dm9000.c revision 1.8 1 1.8 macallan /* $NetBSD: dm9000.c,v 1.8 2015/06/12 17:24:02 macallan Exp $ */
2 1.1 ahoka
3 1.1 ahoka /*
4 1.1 ahoka * Copyright (c) 2009 Paul Fleischer
5 1.1 ahoka * All rights reserved.
6 1.1 ahoka *
7 1.1 ahoka * 1. Redistributions of source code must retain the above copyright
8 1.1 ahoka * notice, this list of conditions and the following disclaimer.
9 1.1 ahoka * 2. Redistributions in binary form must reproduce the above copyright
10 1.1 ahoka * notice, this list of conditions and the following disclaimer in the
11 1.1 ahoka * documentation and/or other materials provided with the distribution.
12 1.1 ahoka * 3. The name of the company nor the name of the author may be used to
13 1.1 ahoka * endorse or promote products derived from this software without specific
14 1.1 ahoka * prior written permission.
15 1.1 ahoka *
16 1.1 ahoka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 1.1 ahoka * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 1.1 ahoka * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 ahoka * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 1.1 ahoka * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 1.1 ahoka * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 1.1 ahoka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 ahoka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 ahoka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 ahoka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 ahoka * SUCH DAMAGE.
27 1.1 ahoka */
28 1.1 ahoka
29 1.1 ahoka /* based on sys/dev/ic/cs89x0.c */
30 1.1 ahoka /*
31 1.1 ahoka * Copyright (c) 2004 Christopher Gilbert
32 1.1 ahoka * All rights reserved.
33 1.1 ahoka *
34 1.1 ahoka * 1. Redistributions of source code must retain the above copyright
35 1.1 ahoka * notice, this list of conditions and the following disclaimer.
36 1.1 ahoka * 2. Redistributions in binary form must reproduce the above copyright
37 1.1 ahoka * notice, this list of conditions and the following disclaimer in the
38 1.1 ahoka * documentation and/or other materials provided with the distribution.
39 1.1 ahoka * 3. The name of the company nor the name of the author may be used to
40 1.1 ahoka * endorse or promote products derived from this software without specific
41 1.1 ahoka * prior written permission.
42 1.1 ahoka *
43 1.1 ahoka * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44 1.1 ahoka * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45 1.1 ahoka * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46 1.1 ahoka * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47 1.1 ahoka * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48 1.1 ahoka * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49 1.1 ahoka * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 1.1 ahoka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 1.1 ahoka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 1.1 ahoka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 1.1 ahoka * SUCH DAMAGE.
54 1.1 ahoka */
55 1.1 ahoka
56 1.1 ahoka /*
57 1.1 ahoka * Copyright 1997
58 1.1 ahoka * Digital Equipment Corporation. All rights reserved.
59 1.1 ahoka *
60 1.1 ahoka * This software is furnished under license and may be used and
61 1.1 ahoka * copied only in accordance with the following terms and conditions.
62 1.1 ahoka * Subject to these conditions, you may download, copy, install,
63 1.1 ahoka * use, modify and distribute this software in source and/or binary
64 1.1 ahoka * form. No title or ownership is transferred hereby.
65 1.1 ahoka *
66 1.1 ahoka * 1) Any source code used, modified or distributed must reproduce
67 1.1 ahoka * and retain this copyright notice and list of conditions as
68 1.1 ahoka * they appear in the source file.
69 1.1 ahoka *
70 1.1 ahoka * 2) No right is granted to use any trade name, trademark, or logo of
71 1.1 ahoka * Digital Equipment Corporation. Neither the "Digital Equipment
72 1.1 ahoka * Corporation" name nor any trademark or logo of Digital Equipment
73 1.1 ahoka * Corporation may be used to endorse or promote products derived
74 1.1 ahoka * from this software without the prior written permission of
75 1.1 ahoka * Digital Equipment Corporation.
76 1.1 ahoka *
77 1.1 ahoka * 3) This software is provided "AS-IS" and any express or implied
78 1.1 ahoka * warranties, including but not limited to, any implied warranties
79 1.1 ahoka * of merchantability, fitness for a particular purpose, or
80 1.1 ahoka * non-infringement are disclaimed. In no event shall DIGITAL be
81 1.1 ahoka * liable for any damages whatsoever, and in particular, DIGITAL
82 1.1 ahoka * shall not be liable for special, indirect, consequential, or
83 1.1 ahoka * incidental damages or damages for lost profits, loss of
84 1.1 ahoka * revenue or loss of use, whether such damages arise in contract,
85 1.1 ahoka * negligence, tort, under statute, in equity, at law or otherwise,
86 1.1 ahoka * even if advised of the possibility of such damage.
87 1.1 ahoka */
88 1.1 ahoka
89 1.1 ahoka #include <sys/cdefs.h>
90 1.1 ahoka
91 1.1 ahoka #include <sys/param.h>
92 1.4 nisimura #include <sys/kernel.h>
93 1.1 ahoka #include <sys/systm.h>
94 1.1 ahoka #include <sys/mbuf.h>
95 1.1 ahoka #include <sys/syslog.h>
96 1.1 ahoka #include <sys/socket.h>
97 1.1 ahoka #include <sys/device.h>
98 1.1 ahoka #include <sys/malloc.h>
99 1.1 ahoka #include <sys/ioctl.h>
100 1.1 ahoka #include <sys/errno.h>
101 1.1 ahoka
102 1.1 ahoka #include <net/if.h>
103 1.1 ahoka #include <net/if_ether.h>
104 1.1 ahoka #include <net/if_media.h>
105 1.1 ahoka #ifdef INET
106 1.1 ahoka #include <netinet/in.h>
107 1.1 ahoka #include <netinet/if_inarp.h>
108 1.1 ahoka #endif
109 1.1 ahoka
110 1.1 ahoka #include <net/bpf.h>
111 1.1 ahoka #include <net/bpfdesc.h>
112 1.1 ahoka
113 1.1 ahoka #include <sys/bus.h>
114 1.1 ahoka #include <sys/intr.h>
115 1.1 ahoka
116 1.1 ahoka #include <dev/ic/dm9000var.h>
117 1.1 ahoka #include <dev/ic/dm9000reg.h>
118 1.1 ahoka
119 1.1 ahoka #if 1
120 1.1 ahoka #undef DM9000_DEBUG
121 1.4 nisimura #undef DM9000_TX_DEBUG
122 1.1 ahoka #undef DM9000_TX_DATA_DEBUG
123 1.1 ahoka #undef DM9000_RX_DEBUG
124 1.1 ahoka #undef DM9000_RX_DATA_DEBUG
125 1.1 ahoka #else
126 1.1 ahoka #define DM9000_DEBUG
127 1.1 ahoka #define DM9000_TX_DEBUG
128 1.1 ahoka #define DM9000_TX_DATA_DEBUG
129 1.1 ahoka #define DM9000_RX_DEBUG
130 1.1 ahoka #define DM9000_RX_DATA_DEBUG
