Home | History | Annotate | Line # | Download | only in ic
dm9000.c revision 1.21
      1 /*	$NetBSD: dm9000.c,v 1.21 2019/05/29 10:07:29 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2009 Paul Fleischer
      5  * All rights reserved.
      6  *
      7  * 1. Redistributions of source code must retain the above copyright
      8  *    notice, this list of conditions and the following disclaimer.
      9  * 2. Redistributions in binary form must reproduce the above copyright
     10  *    notice, this list of conditions and the following disclaimer in the
     11  *    documentation and/or other materials provided with the distribution.
     12  * 3. The name of the company nor the name of the author may be used to
     13  *    endorse or promote products derived from this software without specific
     14  *    prior written permission.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /* based on sys/dev/ic/cs89x0.c */
     30 /*
     31  * Copyright (c) 2004 Christopher Gilbert
     32  * All rights reserved.
     33  *
     34  * 1. Redistributions of source code must retain the above copyright
     35  *    notice, this list of conditions and the following disclaimer.
     36  * 2. Redistributions in binary form must reproduce the above copyright
     37  *    notice, this list of conditions and the following disclaimer in the
     38  *    documentation and/or other materials provided with the distribution.
     39  * 3. The name of the company nor the name of the author may be used to
     40  *    endorse or promote products derived from this software without specific
     41  *    prior written permission.
     42  *
     43  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     44  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     45  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     46  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     47  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     48  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     49  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     50  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     51  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     52  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     53  * SUCH DAMAGE.
     54  */
     55 
     56 /*
     57  * Copyright 1997
     58  * Digital Equipment Corporation. All rights reserved.
     59  *
     60  * This software is furnished under license and may be used and
     61  * copied only in accordance with the following terms and conditions.
     62  * Subject to these conditions, you may download, copy, install,
     63  * use, modify and distribute this software in source and/or binary
     64  * form. No title or ownership is transferred hereby.
     65  *
     66  * 1) Any source code used, modified or distributed must reproduce
     67  *    and retain this copyright notice and list of conditions as
     68  *    they appear in the source file.
     69  *
     70  * 2) No right is granted to use any trade name, trademark, or logo of
     71  *    Digital Equipment Corporation. Neither the "Digital Equipment
     72  *    Corporation" name nor any trademark or logo of Digital Equipment
     73  *    Corporation may be used to endorse or promote products derived
     74  *    from this software without the prior written permission of
     75  *    Digital Equipment Corporation.
     76  *
     77  * 3) This software is provided "AS-IS" and any express or implied
     78  *    warranties, including but not limited to, any implied warranties
     79  *    of merchantability, fitness for a particular purpose, or
     80  *    non-infringement are disclaimed. In no event shall DIGITAL be
     81  *    liable for any damages whatsoever, and in particular, DIGITAL
     82  *    shall not be liable for special, indirect, consequential, or
     83  *    incidental damages or damages for lost profits, loss of
     84  *    revenue or loss of use, whether such damages arise in contract,
     85  *    negligence, tort, under statute, in equity, at law or otherwise,
     86  *    even if advised of the possibility of such damage.
     87  */
     88 
     89 #include <sys/cdefs.h>
     90 
     91 #include <sys/param.h>
     92 #include <sys/kernel.h>
     93 #include <sys/systm.h>
     94 #include <sys/mbuf.h>
     95 #include <sys/syslog.h>
     96 #include <sys/socket.h>
     97 #include <sys/device.h>
     98 #include <sys/malloc.h>
     99 #include <sys/ioctl.h>
    100 #include <sys/errno.h>
    101 
    102 #include <net/if.h>
    103 #include <net/if_ether.h>
    104 #include <net/if_media.h>
    105 #include <net/bpf.h>
    106 
    107 #ifdef INET
    108 #include <netinet/in.h>
    109 #include <netinet/if_inarp.h>
    110 #endif
    111 
    112 #include <sys/bus.h>
    113 #include <sys/intr.h>
    114 
    115 #include <dev/ic/dm9000var.h>
    116 #include <dev/ic/dm9000reg.h>
    117 
    118 #if 1
    119 #undef DM9000_DEBUG
    120 #undef DM9000_TX_DEBUG
    121 #undef DM9000_TX_DATA_DEBUG
    122 #undef DM9000_RX_DEBUG
    123 #undef  DM9000_RX_DATA_DEBUG
    124 #else
    125 #define DM9000_DEBUG
    126 #define  DM9000_TX_DEBUG
    127 #define DM9000_TX_DATA_DEBUG
    128 #define DM9000_RX_DEBUG
    129 #define  DM9000_RX_DATA_DEBUG
    130 #endif
