dm9000.c revision 1.21 1 /* $NetBSD: dm9000.c,v 1.21 2019/05/29 10:07:29 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2009 Paul Fleischer
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* based on sys/dev/ic/cs89x0.c */
30 /*
31 * Copyright (c) 2004 Christopher Gilbert
32 * All rights reserved.
33 *
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 * 3. The name of the company nor the name of the author may be used to
40 * endorse or promote products derived from this software without specific
41 * prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Copyright 1997
58 * Digital Equipment Corporation. All rights reserved.
59 *
60 * This software is furnished under license and may be used and
61 * copied only in accordance with the following terms and conditions.
62 * Subject to these conditions, you may download, copy, install,
63 * use, modify and distribute this software in source and/or binary
64 * form. No title or ownership is transferred hereby.
65 *
66 * 1) Any source code used, modified or distributed must reproduce
67 * and retain this copyright notice and list of conditions as
68 * they appear in the source file.
69 *
70 * 2) No right is granted to use any trade name, trademark, or logo of
71 * Digital Equipment Corporation. Neither the "Digital Equipment
72 * Corporation" name nor any trademark or logo of Digital Equipment
73 * Corporation may be used to endorse or promote products derived
74 * from this software without the prior written permission of
75 * Digital Equipment Corporation.
76 *
77 * 3) This software is provided "AS-IS" and any express or implied
78 * warranties, including but not limited to, any implied warranties
79 * of merchantability, fitness for a particular purpose, or
80 * non-infringement are disclaimed. In no event shall DIGITAL be
81 * liable for any damages whatsoever, and in particular, DIGITAL
82 * shall not be liable for special, indirect, consequential, or
83 * incidental damages or damages for lost profits, loss of
84 * revenue or loss of use, whether such damages arise in contract,
85 * negligence, tort, under statute, in equity, at law or otherwise,
86 * even if advised of the possibility of such damage.
87 */
88
89 #include <sys/cdefs.h>
90
91 #include <sys/param.h>
92 #include <sys/kernel.h>
93 #include <sys/systm.h>
94 #include <sys/mbuf.h>
95 #include <sys/syslog.h>
96 #include <sys/socket.h>
97 #include <sys/device.h>
98 #include <sys/malloc.h>
99 #include <sys/ioctl.h>
100 #include <sys/errno.h>
101
102 #include <net/if.h>
103 #include <net/if_ether.h>
104 #include <net/if_media.h>
105 #include <net/bpf.h>
106
107 #ifdef INET
108 #include <netinet/in.h>
109 #include <netinet/if_inarp.h>
110 #endif
111
112 #include <sys/bus.h>
113 #include <sys/intr.h>
114
115 #include <dev/ic/dm9000var.h>
116 #include <dev/ic/dm9000reg.h>
117
118 #if 1
119 #undef DM9000_DEBUG
120 #undef DM9000_TX_DEBUG
121 #undef DM9000_TX_DATA_DEBUG
122 #undef DM9000_RX_DEBUG
123 #undef DM9000_RX_DATA_DEBUG
124 #else
125 #define DM9000_DEBUG
126 #define DM9000_TX_DEBUG
127 #define DM9000_TX_DATA_DEBUG
128 #define DM9000_RX_DEBUG
129 #define DM9000_RX_DATA_DEBUG
130 #endif
131
132 #ifdef DM9000_DEBUG
133 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
134 #else
135 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
136 #endif
137
138 #ifdef DM9000_TX_DEBUG
139 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
140 #else
141 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
142 #endif
143
144 #ifdef DM9000_RX_DEBUG
145 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
146 #else
147 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
148 #endif
149
150 #ifdef DM9000_RX_DATA_DEBUG
151 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
152 #else
153 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
154 #endif
155
156 #ifdef DM9000_TX_DATA_DEBUG
