dm9000.c revision 1.20 1 /* $NetBSD: dm9000.c,v 1.20 2019/05/28 07:41:48 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2009 Paul Fleischer
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* based on sys/dev/ic/cs89x0.c */
30 /*
31 * Copyright (c) 2004 Christopher Gilbert
32 * All rights reserved.
33 *
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 * 3. The name of the company nor the name of the author may be used to
40 * endorse or promote products derived from this software without specific
41 * prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Copyright 1997
58 * Digital Equipment Corporation. All rights reserved.
59 *
60 * This software is furnished under license and may be used and
61 * copied only in accordance with the following terms and conditions.
62 * Subject to these conditions, you may download, copy, install,
63 * use, modify and distribute this software in source and/or binary
64 * form. No title or ownership is transferred hereby.
65 *
66 * 1) Any source code used, modified or distributed must reproduce
67 * and retain this copyright notice and list of conditions as
68 * they appear in the source file.
69 *
70 * 2) No right is granted to use any trade name, trademark, or logo of
71 * Digital Equipment Corporation. Neither the "Digital Equipment
72 * Corporation" name nor any trademark or logo of Digital Equipment
73 * Corporation may be used to endorse or promote products derived
74 * from this software without the prior written permission of
75 * Digital Equipment Corporation.
76 *
77 * 3) This software is provided "AS-IS" and any express or implied
78 * warranties, including but not limited to, any implied warranties
79 * of merchantability, fitness for a particular purpose, or
80 * non-infringement are disclaimed. In no event shall DIGITAL be
81 * liable for any damages whatsoever, and in particular, DIGITAL
82 * shall not be liable for special, indirect, consequential, or
83 * incidental damages or damages for lost profits, loss of
84 * revenue or loss of use, whether such damages arise in contract,
85 * negligence, tort, under statute, in equity, at law or otherwise,
86 * even if advised of the possibility of such damage.
87 */
88
89 #include <sys/cdefs.h>
90
91 #include <sys/param.h>
92 #include <sys/kernel.h>
93 #include <sys/systm.h>
94 #include <sys/mbuf.h>
95 #include <sys/syslog.h>
96 #include <sys/socket.h>
97 #include <sys/device.h>
98 #include <sys/malloc.h>
99 #include <sys/ioctl.h>
100 #include <sys/errno.h>
101
102 #include <net/if.h>
103 #include <net/if_ether.h>
104 #include <net/if_media.h>
105 #include <net/bpf.h>
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #include <sys/bus.h>
113 #include <sys/intr.h>
114
115 #include <dev/ic/dm9000var.h>
116 #include <dev/ic/dm9000reg.h>
117
118 #if 1
119 #undef DM9000_DEBUG
120 #undef DM9000_TX_DEBUG
121 #undef DM9000_TX_DATA_DEBUG
122 #undef DM9000_RX_DEBUG
123 #undef DM9000_RX_DATA_DEBUG
124 #else
125 #define DM9000_DEBUG
126 #define DM9000_TX_DEBUG
127 #define DM9000_TX_DATA_DEBUG
128 #define DM9000_RX_DEBUG
129 #define DM9000_RX_DATA_DEBUG
130 #endif
131
132 #ifdef DM9000_DEBUG
133 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
134 #else
135 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
136 #endif
137
138 #ifdef DM9000_TX_DEBUG
139 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
140 #else
141 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
142 #endif
143
144 #ifdef DM9000_RX_DEBUG
145 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
146 #else
147 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
148 #endif
149
150 #ifdef DM9000_RX_DATA_DEBUG
151 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
152 #else
153 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
154 #endif
155
156 #ifdef DM9000_TX_DATA_DEBUG
157 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
158 #else
159 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
160 #endif
161
162 /*** Internal PHY functions ***/
163 uint16_t dme_phy_read(struct dme_softc *, int );
164 void dme_phy_write(struct dme_softc *, int, uint16_t);
165 void dme_phy_init(struct dme_softc *);