131 1.1 ahoka #endif
132 1.1 ahoka
133 1.1 ahoka #ifdef DM9000_DEBUG
134 1.1 ahoka #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
135 1.1 ahoka #else
136 1.1 ahoka #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
137 1.1 ahoka #endif
138 1.1 ahoka
139 1.1 ahoka #ifdef DM9000_TX_DEBUG
140 1.1 ahoka #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
141 1.1 ahoka #else
142 1.1 ahoka #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
143 1.1 ahoka #endif
144 1.1 ahoka
145 1.1 ahoka #ifdef DM9000_RX_DEBUG
146 1.1 ahoka #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
147 1.1 ahoka #else
148 1.1 ahoka #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
149 1.1 ahoka #endif
150 1.1 ahoka
151 1.1 ahoka #ifdef DM9000_RX_DATA_DEBUG
152 1.1 ahoka #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
153 1.1 ahoka #else
154 1.1 ahoka #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
155 1.1 ahoka #endif
156 1.1 ahoka
157 1.1 ahoka #ifdef DM9000_TX_DATA_DEBUG
158 1.1 ahoka #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
159 1.1 ahoka #else
160 1.1 ahoka #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
161 1.1 ahoka #endif
162 1.1 ahoka
163 1.4 nisimura /*** Internal PHY functions ***/
164 1.7 macallan uint16_t dme_phy_read(struct dme_softc *, int );
165 1.7 macallan void dme_phy_write(struct dme_softc *, int, uint16_t);
166 1.7 macallan void dme_phy_init(struct dme_softc *);
167 1.7 macallan void dme_phy_reset(struct dme_softc *);
168 1.7 macallan void dme_phy_update_media(struct dme_softc *);
169 1.7 macallan void dme_phy_check_link(void *);
170 1.1 ahoka
171 1.1 ahoka /*** Methods registered in struct ifnet ***/
172 1.7 macallan void dme_start_output(struct ifnet *);
173 1.7 macallan int dme_init(struct ifnet *);
174 1.7 macallan int dme_ioctl(struct ifnet *, u_long, void *);
175 1.7 macallan void dme_stop(struct ifnet *, int);
176 1.1 ahoka
177 1.7 macallan int dme_mediachange(struct ifnet *);
178 1.7 macallan void dme_mediastatus(struct ifnet *, struct ifmediareq *);
179 1.1 ahoka
180 1.1 ahoka /*** Internal methods ***/
181 1.1 ahoka
182 1.1 ahoka /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
183 1.7 macallan void dme_prepare(struct dme_softc *, struct ifnet *);
184 1.1 ahoka
185 1.1 ahoka /* Transmit prepared data */
186 1.7 macallan void dme_transmit(struct dme_softc *);
187 1.1 ahoka
188 1.1 ahoka /* Receive data */
189 1.7 macallan void dme_receive(struct dme_softc *, struct ifnet *);
190 1.1 ahoka
191 1.1 ahoka /* Software Initialize/Reset of the DM9000 */
192 1.7 macallan void dme_reset(struct dme_softc *);
193 1.1 ahoka
194 1.4 nisimura /* Configure multicast filter */
195 1.7 macallan void dme_set_addr_filter(struct dme_softc *);
196 1.4 nisimura
197 1.4 nisimura /* Set media */
198 1.7 macallan int dme_set_media(struct dme_softc *, int );
199 1.4 nisimura
200 1.4 nisimura /* Read/write packet data from/to DM9000 IC in various transfer sizes */
201 1.7 macallan int dme_pkt_read_2(struct dme_softc *, struct ifnet *, struct mbuf **);
202 1.7 macallan int dme_pkt_write_2(struct dme_softc *, struct mbuf *);
203 1.7 macallan int dme_pkt_read_1(struct dme_softc *, struct ifnet *, struct mbuf **);
204 1.7 macallan int dme_pkt_write_1(struct dme_softc *, struct mbuf *);
205 1.6 macallan /* TODO: Implement 32 bit read/write functions */
206 1.4 nisimura
207 1.1 ahoka uint16_t
208 1.1 ahoka dme_phy_read(struct dme_softc *sc, int reg)
209 1.1 ahoka {
210 1.1 ahoka uint16_t val;
211 1.1 ahoka /* Select Register to read*/
212 1.1 ahoka dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
213 1.1 ahoka (reg & DM9000_EPAR_EROA_MASK));
214 1.1 ahoka /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
215 1.1 ahoka dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
216 1.1 ahoka
217 1.1 ahoka /* Wait until access to PHY has completed */
218 1.1 ahoka while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
219 1.1 ahoka
220 1.1 ahoka /* Reset ERPRR-bit */
221 1.1 ahoka dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
222 1.1 ahoka
223 1.1 ahoka val = dme_read(sc, DM9000_EPDRL);
224 1.1 ahoka val += dme_read(sc, DM9000_EPDRH) << 8;
225 1.1 ahoka
226 1.1 ahoka return val;
227 1.1 ahoka }
228 1.1 ahoka
229 1.1 ahoka void
230 1.1 ahoka dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
231 1.1 ahoka {
232 1.1 ahoka /* Select Register to write*/
233 1.1 ahoka dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
234 1.1 ahoka (reg & DM9000_EPAR_EROA_MASK));
235 1.1 ahoka
236 1.1 ahoka /* Write data to the two data registers */
237 1.1 ahoka dme_write(sc, DM9000_EPDRL, value & 0xFF);
238 1.1 ahoka dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
239 1.1 ahoka
240 1.1 ahoka /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
241 1.1 ahoka dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
242 1.1 ahoka
243 1.1 ahoka /* Wait until access to PHY has completed */
244 1.1 ahoka while(dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
245 1.1 ahoka
246 1.4 nisimura /* Reset ERPRR-bit */
247 1.4 nisimura dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
248 1.4 nisimura }
249 1.4 nisimura
250 1.4 nisimura void
251 1.4 nisimura dme_phy_init(struct dme_softc *sc)
252 1.4 nisimura {
253 1.4 nisimura u_int ifm_media = sc->sc_media.ifm_media;
254 1.4 nisimura uint32_t bmcr, anar;
255 1.4 nisimura
256 1.4 nisimura bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
257 1.4 nisimura anar = dme_phy_read(sc, DM9000_PHY_ANAR);
258 1.4 nisimura
259 1.4 nisimura anar = anar & ~DM9000_PHY_ANAR_10_HDX
260 1.4 nisimura & ~DM9000_PHY_ANAR_10_FDX
261 1.4 nisimura & ~DM9000_PHY_ANAR_TX_HDX
262 1.4 nisimura & ~DM9000_PHY_ANAR_TX_FDX;
263 1.4 nisimura
264 1.4 nisimura switch (IFM_SUBTYPE(ifm_media)) {
265 1.4 nisimura case IFM_AUTO:
266 1.4 nisimura bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
267 1.4 nisimura anar |= DM9000_PHY_ANAR_10_HDX |
268 1.4 nisimura DM9000_PHY_ANAR_10_FDX |
269 1.4 nisimura DM9000_PHY_ANAR_TX_HDX |
270 1.4 nisimura DM9000_PHY_ANAR_TX_FDX;
271 1.4 nisimura break;
272 1.4 nisimura case IFM_10_T:
273 1.4 nisimura //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
274 1.4 nisimura bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
275 1.4 nisimura if (ifm_media & IFM_FDX)
276 1.4 nisimura anar |= DM9000_PHY_ANAR_10_FDX;
277 1.4 nisimura else
278 1.4 nisimura anar |= DM9000_PHY_ANAR_10_HDX;
279 1.4 nisimura break;