    131 
    132 #ifdef DM9000_DEBUG
    133 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    134 #else
    135 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
    136 #endif
    137 
    138 #ifdef DM9000_TX_DEBUG
    139 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    140 #else
    141 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    142 #endif
    143 
    144 #ifdef DM9000_RX_DEBUG
    145 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    146 #else
    147 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    148 #endif
    149 
    150 #ifdef DM9000_RX_DATA_DEBUG
    151 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    152 #else
    153 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    154 #endif
    155 
    156 #ifdef DM9000_TX_DATA_DEBUG
    157 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    158 #else
    159 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    160 #endif
    161 
    162 /*** Internal PHY functions ***/
    163 uint16_t dme_phy_read(struct dme_softc *, int );
    164 void	dme_phy_write(struct dme_softc *, int, uint16_t);
    165 void	dme_phy_init(struct dme_softc *);
    166 void	dme_phy_reset(struct dme_softc *);
    167 void	dme_phy_update_media(struct dme_softc *);
    168 void	dme_phy_check_link(void *);
    169 
    170 /*** Methods registered in struct ifnet ***/
    171 void	dme_start_output(struct ifnet *);
    172 int	dme_init(struct ifnet *);
    173 int	dme_ioctl(struct ifnet *, u_long, void *);
    174 void	dme_stop(struct ifnet *, int);
    175 
    176 int	dme_mediachange(struct ifnet *);
    177 void	dme_mediastatus(struct ifnet *, struct ifmediareq *);
    178 
    179 /*** Internal methods ***/
    180 
    181 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
    182 void	dme_prepare(struct dme_softc *, struct ifnet *);
    183 
    184 /* Transmit prepared data */
    185 void	dme_transmit(struct dme_softc *);
    186 
    187 /* Receive data */
    188 void	dme_receive(struct dme_softc *, struct ifnet *);
    189 
    190 /* Software Initialize/Reset of the DM9000 */
    191 void	dme_reset(struct dme_softc *);
    192 
    193 /* Configure multicast filter */
    194 void	dme_set_addr_filter(struct dme_softc *);
    195 
    196 /* Set media */
    197 int	dme_set_media(struct dme_softc *, int );
    198 
    199 /* Read/write packet data from/to DM9000 IC in various transfer sizes */
    200 int	dme_pkt_read_2(struct dme_softc *, struct ifnet *, struct mbuf **);
    201 int	dme_pkt_write_2(struct dme_softc *, struct mbuf *);
    202 int	dme_pkt_read_1(struct dme_softc *, struct ifnet *, struct mbuf **);
    203 int	dme_pkt_write_1(struct dme_softc *, struct mbuf *);
    204 /* TODO: Implement 32 bit read/write functions */
    205 
    206 uint16_t
    207 dme_phy_read(struct dme_softc *sc, int reg)
    208 {
    209 	uint16_t val;
    210 	/* Select Register to read*/
    211 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
    212 	    (reg & DM9000_EPAR_EROA_MASK));
    213 	/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
    214 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
    215 
    216 	/* Wait until access to PHY has completed */
    217 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
    218 		;
    219 
    220 	/* Reset ERPRR-bit */
    221 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
    222 
    223 	val = dme_read(sc, DM9000_EPDRL);
    224 	val += dme_read(sc, DM9000_EPDRH) << 8;
    225 
    226 	return val;
    227 }
    228 
    229 void
    230 dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
    231 {
    232 	/* Select Register to write*/
    233 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
    234 	    (reg & DM9000_EPAR_EROA_MASK));
    235 
    236 	/* Write data to the two data registers */
    237 	dme_write(sc, DM9000_EPDRL, value & 0xFF);
    238 	dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
    239 
    240 	/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
    241 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
    242 
    243 	/* Wait until access to PHY has completed */
    244 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
    245 		;
    246 
    247 	/* Reset ERPRR-bit */
    248 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
    249 }
    250 
    251 void
    252 dme_phy_init(struct dme_softc *sc)
    253 {
    254 	u_int ifm_media = sc->sc_media.ifm_media;
    255 	uint32_t bmcr, anar;
    256 
    257 	bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
    258 	anar = dme_phy_read(sc, DM9000_PHY_ANAR);
    259 
    260 	anar = anar & ~DM9000_PHY_ANAR_10_HDX
    261 		& ~DM9000_PHY_ANAR_10_FDX
    262 		& ~DM9000_PHY_ANAR_TX_HDX
    263 		& ~DM9000_PHY_ANAR_TX_FDX;
    264 
    265 	switch (IFM_SUBTYPE(ifm_media)) {
    266 	case IFM_AUTO:
    267 		bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
    268 		anar |= DM9000_PHY_ANAR_10_HDX |
    269 			DM9000_PHY_ANAR_10_FDX |
    270 			DM9000_PHY_ANAR_TX_HDX |
    271 			DM9000_PHY_ANAR_TX_FDX;
    272 		break;
    273 	case IFM_10_T:
    274 		//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
    275 		bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
    276 		if (ifm_media & IFM_FDX)
    277 			anar |= DM9000_PHY_ANAR_10_FDX;
    278 		else
