      1.1  ahoka 	if (status & DM9000_ISR_PRS) {
    543      1.1  ahoka 		if (ifp->if_flags & IFF_RUNNING )
    544      1.1  ahoka 			dme_receive(sc, ifp);
    545      1.1  ahoka 	}
    546      1.1  ahoka 	if (status & DM9000_ISR_PTS) {
    547      1.1  ahoka 		uint8_t nsr;
    548      1.1  ahoka 		uint8_t tx_status = 0x01; /* Initialize to an error value */
    549      1.1  ahoka 
    550      1.1  ahoka 		/* A packet has been transmitted */
    551      1.1  ahoka 		sc->txbusy = 0;
    552      1.1  ahoka 
    553      1.1  ahoka 		nsr = dme_read(sc, DM9000_NSR);
    554      1.1  ahoka 
    555      1.1  ahoka 		if (nsr & DM9000_NSR_TX1END) {
    556      1.1  ahoka 			tx_status = dme_read(sc, DM9000_TSR1);
    557      1.1  ahoka 			TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
    558      1.1  ahoka 		} else if (nsr & DM9000_NSR_TX2END) {
    559      1.1  ahoka 			tx_status = dme_read(sc, DM9000_TSR2);
    560      1.1  ahoka 			TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
    561      1.1  ahoka 		}
    562      1.1  ahoka 
    563      1.1  ahoka 		if (tx_status == 0x0) {
    564      1.1  ahoka 			/* Frame successfully sent */
    565      1.1  ahoka 			ifp->if_opackets++;
    566      1.1  ahoka 		} else {
    567      1.1  ahoka 			ifp->if_oerrors++;
    568      1.1  ahoka 		}
    569      1.1  ahoka 
    570      1.1  ahoka 		/* If we have nothing ready to transmit, prepare something */
    571      1.1  ahoka 		if (!sc->txready) {
    572      1.1  ahoka 			dme_prepare(sc, ifp);
    573      1.1  ahoka 		}
    574      1.1  ahoka 
    575      1.1  ahoka 		if (sc->txready)
    576      1.1  ahoka 			dme_transmit(sc);
    577      1.1  ahoka 
    578      1.1  ahoka 		/* Prepare the next frame */
    579      1.1  ahoka 		dme_prepare(sc, ifp);
    580      1.1  ahoka 
    581      1.1  ahoka 	}
    582      1.1  ahoka #ifdef notyet
    583      1.1  ahoka 	if (status & DM9000_ISR_LNKCHNG) {
    584      1.1  ahoka 	}
    585      1.1  ahoka #endif
    586      1.1  ahoka 
    587      1.1  ahoka 	/* Enable interrupts again */
    588      1.1  ahoka 	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM |
    589      1.1  ahoka 		 DM9000_IMR_PTM);
    590      1.1  ahoka 
    591  1.3.6.1    mrg 	DPRINTF(("dme_intr: End\n"));
    592  1.3.6.1    mrg 
    593      1.1  ahoka 	return 1;
    594      1.1  ahoka }
    595      1.1  ahoka 
    596      1.1  ahoka void
    597      1.1  ahoka dme_start_output(struct ifnet *ifp)
    598      1.1  ahoka {
    599      1.1  ahoka 	struct dme_softc *sc;
    600      1.1  ahoka 
    601      1.1  ahoka 	sc = ifp->if_softc;
    602      1.1  ahoka 
    603  1.3.6.1    mrg 	DPRINTF(("dme_start_output: Begin\n"));
    604  1.3.6.1    mrg 
    605      1.1  ahoka 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
    606      1.1  ahoka 		printf("No output\n");
    607      1.1  ahoka 		return;
    608      1.1  ahoka 	}
    609      1.1  ahoka 
    610      1.1  ahoka 	if (sc->txbusy && sc->txready) {
    611      1.1  ahoka 		panic("DM9000: Internal error, trying to send without"
    612      1.1  ahoka 		    " any empty queue\n");
    613      1.1  ahoka 	}
    614      1.1  ahoka 
    615      1.1  ahoka 	dme_prepare(sc, ifp);
    616      1.1  ahoka 
    617      1.1  ahoka 	if (sc->txbusy == 0) {
    618      1.1  ahoka 		/* We are ready to transmit right away */
    619      1.1  ahoka 		dme_transmit(sc);
    620      1.1  ahoka 		dme_prepare(sc, ifp); /* Prepare next one */
    621      1.1  ahoka 	} else {
    622      1.1  ahoka 		/* We need to wait until the current packet has
    623      1.1  ahoka 		 * been transmitted.