157 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
158 #else
159 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
160 #endif
161
162 /*** Internal PHY functions ***/
163 uint16_t dme_phy_read(struct dme_softc *, int );
164 void dme_phy_write(struct dme_softc *, int, uint16_t);
165 void dme_phy_init(struct dme_softc *);
166 void dme_phy_reset(struct dme_softc *);
167 void dme_phy_update_media(struct dme_softc *);
168 void dme_phy_check_link(void *);
169
170 /*** Methods registered in struct ifnet ***/
171 void dme_start_output(struct ifnet *);
172 int dme_init(struct ifnet *);
173 int dme_ioctl(struct ifnet *, u_long, void *);
174 void dme_stop(struct ifnet *, int);
175
176 int dme_mediachange(struct ifnet *);
177 void dme_mediastatus(struct ifnet *, struct ifmediareq *);
178
179 /*** Internal methods ***/
180
181 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
182 void dme_prepare(struct dme_softc *, struct ifnet *);
183
184 /* Transmit prepared data */
185 void dme_transmit(struct dme_softc *);
186
187 /* Receive data */
188 void dme_receive(struct dme_softc *, struct ifnet *);
189
190 /* Software Initialize/Reset of the DM9000 */
191 void dme_reset(struct dme_softc *);
192
193 /* Configure multicast filter */
194 void dme_set_addr_filter(struct dme_softc *);
195
196 /* Set media */
197 int dme_set_media(struct dme_softc *, int );
198
199 /* Read/write packet data from/to DM9000 IC in various transfer sizes */
200 int dme_pkt_read_2(struct dme_softc *, struct ifnet *, struct mbuf **);
201 int dme_pkt_write_2(struct dme_softc *, struct mbuf *);
202 int dme_pkt_read_1(struct dme_softc *, struct ifnet *, struct mbuf **);
203 int dme_pkt_write_1(struct dme_softc *, struct mbuf *);
204 /* TODO: Implement 32 bit read/write functions */
205
206 uint16_t
207 dme_phy_read(struct dme_softc *sc, int reg)
208 {
209 uint16_t val;
210 /* Select Register to read*/
211 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
212 (reg & DM9000_EPAR_EROA_MASK));
213 /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
214 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
215
216 /* Wait until access to PHY has completed */
217 while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
218 ;
219
220 /* Reset ERPRR-bit */
221 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
222
223 val = dme_read(sc, DM9000_EPDRL);
224 val += dme_read(sc, DM9000_EPDRH) << 8;
225
226 return val;
227 }
228
229 void
230 dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
231 {
232 /* Select Register to write*/
233 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
234 (reg & DM9000_EPAR_EROA_MASK));
235
236 /* Write data to the two data registers */
237 dme_write(sc, DM9000_EPDRL, value & 0xFF);
238 dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
239
240 /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
241 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
242
243 /* Wait until access to PHY has completed */
244 while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
245 ;
246
247 /* Reset ERPRR-bit */
248 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
249 }
250
251 void
252 dme_phy_init(struct dme_softc *sc)
253 {
254 u_int ifm_media = sc->sc_media.ifm_media;
255 uint32_t bmcr, anar;
256
257 bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
258 anar = dme_phy_read(sc, DM9000_PHY_ANAR);
259
260 anar = anar & ~DM9000_PHY_ANAR_10_HDX
261 & ~DM9000_PHY_ANAR_10_FDX
262 & ~DM9000_PHY_ANAR_TX_HDX
263 & ~DM9000_PHY_ANAR_TX_FDX;
264
265 switch (IFM_SUBTYPE(ifm_media)) {
266 case IFM_AUTO:
267 bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
268 anar |= DM9000_PHY_ANAR_10_HDX |
269 DM9000_PHY_ANAR_10_FDX |
270 DM9000_PHY_ANAR_TX_HDX |
271 DM9000_PHY_ANAR_TX_FDX;
272 break;
273 case IFM_10_T:
274 //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
275 bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