166 void dme_phy_reset(struct dme_softc *);
167 void dme_phy_update_media(struct dme_softc *);
168 void dme_phy_check_link(void *);
169
170 /*** Methods registered in struct ifnet ***/
171 void dme_start_output(struct ifnet *);
172 int dme_init(struct ifnet *);
173 int dme_ioctl(struct ifnet *, u_long, void *);
174 void dme_stop(struct ifnet *, int);
175
176 int dme_mediachange(struct ifnet *);
177 void dme_mediastatus(struct ifnet *, struct ifmediareq *);
178
179 /*** Internal methods ***/
180
181 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
182 void dme_prepare(struct dme_softc *, struct ifnet *);
183
184 /* Transmit prepared data */
185 void dme_transmit(struct dme_softc *);
186
187 /* Receive data */
188 void dme_receive(struct dme_softc *, struct ifnet *);
189
190 /* Software Initialize/Reset of the DM9000 */
191 void dme_reset(struct dme_softc *);
192
193 /* Configure multicast filter */
194 void dme_set_addr_filter(struct dme_softc *);
195
196 /* Set media */
197 int dme_set_media(struct dme_softc *, int );
198
199 /* Read/write packet data from/to DM9000 IC in various transfer sizes */
200 int dme_pkt_read_2(struct dme_softc *, struct ifnet *, struct mbuf **);
201 int dme_pkt_write_2(struct dme_softc *, struct mbuf *);
202 int dme_pkt_read_1(struct dme_softc *, struct ifnet *, struct mbuf **);
203 int dme_pkt_write_1(struct dme_softc *, struct mbuf *);
204 /* TODO: Implement 32 bit read/write functions */
205
206 uint16_t
207 dme_phy_read(struct dme_softc *sc, int reg)
208 {
209 uint16_t val;
210 /* Select Register to read*/
211 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
212 (reg & DM9000_EPAR_EROA_MASK));
213 /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
214 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
215
216 /* Wait until access to PHY has completed */
217 while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
218 ;
219
220 /* Reset ERPRR-bit */
221 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
222
223 val = dme_read(sc, DM9000_EPDRL);
224 val += dme_read(sc, DM9000_EPDRH) << 8;
225
226 return val;
227 }
228
229 void
230 dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
231 {
232 /* Select Register to write*/
233 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
234 (reg & DM9000_EPAR_EROA_MASK));
235
236 /* Write data to the two data registers */
237 dme_write(sc, DM9000_EPDRL, value & 0xFF);
238 dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
239
240 /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
241 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
242
243 /* Wait until access to PHY has completed */
244 while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
245 ;
246
247 /* Reset ERPRR-bit */
248 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
249 }
250
251 void
252 dme_phy_init(struct dme_softc *sc)
253 {
254 u_int ifm_media = sc->sc_media.ifm_media;
255 uint32_t bmcr, anar;
256
257 bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
258 anar = dme_phy_read(sc, DM9000_PHY_ANAR);
259
260 anar = anar & ~DM9000_PHY_ANAR_10_HDX
261 & ~DM9000_PHY_ANAR_10_FDX
262 & ~DM9000_PHY_ANAR_TX_HDX
263 & ~DM9000_PHY_ANAR_TX_FDX;
264
265 switch (IFM_SUBTYPE(ifm_media)) {
266 case IFM_AUTO:
267 bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
268 anar |= DM9000_PHY_ANAR_10_HDX |
269 DM9000_PHY_ANAR_10_FDX |
270 DM9000_PHY_ANAR_TX_HDX |
271 DM9000_PHY_ANAR_TX_FDX;
272 break;
273 case IFM_10_T:
274 //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
275 bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
276 if (ifm_media & IFM_FDX)
277 anar |= DM9000_PHY_ANAR_10_FDX;
278 else
279 anar |= DM9000_PHY_ANAR_10_HDX;
280 break;
281 case IFM_100_TX:
282 //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
283 bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
284 if (ifm_media & IFM_FDX)
285 anar |= DM9000_PHY_ANAR_TX_FDX;
286 else
287 anar |= DM9000_PHY_ANAR_TX_HDX;
288
289 break;
290 }
291
292 if (ifm_media & IFM_FDX)
293 bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
294 else
295 bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
296
297 dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