    279 			anar |= DM9000_PHY_ANAR_10_HDX;
    280 		break;
    281 	case IFM_100_TX:
    282 		//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
    283 		bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
    284 		if (ifm_media & IFM_FDX)
    285 			anar |= DM9000_PHY_ANAR_TX_FDX;
    286 		else
    287 			anar |= DM9000_PHY_ANAR_TX_HDX;
    288 
    289 		break;
    290 	}
    291 
    292 	if (ifm_media & IFM_FDX)
    293 		bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
    294 	else
    295 		bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
    296 
    297 	dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
    298 	dme_phy_write(sc, DM9000_PHY_ANAR, anar);
    299 }
    300 
    301 void
    302 dme_phy_reset(struct dme_softc *sc)
    303 {
    304 	uint32_t reg;
    305 
    306 	/* PHY Reset */
    307 	dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
    308 
    309 	reg = dme_read(sc, DM9000_GPCR);
    310 	dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
    311 	reg = dme_read(sc, DM9000_GPR);
    312 	dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
    313 
    314 	dme_phy_init(sc);
    315 
    316 	reg = dme_read(sc, DM9000_GPR);
    317 	dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
    318 	reg = dme_read(sc, DM9000_GPCR);
    319 	dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
    320 
    321 	dme_phy_update_media(sc);
    322 }
    323 
    324 void
    325 dme_phy_update_media(struct dme_softc *sc)
    326 {
    327 	u_int ifm_media = sc->sc_media.ifm_media;
    328 	uint32_t reg;
    329 
    330 	if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
    331 		/* If auto-negotiation is used, ensures that it is completed
    332 		 before trying to extract any media information. */
    333 		reg = dme_phy_read(sc, DM9000_PHY_BMSR);
    334 		if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
    335 			/* Auto-negotation not possible, therefore there is no
    336 			   reason to try obtain any media information. */
    337 			return;
    338 		}
    339 
    340 		/* Then loop until the negotiation is completed. */
    341 		while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
    342 			/* TODO: Bail out after a finite number of attempts
    343 			 in case something goes wrong. */
    344 			preempt();
    345 			reg = dme_phy_read(sc, DM9000_PHY_BMSR);
    346 		}
    347 	}
    348 
    349 
    350 	sc->sc_media_active = IFM_ETHER;
    351 	reg = dme_phy_read(sc, DM9000_PHY_BMCR);
    352 
    353 	if (reg & DM9000_PHY_BMCR_SPEED_SELECT)
    354 		sc->sc_media_active |= IFM_100_TX;
    355 	else
    356 		sc->sc_media_active |= IFM_10_T;
    357 
    358 	if (reg & DM9000_PHY_BMCR_DUPLEX_MODE)
    359 		sc->sc_media_active |= IFM_FDX;
    360 }
    361 
    362 void
    363 dme_phy_check_link(void *arg)
    364 {
    365 	struct dme_softc *sc = arg;
    366 	uint32_t reg;
    367 	int s;
    368 
    369 	s = splnet();
    370 
    371 	reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
    372 
    373 	if (reg)
    374 		reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
    375 	else {
    376 		reg = IFM_ETHER | IFM_AVALID;
    377 		sc->sc_media_active = IFM_NONE;
    378 	}
    379 
    380 	if ((sc->sc_media_status != reg) && (reg & IFM_ACTIVE))
    381 		dme_phy_reset(sc);
    382 
    383 	sc->sc_media_status = reg;
    384 
    385 	callout_schedule(&sc->sc_link_callout, mstohz(2000));
    386 	splx(s);
    387 }
    388 
    389 int
    390 dme_set_media(struct dme_softc *sc, int media)
    391 {
    392 	int s;
    393 
    394 	s = splnet();
    395 	sc->sc_media.ifm_media = media;
    396 	dme_phy_reset(sc);
    397 
    398 	splx(s);
    399 
    400 	return 0;
    401 }
    402 
    403 int
    404 dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
    405 {
    406 	struct ifnet	*ifp = &sc->sc_ethercom.ec_if;
    407 	uint8_t		b[2];
    408 	uint16_t	io_mode;
    409 
    410 	dme_read_c(sc, DM9000_VID0, b, 2);
    411 #if BYTE_ORDER == BIG_ENDIAN
    412 	sc->sc_vendor_id = (b[0] << 8) | b[1];
    413 #else
    414 	sc->sc_vendor_id = b[0] | (b[1] << 8);
    415 #endif
    416 	dme_read_c(sc, DM9000_PID0, b, 2);
    417 #if BYTE_ORDER == BIG_ENDIAN
    418 	sc->sc_product_id = (b[0] << 8) | b[1];
    419 #else
    420 	sc->sc_product_id = b[0] | (b[1] << 8);
    421 #endif
    422 	/* TODO: Check the vendor ID as well */
    423 	if (sc->sc_product_id != 0x9000) {
    424 		panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
    425 		    sc->sc_product_id);
    426 	}
    427 
    428 	/* Initialize ifnet structure. */
    429 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    430 	ifp->if_softc = sc;
    431 	ifp->if_start = dme_start_output;
    432 	ifp->if_init = dme_init;
    433 	ifp->if_ioctl = dme_ioctl;
    434 	ifp->if_stop = dme_stop;
    435 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
    436 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    437 	IFQ_SET_READY(&ifp->if_snd);
    438 
    439 	/* Initialize ifmedia structures. */
    440 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
    441 	ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
    442 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
    443 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