    624      1.1  ahoka 		 */
    625      1.1  ahoka 		ifp->if_flags |= IFF_OACTIVE;
    626      1.1  ahoka 	}
    627  1.3.6.1    mrg 
    628  1.3.6.1    mrg 	DPRINTF(("dme_start_output: End\n"));
    629      1.1  ahoka }
    630      1.1  ahoka 
    631      1.1  ahoka void
    632      1.1  ahoka dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
    633      1.1  ahoka {
    634      1.1  ahoka 	struct mbuf *bufChain;
    635      1.1  ahoka 	uint16_t length;
    636      1.1  ahoka 
    637      1.1  ahoka 	TX_DPRINTF(("dme_prepare: Entering\n"));
    638      1.1  ahoka 
    639      1.1  ahoka 	if (sc->txready)
    640      1.1  ahoka 		panic("dme_prepare: Someone called us with txready set\n");
    641      1.1  ahoka 
    642      1.1  ahoka 	IFQ_DEQUEUE(&ifp->if_snd, bufChain);
    643      1.1  ahoka 	if (bufChain == NULL) {
    644      1.1  ahoka 		TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
    645      1.1  ahoka 		ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
    646      1.1  ahoka 		return; /* Nothing to transmit */
    647      1.1  ahoka 	}
    648      1.1  ahoka 
    649      1.1  ahoka 	/* Element has now been removed from the queue, so we better send it */
    650      1.1  ahoka 
    651      1.1  ahoka 	if (ifp->if_bpf)
    652      1.1  ahoka 		bpf_mtap(ifp, bufChain);
    653      1.1  ahoka 
    654      1.1  ahoka 	/* Setup the DM9000 to accept the writes, and then write each buf in
    655      1.1  ahoka 	   the chain. */
    656      1.1  ahoka 
    657      1.1  ahoka 	TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
    658      1.1  ahoka 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
    659  1.3.6.1    mrg 	length = sc->sc_pkt_write(sc, bufChain);
    660      1.1  ahoka 	TX_DATA_DPRINTF(("\n"));
    661      1.1  ahoka 
    662  1.3.6.1    mrg 	if (length % sc->sc_data_width != 0) {
    663  1.3.6.1    mrg 		panic("dme_prepare: length is not compatible with IO_MODE");
    664      1.1  ahoka 	}
    665      1.1  ahoka 
    666      1.1  ahoka 	sc->txready_length = length;
    667      1.1  ahoka 	sc->txready = 1;
    668      1.1  ahoka 
    669      1.1  ahoka 	TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
    670      1.1  ahoka 		"txready: %d, txready_length: %d\n",
    671      1.1  ahoka 		sc->txbusy, sc->txready, sc->txready_length));
    672      1.1  ahoka 
    673      1.1  ahoka 	m_freem(bufChain);
    674      1.1  ahoka 
    675      1.1  ahoka 	TX_DPRINTF(("dme_prepare: Leaving\n"));
    676      1.1  ahoka }
    677      1.1  ahoka 
    678      1.1  ahoka int
    679      1.1  ahoka dme_init(struct ifnet *ifp)
    680      1.1  ahoka {
    681      1.1  ahoka 	int s;
    682      1.1  ahoka 	struct dme_softc *sc = ifp->if_softc;
    683      1.1  ahoka 
    684      1.1  ahoka 	dme_stop(ifp, 0);
    685      1.1  ahoka 
    686      1.1  ahoka 	s = splnet();
    687      1.1  ahoka 
    688      1.1  ahoka 	dme_reset(sc);
    689      1.1  ahoka 
    690      1.1  ahoka 	sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
    691      1.1  ahoka 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
    692      1.1  ahoka 	sc->sc_ethercom.ec_if.if_timer = 0;
    693      1.1  ahoka 
    694      1.1  ahoka 	splx(s);
    695      1.1  ahoka 
    696      1.1  ahoka 	return 0;
    697      1.1  ahoka }
    698      1.1  ahoka 
    699      1.1  ahoka int
    700      1.1  ahoka dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    701      1.1  ahoka {