298 dme_phy_write(sc, DM9000_PHY_ANAR, anar);
299 }
300
301 void
302 dme_phy_reset(struct dme_softc *sc)
303 {
304 uint32_t reg;
305
306 /* PHY Reset */
307 dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
308
309 reg = dme_read(sc, DM9000_GPCR);
310 dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
311 reg = dme_read(sc, DM9000_GPR);
312 dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
313
314 dme_phy_init(sc);
315
316 reg = dme_read(sc, DM9000_GPR);
317 dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
318 reg = dme_read(sc, DM9000_GPCR);
319 dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
320
321 dme_phy_update_media(sc);
322 }
323
324 void
325 dme_phy_update_media(struct dme_softc *sc)
326 {
327 u_int ifm_media = sc->sc_media.ifm_media;
328 uint32_t reg;
329
330 if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
331 /* If auto-negotiation is used, ensures that it is completed
332 before trying to extract any media information. */
333 reg = dme_phy_read(sc, DM9000_PHY_BMSR);
334 if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
335 /* Auto-negotation not possible, therefore there is no
336 reason to try obtain any media information. */
337 return;
338 }
339
340 /* Then loop until the negotiation is completed. */
341 while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
342 /* TODO: Bail out after a finite number of attempts
343 in case something goes wrong. */
344 preempt();
345 reg = dme_phy_read(sc, DM9000_PHY_BMSR);
346 }
347 }
348
349
350 sc->sc_media_active = IFM_ETHER;
351 reg = dme_phy_read(sc, DM9000_PHY_BMCR);
352
353 if (reg & DM9000_PHY_BMCR_SPEED_SELECT)
354 sc->sc_media_active |= IFM_100_TX;
355 else
356 sc->sc_media_active |= IFM_10_T;
357
358 if (reg & DM9000_PHY_BMCR_DUPLEX_MODE)
359 sc->sc_media_active |= IFM_FDX;
360 }
361
362 void
363 dme_phy_check_link(void *arg)
364 {
365 struct dme_softc *sc = arg;
366 uint32_t reg;
367 int s;
368
369 s = splnet();
370
371 reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
372
373 if (reg)
374 reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
375 else {
376 reg = IFM_ETHER | IFM_AVALID;
377 sc->sc_media_active = IFM_NONE;
378 }
379
380 if ((sc->sc_media_status != reg) && (reg & IFM_ACTIVE))
381 dme_phy_reset(sc);
382
383 sc->sc_media_status = reg;
384
385 callout_schedule(&sc->sc_link_callout, mstohz(2000));
386 splx(s);
387 }
388
389 int
390 dme_set_media(struct dme_softc *sc, int media)
391 {
392 int s;
393
394 s = splnet();
395 sc->sc_media.ifm_media = media;
396 dme_phy_reset(sc);
397
398 splx(s);
399
400 return 0;
401 }
402
403 int
404 dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
405 {
406 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
407 uint8_t b[2];
408 uint16_t io_mode;
409
410 dme_read_c(sc, DM9000_VID0, b, 2);
411 #if BYTE_ORDER == BIG_ENDIAN
412 sc->sc_vendor_id = (b[0] << 8) | b[1];
413 #else
414 sc->sc_vendor_id = b[0] | (b[1] << 8);
415 #endif
416 dme_read_c(sc, DM9000_PID0, b, 2);
417 #if BYTE_ORDER == BIG_ENDIAN
418 sc->sc_product_id = (b[0] << 8) | b[1];
419 #else
420 sc->sc_product_id = b[0] | (b[1] << 8);
421 #endif
422 /* TODO: Check the vendor ID as well */
423 if (sc->sc_product_id != 0x9000) {
424 panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
425 sc->sc_product_id);
426 }
427
428 /* Initialize ifnet structure. */
429 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
430 ifp->if_softc = sc;
431 ifp->if_start = dme_start_output;
432 ifp->if_init = dme_init;
433 ifp->if_ioctl = dme_ioctl;
434 ifp->if_stop = dme_stop;
435 ifp->if_watchdog = NULL; /* no watchdog at this stage */
436 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
437 IFQ_SET_READY(&ifp->if_snd);
438
439 /* Initialize ifmedia structures. */
440 ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
441 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
442 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
443 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
444 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
445 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
446
447 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
448