276 if (ifm_media & IFM_FDX)
277 anar |= DM9000_PHY_ANAR_10_FDX;
278 else
279 anar |= DM9000_PHY_ANAR_10_HDX;
280 break;
281 case IFM_100_TX:
282 //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
283 bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
284 if (ifm_media & IFM_FDX)
285 anar |= DM9000_PHY_ANAR_TX_FDX;
286 else
287 anar |= DM9000_PHY_ANAR_TX_HDX;
288
289 break;
290 }
291
292 if (ifm_media & IFM_FDX)
293 bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
294 else
295 bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
296
297 dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
298 dme_phy_write(sc, DM9000_PHY_ANAR, anar);
299 }
300
301 void
302 dme_phy_reset(struct dme_softc *sc)
303 {
304 uint32_t reg;
305
306 /* PHY Reset */
307 dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
308
309 reg = dme_read(sc, DM9000_GPCR);
310 dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
311 reg = dme_read(sc, DM9000_GPR);
312 dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
313
314 dme_phy_init(sc);
315
316 reg = dme_read(sc, DM9000_GPR);
317 dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
318 reg = dme_read(sc, DM9000_GPCR);
319 dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
320
321 dme_phy_update_media(sc);
322 }
323
324 void
325 dme_phy_update_media(struct dme_softc *sc)
326 {
327 u_int ifm_media = sc->sc_media.ifm_media;
328 uint32_t reg;
329
330 if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
331 /* If auto-negotiation is used, ensures that it is completed
332 before trying to extract any media information. */
333 reg = dme_phy_read(sc, DM9000_PHY_BMSR);
334 if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
335 /* Auto-negotation not possible, therefore there is no
336 reason to try obtain any media information. */
337 return;
338 }
339
340 /* Then loop until the negotiation is completed. */
341 while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
342 /* TODO: Bail out after a finite number of attempts
343 in case something goes wrong. */
344 preempt();
345 reg = dme_phy_read(sc, DM9000_PHY_BMSR);
346 }
347 }
348
349
350 sc->sc_media_active = IFM_ETHER;
351 reg = dme_phy_read(sc, DM9000_PHY_BMCR);
352
353 if (reg & DM9000_PHY_BMCR_SPEED_SELECT)
354 sc->sc_media_active |= IFM_100_TX;
355 else
356 sc->sc_media_active |= IFM_10_T;
357
358 if (reg & DM9000_PHY_BMCR_DUPLEX_MODE)
359 sc->sc_media_active |= IFM_FDX;
360 }
361
362 void
363 dme_phy_check_link(void *arg)
364 {
365 struct dme_softc *sc = arg;
366 uint32_t reg;
367 int s;
368
369 s = splnet();
370
371 reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
372
373 if (reg)
374 reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
375 else {
376 reg = IFM_ETHER | IFM_AVALID;
377 sc->sc_media_active = IFM_NONE;
378 }
379
380 if ((sc->sc_media_status != reg) && (reg & IFM_ACTIVE))
381 dme_phy_reset(sc);
382
383 sc->sc_media_status = reg;
384
385 callout_schedule(&sc->sc_link_callout, mstohz(2000));
386 splx(s);
387 }
388
389 int
390 dme_set_media(struct dme_softc *sc, int media)
391 {
392 int s;
393
394 s = splnet();
395 sc->sc_media.ifm_media = media;
396 dme_phy_reset(sc);
397
398 splx(s);
399
400 return 0;
401 }
402
403 int
404 dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
405 {
406 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
407 uint8_t b[2];
408 uint16_t io_mode;
409
410 dme_read_c(sc, DM9000_VID0, b, 2);
411 #if BYTE_ORDER == BIG_ENDIAN
412 sc->sc_vendor_id = (b[0] << 8) | b[1];
413 #else
414 sc->sc_vendor_id = b[0] | (b[1] << 8);
415 #endif
416 dme_read_c(sc, DM9000_PID0, b, 2);
417 #if BYTE_ORDER == BIG_ENDIAN
418 sc->sc_product_id = (b[0] << 8) | b[1];
419 #else
420 sc->sc_product_id = b[0] | (b[1] << 8);
421 #endif
422 /* TODO: Check the vendor ID as well */
423 if (sc->sc_product_id != 0x9000) {
424 panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