    702      1.1  ahoka 	struct dme_softc *sc = ifp->if_softc;
    703      1.1  ahoka 	struct ifreq *ifr = data;
    704      1.1  ahoka 	int s, error = 0;
    705      1.1  ahoka 
    706      1.1  ahoka 	s = splnet();
    707      1.1  ahoka 
    708      1.1  ahoka 	switch(cmd) {
    709      1.1  ahoka 	case SIOCGIFMEDIA:
    710      1.1  ahoka 	case SIOCSIFMEDIA:
    711      1.1  ahoka 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    712      1.1  ahoka 		break;
    713      1.1  ahoka 	default:
    714      1.1  ahoka 		error = ether_ioctl(ifp, cmd, data);
    715  1.3.6.1    mrg 		if (error == ENETRESET) {
    716  1.3.6.1    mrg 			if (ifp->if_flags && IFF_RUNNING) {
    717  1.3.6.1    mrg 				/* Address list has changed, reconfigure
    718  1.3.6.1    mrg 				   filter */
    719  1.3.6.1    mrg 				dme_set_addr_filter(sc);
    720  1.3.6.1    mrg 			}
    721  1.3.6.1    mrg 			error = 0;
    722  1.3.6.1    mrg 		}
    723      1.1  ahoka 		break;
    724      1.1  ahoka 	}
    725      1.1  ahoka 
    726      1.1  ahoka 	splx(s);
    727      1.1  ahoka 	return error;
    728      1.1  ahoka }
    729      1.1  ahoka 
    730      1.1  ahoka void
    731      1.1  ahoka dme_stop(struct ifnet *ifp, int disable)
    732      1.1  ahoka {
    733      1.1  ahoka 	struct dme_softc *sc = ifp->if_softc;
    734      1.1  ahoka 
    735      1.1  ahoka 	/* Not quite sure what to do when called with disable == 0 */
    736      1.1  ahoka 	if (disable) {
    737      1.1  ahoka 		/* Disable RX */
    738      1.1  ahoka 		dme_write(sc, DM9000_RCR, 0x0);
    739      1.1  ahoka 	}
    740      1.1  ahoka 
    741      1.1  ahoka 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    742      1.1  ahoka 	ifp->if_timer = 0;
    743      1.1  ahoka }
    744      1.1  ahoka 
    745      1.1  ahoka int
    746      1.1  ahoka dme_mediachange(struct ifnet *ifp)
    747      1.1  ahoka {
    748  1.3.6.1    mrg 	struct dme_softc *sc = ifp->if_softc;
    749  1.3.6.1    mrg 
    750  1.3.6.1    mrg 	return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
    751      1.1  ahoka }
    752      1.1  ahoka 
    753      1.1  ahoka void
    754      1.1  ahoka dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    755      1.1  ahoka {
    756      1.1  ahoka 	struct dme_softc *sc = ifp->if_softc;
    757      1.1  ahoka 
    758  1.3.6.1    mrg 	ifmr->ifm_active = sc->sc_media_active;
    759  1.3.6.1    mrg 	ifmr->ifm_status = sc->sc_media_status;
    760      1.1  ahoka }
    761      1.1  ahoka 
    762      1.1  ahoka void
    763      1.1  ahoka dme_transmit(struct dme_softc *sc)
    764      1.1  ahoka {
    765      1.1  ahoka 	uint8_t status;
    766      1.1  ahoka 
    767      1.1  ahoka 	TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
    768      1.1  ahoka 		sc->txready, sc->txbusy));
    769      1.1  ahoka 
    770      1.1  ahoka 	dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
    771      1.1  ahoka 	dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
    772      1.1  ahoka 
    773      1.1  ahoka 	/* Request to send the packet */
    774      1.1  ahoka 	status = dme_read(sc, DM9000_ISR);
    775      1.1  ahoka 
    776      1.1  ahoka 	dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
    777      1.1  ahoka 
    778      1.1  ahoka 	sc->txready = 0;
    779      1.1  ahoka 	sc->txbusy = 1;
    780      1.1  ahoka 	sc->txready_length = 0;
    781      1.1  ahoka }
    782      1.1  ahoka 
    783      1.1  ahoka void