449 if (enaddr != NULL)
450 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
451 /* TODO: Support an EEPROM attached to the DM9000 chip */
452
453 callout_init(&sc->sc_link_callout, 0);
454 callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
455
456 sc->sc_media_status = 0;
457
458 /* Configure DM9000 with the MAC address */
459 dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
460
461 #ifdef DM9000_DEBUG
462 {
463 uint8_t macAddr[6];
464 dme_read_c(sc, DM9000_PAB0, macAddr, 6);
465 printf("DM9000 configured with MAC address: ");
466 for (int i = 0; i < 6; i++)
467 printf("%02X:", macAddr[i]);
468 printf("\n");
469 }
470 #endif
471
472 if_attach(ifp);
473 ether_ifattach(ifp, sc->sc_enaddr);
474
475 #ifdef DM9000_DEBUG
476 {
477 uint8_t network_state;
478 network_state = dme_read(sc, DM9000_NSR);
479 printf("DM9000 Link status: ");
480 if (network_state & DM9000_NSR_LINKST) {
481 if (network_state & DM9000_NSR_SPEED)
482 printf("10Mbps");
483 else
484 printf("100Mbps");
485 } else
486 printf("Down");
487 printf("\n");
488 }
489 #endif
490
491 io_mode = (dme_read(sc, DM9000_ISR) &
492 DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
493
494 DPRINTF(("DM9000 Operation Mode: "));
495 switch (io_mode) {
496 case DM9000_MODE_16BIT:
497 DPRINTF(("16-bit mode"));
498 sc->sc_data_width = 2;
499 sc->sc_pkt_write = dme_pkt_write_2;
500 sc->sc_pkt_read = dme_pkt_read_2;
501 break;
502 case DM9000_MODE_32BIT:
503 DPRINTF(("32-bit mode"));
504 sc->sc_data_width = 4;
505 panic("32bit mode is unsupported\n");
506 break;
507 case DM9000_MODE_8BIT:
508 DPRINTF(("8-bit mode"));
509 sc->sc_data_width = 1;
510 sc->sc_pkt_write = dme_pkt_write_1;
511 sc->sc_pkt_read = dme_pkt_read_1;
512 break;
513 default:
514 DPRINTF(("Invalid mode"));
515 break;
516 }
517 DPRINTF(("\n"));
518
519 callout_schedule(&sc->sc_link_callout, mstohz(2000));
520
521 return 0;
522 }
523
524 int dme_intr(void *arg)
525 {
526 struct dme_softc *sc = arg;
527 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
528 uint8_t status;
529
530
531 DPRINTF(("dme_intr: Begin\n"));
532
533 /* Disable interrupts */
534 dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
535
536 status = dme_read(sc, DM9000_ISR);
537 dme_write(sc, DM9000_ISR, status);
538
539 if (status & DM9000_ISR_PRS) {
540 if (ifp->if_flags & IFF_RUNNING )
541 dme_receive(sc, ifp);
542 }
543 if (status & DM9000_ISR_PTS) {
544 uint8_t nsr;
545 uint8_t tx_status = 0x01; /* Initialize to an error value */
546
547 /* A packet has been transmitted */
548 sc->txbusy = 0;
549
550 nsr = dme_read(sc, DM9000_NSR);
551
552 if (nsr & DM9000_NSR_TX1END) {
553 tx_status = dme_read(sc, DM9000_TSR1);
554 TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
555 } else if (nsr & DM9000_NSR_TX2END) {
556 tx_status = dme_read(sc, DM9000_TSR2);
557 TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
558 }
559
560 if (tx_status == 0x0) {
561 /* Frame successfully sent */
562 ifp->if_opackets++;
563 } else {
564 ifp->if_oerrors++;
565 }
566
567 /* If we have nothing ready to transmit, prepare something */
568 if (!sc->txready)
569 dme_prepare(sc, ifp);
570
571 if (sc->txready)
572 dme_transmit(sc);
573
574 /* Prepare the next frame */
575 dme_prepare(sc, ifp);
576
577 }
578 #ifdef notyet
579 if (status & DM9000_ISR_LNKCHNG) {
580 }
581 #endif
582
583 /* Enable interrupts again */
584 dme_write(sc, DM9000_IMR,
585 DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
586
587 DPRINTF(("dme_intr: End\n"));
588
589 return 1;
590 }
591
592 void
593 dme_start_output(struct ifnet *ifp)
594 {
595 struct dme_softc *sc;
596
597 sc = ifp->if_softc;
598
599 DPRINTF(("dme_start_output: Begin\n"));
600
601 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
602 printf("No output\n");
603 return;
604 }
605
606 if (sc->txbusy && sc->txready)
607 panic("DM9000: Internal error, trying to send without"
608 " any empty queue\n");
609
610 dme_prepare(sc, ifp);
611
612 if (sc->txbusy == 0) {
613 /* We are ready to transmit right away */
614 dme_transmit(sc);
615 dme_prepare(sc, ifp); /* Prepare next one */
616 } else {
617 /* We need to wait until the current packet has
618 * been transmitted.