425 sc->sc_product_id);
426 }
427
428 /* Initialize ifnet structure. */
429 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
430 ifp->if_softc = sc;
431 ifp->if_start = dme_start_output;
432 ifp->if_init = dme_init;
433 ifp->if_ioctl = dme_ioctl;
434 ifp->if_stop = dme_stop;
435 ifp->if_watchdog = NULL; /* no watchdog at this stage */
436 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
437 IFQ_SET_READY(&ifp->if_snd);
438
439 /* Initialize ifmedia structures. */
440 sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
441 ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
442 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_AUTO, 0, NULL);
443 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
444 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10_T, 0, NULL);
445 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
446 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_100_TX, 0, NULL);
447
448 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
449
450 if (enaddr != NULL)
451 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
452 /* TODO: Support an EEPROM attached to the DM9000 chip */
453
454 callout_init(&sc->sc_link_callout, 0);
455 callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
456
457 sc->sc_media_status = 0;
458
459 /* Configure DM9000 with the MAC address */
460 dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
461
462 #ifdef DM9000_DEBUG
463 {
464 uint8_t macAddr[6];
465 dme_read_c(sc, DM9000_PAB0, macAddr, 6);
466 printf("DM9000 configured with MAC address: ");
467 for (int i = 0; i < 6; i++)
468 printf("%02X:", macAddr[i]);
469 printf("\n");
470 }
471 #endif
472
473 if_attach(ifp);
474 ether_ifattach(ifp, sc->sc_enaddr);
475
476 #ifdef DM9000_DEBUG
477 {
478 uint8_t network_state;
479 network_state = dme_read(sc, DM9000_NSR);
480 printf("DM9000 Link status: ");
481 if (network_state & DM9000_NSR_LINKST) {
482 if (network_state & DM9000_NSR_SPEED)
483 printf("10Mbps");
484 else
485 printf("100Mbps");
486 } else
487 printf("Down");
488 printf("\n");
489 }
490 #endif
491
492 io_mode = (dme_read(sc, DM9000_ISR) &
493 DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
494
495 DPRINTF(("DM9000 Operation Mode: "));
496 switch (io_mode) {
497 case DM9000_MODE_16BIT:
498 DPRINTF(("16-bit mode"));
499 sc->sc_data_width = 2;
500 sc->sc_pkt_write = dme_pkt_write_2;
501 sc->sc_pkt_read = dme_pkt_read_2;
502 break;
503 case DM9000_MODE_32BIT:
504 DPRINTF(("32-bit mode"));
505 sc->sc_data_width = 4;
506 panic("32bit mode is unsupported\n");
507 break;
508 case DM9000_MODE_8BIT:
509 DPRINTF(("8-bit mode"));
510 sc->sc_data_width = 1;
511 sc->sc_pkt_write = dme_pkt_write_1;
512 sc->sc_pkt_read = dme_pkt_read_1;
513 break;
514 default:
515 DPRINTF(("Invalid mode"));
516 break;
517 }
518 DPRINTF(("\n"));
519
520 callout_schedule(&sc->sc_link_callout, mstohz(2000));
521
522 return 0;
523 }
524
525 int dme_intr(void *arg)
526 {
527 struct dme_softc *sc = arg;
528 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
529 uint8_t status;
530
531
532 DPRINTF(("dme_intr: Begin\n"));
533
534 /* Disable interrupts */
535 dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
536
537 status = dme_read(sc, DM9000_ISR);
538 dme_write(sc, DM9000_ISR, status);
539
540 if (status & DM9000_ISR_PRS) {
541 if (ifp->if_flags & IFF_RUNNING )
542 dme_receive(sc, ifp);
543 }
544 if (status & DM9000_ISR_PTS) {
545 uint8_t nsr;
546 uint8_t tx_status = 0x01; /* Initialize to an error value */
547
548 /* A packet has been transmitted */
549 sc->txbusy = 0;
550
551 nsr = dme_read(sc, DM9000_NSR);
552
553 if (nsr & DM9000_NSR_TX1END) {
554 tx_status = dme_read(sc, DM9000_TSR1);
555 TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
556 } else if (nsr & DM9000_NSR_TX2END) {
557 tx_status = dme_read(sc, DM9000_TSR2);
558 TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
559 }
560
561 if (tx_status == 0x0) {