    784      1.1  ahoka dme_receive(struct dme_softc *sc, struct ifnet *ifp)
    785      1.1  ahoka {
    786      1.1  ahoka 	uint8_t ready = 0x01;
    787      1.1  ahoka 
    788      1.1  ahoka 	DPRINTF(("inside dme_receive\n"));
    789      1.1  ahoka 
    790      1.1  ahoka 	while (ready == 0x01) {
    791      1.1  ahoka 		/* Packet received, retrieve it */
    792      1.1  ahoka 
    793      1.1  ahoka 		/* Read without address increment to get the ready byte without moving past it. */
    794      1.1  ahoka 		bus_space_write_1(sc->sc_iot, sc->sc_ioh,
    795      1.1  ahoka 		    sc->dme_io, DM9000_MRCMDX);
    796      1.1  ahoka 		/* Dummy ready */
    797      1.1  ahoka 		ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    798      1.1  ahoka 		ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    799      1.1  ahoka 		ready &= 0x03;	/* we only want bits 1:0 */
    800      1.1  ahoka 		if (ready == 0x01) {
    801  1.3.6.1    mrg 			uint8_t		rx_status;
    802  1.3.6.1    mrg 			struct mbuf	*m;
    803      1.1  ahoka 
    804      1.1  ahoka 			/* Read with address increment. */
    805      1.1  ahoka 			bus_space_write_1(sc->sc_iot, sc->sc_ioh,
    806  1.3.6.1    mrg 					  sc->dme_io, DM9000_MRCMD);
    807      1.1  ahoka 
    808  1.3.6.1    mrg 			rx_status = sc->sc_pkt_read(sc, ifp, &m);
    809      1.1  ahoka 
    810      1.1  ahoka 			if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
    811      1.1  ahoka 				/* Error while receiving the packet,
    812      1.1  ahoka 				 * discard it and keep track of counters
    813      1.1  ahoka 				 */
    814      1.1  ahoka 				ifp->if_ierrors++;
    815      1.1  ahoka 				RX_DPRINTF(("dme_receive: "
    816      1.1  ahoka 					"Error reciving packet\n"));
    817      1.1  ahoka 			} else if (rx_status & DM9000_RSR_LCS) {
    818      1.1  ahoka 				ifp->if_collisions++;
    819      1.1  ahoka 			} else {
    820      1.1  ahoka 				if (ifp->if_bpf)
    821      1.1  ahoka 					bpf_mtap(ifp, m);
    822      1.1  ahoka 				ifp->if_ipackets++;
    823      1.1  ahoka 				(*ifp->if_input)(ifp, m);
    824      1.1  ahoka 			}
    825      1.1  ahoka 
    826      1.1  ahoka 		} else if (ready != 0x00) {
    827      1.1  ahoka 			/* Should this be logged somehow? */
    828  1.3.6.1    mrg 			printf("%s: Resetting chip\n",
    829  1.3.6.1    mrg 			       device_xname(sc->sc_dev));
    830      1.1  ahoka 			dme_reset(sc);
    831      1.1  ahoka 		}
    832      1.1  ahoka 	}
    833      1.1  ahoka }
    834      1.1  ahoka 
    835      1.1  ahoka void
    836      1.1  ahoka dme_reset(struct dme_softc *sc)
    837      1.1  ahoka {
    838      1.1  ahoka 	uint8_t var;
    839      1.1  ahoka 
    840  1.3.6.1    mrg 	/* We only re-initialized the PHY in this function the first time it is
    841  1.3.6.1    mrg 	   called. */
    842  1.3.6.1    mrg 	if( !sc->sc_phy_initialized) {
    843  1.3.6.1    mrg 		/* PHY Reset */
    844  1.3.6.1    mrg 		dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
    845  1.3.6.1    mrg 
    846  1.3.6.1    mrg 		/* PHY Power Down */
    847  1.3.6.1    mrg 		var = dme_read(sc, DM9000_GPR);
    848  1.3.6.1    mrg 		dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
    849  1.3.6.1    mrg 	}
    850      1.1  ahoka 
    851  1.3.6.1    mrg 	/* Reset the DM9000 twice, as described in section 2 of the Programming
    852  1.3.6.1    mrg 	   Guide.
    853  1.3.6.1    mrg 	   The PHY is initialized and enabled between those two resets.