619 */
620 ifp->if_flags |= IFF_OACTIVE;
621 }
622
623 DPRINTF(("dme_start_output: End\n"));
624 }
625
626 void
627 dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
628 {
629 struct mbuf *bufChain;
630 uint16_t length;
631
632 TX_DPRINTF(("dme_prepare: Entering\n"));
633
634 if (sc->txready)
635 panic("dme_prepare: Someone called us with txready set\n");
636
637 IFQ_DEQUEUE(&ifp->if_snd, bufChain);
638 if (bufChain == NULL) {
639 TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
640 ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
641 return; /* Nothing to transmit */
642 }
643
644 /* Element has now been removed from the queue, so we better send it */
645
646 bpf_mtap(ifp, bufChain, BPF_D_OUT);
647
648 /* Setup the DM9000 to accept the writes, and then write each buf in
649 the chain. */
650
651 TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
652 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
653 length = sc->sc_pkt_write(sc, bufChain);
654 TX_DATA_DPRINTF(("\n"));
655
656 if (length % sc->sc_data_width != 0)
657 panic("dme_prepare: length is not compatible with IO_MODE");
658
659 sc->txready_length = length;
660 sc->txready = 1;
661
662 TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
663 "txready: %d, txready_length: %d\n",
664 sc->txbusy, sc->txready, sc->txready_length));
665
666 m_freem(bufChain);
667
668 TX_DPRINTF(("dme_prepare: Leaving\n"));
669 }
670
671 int
672 dme_init(struct ifnet *ifp)
673 {
674 int s;
675 struct dme_softc *sc = ifp->if_softc;
676
677 dme_stop(ifp, 0);
678
679 s = splnet();
680
681 dme_reset(sc);
682
683 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
684 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
685 sc->sc_ethercom.ec_if.if_timer = 0;
686
687 splx(s);
688
689 return 0;
690 }
691
692 int
693 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
694 {
695 struct dme_softc *sc = ifp->if_softc;
696 struct ifreq *ifr = data;
697 int s, error = 0;
698
699 s = splnet();
700
701 switch (cmd) {
702 case SIOCGIFMEDIA:
703 case SIOCSIFMEDIA:
704 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
705 break;
706 default:
707 error = ether_ioctl(ifp, cmd, data);
708 if (error == ENETRESET) {
709 if (ifp->if_flags && IFF_RUNNING) {
710 /* Address list has changed, reconfigure
711 filter */
712 dme_set_addr_filter(sc);
713 }
714 error = 0;
715 }
716 break;
717 }
718
719 splx(s);
720 return error;
721 }
722
723 void
724 dme_stop(struct ifnet *ifp, int disable)
725 {
726 struct dme_softc *sc = ifp->if_softc;
727
728 /* Not quite sure what to do when called with disable == 0 */
729 if (disable) {
730 /* Disable RX */
731 dme_write(sc, DM9000_RCR, 0x0);
732 }
733
734 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
735 ifp->if_timer = 0;
736 }
737
738 int
739 dme_mediachange(struct ifnet *ifp)
740 {
741 struct dme_softc *sc = ifp->if_softc;
742
743 return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
744 }
745
746 void
747 dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
748 {
749 struct dme_softc *sc = ifp->if_softc;
750
751 ifmr->ifm_active = sc->sc_media_active;
752 ifmr->ifm_status = sc->sc_media_status;
753 }
754
755 void
756 dme_transmit(struct dme_softc *sc)
757 {
758
759 TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
760 sc->txready, sc->txbusy));
761
762 dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
763 dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
764
765 /* Request to send the packet */
766 dme_read(sc, DM9000_ISR);
767
768 dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
769
770 sc->txready = 0;
771 sc->txbusy = 1;
772 sc->txready_length = 0;
773 }
774
775 void
776 dme_receive(struct dme_softc *sc, struct ifnet *ifp)
777 {
778 uint8_t ready = 0x01;
779
780 DPRINTF(("inside dme_receive\n"));
781
782 while (ready == 0x01) {
783 /* Packet received, retrieve it */
784
785 /* Read without address increment to get the ready byte without
786 moving past it. */
787 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
788 sc->dme_io, DM9000_MRCMDX);
789 /* Dummy ready */
790 ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