280 1.4 nisimura case IFM_100_TX:
281 1.4 nisimura //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
282 1.4 nisimura bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
283 1.4 nisimura if (ifm_media & IFM_FDX)
284 1.4 nisimura anar |= DM9000_PHY_ANAR_TX_FDX;
285 1.4 nisimura else
286 1.4 nisimura anar |= DM9000_PHY_ANAR_TX_HDX;
287 1.4 nisimura
288 1.4 nisimura break;
289 1.4 nisimura }
290 1.4 nisimura
291 1.4 nisimura if(ifm_media & IFM_FDX) {
292 1.4 nisimura bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
293 1.4 nisimura } else {
294 1.4 nisimura bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
295 1.4 nisimura }
296 1.4 nisimura
297 1.4 nisimura dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
298 1.4 nisimura dme_phy_write(sc, DM9000_PHY_ANAR, anar);
299 1.4 nisimura }
300 1.4 nisimura
301 1.4 nisimura void
302 1.4 nisimura dme_phy_reset(struct dme_softc *sc)
303 1.4 nisimura {
304 1.4 nisimura uint32_t reg;
305 1.4 nisimura
306 1.4 nisimura /* PHY Reset */
307 1.4 nisimura dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
308 1.4 nisimura
309 1.4 nisimura reg = dme_read(sc, DM9000_GPCR);
310 1.4 nisimura dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
311 1.4 nisimura reg = dme_read(sc, DM9000_GPR);
312 1.4 nisimura dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
313 1.4 nisimura
314 1.4 nisimura dme_phy_init(sc);
315 1.1 ahoka
316 1.4 nisimura reg = dme_read(sc, DM9000_GPR);
317 1.4 nisimura dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
318 1.4 nisimura reg = dme_read(sc, DM9000_GPCR);
319 1.4 nisimura dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
320 1.1 ahoka
321 1.4 nisimura dme_phy_update_media(sc);
322 1.4 nisimura }
323 1.4 nisimura
324 1.4 nisimura void
325 1.4 nisimura dme_phy_update_media(struct dme_softc *sc)
326 1.4 nisimura {
327 1.4 nisimura u_int ifm_media = sc->sc_media.ifm_media;
328 1.4 nisimura uint32_t reg;
329 1.4 nisimura
330 1.4 nisimura if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
331 1.4 nisimura /* If auto-negotiation is used, ensures that it is completed
332 1.4 nisimura before trying to extract any media information. */
333 1.4 nisimura reg = dme_phy_read(sc, DM9000_PHY_BMSR);
334 1.4 nisimura if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
335 1.4 nisimura /* Auto-negotation not possible, therefore there is no
336 1.4 nisimura reason to try obtain any media information. */
337 1.4 nisimura return;
338 1.4 nisimura }
339 1.4 nisimura
340 1.4 nisimura /* Then loop until the negotiation is completed. */
341 1.4 nisimura while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
342 1.4 nisimura /* TODO: Bail out after a finite number of attempts
343 1.4 nisimura in case something goes wrong. */
344 1.4 nisimura preempt();
345 1.4 nisimura reg = dme_phy_read(sc, DM9000_PHY_BMSR);
346 1.4 nisimura }
347 1.4 nisimura }
348 1.4 nisimura
349 1.4 nisimura
350 1.4 nisimura sc->sc_media_active = IFM_ETHER;
351 1.4 nisimura reg = dme_phy_read(sc, DM9000_PHY_BMCR);
352 1.4 nisimura
353 1.4 nisimura if (reg & DM9000_PHY_BMCR_SPEED_SELECT) {
354 1.4 nisimura sc->sc_media_active |= IFM_100_TX;
355 1.4 nisimura } else {
356 1.4 nisimura sc->sc_media_active |= IFM_10_T;
357 1.4 nisimura }
358 1.4 nisimura
359 1.4 nisimura if (reg & DM9000_PHY_BMCR_DUPLEX_MODE) {
360 1.4 nisimura sc->sc_media_active |= IFM_FDX;
361 1.4 nisimura }
362 1.4 nisimura }
363 1.4 nisimura
364 1.4 nisimura void
365 1.4 nisimura dme_phy_check_link(void *arg)
366 1.4 nisimura {
367 1.4 nisimura struct dme_softc *sc = arg;
368 1.4 nisimura uint32_t reg;
369 1.4 nisimura int s;
370 1.4 nisimura
371 1.4 nisimura s = splnet();
372 1.4 nisimura
373 1.4 nisimura reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
374 1.4 nisimura
375 1.4 nisimura if( reg )
376 1.4 nisimura reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
377 1.4 nisimura else {
378 1.4 nisimura reg = IFM_ETHER | IFM_AVALID;
379 1.4 nisimura sc->sc_media_active = IFM_NONE;
380 1.4 nisimura }
381 1.4 nisimura
382 1.4 nisimura if ( (sc->sc_media_status != reg) && (reg & IFM_ACTIVE)) {
383 1.4 nisimura dme_phy_reset(sc);
384 1.4 nisimura }
385 1.4 nisimura
386 1.4 nisimura sc->sc_media_status = reg;
387 1.4 nisimura
388 1.4 nisimura callout_schedule(&sc->sc_link_callout, mstohz(2000));
389 1.4 nisimura splx(s);
390 1.4 nisimura }
391 1.4 nisimura
392 1.4 nisimura int
393 1.4 nisimura dme_set_media(struct dme_softc *sc, int media)
394 1.4 nisimura {
395 1.4 nisimura int s;
396 1.4 nisimura
397 1.4 nisimura s = splnet();
398 1.4 nisimura sc->sc_media.ifm_media = media;
399 1.4 nisimura dme_phy_reset(sc);
400 1.4 nisimura
401 1.4 nisimura splx(s);
402 1.4 nisimura
403 1.4 nisimura return 0;
404 1.1 ahoka }
405 1.1 ahoka
406 1.1 ahoka int
407 1.4 nisimura dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
408 1.1 ahoka {
409 1.4 nisimura struct ifnet *ifp = &sc->sc_ethercom.ec_if;
410 1.4 nisimura uint8_t b[2];
411 1.4 nisimura uint16_t io_mode;
412 1.1 ahoka
413 1.1 ahoka dme_read_c(sc, DM9000_VID0, b, 2);
414 1.1 ahoka #if BYTE_ORDER == BIG_ENDIAN
415 1.1 ahoka sc->sc_vendor_id = (b[0] << 8) | b[1];
416 1.1 ahoka #else
417 1.1 ahoka sc->sc_vendor_id = b[0] | (b[1] << 8);
418 1.1 ahoka #endif
419 1.1 ahoka dme_read_c(sc, DM9000_PID0, b, 2);
420 1.1 ahoka #if BYTE_ORDER == BIG_ENDIAN
421 1.1 ahoka sc->sc_product_id = (b[0] << 8) | b[1];
422 1.1 ahoka #else
423 1.1 ahoka sc->sc_product_id = b[0] | (b[1] << 8);
424 1.1 ahoka #endif
425 1.1 ahoka /* TODO: Check the vendor ID as well */
426 1.1 ahoka if (sc->sc_product_id != 0x9000) {
427 1.1 ahoka panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
428 1.1 ahoka sc->sc_product_id);
429 1.1 ahoka }
430 1.1 ahoka
431 1.1 ahoka /* Initialize ifnet structure. */
432 1.1 ahoka strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
433 1.1 ahoka ifp->if_softc = sc;
434 1.1 ahoka ifp->if_start = dme_start_output;
435 1.1 ahoka ifp->if_init = dme_init;
436 1.1 ahoka ifp->if_ioctl = dme_ioctl;
437 1.1 ahoka ifp->if_stop = dme_stop;
438 1.1 ahoka ifp->if_watchdog = NULL; /* no watchdog at this stage */
439 1.4 nisimura ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_BROADCAST |
440 1.4 nisimura IFF_MULTICAST;
441 1.1 ahoka IFQ_SET_READY(&ifp->if_snd);
442 1.1 ahoka
443 1.1 ahoka /* Initialize ifmedia structures. */
444 1.1 ahoka ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
445 1.4 nisimura ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