    444 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
    445 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
    446 	ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
    447 
    448 	ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
    449 
    450 	if (enaddr != NULL)
    451 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
    452 	/* TODO: Support an EEPROM attached to the DM9000 chip */
    453 
    454 	callout_init(&sc->sc_link_callout, 0);
    455 	callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
    456 
    457 	sc->sc_media_status = 0;
    458 
    459 	/* Configure DM9000 with the MAC address */
    460 	dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
    461 
    462 #ifdef DM9000_DEBUG
    463 	{
    464 		uint8_t macAddr[6];
    465 		dme_read_c(sc, DM9000_PAB0, macAddr, 6);
    466 		printf("DM9000 configured with MAC address: ");
    467 		for (int i = 0; i < 6; i++)
    468 			printf("%02X:", macAddr[i]);
    469 		printf("\n");
    470 	}
    471 #endif
    472 
    473 	if_attach(ifp);
    474 	ether_ifattach(ifp, sc->sc_enaddr);
    475 
    476 #ifdef DM9000_DEBUG
    477 	{
    478 		uint8_t network_state;
    479 		network_state = dme_read(sc, DM9000_NSR);
    480 		printf("DM9000 Link status: ");
    481 		if (network_state & DM9000_NSR_LINKST) {
    482 			if (network_state & DM9000_NSR_SPEED)
    483 				printf("10Mbps");
    484 			else
    485 				printf("100Mbps");
    486 		} else
    487 			printf("Down");
    488 		printf("\n");
    489 	}
    490 #endif
    491 
    492 	io_mode = (dme_read(sc, DM9000_ISR) &
    493 	    DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
    494 
    495 	DPRINTF(("DM9000 Operation Mode: "));
    496 	switch (io_mode) {
    497 	case DM9000_MODE_16BIT:
    498 		DPRINTF(("16-bit mode"));
    499 		sc->sc_data_width = 2;
    500 		sc->sc_pkt_write = dme_pkt_write_2;
    501 		sc->sc_pkt_read = dme_pkt_read_2;
    502 		break;
    503 	case DM9000_MODE_32BIT:
    504 		DPRINTF(("32-bit mode"));
    505 		sc->sc_data_width = 4;
    506 		panic("32bit mode is unsupported\n");
    507 		break;
    508 	case DM9000_MODE_8BIT:
    509 		DPRINTF(("8-bit mode"));
    510 		sc->sc_data_width = 1;
    511 		sc->sc_pkt_write = dme_pkt_write_1;
    512 		sc->sc_pkt_read = dme_pkt_read_1;
    513 		break;
    514 	default:
    515 		DPRINTF(("Invalid mode"));
    516 		break;
    517 	}
    518 	DPRINTF(("\n"));
    519 
    520 	callout_schedule(&sc->sc_link_callout, mstohz(2000));
    521 
    522 	return 0;
    523 }
    524 
    525 int dme_intr(void *arg)
    526 {
    527 	struct dme_softc *sc = arg;
    528 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    529 	uint8_t status;
    530 
    531 
    532 	DPRINTF(("dme_intr: Begin\n"));
    533 
    534 	/* Disable interrupts */
    535 	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
    536 
    537 	status = dme_read(sc, DM9000_ISR);
    538 	dme_write(sc, DM9000_ISR, status);
    539 
    540 	if (status & DM9000_ISR_PRS) {
    541 		if (ifp->if_flags & IFF_RUNNING )
    542 			dme_receive(sc, ifp);
    543 	}
    544 	if (status & DM9000_ISR_PTS) {
    545 		uint8_t nsr;
    546 		uint8_t tx_status = 0x01; /* Initialize to an error value */
    547 
    548 		/* A packet has been transmitted */
    549 		sc->txbusy = 0;
    550 
    551 		nsr = dme_read(sc, DM9000_NSR);
    552 
    553 		if (nsr & DM9000_NSR_TX1END) {
    554 			tx_status = dme_read(sc, DM9000_TSR1);
    555 			TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
    556 		} else if (nsr & DM9000_NSR_TX2END) {
    557 			tx_status = dme_read(sc, DM9000_TSR2);
    558 			TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
    559 		}
    560 
    561 		if (tx_status == 0x0) {
    562 			/* Frame successfully sent */
    563 			ifp->if_opackets++;
    564 		} else {
    565 			ifp->if_oerrors++;
    566 		}
    567 
    568 		/* If we have nothing ready to transmit, prepare something */
    569 		if (!sc->txready)
    570 			dme_prepare(sc, ifp);
    571 
    572 		if (sc->txready)
    573 			dme_transmit(sc);
    574 
    575 		/* Prepare the next frame */
    576 		dme_prepare(sc, ifp);
    577 
    578 	}
    579 #ifdef notyet
    580 	if (status & DM9000_ISR_LNKCHNG) {
    581 	}
    582 #endif
    583 
    584 	/* Enable interrupts again */
    585 	dme_write(sc, DM9000_IMR,
    586 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
    587 
    588 	DPRINTF(("dme_intr: End\n"));
    589 
    590 	return 1;
    591 }
    592 
    593 void
    594 dme_start_output(struct ifnet *ifp)
    595 {
    596 	struct dme_softc *sc;
    597 
    598 	sc = ifp->if_softc;
    599 
    600 	DPRINTF(("dme_start_output: Begin\n"));
    601 
    602 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
    603 		printf("No output\n");
    604 		return;
    605 	}
    606 
    607 	if (sc->txbusy && sc->txready)
    608 		panic("DM9000: Internal error, trying to send without"
    609 		    " any empty queue\n");
    610 
    611 	dme_prepare(sc, ifp);
    612 
    613 	if (sc->txbusy == 0) {
    614 		/* We are ready to transmit right away */
    615 		dme_transmit(sc);
    616 		dme_prepare(sc, ifp); /* Prepare next one */
    617 	} else {
    618 		/* We need to wait until the current packet has
    619 		 * been transmitted.