791 ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
792 ready &= 0x03; /* we only want bits 1:0 */
793 if (ready == 0x01) {
794 uint8_t rx_status;
795 struct mbuf *m;
796
797 /* Read with address increment. */
798 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
799 sc->dme_io, DM9000_MRCMD);
800
801 rx_status = sc->sc_pkt_read(sc, ifp, &m);
802 if (m == NULL) {
803 /* failed to allocate a receive buffer */
804 ifp->if_ierrors++;
805 RX_DPRINTF(("dme_receive: "
806 "Error allocating buffer\n"));
807 } else if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
808 /* Error while receiving the packet,
809 * discard it and keep track of counters
810 */
811 ifp->if_ierrors++;
812 RX_DPRINTF(("dme_receive: "
813 "Error reciving packet\n"));
814 } else if (rx_status & DM9000_RSR_LCS) {
815 ifp->if_collisions++;
816 } else {
817 if_percpuq_enqueue(ifp->if_percpuq, m);
818 }
819
820 } else if (ready != 0x00) {
821 /* Should this be logged somehow? */
822 printf("%s: Resetting chip\n",
823 device_xname(sc->sc_dev));
824 dme_reset(sc);
825 }
826 }
827 }
828
829 void
830 dme_reset(struct dme_softc *sc)
831 {
832 uint8_t var;
833
834 /* We only re-initialized the PHY in this function the first time it is
835 called. */
836 if (!sc->sc_phy_initialized) {
837 /* PHY Reset */
838 dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
839
840 /* PHY Power Down */
841 var = dme_read(sc, DM9000_GPR);
842 dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
843 }
844
845 /* Reset the DM9000 twice, as described in section 2 of the Programming
846 Guide.
847 The PHY is initialized and enabled between those two resets.
848 */
849
850 /* Software Reset*/
851 dme_write(sc, DM9000_NCR,
852 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
853 delay(20);
854 dme_write(sc, DM9000_NCR, 0x0);
855
856 if (!sc->sc_phy_initialized) {
857 /* PHY Initialization */
858 dme_phy_init(sc);
859
860 /* PHY Enable */
861 var = dme_read(sc, DM9000_GPR);
862 dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
863 var = dme_read(sc, DM9000_GPCR);
864 dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
865
866 dme_write(sc, DM9000_NCR,
867 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
868 delay(20);
869 dme_write(sc, DM9000_NCR, 0x0);
870 }
871
872 /* Select internal PHY, no wakeup event, no collosion mode,
873 * normal loopback mode.
874 */
875 dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
876
877 /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
878 dme_read(sc, DM9000_NSR);
879
880 /* Enable wraparound of read/write pointer, packet received latch,
881 * and packet transmitted latch.
882 */
883 dme_write(sc, DM9000_IMR,
884 DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
885
886 /* Setup multicast address filter, and enable RX. */
887 dme_set_addr_filter(sc);
888
889 /* Obtain media information from PHY */
890 dme_phy_update_media(sc);
891
892 sc->txbusy = 0;
893 sc->txready = 0;
894 sc->sc_phy_initialized = 1;
895 }
896
897 void
898 dme_set_addr_filter(struct dme_softc *sc)
899 {
900 struct ether_multi *enm;
901 struct ether_multistep step;
902 struct ethercom *ec;
903 struct ifnet *ifp;
904 uint16_t af[4];
905 int i;
906
907 ec = &sc->sc_ethercom;
908 ifp = &ec->ec_if;
909
910 if (ifp->if_flags & IFF_PROMISC) {
911 dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN |
912 DM9000_RCR_WTDIS |
913 DM9000_RCR_PRMSC);
914 ifp->if_flags |= IFF_ALLMULTI;
915 return;
916 }
917
918 af[0] = af[1] = af[2] = af[3] = 0x0000;
919 ifp->if_flags &= ~IFF_ALLMULTI;
920
921 ETHER_LOCK(ec);
922 ETHER_FIRST_MULTI(step, ec, enm);
923 while (enm != NULL) {
924 uint16_t hash;
925 if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
926 sizeof(enm->enm_addrlo))) {
927 /*
928 * We must listen to a range of multicast addresses.
929 * For now, just accept all multicasts, rather than
930 * trying to set only those filter bits needed to match
931 * the range. (At this time, the only use of address
932 * ranges is for IP multicast routing, for which the
933 * range is big enough to require all bits set.)