    854      1.1  ahoka 	 */
    855  1.3.6.1    mrg 
    856  1.3.6.1    mrg 	/* Software Reset*/
    857      1.1  ahoka 	dme_write(sc, DM9000_NCR,
    858      1.1  ahoka 	    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
    859      1.1  ahoka 	delay(20);
    860      1.1  ahoka 	dme_write(sc, DM9000_NCR, 0x0);
    861      1.1  ahoka 
    862  1.3.6.1    mrg 	if( !sc->sc_phy_initialized) {
    863  1.3.6.1    mrg 		/* PHY Initialization */
    864  1.3.6.1    mrg 		dme_phy_init(sc);
    865  1.3.6.1    mrg 
    866  1.3.6.1    mrg 		/* PHY Enable */
    867  1.3.6.1    mrg 		var = dme_read(sc, DM9000_GPR);
    868  1.3.6.1    mrg 		dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
    869  1.3.6.1    mrg 		var = dme_read(sc, DM9000_GPCR);
    870  1.3.6.1    mrg 		dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
    871  1.3.6.1    mrg 
    872  1.3.6.1    mrg 		dme_write(sc, DM9000_NCR,
    873  1.3.6.1    mrg 			  DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
    874  1.3.6.1    mrg 		delay(20);
    875  1.3.6.1    mrg 		dme_write(sc, DM9000_NCR, 0x0);
    876  1.3.6.1    mrg 	}
    877  1.3.6.1    mrg 
    878      1.1  ahoka 	/* Select internal PHY, no wakeup event, no collosion mode,
    879  1.3.6.1    mrg 	 * normal loopback mode.
    880      1.1  ahoka 	 */
    881      1.1  ahoka 	dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
    882      1.1  ahoka 
    883      1.1  ahoka 	/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
    884      1.1  ahoka 	dme_read(sc, DM9000_NSR);
    885      1.1  ahoka 
    886      1.1  ahoka 	/* Enable wraparound of read/write pointer, packet received latch,
    887      1.1  ahoka 	 * and packet transmitted latch.
    888      1.1  ahoka 	 */
    889      1.1  ahoka 	dme_write(sc, DM9000_IMR,
    890      1.1  ahoka 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
    891      1.1  ahoka 
    892  1.3.6.1    mrg 	/* Setup multicast address filter, and enable RX. */
    893  1.3.6.1    mrg 	dme_set_addr_filter(sc);
    894  1.3.6.1    mrg 
    895  1.3.6.1    mrg 	/* Obtain media information from PHY */
    896  1.3.6.1    mrg 	dme_phy_update_media(sc);
    897      1.1  ahoka 
    898      1.1  ahoka 	sc->txbusy = 0;
    899      1.1  ahoka 	sc->txready = 0;
    900  1.3.6.1    mrg 	sc->sc_phy_initialized = 1;
    901  1.3.6.1    mrg }
    902  1.3.6.1    mrg 
    903  1.3.6.1    mrg void
    904  1.3.6.1    mrg dme_set_addr_filter(struct dme_softc *sc)
    905  1.3.6.1    mrg {
    906  1.3.6.1    mrg 	struct ether_multi	*enm;
    907  1.3.6.1    mrg 	struct ether_multistep	step;
    908  1.3.6.1    mrg 	struct ethercom		*ec;
    909  1.3.6.1    mrg 	struct ifnet		*ifp;
    910  1.3.6.1    mrg 	uint16_t		af[4];
    911  1.3.6.1    mrg 	int			i;
    912  1.3.6.1    mrg 
    913  1.3.6.1    mrg 	ec = &sc->sc_ethercom;
    914  1.3.6.1    mrg 	ifp = &ec->ec_if;
    915  1.3.6.1    mrg 
    916  1.3.6.1    mrg 	if (ifp->if_flags & IFF_PROMISC) {
    917  1.3.6.1    mrg 		dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN  |
    918  1.3.6.1    mrg 					  DM9000_RCR_WTDIS |
    919  1.3.6.1    mrg 					  DM9000_RCR_PRMSC);
    920  1.3.6.1    mrg 		ifp->if_flags |= IFF_ALLMULTI;
    921  1.3.6.1    mrg 		return;
    922  1.3.6.1    mrg 	}
    923  1.3.6.1    mrg 
    924  1.3.6.1    mrg 	af[0] = af[1] = af[2] = af[3] = 0x0000;
    925  1.3.6.1    mrg 	ifp->if_flags &= ~IFF_ALLMULTI;
    926  1.3.6.1    mrg 
    927  1.3.6.1    mrg 	ETHER_FIRST_MULTI(step, ec, enm);
    928  1.3.6.1    mrg 	while (enm != NULL) {
    929  1.3.6.1    mrg 		uint16_t hash;
    930  1.3.6.1    mrg 		if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
    931  1.3.6.1    mrg 		    sizeof(enm->enm_addrlo))) {
    932  1.3.6.1    mrg 			/*
    933  1.3.6.1    mrg 	                 * We must listen to a range of multicast addresses.