446 1.4 nisimura ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
447 1.4 nisimura ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
448 1.4 nisimura ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
449 1.4 nisimura ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
450 1.4 nisimura
451 1.4 nisimura ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
452 1.1 ahoka
453 1.1 ahoka if (enaddr != NULL)
454 1.1 ahoka memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
455 1.4 nisimura /* TODO: Support an EEPROM attached to the DM9000 chip */
456 1.4 nisimura
457 1.4 nisimura callout_init(&sc->sc_link_callout, 0);
458 1.4 nisimura callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
459 1.4 nisimura
460 1.4 nisimura sc->sc_media_status = 0;
461 1.1 ahoka
462 1.1 ahoka /* Configure DM9000 with the MAC address */
463 1.1 ahoka dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
464 1.1 ahoka
465 1.1 ahoka #ifdef DM9000_DEBUG
466 1.1 ahoka {
467 1.1 ahoka uint8_t macAddr[6];
468 1.1 ahoka dme_read_c(sc, DM9000_PAB0, macAddr, 6);
469 1.1 ahoka printf("DM9000 configured with MAC address: ");
470 1.1 ahoka for (int i = 0; i < 6; i++) {
471 1.1 ahoka printf("%02X:", macAddr[i]);
472 1.1 ahoka }
473 1.1 ahoka printf("\n");
474 1.1 ahoka }
475 1.1 ahoka #endif
476 1.1 ahoka
477 1.1 ahoka if_attach(ifp);
478 1.1 ahoka ether_ifattach(ifp, sc->sc_enaddr);
479 1.1 ahoka
480 1.1 ahoka #ifdef DM9000_DEBUG
481 1.1 ahoka {
482 1.1 ahoka uint8_t network_state;
483 1.1 ahoka network_state = dme_read(sc, DM9000_NSR);
484 1.1 ahoka printf("DM9000 Link status: ");
485 1.1 ahoka if (network_state & DM9000_NSR_LINKST) {
486 1.1 ahoka if (network_state & DM9000_NSR_SPEED)
487 1.1 ahoka printf("10Mbps");
488 1.1 ahoka else
489 1.1 ahoka printf("100Mbps");
490 1.1 ahoka } else {
491 1.1 ahoka printf("Down");
492 1.1 ahoka }
493 1.1 ahoka printf("\n");
494 1.1 ahoka }
495 1.1 ahoka #endif
496 1.1 ahoka
497 1.4 nisimura io_mode = (dme_read(sc, DM9000_ISR) &
498 1.1 ahoka DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
499 1.4 nisimura
500 1.4 nisimura DPRINTF(("DM9000 Operation Mode: "));
501 1.4 nisimura switch( io_mode) {
502 1.1 ahoka case DM9000_MODE_16BIT:
503 1.4 nisimura DPRINTF(("16-bit mode"));
504 1.4 nisimura sc->sc_data_width = 2;
505 1.4 nisimura sc->sc_pkt_write = dme_pkt_write_2;
506 1.4 nisimura sc->sc_pkt_read = dme_pkt_read_2;
507 1.1 ahoka break;
508 1.1 ahoka case DM9000_MODE_32BIT:
509 1.4 nisimura DPRINTF(("32-bit mode"));
510 1.4 nisimura sc->sc_data_width = 4;
511 1.6 macallan panic("32bit mode is unsupported\n");
512 1.1 ahoka break;
513 1.1 ahoka case DM9000_MODE_8BIT:
514 1.4 nisimura DPRINTF(("8-bit mode"));
515 1.4 nisimura sc->sc_data_width = 1;
516 1.6 macallan sc->sc_pkt_write = dme_pkt_write_1;
517 1.6 macallan sc->sc_pkt_read = dme_pkt_read_1;
518 1.1 ahoka break;
519 1.4 nisimura default:
520 1.4 nisimura DPRINTF(("Invalid mode"));
521 1.1 ahoka break;
522 1.1 ahoka }
523 1.4 nisimura DPRINTF(("\n"));
524 1.4 nisimura
525 1.4 nisimura callout_schedule(&sc->sc_link_callout, mstohz(2000));
526 1.1 ahoka
527 1.1 ahoka return 0;
528 1.1 ahoka }
529 1.1 ahoka
530 1.1 ahoka int dme_intr(void *arg)
531 1.1 ahoka {
532 1.1 ahoka struct dme_softc *sc = arg;
533 1.1 ahoka struct ifnet *ifp = &sc->sc_ethercom.ec_if;
534 1.1 ahoka uint8_t status;
535 1.1 ahoka
536 1.4 nisimura
537 1.4 nisimura DPRINTF(("dme_intr: Begin\n"));
538 1.4 nisimura
539 1.1 ahoka /* Disable interrupts */
540 1.1 ahoka dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
541 1.1 ahoka
542 1.1 ahoka status = dme_read(sc, DM9000_ISR);
543 1.1 ahoka dme_write(sc, DM9000_ISR, status);
544 1.1 ahoka
545 1.1 ahoka if (status & DM9000_ISR_PRS) {
546 1.1 ahoka if (ifp->if_flags & IFF_RUNNING )
547 1.1 ahoka dme_receive(sc, ifp);
548 1.1 ahoka }
549 1.1 ahoka if (status & DM9000_ISR_PTS) {
550 1.1 ahoka uint8_t nsr;
551 1.1 ahoka uint8_t tx_status = 0x01; /* Initialize to an error value */
552 1.1 ahoka
553 1.1 ahoka /* A packet has been transmitted */
554 1.1 ahoka sc->txbusy = 0;
555 1.1 ahoka
556 1.1 ahoka nsr = dme_read(sc, DM9000_NSR);
557 1.1 ahoka
558 1.1 ahoka if (nsr & DM9000_NSR_TX1END) {
559 1.1 ahoka tx_status = dme_read(sc, DM9000_TSR1);
560 1.1 ahoka TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
561 1.1 ahoka } else if (nsr & DM9000_NSR_TX2END) {
562 1.1 ahoka tx_status = dme_read(sc, DM9000_TSR2);
563 1.1 ahoka TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
564 1.1 ahoka }
565 1.1 ahoka
566 1.1 ahoka if (tx_status == 0x0) {
567 1.1 ahoka /* Frame successfully sent */
568 1.1 ahoka ifp->if_opackets++;
569 1.1 ahoka } else {
570 1.1 ahoka ifp->if_oerrors++;
571 1.1 ahoka }
572 1.1 ahoka
573 1.1 ahoka /* If we have nothing ready to transmit, prepare something */
574 1.1 ahoka if (!sc->txready) {
575 1.1 ahoka dme_prepare(sc, ifp);
576 1.1 ahoka }
577 1.1 ahoka
578 1.1 ahoka if (sc->txready)
579 1.1 ahoka dme_transmit(sc);
580 1.1 ahoka
581 1.1 ahoka /* Prepare the next frame */
582 1.1 ahoka dme_prepare(sc, ifp);
583 1.1 ahoka
584 1.1 ahoka }
585 1.1 ahoka #ifdef notyet
586 1.1 ahoka if (status & DM9000_ISR_LNKCHNG) {
587 1.1 ahoka }
588 1.1 ahoka #endif
589 1.1 ahoka
590 1.1 ahoka /* Enable interrupts again */
591 1.1 ahoka dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM |
592 1.1 ahoka DM9000_IMR_PTM);
593 1.1 ahoka
594 1.4 nisimura DPRINTF(("dme_intr: End\n"));
595 1.4 nisimura
596 1.1 ahoka return 1;
597 1.1 ahoka }
598 1.1 ahoka
599 1.1 ahoka void
600 1.1 ahoka dme_start_output(struct ifnet *ifp)
601 1.1 ahoka {
602 1.1 ahoka struct dme_softc *sc;
603 1.1 ahoka
604 1.1 ahoka sc = ifp->if_softc;
605 1.1 ahoka
606 1.4 nisimura DPRINTF(("dme_start_output: Begin\n"));
607 1.4 nisimura
608 1.1 ahoka if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
609 1.1 ahoka printf("No output\n");
610 1.1 ahoka return;
611 1.1 ahoka }
612 1.1 ahoka
613 1.1 ahoka if (sc->txbusy && sc->txready) {
614 1.1 ahoka panic("DM9000: Internal error, trying to send without"
615 1.1 ahoka " any empty queue\n");
616 1.1 ahoka }
617 1.1 ahoka
618 1.1 ahoka dme_prepare(sc, ifp);
619 1.1 ahoka
620 1.1 ahoka if (sc->txbusy == 0) {
621 1.1 ahoka /* We are ready to transmit right away */
622 1.1 ahoka dme_transmit(sc);
623 1.1 ahoka dme_prepare(sc, ifp); /* Prepare next one */
624 1.1 ahoka } else {
625 1.1 ahoka /* We need to wait until the current packet has
626 1.1 ahoka * been transmitted.