    620 		 */
    621 		ifp->if_flags |= IFF_OACTIVE;
    622 	}
    623 
    624 	DPRINTF(("dme_start_output: End\n"));
    625 }
    626 
    627 void
    628 dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
    629 {
    630 	struct mbuf *bufChain;
    631 	uint16_t length;
    632 
    633 	TX_DPRINTF(("dme_prepare: Entering\n"));
    634 
    635 	if (sc->txready)
    636 		panic("dme_prepare: Someone called us with txready set\n");
    637 
    638 	IFQ_DEQUEUE(&ifp->if_snd, bufChain);
    639 	if (bufChain == NULL) {
    640 		TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
    641 		ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
    642 		return; /* Nothing to transmit */
    643 	}
    644 
    645 	/* Element has now been removed from the queue, so we better send it */
    646 
    647 	bpf_mtap(ifp, bufChain, BPF_D_OUT);
    648 
    649 	/* Setup the DM9000 to accept the writes, and then write each buf in
    650 	   the chain. */
    651 
    652 	TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
    653 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
    654 	length = sc->sc_pkt_write(sc, bufChain);
    655 	TX_DATA_DPRINTF(("\n"));
    656 
    657 	if (length % sc->sc_data_width != 0)
    658 		panic("dme_prepare: length is not compatible with IO_MODE");
    659 
    660 	sc->txready_length = length;
    661 	sc->txready = 1;
    662 
    663 	TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
    664 		"txready: %d, txready_length: %d\n",
    665 		sc->txbusy, sc->txready, sc->txready_length));
    666 
    667 	m_freem(bufChain);
    668 
    669 	TX_DPRINTF(("dme_prepare: Leaving\n"));
    670 }
    671 
    672 int
    673 dme_init(struct ifnet *ifp)
    674 {
    675 	int s;
    676 	struct dme_softc *sc = ifp->if_softc;
    677 
    678 	dme_stop(ifp, 0);
    679 
    680 	s = splnet();
    681 
    682 	dme_reset(sc);
    683 
    684 	sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
    685 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
    686 	sc->sc_ethercom.ec_if.if_timer = 0;
    687 
    688 	splx(s);
    689 
    690 	return 0;
    691 }
    692 
    693 int
    694 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    695 {
    696 	struct dme_softc *sc = ifp->if_softc;
    697 	int s, error = 0;
    698 
    699 	s = splnet();
    700 
    701 	switch (cmd) {
    702 	default:
    703 		error = ether_ioctl(ifp, cmd, data);
    704 		if (error == ENETRESET) {
    705 			if (ifp->if_flags && IFF_RUNNING) {
    706 				/* Address list has changed, reconfigure
    707 				   filter */
    708 				dme_set_addr_filter(sc);
    709 			}
    710 			error = 0;
    711 		}
    712 		break;
    713 	}
    714 
    715 	splx(s);
    716 	return error;
    717 }
    718 
    719 void
    720 dme_stop(struct ifnet *ifp, int disable)
    721 {
    722 	struct dme_softc *sc = ifp->if_softc;
    723 
    724 	/* Not quite sure what to do when called with disable == 0 */
    725 	if (disable) {
    726 		/* Disable RX */
    727 		dme_write(sc, DM9000_RCR, 0x0);
    728 	}
    729 
    730 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    731 	ifp->if_timer = 0;
    732 }
    733 
    734 int
    735 dme_mediachange(struct ifnet *ifp)
    736 {
    737 	struct dme_softc *sc = ifp->if_softc;
    738 
    739 	return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
    740 }
    741 
    742 void
    743 dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    744 {
    745 	struct dme_softc *sc = ifp->if_softc;
    746 
    747 	ifmr->ifm_active = sc->sc_media_active;
    748 	ifmr->ifm_status = sc->sc_media_status;
    749 }
    750 
    751 void
    752 dme_transmit(struct dme_softc *sc)
    753 {
    754 
    755 	TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
    756 		sc->txready, sc->txbusy));
    757 
    758 	dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
    759 	dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
    760 
    761 	/* Request to send the packet */
    762 	dme_read(sc, DM9000_ISR);
    763 
    764 	dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
    765 
    766 	sc->txready = 0;
    767 	sc->txbusy = 1;
    768 	sc->txready_length = 0;
    769 }
    770 
    771 void
    772 dme_receive(struct dme_softc *sc, struct ifnet *ifp)
    773 {
    774 	uint8_t ready = 0x01;
    775 
    776 	DPRINTF(("inside dme_receive\n"));
    777 
    778 	while (ready == 0x01) {
    779 		/* Packet received, retrieve it */
    780 
    781 		/* Read without address increment to get the ready byte without
    782 		   moving past it. */
    783 		bus_space_write_1(sc->sc_iot, sc->sc_ioh,
    784 		    sc->dme_io, DM9000_MRCMDX);
    785 		/* Dummy ready */
    786 		ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    787 		ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    788 		ready &= 0x03;	/* we only want bits 1:0 */