934 */
935 ifp->if_flags |= IFF_ALLMULTI;
936 af[0] = af[1] = af[2] = af[3] = 0xffff;
937 break;
938 } else {
939 hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
940 af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
941 ETHER_NEXT_MULTI(step, enm);
942 }
943 }
944 ETHER_UNLOCK(ec);
945
946 /* Write the multicast address filter */
947 for (i = 0; i < 4; i++) {
948 dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
949 dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
950 }
951
952 /* Setup RX controls */
953 dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
954 }
955
956 int
957 dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
958 {
959 int left_over_count = 0; /* Number of bytes from previous mbuf, which
960 need to be written with the next.*/
961 uint16_t left_over_buf = 0;
962 int length = 0;
963 struct mbuf *buf;
964 uint8_t *write_ptr;
965
966 /* We expect that the DM9000 has been setup to accept writes before
967 this function is called. */
968
969 for (buf = bufChain; buf != NULL; buf = buf->m_next) {
970 int to_write = buf->m_len;
971
972 length += to_write;
973
974 write_ptr = buf->m_data;
975 while (to_write > 0 ||
976 (buf->m_next == NULL && left_over_count > 0)) {
977 if (left_over_count > 0) {
978 uint8_t b = 0;
979 DPRINTF(("dme_pkt_write_16: "
980 "Writing left over byte\n"));
981
982 if (to_write > 0) {
983 b = *write_ptr;
984 to_write--;
985 write_ptr++;
986
987 DPRINTF(("Took single byte\n"));
988 } else {
989 DPRINTF(("Leftover in last run\n"));
990 length++;
991 }
992
993 /* Does shift direction depend on endianess? */
994 left_over_buf = left_over_buf | (b << 8);
995
996 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
997 sc->dme_data, left_over_buf);
998 TX_DATA_DPRINTF(("%02X ", left_over_buf));
999 left_over_count = 0;
1000 } else if ((long)write_ptr % 2 != 0) {
1001 /* Misaligned data */
1002 DPRINTF(("dme_pkt_write_16: "
1003 "Detected misaligned data\n"));
1004 left_over_buf = *write_ptr;
1005 left_over_count = 1;
1006 write_ptr++;
1007 to_write--;
1008 } else {
1009 int i;
1010 uint16_t *dptr = (uint16_t *)write_ptr;
1011
1012 /* A block of aligned data. */
1013 for (i = 0; i < to_write / 2; i++) {
1014 /* buf will be half-word aligned
1015 * all the time
1016 */
1017 bus_space_write_2(sc->sc_iot,
1018 sc->sc_ioh, sc->dme_data, *dptr);
1019 TX_DATA_DPRINTF(("%02X %02X ",
1020 *dptr & 0xFF, (*dptr >> 8) & 0xFF));
1021 dptr++;
1022 }
1023
1024 write_ptr += i * 2;
1025 if (to_write % 2 != 0) {
1026 DPRINTF(("dme_pkt_write_16: "
1027 "to_write %% 2: %d\n",
1028 to_write % 2));
1029 left_over_count = 1;
1030 /* XXX: Does this depend on
1031 * the endianess?
1032 */
1033 left_over_buf = *write_ptr;
1034
1035 write_ptr++;
1036 to_write--;
1037 DPRINTF(("dme_pkt_write_16: "
1038 "to_write (after): %d\n",
1039 to_write));
1040 DPRINTF(("dme_pkt_write_16: i * 2: %d\n",
1041 i*2));
1042 }
1043 to_write -= i * 2;
1044 }
1045 } /* while (...) */
1046 } /* for (...) */
1047
1048 return length;
1049 }
1050
1051 int
1052 dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1053 {
1054 uint8_t rx_status;
1055 struct mbuf *m;
1056 uint16_t data;
1057 uint16_t frame_length;
1058 uint16_t i;
1059 uint16_t *buf;
1060
1061 data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1062
1063 rx_status = data & 0xFF;
1064 frame_length = bus_space_read_2(sc->sc_iot,
1065 sc->sc_ioh, sc->dme_data);
1066 if (frame_length > ETHER_MAX_LEN) {
1067 printf("Got frame of length: %d\n", frame_length);
1068 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1069 panic("Something is rotten");
1070 }
1071 RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
1072 rx_status, frame_length));
1073
1074
1075 m = dme_alloc_receive_buffer(ifp, frame_length);
1076 if (m == NULL) {
1077 /*
1078 * didn't get a receive buffer, so we read the rest of the
1079 * packet, throw it away and return an error
1080 */
1081 for (i = 0; i < frame_length; i += 2 ) {
1082 data = bus_space_read_2(sc->sc_iot,
1083 sc->sc_ioh, sc->dme_data);
1084 }
1085 *outBuf = NULL;
1086 return 0;
1087 }
1088
1089 buf = mtod(m, uint16_t*);
1090
1091 RX_DPRINTF(("dme_receive: "));
1092
1093 for (i = 0; i < frame_length; i += 2 ) {
1094 data = bus_space_read_2(sc->sc_iot,
1095 sc->sc_ioh, sc->dme_data);
1096 if ( (frame_length % 2 != 0) &&
1097 (i == frame_length - 1) ) {
1098 data = data & 0xff;
1099 RX_DPRINTF((" L "));
1100 }
1101 *buf = data;
1102 buf++;
1103 RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1104 (data >> 8) & 0xff));
1105 }
1106
1107 RX_DATA_DPRINTF(("\n"));
1108 RX_DPRINTF(("Read %d bytes\n", i));
1109
1110 *outBuf = m;
1111 return rx_status;
1112 }
1113
1114 int
1115 dme_pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
1116 {
1117 int length = 0, i;
1118 struct mbuf *buf;
1119 uint8_t *write_ptr;
1120
1121 /*
1122 * We expect that the DM9000 has been setup to accept writes before
1123 * this function is called.