    934  1.3.6.1    mrg 	                 * For now, just accept all multicasts, rather than
    935  1.3.6.1    mrg 	                 * trying to set only those filter bits needed to match
    936  1.3.6.1    mrg 	                 * the range.  (At this time, the only use of address
    937  1.3.6.1    mrg 	                 * ranges is for IP multicast routing, for which the
    938  1.3.6.1    mrg 	                 * range is big enough to require all bits set.)
    939  1.3.6.1    mrg 	                 */
    940  1.3.6.1    mrg 			ifp->if_flags |= IFF_ALLMULTI;
    941  1.3.6.1    mrg 			af[0] = af[1] = af[2] = af[3] = 0xffff;
    942  1.3.6.1    mrg 			break;
    943  1.3.6.1    mrg 		} else {
    944  1.3.6.1    mrg 			hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
    945  1.3.6.1    mrg 			af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
    946  1.3.6.1    mrg 			ETHER_NEXT_MULTI(step, enm);
    947  1.3.6.1    mrg 		}
    948  1.3.6.1    mrg 	}
    949  1.3.6.1    mrg 
    950  1.3.6.1    mrg 	/* Write the multicast address filter */
    951  1.3.6.1    mrg 	for(i=0; i<4; i++) {
    952  1.3.6.1    mrg 		dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
    953  1.3.6.1    mrg 		dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
    954  1.3.6.1    mrg 	}
    955  1.3.6.1    mrg 
    956  1.3.6.1    mrg 	/* Setup RX controls */
    957  1.3.6.1    mrg 	dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
    958  1.3.6.1    mrg }
    959  1.3.6.1    mrg 
    960  1.3.6.1    mrg int
    961  1.3.6.1    mrg dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
    962  1.3.6.1    mrg {
    963  1.3.6.1    mrg 	int left_over_count = 0; /* Number of bytes from previous mbuf, which
    964  1.3.6.1    mrg 				    need to be written with the next.*/
    965  1.3.6.1    mrg 	uint16_t left_over_buf = 0;
    966  1.3.6.1    mrg 	int length = 0;
    967  1.3.6.1    mrg 	struct mbuf *buf;
    968  1.3.6.1    mrg 	uint8_t *write_ptr;
    969  1.3.6.1    mrg 
    970  1.3.6.1    mrg 	/* We expect that the DM9000 has been setup to accept writes before
    971  1.3.6.1    mrg 	   this function is called. */
    972  1.3.6.1    mrg 
    973  1.3.6.1    mrg 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
    974  1.3.6.1    mrg 		int to_write = buf->m_len;
    975  1.3.6.1    mrg 
    976  1.3.6.1    mrg 		length += to_write;
    977  1.3.6.1    mrg 
    978  1.3.6.1    mrg 		write_ptr = buf->m_data;
    979  1.3.6.1    mrg 		while (to_write > 0 ||
    980  1.3.6.1    mrg 		       (buf->m_next == NULL && left_over_count > 0)
    981  1.3.6.1    mrg 		       ) {
    982  1.3.6.1    mrg 			if (left_over_count > 0) {
    983  1.3.6.1    mrg 				uint8_t b = 0;
    984  1.3.6.1    mrg 				DPRINTF(("dme_pkt_write_16: "
    985  1.3.6.1    mrg 					 "Writing left over byte\n"));
    986  1.3.6.1    mrg 
    987  1.3.6.1    mrg 				if (to_write > 0) {
    988  1.3.6.1    mrg 					b = *write_ptr;
    989  1.3.6.1    mrg 					to_write--;
    990  1.3.6.1    mrg 					write_ptr++;
    991  1.3.6.1    mrg 
    992  1.3.6.1    mrg 					DPRINTF(("Took single byte\n"));
    993  1.3.6.1    mrg 				} else {
    994  1.3.6.1    mrg 					DPRINTF(("Leftover in last run\n"));
    995  1.3.6.1    mrg 					length++;