    789 		if (ready == 0x01) {
    790 			uint8_t		rx_status;
    791 			struct mbuf	*m;
    792 
    793 			/* Read with address increment. */
    794 			bus_space_write_1(sc->sc_iot, sc->sc_ioh,
    795 					  sc->dme_io, DM9000_MRCMD);
    796 
    797 			rx_status = sc->sc_pkt_read(sc, ifp, &m);
    798 			if (m == NULL) {
    799 				/* failed to allocate a receive buffer */
    800 				ifp->if_ierrors++;
    801 				RX_DPRINTF(("dme_receive: "
    802 					"Error allocating buffer\n"));
    803 			} else if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
    804 				/* Error while receiving the packet,
    805 				 * discard it and keep track of counters
    806 				 */
    807 				ifp->if_ierrors++;
    808 				RX_DPRINTF(("dme_receive: "
    809 					"Error reciving packet\n"));
    810 			} else if (rx_status & DM9000_RSR_LCS) {
    811 				ifp->if_collisions++;
    812 			} else {
    813 				if_percpuq_enqueue(ifp->if_percpuq, m);
    814 			}
    815 
    816 		} else if (ready != 0x00) {
    817 			/* Should this be logged somehow? */
    818 			printf("%s: Resetting chip\n",
    819 			       device_xname(sc->sc_dev));
    820 			dme_reset(sc);
    821 		}
    822 	}
    823 }
    824 
    825 void
    826 dme_reset(struct dme_softc *sc)
    827 {
    828 	uint8_t var;
    829 
    830 	/* We only re-initialized the PHY in this function the first time it is
    831 	   called. */
    832 	if (!sc->sc_phy_initialized) {
    833 		/* PHY Reset */
    834 		dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
    835 
    836 		/* PHY Power Down */
    837 		var = dme_read(sc, DM9000_GPR);
    838 		dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
    839 	}
    840 
    841 	/* Reset the DM9000 twice, as described in section 2 of the Programming
    842 	   Guide.
    843 	   The PHY is initialized and enabled between those two resets.
    844 	 */
    845 
    846 	/* Software Reset*/
    847 	dme_write(sc, DM9000_NCR,
    848 	    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
    849 	delay(20);
    850 	dme_write(sc, DM9000_NCR, 0x0);
    851 
    852 	if (!sc->sc_phy_initialized) {
    853 		/* PHY Initialization */
    854 		dme_phy_init(sc);
    855 
    856 		/* PHY Enable */
    857 		var = dme_read(sc, DM9000_GPR);
    858 		dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
    859 		var = dme_read(sc, DM9000_GPCR);
    860 		dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
    861 
    862 		dme_write(sc, DM9000_NCR,
    863 		    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
    864 		delay(20);
    865 		dme_write(sc, DM9000_NCR, 0x0);
    866 	}
    867 
    868 	/* Select internal PHY, no wakeup event, no collosion mode,
    869 	 * normal loopback mode.
    870 	 */
    871 	dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
    872 
    873 	/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
    874 	dme_read(sc, DM9000_NSR);
    875 
    876 	/* Enable wraparound of read/write pointer, packet received latch,
    877 	 * and packet transmitted latch.
    878 	 */
    879 	dme_write(sc, DM9000_IMR,
    880 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
    881 
    882 	/* Setup multicast address filter, and enable RX. */
    883 	dme_set_addr_filter(sc);
    884 
    885 	/* Obtain media information from PHY */
    886 	dme_phy_update_media(sc);
    887 
    888 	sc->txbusy = 0;
    889 	sc->txready = 0;
    890 	sc->sc_phy_initialized = 1;
    891 }
    892 
    893 void
    894 dme_set_addr_filter(struct dme_softc *sc)
    895 {
    896 	struct ether_multi	*enm;
    897 	struct ether_multistep	step;
    898 	struct ethercom		*ec;
    899 	struct ifnet		*ifp;
    900 	uint16_t		af[4];
    901 	int			i;
    902 
    903 	ec = &sc->sc_ethercom;
    904 	ifp = &ec->ec_if;
    905 
    906 	if (ifp->if_flags & IFF_PROMISC) {
    907 		dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN  |
    908 					  DM9000_RCR_WTDIS |
    909 					  DM9000_RCR_PRMSC);
    910 		ifp->if_flags |= IFF_ALLMULTI;
    911 		return;
    912 	}
    913 
    914 	af[0] = af[1] = af[2] = af[3] = 0x0000;
    915 	ifp->if_flags &= ~IFF_ALLMULTI;
    916 
    917 	ETHER_LOCK(ec);
    918 	ETHER_FIRST_MULTI(step, ec, enm);
    919 	while (enm != NULL) {
    920 		uint16_t hash;
    921 		if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
    922 		    sizeof(enm->enm_addrlo))) {
    923 			/*
    924 			 * We must listen to a range of multicast addresses.
    925 			 * For now, just accept all multicasts, rather than
    926 			 * trying to set only those filter bits needed to match
    927 			 * the range.  (At this time, the only use of address
    928 			 * ranges is for IP multicast routing, for which the
    929 			 * range is big enough to require all bits set.)