627 1.1 ahoka */
628 1.1 ahoka ifp->if_flags |= IFF_OACTIVE;
629 1.1 ahoka }
630 1.4 nisimura
631 1.4 nisimura DPRINTF(("dme_start_output: End\n"));
632 1.1 ahoka }
633 1.1 ahoka
634 1.1 ahoka void
635 1.1 ahoka dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
636 1.1 ahoka {
637 1.1 ahoka struct mbuf *bufChain;
638 1.1 ahoka uint16_t length;
639 1.1 ahoka
640 1.1 ahoka TX_DPRINTF(("dme_prepare: Entering\n"));
641 1.1 ahoka
642 1.1 ahoka if (sc->txready)
643 1.1 ahoka panic("dme_prepare: Someone called us with txready set\n");
644 1.1 ahoka
645 1.1 ahoka IFQ_DEQUEUE(&ifp->if_snd, bufChain);
646 1.1 ahoka if (bufChain == NULL) {
647 1.1 ahoka TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
648 1.1 ahoka ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
649 1.1 ahoka return; /* Nothing to transmit */
650 1.1 ahoka }
651 1.1 ahoka
652 1.1 ahoka /* Element has now been removed from the queue, so we better send it */
653 1.1 ahoka
654 1.1 ahoka if (ifp->if_bpf)
655 1.1 ahoka bpf_mtap(ifp, bufChain);
656 1.1 ahoka
657 1.1 ahoka /* Setup the DM9000 to accept the writes, and then write each buf in
658 1.1 ahoka the chain. */
659 1.1 ahoka
660 1.1 ahoka TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
661 1.1 ahoka bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
662 1.4 nisimura length = sc->sc_pkt_write(sc, bufChain);
663 1.1 ahoka TX_DATA_DPRINTF(("\n"));
664 1.1 ahoka
665 1.4 nisimura if (length % sc->sc_data_width != 0) {
666 1.4 nisimura panic("dme_prepare: length is not compatible with IO_MODE");
667 1.1 ahoka }
668 1.1 ahoka
669 1.1 ahoka sc->txready_length = length;
670 1.1 ahoka sc->txready = 1;
671 1.1 ahoka
672 1.1 ahoka TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
673 1.1 ahoka "txready: %d, txready_length: %d\n",
674 1.1 ahoka sc->txbusy, sc->txready, sc->txready_length));
675 1.1 ahoka
676 1.1 ahoka m_freem(bufChain);
677 1.1 ahoka
678 1.1 ahoka TX_DPRINTF(("dme_prepare: Leaving\n"));
679 1.1 ahoka }
680 1.1 ahoka
681 1.1 ahoka int
682 1.1 ahoka dme_init(struct ifnet *ifp)
683 1.1 ahoka {
684 1.1 ahoka int s;
685 1.1 ahoka struct dme_softc *sc = ifp->if_softc;
686 1.1 ahoka
687 1.1 ahoka dme_stop(ifp, 0);
688 1.1 ahoka
689 1.1 ahoka s = splnet();
690 1.1 ahoka
691 1.1 ahoka dme_reset(sc);
692 1.1 ahoka
693 1.1 ahoka sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
694 1.1 ahoka sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
695 1.1 ahoka sc->sc_ethercom.ec_if.if_timer = 0;
696 1.1 ahoka
697 1.1 ahoka splx(s);
698 1.1 ahoka
699 1.1 ahoka return 0;
700 1.1 ahoka }
701 1.1 ahoka
702 1.1 ahoka int
703 1.1 ahoka dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
704 1.1 ahoka {
705 1.1 ahoka struct dme_softc *sc = ifp->if_softc;
706 1.1 ahoka struct ifreq *ifr = data;
707 1.1 ahoka int s, error = 0;
708 1.1 ahoka
709 1.1 ahoka s = splnet();
710 1.1 ahoka
711 1.1 ahoka switch(cmd) {
712 1.1 ahoka case SIOCGIFMEDIA:
713 1.1 ahoka case SIOCSIFMEDIA:
714 1.1 ahoka error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
715 1.1 ahoka break;
716 1.1 ahoka default:
717 1.1 ahoka error = ether_ioctl(ifp, cmd, data);
718 1.4 nisimura if (error == ENETRESET) {
719 1.4 nisimura if (ifp->if_flags && IFF_RUNNING) {
720 1.4 nisimura /* Address list has changed, reconfigure
721 1.4 nisimura filter */
722 1.4 nisimura dme_set_addr_filter(sc);
723 1.4 nisimura }
724 1.4 nisimura error = 0;
725 1.4 nisimura }
726 1.1 ahoka break;
727 1.1 ahoka }
728 1.1 ahoka
729 1.1 ahoka splx(s);
730 1.1 ahoka return error;
731 1.1 ahoka }
732 1.1 ahoka
733 1.1 ahoka void
734 1.1 ahoka dme_stop(struct ifnet *ifp, int disable)
735 1.1 ahoka {
736 1.1 ahoka struct dme_softc *sc = ifp->if_softc;
737 1.1 ahoka
738 1.1 ahoka /* Not quite sure what to do when called with disable == 0 */
739 1.1 ahoka if (disable) {
740 1.1 ahoka /* Disable RX */
741 1.1 ahoka dme_write(sc, DM9000_RCR, 0x0);
742 1.1 ahoka }
743 1.1 ahoka
744 1.1 ahoka ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
745 1.1 ahoka ifp->if_timer = 0;
746 1.1 ahoka }
747 1.1 ahoka
748 1.1 ahoka int
749 1.1 ahoka dme_mediachange(struct ifnet *ifp)
750 1.1 ahoka {
751 1.4 nisimura struct dme_softc *sc = ifp->if_softc;
752 1.4 nisimura
753 1.4 nisimura return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
754 1.1 ahoka }
755 1.1 ahoka
756 1.1 ahoka void
757 1.1 ahoka dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
758 1.1 ahoka {
759 1.1 ahoka struct dme_softc *sc = ifp->if_softc;
760 1.1 ahoka
761 1.4 nisimura ifmr->ifm_active = sc->sc_media_active;
762 1.4 nisimura ifmr->ifm_status = sc->sc_media_status;
763 1.1 ahoka }
764 1.1 ahoka
765 1.1 ahoka void
766 1.1 ahoka dme_transmit(struct dme_softc *sc)
767 1.1 ahoka {
768 1.1 ahoka
769 1.1 ahoka TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
770 1.1 ahoka sc->txready, sc->txbusy));
771 1.1 ahoka
772 1.1 ahoka dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
773 1.1 ahoka dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
774 1.1 ahoka
775 1.1 ahoka /* Request to send the packet */
776 1.5 skrll dme_read(sc, DM9000_ISR);
777 1.1 ahoka
778 1.1 ahoka dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
779 1.1 ahoka
780 1.1 ahoka sc->txready = 0;
781 1.1 ahoka sc->txbusy = 1;
782 1.1 ahoka sc->txready_length = 0;
783 1.1 ahoka }
784 1.1 ahoka
785 1.1 ahoka void
786 1.1 ahoka dme_receive(struct dme_softc *sc, struct ifnet *ifp)
787 1.1 ahoka {
788 1.1 ahoka uint8_t ready = 0x01;
789 1.1 ahoka
790 1.1 ahoka DPRINTF(("inside dme_receive\n"));
791 1.1 ahoka
792 1.1 ahoka while (ready == 0x01) {
793 1.1 ahoka /* Packet received, retrieve it */
794 1.1 ahoka
795 1.7 macallan /* Read without address increment to get the ready byte without