    996  1.3.6.1    mrg 				}
    997  1.3.6.1    mrg 
    998  1.3.6.1    mrg 				/* Does shift direction depend on endianess? */
    999  1.3.6.1    mrg 				left_over_buf = left_over_buf | (b << 8);
   1000  1.3.6.1    mrg 
   1001  1.3.6.1    mrg 				bus_space_write_2(sc->sc_iot, sc->sc_ioh,
   1002  1.3.6.1    mrg 						  sc->dme_data, left_over_buf);
   1003  1.3.6.1    mrg 				TX_DATA_DPRINTF(("%02X ", left_over_buf));
   1004  1.3.6.1    mrg 				left_over_count = 0;
   1005  1.3.6.1    mrg 			} else if ((long)write_ptr % 2 != 0) {
   1006  1.3.6.1    mrg 				/* Misaligned data */
   1007  1.3.6.1    mrg 				DPRINTF(("dme_pkt_write_16: "
   1008  1.3.6.1    mrg 					 "Detected misaligned data\n"));
   1009  1.3.6.1    mrg 				left_over_buf = *write_ptr;
   1010  1.3.6.1    mrg 				left_over_count = 1;
   1011  1.3.6.1    mrg 				write_ptr++;
   1012  1.3.6.1    mrg 				to_write--;
   1013  1.3.6.1    mrg 			} else {
   1014  1.3.6.1    mrg 				int i;
   1015  1.3.6.1    mrg 				uint16_t *dptr = (uint16_t*)write_ptr;
   1016  1.3.6.1    mrg 
   1017  1.3.6.1    mrg 				/* A block of aligned data. */
   1018  1.3.6.1    mrg 				for(i = 0; i < to_write/2; i++) {
   1019  1.3.6.1    mrg 					/* buf will be half-word aligned
   1020  1.3.6.1    mrg 					 * all the time
   1021  1.3.6.1    mrg 					 */
   1022  1.3.6.1    mrg 					bus_space_write_2(sc->sc_iot,
   1023  1.3.6.1    mrg 							  sc->sc_ioh, sc->dme_data, *dptr);
   1024  1.3.6.1    mrg 					TX_DATA_DPRINTF(("%02X %02X ",
   1025  1.3.6.1    mrg 							 *dptr & 0xFF, (*dptr>>8) & 0xFF));
   1026  1.3.6.1    mrg 					dptr++;
   1027  1.3.6.1    mrg 				}
   1028  1.3.6.1    mrg 
   1029  1.3.6.1    mrg 				write_ptr += i*2;
   1030  1.3.6.1    mrg 				if (to_write % 2 != 0) {
   1031  1.3.6.1    mrg 					DPRINTF(("dme_pkt_write_16: "
   1032  1.3.6.1    mrg 						 "to_write %% 2: %d\n",
   1033  1.3.6.1    mrg 						 to_write % 2));
   1034  1.3.6.1    mrg 					left_over_count = 1;
   1035  1.3.6.1    mrg 					/* XXX: Does this depend on
   1036  1.3.6.1    mrg 					 * the endianess?
   1037  1.3.6.1    mrg 					 */
   1038  1.3.6.1    mrg 					left_over_buf = *write_ptr;
   1039  1.3.6.1    mrg 
   1040  1.3.6.1    mrg 					write_ptr++;
   1041  1.3.6.1    mrg 					to_write--;
   1042  1.3.6.1    mrg 					DPRINTF(("dme_pkt_write_16: "
   1043  1.3.6.1    mrg 						 "to_write (after): %d\n",
   1044  1.3.6.1    mrg 						 to_write));
   1045  1.3.6.1    mrg 					DPRINTF(("dme_pkt_write_16: i*2: %d\n",
   1046  1.3.6.1    mrg 						 i*2));
   1047  1.3.6.1    mrg 				}
   1048  1.3.6.1    mrg 				to_write -= i*2;
   1049  1.3.6.1    mrg 			}
   1050  1.3.6.1    mrg 		} /* while(...) */
   1051  1.3.6.1    mrg 	} /* for(...) */
   1052  1.3.6.1    mrg 
   1053  1.3.6.1    mrg 	return length;
   1054  1.3.6.1    mrg }
   1055  1.3.6.1    mrg 
   1056  1.3.6.1    mrg int
   1057  1.3.6.1    mrg dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
   1058  1.3.6.1    mrg {
   1059  1.3.6.1    mrg 	uint8_t rx_status;
   1060  1.3.6.1    mrg 	struct mbuf *m;
   1061  1.3.6.1    mrg 	uint16_t data;
   1062  1.3.6.1    mrg 	uint16_t frame_length;
   1063  1.3.6.1    mrg 	uint16_t i;
   1064  1.3.6.1    mrg 	uint16_t *buf;
   1065  1.3.6.1    mrg 
   1066  1.3.6.1    mrg 	data = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