    930 			 */
    931 			ifp->if_flags |= IFF_ALLMULTI;
    932 			af[0] = af[1] = af[2] = af[3] = 0xffff;
    933 			break;
    934 		} else {
    935 			hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
    936 			af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
    937 			ETHER_NEXT_MULTI(step, enm);
    938 		}
    939 	}
    940 	ETHER_UNLOCK(ec);
    941 
    942 	/* Write the multicast address filter */
    943 	for (i = 0; i < 4; i++) {
    944 		dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
    945 		dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
    946 	}
    947 
    948 	/* Setup RX controls */
    949 	dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
    950 }
    951 
    952 int
    953 dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
    954 {
    955 	int left_over_count = 0; /* Number of bytes from previous mbuf, which
    956 				    need to be written with the next.*/
    957 	uint16_t left_over_buf = 0;
    958 	int length = 0;
    959 	struct mbuf *buf;
    960 	uint8_t *write_ptr;
    961 
    962 	/* We expect that the DM9000 has been setup to accept writes before
    963 	   this function is called. */
    964 
    965 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
    966 		int to_write = buf->m_len;
    967 
    968 		length += to_write;
    969 
    970 		write_ptr = buf->m_data;
    971 		while (to_write > 0 ||
    972 		    (buf->m_next == NULL && left_over_count > 0)) {
    973 			if (left_over_count > 0) {
    974 				uint8_t b = 0;
    975 				DPRINTF(("dme_pkt_write_16: "
    976 					 "Writing left over byte\n"));
    977 
    978 				if (to_write > 0) {
    979 					b = *write_ptr;
    980 					to_write--;
    981 					write_ptr++;
    982 
    983 					DPRINTF(("Took single byte\n"));
    984 				} else {
    985 					DPRINTF(("Leftover in last run\n"));
    986 					length++;
    987 				}
    988 
    989 				/* Does shift direction depend on endianess? */
    990 				left_over_buf = left_over_buf | (b << 8);
    991 
    992 				bus_space_write_2(sc->sc_iot, sc->sc_ioh,
    993 						  sc->dme_data, left_over_buf);
    994 				TX_DATA_DPRINTF(("%02X ", left_over_buf));
    995 				left_over_count = 0;
    996 			} else if ((long)write_ptr % 2 != 0) {
    997 				/* Misaligned data */
    998 				DPRINTF(("dme_pkt_write_16: "
    999 					 "Detected misaligned data\n"));
   1000 				left_over_buf = *write_ptr;
   1001 				left_over_count = 1;
   1002 				write_ptr++;
   1003 				to_write--;
   1004 			} else {
   1005 				int i;
   1006 				uint16_t *dptr = (uint16_t *)write_ptr;
   1007 
   1008 				/* A block of aligned data. */
   1009 				for (i = 0; i < to_write / 2; i++) {
   1010 					/* buf will be half-word aligned
   1011 					 * all the time
   1012 					 */
   1013 					bus_space_write_2(sc->sc_iot,
   1014 					    sc->sc_ioh, sc->dme_data, *dptr);
   1015 					TX_DATA_DPRINTF(("%02X %02X ",
   1016 					    *dptr & 0xFF, (*dptr >> 8) & 0xFF));
   1017 					dptr++;
   1018 				}
   1019 
   1020 				write_ptr += i * 2;
   1021 				if (to_write % 2 != 0) {
   1022 					DPRINTF(("dme_pkt_write_16: "
   1023 						 "to_write %% 2: %d\n",
   1024 						 to_write % 2));
   1025 					left_over_count = 1;
   1026 					/* XXX: Does this depend on
   1027 					 * the endianess?
   1028 					 */
   1029 					left_over_buf = *write_ptr;
   1030 
   1031 					write_ptr++;
   1032 					to_write--;
   1033 					DPRINTF(("dme_pkt_write_16: "
   1034 						 "to_write (after): %d\n",
   1035 						 to_write));
   1036 					DPRINTF(("dme_pkt_write_16: i * 2: %d\n",
   1037 						 i*2));
   1038 				}
   1039 				to_write -= i * 2;
   1040 			}
   1041 		} /* while (...) */
   1042 	} /* for (...) */
   1043 
   1044 	return length;
   1045 }
   1046 
   1047 int
   1048 dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
   1049 {
   1050 	uint8_t rx_status;
   1051 	struct mbuf *m;
   1052 	uint16_t data;
   1053 	uint16_t frame_length;
   1054 	uint16_t i;
   1055 	uint16_t *buf;
   1056 
   1057 	data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1058 
   1059 	rx_status = data & 0xFF;
   1060 	frame_length = bus_space_read_2(sc->sc_iot,
   1061 					sc->sc_ioh, sc->dme_data);
   1062 	if (frame_length > ETHER_MAX_LEN) {
   1063 		printf("Got frame of length: %d\n", frame_length);
   1064 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
   1065 		panic("Something is rotten");
   1066 	}
   1067 	RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
   1068 		rx_status, frame_length));
   1069 
   1070 
   1071 	m = dme_alloc_receive_buffer(ifp, frame_length);
   1072 	if (m == NULL) {
   1073 		/*
   1074 		 * didn't get a receive buffer, so we read the rest of the
   1075 		 * packet, throw it away and return an error
   1076 		 */
   1077 		for (i = 0; i < frame_length; i += 2 ) {
   1078 			data = bus_space_read_2(sc->sc_iot,
   1079 					sc->sc_ioh, sc->dme_data);
   1080 		}
   1081 		*outBuf = NULL;
   1082 		return 0;
   1083 	}
   1084 
   1085 	buf = mtod(m, uint16_t*);
   1086 
   1087 	RX_DPRINTF(("dme_receive: "));
   1088 
   1089 	for (i = 0; i < frame_length; i += 2 ) {
   1090 		data = bus_space_read_2(sc->sc_iot,
   1091 					sc->sc_ioh, sc->dme_data);
   1092 		if ( (frame_length % 2 != 0) &&
   1093 		     (i == frame_length - 1) ) {
   1094 			data = data & 0xff;
   1095 			RX_DPRINTF((" L "));
   1096 		}
   1097 		*buf = data;
   1098 		buf++;
   1099 		RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
   1100 				 (data >> 8) & 0xff));
   1101 	}
   1102 
   1103 	RX_DATA_DPRINTF(("\n"));
   1104 	RX_DPRINTF(("Read %d bytes\n", i));
   1105 
   1106 	*outBuf = m;
   1107 	return rx_status;
   1108 }
   1109 
   1110 int
   1111 dme_pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
   1112 {
   1113 	int length = 0, i;
   1114 	struct mbuf *buf;
   1115 	uint8_t *write_ptr;
   1116 
   1117 	/*
   1118 	 * We expect that the DM9000 has been setup to accept writes before
   1119 	 * this function is called.