796 1.7 macallan moving past it. */
797 1.1 ahoka bus_space_write_1(sc->sc_iot, sc->sc_ioh,
798 1.1 ahoka sc->dme_io, DM9000_MRCMDX);
799 1.1 ahoka /* Dummy ready */
800 1.1 ahoka ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
801 1.1 ahoka ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
802 1.1 ahoka ready &= 0x03; /* we only want bits 1:0 */
803 1.1 ahoka if (ready == 0x01) {
804 1.4 nisimura uint8_t rx_status;
805 1.4 nisimura struct mbuf *m;
806 1.1 ahoka
807 1.1 ahoka /* Read with address increment. */
808 1.1 ahoka bus_space_write_1(sc->sc_iot, sc->sc_ioh,
809 1.4 nisimura sc->dme_io, DM9000_MRCMD);
810 1.1 ahoka
811 1.4 nisimura rx_status = sc->sc_pkt_read(sc, ifp, &m);
812 1.8 macallan if (m == NULL) {
813 1.8 macallan /* failed to allocate a receive buffer */
814 1.8 macallan ifp->if_ierrors++;
815 1.8 macallan RX_DPRINTF(("dme_receive: "
816 1.8 macallan "Error allocating buffer\n"));
817 1.8 macallan } else if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
818 1.1 ahoka /* Error while receiving the packet,
819 1.1 ahoka * discard it and keep track of counters
820 1.1 ahoka */
821 1.1 ahoka ifp->if_ierrors++;
822 1.1 ahoka RX_DPRINTF(("dme_receive: "
823 1.1 ahoka "Error reciving packet\n"));
824 1.1 ahoka } else if (rx_status & DM9000_RSR_LCS) {
825 1.1 ahoka ifp->if_collisions++;
826 1.1 ahoka } else {
827 1.1 ahoka if (ifp->if_bpf)
828 1.1 ahoka bpf_mtap(ifp, m);
829 1.1 ahoka ifp->if_ipackets++;
830 1.1 ahoka (*ifp->if_input)(ifp, m);
831 1.1 ahoka }
832 1.1 ahoka
833 1.1 ahoka } else if (ready != 0x00) {
834 1.1 ahoka /* Should this be logged somehow? */
835 1.4 nisimura printf("%s: Resetting chip\n",
836 1.4 nisimura device_xname(sc->sc_dev));
837 1.1 ahoka dme_reset(sc);
838 1.1 ahoka }
839 1.1 ahoka }
840 1.1 ahoka }
841 1.1 ahoka
842 1.1 ahoka void
843 1.1 ahoka dme_reset(struct dme_softc *sc)
844 1.1 ahoka {
845 1.1 ahoka uint8_t var;
846 1.1 ahoka
847 1.4 nisimura /* We only re-initialized the PHY in this function the first time it is
848 1.4 nisimura called. */
849 1.4 nisimura if( !sc->sc_phy_initialized) {
850 1.4 nisimura /* PHY Reset */
851 1.4 nisimura dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
852 1.4 nisimura
853 1.4 nisimura /* PHY Power Down */
854 1.4 nisimura var = dme_read(sc, DM9000_GPR);
855 1.4 nisimura dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
856 1.4 nisimura }
857 1.1 ahoka
858 1.4 nisimura /* Reset the DM9000 twice, as described in section 2 of the Programming
859 1.4 nisimura Guide.
860 1.4 nisimura The PHY is initialized and enabled between those two resets.
861 1.1 ahoka */
862 1.4 nisimura
863 1.4 nisimura /* Software Reset*/
864 1.1 ahoka dme_write(sc, DM9000_NCR,
865 1.1 ahoka DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
866 1.1 ahoka delay(20);
867 1.1 ahoka dme_write(sc, DM9000_NCR, 0x0);
868 1.4 nisimura
869 1.4 nisimura if( !sc->sc_phy_initialized) {
870 1.4 nisimura /* PHY Initialization */
871 1.4 nisimura dme_phy_init(sc);
872 1.4 nisimura
873 1.4 nisimura /* PHY Enable */
874 1.4 nisimura var = dme_read(sc, DM9000_GPR);
875 1.4 nisimura dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
876 1.4 nisimura var = dme_read(sc, DM9000_GPCR);
877 1.4 nisimura dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
878 1.4 nisimura
879 1.4 nisimura dme_write(sc, DM9000_NCR,
880 1.4 nisimura DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
881 1.4 nisimura delay(20);
882 1.4 nisimura dme_write(sc, DM9000_NCR, 0x0);
883 1.4 nisimura }
884 1.1 ahoka
885 1.1 ahoka /* Select internal PHY, no wakeup event, no collosion mode,
886 1.4 nisimura * normal loopback mode.
887 1.1 ahoka */
888 1.1 ahoka dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
889 1.1 ahoka
890 1.1 ahoka /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
891 1.1 ahoka dme_read(sc, DM9000_NSR);
892 1.1 ahoka
893 1.1 ahoka /* Enable wraparound of read/write pointer, packet received latch,
894 1.1 ahoka * and packet transmitted latch.
895 1.1 ahoka */
896 1.1 ahoka dme_write(sc, DM9000_IMR,
897 1.1 ahoka DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
898 1.1 ahoka
899 1.4 nisimura /* Setup multicast address filter, and enable RX. */
900 1.4 nisimura dme_set_addr_filter(sc);
901 1.4 nisimura
902 1.4 nisimura /* Obtain media information from PHY */
903 1.4 nisimura dme_phy_update_media(sc);
904 1.1 ahoka
905 1.1 ahoka sc->txbusy = 0;
906 1.1 ahoka sc->txready = 0;
907 1.4 nisimura sc->sc_phy_initialized = 1;
908 1.4 nisimura }
909 1.4 nisimura
910 1.4 nisimura void
911 1.4 nisimura dme_set_addr_filter(struct dme_softc *sc)
912 1.4 nisimura {
913 1.4 nisimura struct ether_multi *enm;
914 1.4 nisimura struct ether_multistep step;
915 1.4 nisimura struct ethercom *ec;
916 1.4 nisimura struct ifnet *ifp;
917 1.4 nisimura uint16_t af[4];
918 1.4 nisimura int i;
919 1.4 nisimura
920 1.4 nisimura ec = &sc->sc_ethercom;
921 1.4 nisimura ifp = &ec->ec_if;
922 1.4 nisimura
923 1.4 nisimura if (ifp->if_flags & IFF_PROMISC) {
924 1.4 nisimura dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN |
925 1.4 nisimura DM9000_RCR_WTDIS |
926 1.4 nisimura DM9000_RCR_PRMSC);
927 1.4 nisimura ifp->if_flags |= IFF_ALLMULTI;
928 1.4 nisimura return;
929 1.4 nisimura }
930 1.4 nisimura
931 1.4 nisimura af[0] = af[1] = af[2] = af[3] = 0x0000;
932 1.4 nisimura ifp->if_flags &= ~IFF_ALLMULTI;
933 1.4 nisimura
934 1.4 nisimura ETHER_FIRST_MULTI(step, ec, enm);
935 1.4 nisimura while (enm != NULL) {
936 1.4 nisimura uint16_t hash;
937 1.4 nisimura if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
938 1.4 nisimura sizeof(enm->enm_addrlo))) {
939 1.4 nisimura /*
940 1.4 nisimura * We must listen to a range of multicast addresses.