1124 */
1125
1126 for (buf = bufChain; buf != NULL; buf = buf->m_next) {
1127 int to_write = buf->m_len;
1128
1129 length += to_write;
1130
1131 write_ptr = buf->m_data;
1132 for (i = 0; i < to_write; i++) {
1133 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1134 sc->dme_data, *write_ptr);
1135 write_ptr++;
1136 }
1137 } /* for (...) */
1138
1139 return length;
1140 }
1141
1142 int
1143 dme_pkt_read_1(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1144 {
1145 uint8_t rx_status;
1146 struct mbuf *m;
1147 uint8_t *buf;
1148 uint16_t frame_length;
1149 uint16_t i, reg;
1150 uint8_t data;
1151
1152 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1153 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1154 rx_status = reg & 0xFF;
1155
1156 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1157 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1158 frame_length = reg;
1159
1160 if (frame_length > ETHER_MAX_LEN) {
1161 printf("Got frame of length: %d\n", frame_length);
1162 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1163 panic("Something is rotten");
1164 }
1165 RX_DPRINTF(("dme_receive: "
1166 "rx_statux: 0x%x, frame_length: %d\n",
1167 rx_status, frame_length));
1168
1169
1170 m = dme_alloc_receive_buffer(ifp, frame_length);
1171 if (m == NULL) {
1172 /*
1173 * didn't get a receive buffer, so we read the rest of the
1174 * packet, throw it away and return an error
1175 */
1176 for (i = 0; i < frame_length; i++ ) {
1177 data = bus_space_read_2(sc->sc_iot,
1178 sc->sc_ioh, sc->dme_data);
1179 }
1180 *outBuf = NULL;
1181 return 0;
1182 }
1183
1184 buf = mtod(m, uint8_t *);
1185
1186 RX_DPRINTF(("dme_receive: "));
1187
1188 for (i = 0; i< frame_length; i += 1 ) {
1189 data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1190 *buf = data;
1191 buf++;
1192 RX_DATA_DPRINTF(("%02X ", data));
1193 }
1194
1195 RX_DATA_DPRINTF(("\n"));
1196 RX_DPRINTF(("Read %d bytes\n", i));
1197
1198 *outBuf = m;
1199 return rx_status;
1200 }
1201
1202 struct mbuf*
1203 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
1204 {
1205 struct dme_softc *sc = ifp->if_softc;
1206 struct mbuf *m;
1207 int pad;
1208
1209 MGETHDR(m, M_DONTWAIT, MT_DATA);
1210 if (m == NULL) return NULL;
1211
1212 m_set_rcvif(m, ifp);
1213 /* Ensure that we always allocate an even number of
1214 * bytes in order to avoid writing beyond the buffer
1215 */
1216 m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
1217 pad = ALIGN(sizeof(struct ether_header)) -
1218 sizeof(struct ether_header);
1219 /* All our frames have the CRC attached */
1220 m->m_flags |= M_HASFCS;
1221 if (m->m_pkthdr.len + pad > MHLEN) {
1222 MCLGET(m, M_DONTWAIT);
1223 if ((m->m_flags & M_EXT) == 0) {
1224 m_freem(m);
1225 return NULL;
1226 }
1227 }
1228
1229 m->m_data += pad;
1230 m->m_len = frame_length + (frame_length % sc->sc_data_width);
1231
1232 return m;
1233 }
1234