   1120 	 */
   1121 
   1122 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
   1123 		int to_write = buf->m_len;
   1124 
   1125 		length += to_write;
   1126 
   1127 		write_ptr = buf->m_data;
   1128 		for (i = 0; i < to_write; i++) {
   1129 			bus_space_write_1(sc->sc_iot, sc->sc_ioh,
   1130 			    sc->dme_data, *write_ptr);
   1131 			write_ptr++;
   1132 		}
   1133 	} /* for (...) */
   1134 
   1135 	return length;
   1136 }
   1137 
   1138 int
   1139 dme_pkt_read_1(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
   1140 {
   1141 	uint8_t rx_status;
   1142 	struct mbuf *m;
   1143 	uint8_t *buf;
   1144 	uint16_t frame_length;
   1145 	uint16_t i, reg;
   1146 	uint8_t data;
   1147 
   1148 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1149 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
   1150 	rx_status = reg & 0xFF;
   1151 
   1152 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1153 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
   1154 	frame_length = reg;
   1155 
   1156 	if (frame_length > ETHER_MAX_LEN) {
   1157 		printf("Got frame of length: %d\n", frame_length);
   1158 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
   1159 		panic("Something is rotten");
   1160 	}
   1161 	RX_DPRINTF(("dme_receive: "
   1162 		    "rx_statux: 0x%x, frame_length: %d\n",
   1163 		    rx_status, frame_length));
   1164 
   1165 
   1166 	m = dme_alloc_receive_buffer(ifp, frame_length);
   1167 	if (m == NULL) {
   1168 		/*
   1169 		 * didn't get a receive buffer, so we read the rest of the
   1170 		 * packet, throw it away and return an error
   1171 		 */
   1172 		for (i = 0; i < frame_length; i++ ) {
   1173 			data = bus_space_read_2(sc->sc_iot,
   1174 					sc->sc_ioh, sc->dme_data);
   1175 		}
   1176 		*outBuf = NULL;
   1177 		return 0;
   1178 	}
   1179 
   1180 	buf = mtod(m, uint8_t *);
   1181 
   1182 	RX_DPRINTF(("dme_receive: "));
   1183 
   1184 	for (i = 0; i< frame_length; i += 1 ) {
   1185 		data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1186 		*buf = data;
   1187 		buf++;
   1188 		RX_DATA_DPRINTF(("%02X ", data));
   1189 	}
   1190 
   1191 	RX_DATA_DPRINTF(("\n"));
   1192 	RX_DPRINTF(("Read %d bytes\n", i));
   1193 
   1194 	*outBuf = m;
   1195 	return rx_status;
   1196 }
   1197 
   1198 struct mbuf*
   1199 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
   1200 {
   1201 	struct dme_softc *sc = ifp->if_softc;
   1202 	struct mbuf *m;
   1203 	int pad;
   1204 
   1205 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1206 	if (m == NULL) return NULL;
   1207 
   1208 	m_set_rcvif(m, ifp);
   1209 	/* Ensure that we always allocate an even number of
   1210 	 * bytes in order to avoid writing beyond the buffer
   1211 	 */
   1212 	m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
   1213 	pad = ALIGN(sizeof(struct ether_header)) -
   1214 		sizeof(struct ether_header);
   1215 	/* All our frames have the CRC attached */
   1216 	m->m_flags |= M_HASFCS;
   1217 	if (m->m_pkthdr.len + pad > MHLEN) {
   1218 		MCLGET(m, M_DONTWAIT);
   1219 		if ((m->m_flags & M_EXT) == 0) {
   1220 			m_freem(m);
   1221 			return NULL;
   1222 		}
   1223 	}
   1224 
   1225 	m->m_data += pad;
   1226 	m->m_len = frame_length + (frame_length % sc->sc_data_width);
   1227 
   1228 	return m;
   1229 }
   1230