941 1.4 nisimura * For now, just accept all multicasts, rather than
942 1.4 nisimura * trying to set only those filter bits needed to match
943 1.4 nisimura * the range. (At this time, the only use of address
944 1.4 nisimura * ranges is for IP multicast routing, for which the
945 1.4 nisimura * range is big enough to require all bits set.)
946 1.4 nisimura */
947 1.4 nisimura ifp->if_flags |= IFF_ALLMULTI;
948 1.4 nisimura af[0] = af[1] = af[2] = af[3] = 0xffff;
949 1.4 nisimura break;
950 1.4 nisimura } else {
951 1.4 nisimura hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
952 1.4 nisimura af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
953 1.4 nisimura ETHER_NEXT_MULTI(step, enm);
954 1.4 nisimura }
955 1.4 nisimura }
956 1.4 nisimura
957 1.4 nisimura /* Write the multicast address filter */
958 1.4 nisimura for(i=0; i<4; i++) {
959 1.4 nisimura dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
960 1.4 nisimura dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
961 1.4 nisimura }
962 1.4 nisimura
963 1.4 nisimura /* Setup RX controls */
964 1.4 nisimura dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
965 1.4 nisimura }
966 1.4 nisimura
967 1.4 nisimura int
968 1.4 nisimura dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
969 1.4 nisimura {
970 1.4 nisimura int left_over_count = 0; /* Number of bytes from previous mbuf, which
971 1.4 nisimura need to be written with the next.*/
972 1.4 nisimura uint16_t left_over_buf = 0;
973 1.4 nisimura int length = 0;
974 1.4 nisimura struct mbuf *buf;
975 1.4 nisimura uint8_t *write_ptr;
976 1.4 nisimura
977 1.4 nisimura /* We expect that the DM9000 has been setup to accept writes before
978 1.4 nisimura this function is called. */
979 1.4 nisimura
980 1.4 nisimura for (buf = bufChain; buf != NULL; buf = buf->m_next) {
981 1.4 nisimura int to_write = buf->m_len;
982 1.4 nisimura
983 1.4 nisimura length += to_write;
984 1.4 nisimura
985 1.4 nisimura write_ptr = buf->m_data;
986 1.4 nisimura while (to_write > 0 ||
987 1.4 nisimura (buf->m_next == NULL && left_over_count > 0)
988 1.4 nisimura ) {
989 1.4 nisimura if (left_over_count > 0) {
990 1.4 nisimura uint8_t b = 0;
991 1.4 nisimura DPRINTF(("dme_pkt_write_16: "
992 1.4 nisimura "Writing left over byte\n"));
993 1.4 nisimura
994 1.4 nisimura if (to_write > 0) {
995 1.4 nisimura b = *write_ptr;
996 1.4 nisimura to_write--;
997 1.4 nisimura write_ptr++;
998 1.4 nisimura
999 1.4 nisimura DPRINTF(("Took single byte\n"));
1000 1.4 nisimura } else {
1001 1.4 nisimura DPRINTF(("Leftover in last run\n"));
1002 1.4 nisimura length++;
1003 1.4 nisimura }
1004 1.4 nisimura
1005 1.4 nisimura /* Does shift direction depend on endianess? */
1006 1.4 nisimura left_over_buf = left_over_buf | (b << 8);
1007 1.4 nisimura
1008 1.4 nisimura bus_space_write_2(sc->sc_iot, sc->sc_ioh,
1009 1.4 nisimura sc->dme_data, left_over_buf);
1010 1.4 nisimura TX_DATA_DPRINTF(("%02X ", left_over_buf));
1011 1.4 nisimura left_over_count = 0;
1012 1.4 nisimura } else if ((long)write_ptr % 2 != 0) {
1013 1.4 nisimura /* Misaligned data */
1014 1.4 nisimura DPRINTF(("dme_pkt_write_16: "
1015 1.4 nisimura "Detected misaligned data\n"));
1016 1.4 nisimura left_over_buf = *write_ptr;
1017 1.4 nisimura left_over_count = 1;
1018 1.4 nisimura write_ptr++;
1019 1.4 nisimura to_write--;
1020 1.4 nisimura } else {
1021 1.4 nisimura int i;
1022 1.7 macallan uint16_t *dptr = (uint16_t *)write_ptr;
1023 1.4 nisimura
1024 1.4 nisimura /* A block of aligned data. */
1025 1.7 macallan for(i = 0; i < to_write / 2; i++) {
1026 1.4 nisimura /* buf will be half-word aligned
1027 1.4 nisimura * all the time
1028 1.4 nisimura */
1029 1.4 nisimura bus_space_write_2(sc->sc_iot,
1030 1.7 macallan sc->sc_ioh, sc->dme_data, *dptr);
1031 1.4 nisimura TX_DATA_DPRINTF(("%02X %02X ",
1032 1.7 macallan *dptr & 0xFF, (*dptr >> 8) & 0xFF));
1033 1.4 nisimura dptr++;
1034 1.4 nisimura }
1035 1.4 nisimura
1036 1.7 macallan write_ptr += i * 2;
1037 1.4 nisimura if (to_write % 2 != 0) {
1038 1.4 nisimura DPRINTF(("dme_pkt_write_16: "
1039 1.4 nisimura "to_write %% 2: %d\n",
1040 1.4 nisimura to_write % 2));
1041 1.4 nisimura left_over_count = 1;
1042 1.4 nisimura /* XXX: Does this depend on
1043 1.4 nisimura * the endianess?