   1067  1.3.6.1    mrg 				sc->dme_data);
   1068  1.3.6.1    mrg 
   1069  1.3.6.1    mrg 	rx_status = data & 0xFF;
   1070  1.3.6.1    mrg 	frame_length = bus_space_read_2(sc->sc_iot,
   1071  1.3.6.1    mrg 					sc->sc_ioh, sc->dme_data);
   1072  1.3.6.1    mrg 	if (frame_length > ETHER_MAX_LEN) {
   1073  1.3.6.1    mrg 		printf("Got frame of length: %d\n", frame_length);
   1074  1.3.6.1    mrg 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
   1075  1.3.6.1    mrg 		panic("Something is rotten");
   1076  1.3.6.1    mrg 	}
   1077  1.3.6.1    mrg 	RX_DPRINTF(("dme_receive: "
   1078  1.3.6.1    mrg 		    "rx_statux: 0x%x, frame_length: %d\n",
   1079  1.3.6.1    mrg 		    rx_status, frame_length));
   1080  1.3.6.1    mrg 
   1081  1.3.6.1    mrg 
   1082  1.3.6.1    mrg 	m = dme_alloc_receive_buffer(ifp, frame_length);
   1083  1.3.6.1    mrg 
   1084  1.3.6.1    mrg 	buf = mtod(m, uint16_t*);
   1085  1.3.6.1    mrg 
   1086  1.3.6.1    mrg 	RX_DPRINTF(("dme_receive: "));
   1087  1.3.6.1    mrg 
   1088  1.3.6.1    mrg 	for(i=0; i< frame_length; i+=2 ) {
   1089  1.3.6.1    mrg 		data = bus_space_read_2(sc->sc_iot,
   1090  1.3.6.1    mrg 					sc->sc_ioh, sc->dme_data);
   1091  1.3.6.1    mrg 		if ( (frame_length % 2 != 0) &&
   1092  1.3.6.1    mrg 		     (i == frame_length-1) ) {
   1093  1.3.6.1    mrg 			data = data & 0xff;
   1094  1.3.6.1    mrg 			RX_DPRINTF((" L "));
   1095  1.3.6.1    mrg 		}
   1096  1.3.6.1    mrg 		*buf = data;
   1097  1.3.6.1    mrg 		buf++;
   1098  1.3.6.1    mrg 		RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
   1099  1.3.6.1    mrg 				 (data>>8) & 0xff));
   1100  1.3.6.1    mrg 	}
   1101  1.3.6.1    mrg 
   1102  1.3.6.1    mrg 	RX_DATA_DPRINTF(("\n"));
   1103  1.3.6.1    mrg 	RX_DPRINTF(("Read %d bytes\n", i));
   1104  1.3.6.1    mrg 
   1105  1.3.6.1    mrg 	*outBuf = m;
   1106  1.3.6.1    mrg 	return rx_status;
   1107  1.3.6.1    mrg }
   1108  1.3.6.1    mrg 
   1109  1.3.6.1    mrg struct mbuf*
   1110  1.3.6.1    mrg dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
   1111  1.3.6.1    mrg {
   1112  1.3.6.1    mrg 	struct dme_softc *sc = ifp->if_softc;
   1113  1.3.6.1    mrg 	struct mbuf *m;
   1114  1.3.6.1    mrg 	int pad;
   1115  1.3.6.1    mrg 
   1116  1.3.6.1    mrg 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1117  1.3.6.1    mrg 	m->m_pkthdr.rcvif = ifp;
   1118  1.3.6.1    mrg 	/* Ensure that we always allocate an even number of
   1119  1.3.6.1    mrg 	 * bytes in order to avoid writing beyond the buffer
   1120  1.3.6.1    mrg 	 */
   1121  1.3.6.1    mrg 	m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
   1122  1.3.6.1    mrg 	pad = ALIGN(sizeof(struct ether_header)) -
   1123  1.3.6.1    mrg 		sizeof(struct ether_header);
   1124  1.3.6.1    mrg 	/* All our frames have the CRC attached */
   1125  1.3.6.1    mrg 	m->m_flags |= M_HASFCS;
   1126  1.3.6.1    mrg 	if (m->m_pkthdr.len + pad > MHLEN )
   1127  1.3.6.1    mrg 		MCLGET(m, M_DONTWAIT);
   1128  1.3.6.1    mrg 
   1129  1.3.6.1    mrg 	m->m_data += pad;
   1130  1.3.6.1    mrg 	m->m_len = frame_length + (frame_length % sc->sc_data_width);
   1131  1.3.6.1    mrg 
   1132  1.3.6.1    mrg 	return m;
   1133      1.1  ahoka }
   1134