1044 1.4 nisimura */
1045 1.4 nisimura left_over_buf = *write_ptr;
1046 1.4 nisimura
1047 1.4 nisimura write_ptr++;
1048 1.4 nisimura to_write--;
1049 1.4 nisimura DPRINTF(("dme_pkt_write_16: "
1050 1.4 nisimura "to_write (after): %d\n",
1051 1.4 nisimura to_write));
1052 1.7 macallan DPRINTF(("dme_pkt_write_16: i * 2: %d\n",
1053 1.4 nisimura i*2));
1054 1.4 nisimura }
1055 1.7 macallan to_write -= i * 2;
1056 1.4 nisimura }
1057 1.4 nisimura } /* while(...) */
1058 1.4 nisimura } /* for(...) */
1059 1.4 nisimura
1060 1.4 nisimura return length;
1061 1.4 nisimura }
1062 1.4 nisimura
1063 1.4 nisimura int
1064 1.4 nisimura dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1065 1.4 nisimura {
1066 1.4 nisimura uint8_t rx_status;
1067 1.4 nisimura struct mbuf *m;
1068 1.4 nisimura uint16_t data;
1069 1.4 nisimura uint16_t frame_length;
1070 1.4 nisimura uint16_t i;
1071 1.4 nisimura uint16_t *buf;
1072 1.4 nisimura
1073 1.7 macallan data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1074 1.4 nisimura
1075 1.4 nisimura rx_status = data & 0xFF;
1076 1.4 nisimura frame_length = bus_space_read_2(sc->sc_iot,
1077 1.4 nisimura sc->sc_ioh, sc->dme_data);
1078 1.4 nisimura if (frame_length > ETHER_MAX_LEN) {
1079 1.4 nisimura printf("Got frame of length: %d\n", frame_length);
1080 1.4 nisimura printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1081 1.4 nisimura panic("Something is rotten");
1082 1.4 nisimura }
1083 1.4 nisimura RX_DPRINTF(("dme_receive: "
1084 1.4 nisimura "rx_statux: 0x%x, frame_length: %d\n",
1085 1.4 nisimura rx_status, frame_length));
1086 1.4 nisimura
1087 1.4 nisimura
1088 1.4 nisimura m = dme_alloc_receive_buffer(ifp, frame_length);
1089 1.8 macallan if (m == NULL) {
1090 1.8 macallan /*
1091 1.8 macallan * didn't get a receive buffer, so we read the rest of the
1092 1.8 macallan * packet, throw it away and return an error
1093 1.8 macallan */
1094 1.8 macallan for (i = 0; i < frame_length; i += 2 ) {
1095 1.8 macallan data = bus_space_read_2(sc->sc_iot,
1096 1.8 macallan sc->sc_ioh, sc->dme_data);
1097 1.8 macallan }
1098 1.8 macallan *outBuf = NULL;
1099 1.8 macallan return 0;
1100 1.8 macallan }
1101 1.4 nisimura
1102 1.4 nisimura buf = mtod(m, uint16_t*);
1103 1.4 nisimura
1104 1.4 nisimura RX_DPRINTF(("dme_receive: "));
1105 1.4 nisimura
1106 1.7 macallan for (i = 0; i < frame_length; i += 2 ) {
1107 1.4 nisimura data = bus_space_read_2(sc->sc_iot,
1108 1.4 nisimura sc->sc_ioh, sc->dme_data);
1109 1.4 nisimura if ( (frame_length % 2 != 0) &&
1110 1.7 macallan (i == frame_length - 1) ) {
1111 1.4 nisimura data = data & 0xff;
1112 1.4 nisimura RX_DPRINTF((" L "));
1113 1.4 nisimura }
1114 1.4 nisimura *buf = data;
1115 1.4 nisimura buf++;
1116 1.4 nisimura RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1117 1.7 macallan (data >> 8) & 0xff));
1118 1.4 nisimura }
1119 1.4 nisimura
1120 1.4 nisimura RX_DATA_DPRINTF(("\n"));
1121 1.4 nisimura RX_DPRINTF(("Read %d bytes\n", i));
1122 1.4 nisimura
1123 1.4 nisimura *outBuf = m;
1124 1.4 nisimura return rx_status;
1125 1.4 nisimura }
1126 1.4 nisimura
1127 1.6 macallan int
1128 1.6 macallan dme_pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
1129 1.6 macallan {
1130 1.6 macallan int length = 0, i;
1131 1.6 macallan struct mbuf *buf;
1132 1.6 macallan uint8_t *write_ptr;
1133 1.6 macallan
1134 1.6 macallan /* We expect that the DM9000 has been setup to accept writes before
1135 1.6 macallan this function is called. */
1136 1.6 macallan
1137 1.6 macallan for (buf = bufChain; buf != NULL; buf = buf->m_next) {
1138 1.6 macallan int to_write = buf->m_len;
1139 1.6 macallan
1140 1.6 macallan length += to_write;
1141 1.6 macallan
1142 1.6 macallan write_ptr = buf->m_data;
1143 1.7 macallan for (i = 0; i < to_write; i++) {
1144 1.6 macallan bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1145 1.6 macallan sc->dme_data, *write_ptr);
1146 1.6 macallan write_ptr++;
1147 1.6 macallan }
1148 1.6 macallan } /* for(...) */
1149 1.6 macallan
1150 1.6 macallan return length;
1151 1.6 macallan }
1152 1.6 macallan
1153 1.6 macallan int
1154 1.6 macallan dme_pkt_read_1(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1155 1.6 macallan {
1156 1.6 macallan uint8_t rx_status;
1157 1.6 macallan struct mbuf *m;
1158 1.6 macallan uint8_t *buf;
1159 1.6 macallan uint16_t frame_length;
1160 1.6 macallan uint16_t i, reg;
1161 1.6 macallan uint8_t data;
1162 1.6 macallan
1163 1.6 macallan reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1164 1.6 macallan reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1165 1.6 macallan rx_status = reg & 0xFF;
1166 1.6 macallan
1167 1.6 macallan reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1168 1.6 macallan reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1169 1.6 macallan frame_length = reg;
1170 1.7 macallan
1171 1.6 macallan if (frame_length > ETHER_MAX_LEN) {
1172 1.6 macallan printf("Got frame of length: %d\n", frame_length);
1173 1.6 macallan printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1174 1.6 macallan panic("Something is rotten");
1175 1.6 macallan }
1176 1.6 macallan RX_DPRINTF(("dme_receive: "
1177 1.6 macallan "rx_statux: 0x%x, frame_length: %d\n",
1178 1.6 macallan rx_status, frame_length));
1179 1.6 macallan
1180 1.6 macallan
1181 1.6 macallan m = dme_alloc_receive_buffer(ifp, frame_length);
1182 1.8 macallan if (m == NULL) {
1183 1.8 macallan /*
1184 1.8 macallan * didn't get a receive buffer, so we read the rest of the
1185 1.8 macallan * packet, throw it away and return an error
1186 1.8 macallan */
1187 1.8 macallan for (i = 0; i < frame_length; i++ ) {
1188 1.8 macallan data = bus_space_read_2(sc->sc_iot,
1189 1.8 macallan sc->sc_ioh, sc->dme_data);
1190 1.8 macallan }
1191 1.8 macallan *outBuf = NULL;
1192 1.8 macallan return 0;
1193 1.8 macallan }
1194 1.6 macallan
1195 1.7 macallan buf = mtod(m, uint8_t *);
1196 1.6 macallan
1197 1.6 macallan RX_DPRINTF(("dme_receive: "));
1198 1.6 macallan
1199 1.7 macallan for (i = 0; i< frame_length; i += 1 ) {
1200 1.7 macallan data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1201 1.6 macallan *buf = data;
1202 1.6 macallan buf++;
1203 1.6 macallan RX_DATA_DPRINTF(("%02X ", data));
1204 1.6 macallan }
1205 1.6 macallan
1206 1.6 macallan RX_DATA_DPRINTF(("\n"));
1207 1.6 macallan RX_DPRINTF(("Read %d bytes\n", i));
1208 1.6 macallan
1209 1.6 macallan *outBuf = m;
1210 1.6 macallan return rx_status;
1211 1.6 macallan }
1212 1.6 macallan
1213 1.4 nisimura struct mbuf*
1214 1.4 nisimura dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
1215 1.4 nisimura {
1216 1.4 nisimura struct dme_softc *sc = ifp->if_softc;
1217 1.4 nisimura struct mbuf *m;
1218 1.4 nisimura int pad;
1219 1.4 nisimura
1220 1.4 nisimura MGETHDR(m, M_DONTWAIT, MT_DATA);
1221 1.8 macallan if (m == NULL) return NULL;
1222 1.8 macallan
1223 1.4 nisimura m->m_pkthdr.rcvif = ifp;
1224 1.4 nisimura /* Ensure that we always allocate an even number of
1225 1.4 nisimura * bytes in order to avoid writing beyond the buffer
1226 1.4 nisimura */
1227 1.4 nisimura m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
1228 1.4 nisimura pad = ALIGN(sizeof(struct ether_header)) -
1229 1.4 nisimura sizeof(struct ether_header);
1230 1.4 nisimura /* All our frames have the CRC attached */
1231 1.4 nisimura m->m_flags |= M_HASFCS;
1232 1.4 nisimura if (m->m_pkthdr.len + pad > MHLEN )
1233 1.4 nisimura MCLGET(m, M_DONTWAIT);
1234 1.4 nisimura
1235 1.4 nisimura m->m_data += pad;
1236 1.4 nisimura m->m_len = frame_length + (frame_length % sc->sc_data_width);
1237 1.4 nisimura
1238 1.4 nisimura return m;
1239 1.1 ahoka }
1240