562 /* Frame successfully sent */
563 ifp->if_opackets++;
564 } else {
565 ifp->if_oerrors++;
566 }
567
568 /* If we have nothing ready to transmit, prepare something */
569 if (!sc->txready)
570 dme_prepare(sc, ifp);
571
572 if (sc->txready)
573 dme_transmit(sc);
574
575 /* Prepare the next frame */
576 dme_prepare(sc, ifp);
577
578 }
579 #ifdef notyet
580 if (status & DM9000_ISR_LNKCHNG) {
581 }
582 #endif
583
584 /* Enable interrupts again */
585 dme_write(sc, DM9000_IMR,
586 DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
587
588 DPRINTF(("dme_intr: End\n"));
589
590 return 1;
591 }
592
593 void
594 dme_start_output(struct ifnet *ifp)
595 {
596 struct dme_softc *sc;
597
598 sc = ifp->if_softc;
599
600 DPRINTF(("dme_start_output: Begin\n"));
601
602 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
603 printf("No output\n");
604 return;
605 }
606
607 if (sc->txbusy && sc->txready)
608 panic("DM9000: Internal error, trying to send without"
609 " any empty queue\n");
610
611 dme_prepare(sc, ifp);
612
613 if (sc->txbusy == 0) {
614 /* We are ready to transmit right away */
615 dme_transmit(sc);
616 dme_prepare(sc, ifp); /* Prepare next one */
617 } else {
618 /* We need to wait until the current packet has
619 * been transmitted.
620 */
621 ifp->if_flags |= IFF_OACTIVE;
622 }
623
624 DPRINTF(("dme_start_output: End\n"));
625 }
626
627 void
628 dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
629 {
630 struct mbuf *bufChain;
631 uint16_t length;
632
633 TX_DPRINTF(("dme_prepare: Entering\n"));
634
635 if (sc->txready)
636 panic("dme_prepare: Someone called us with txready set\n");
637
638 IFQ_DEQUEUE(&ifp->if_snd, bufChain);
639 if (bufChain == NULL) {
640 TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
641 ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
642 return; /* Nothing to transmit */
643 }
644
645 /* Element has now been removed from the queue, so we better send it */
646
647 bpf_mtap(ifp, bufChain, BPF_D_OUT);
648
649 /* Setup the DM9000 to accept the writes, and then write each buf in
650 the chain. */
651
652 TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
653 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
654 length = sc->sc_pkt_write(sc, bufChain);
655 TX_DATA_DPRINTF(("\n"));
656
657 if (length % sc->sc_data_width != 0)
658 panic("dme_prepare: length is not compatible with IO_MODE");
659
660 sc->txready_length = length;
661 sc->txready = 1;
662
663 TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
664 "txready: %d, txready_length: %d\n",
665 sc->txbusy, sc->txready, sc->txready_length));
666
667 m_freem(bufChain);
668
669 TX_DPRINTF(("dme_prepare: Leaving\n"));
670 }
671
672 int
673 dme_init(struct ifnet *ifp)
674 {
675 int s;
676 struct dme_softc *sc = ifp->if_softc;
677
678 dme_stop(ifp, 0);
679
680 s = splnet();
681
682 dme_reset(sc);
683
684 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
685 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
686 sc->sc_ethercom.ec_if.if_timer = 0;
687
688 splx(s);
689
690 return 0;
691 }
692
693 int
694 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
695 {
696 struct dme_softc *sc = ifp->if_softc;
697 int s, error = 0;
698
699 s = splnet();
700
701 switch (cmd) {
702 default:
703 error = ether_ioctl(ifp, cmd, data);
704 if (error == ENETRESET) {
705 if (ifp->if_flags && IFF_RUNNING) {
706 /* Address list has changed, reconfigure
707 filter */
708 dme_set_addr_filter(sc);
709 }
710 error = 0;
711 }
712 break;
713 }
714
715 splx(s);
716 return error;
717 }
718
719 void
720 dme_stop(struct ifnet *ifp, int disable)
721 {
722 struct dme_softc *sc = ifp->if_softc;
723
724 /* Not quite sure what to do when called with disable == 0 */
725 if (disable) {
726 /* Disable RX */
727 dme_write(sc, DM9000_RCR, 0x0);
728 }
729
730 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
731 ifp->if_timer = 0;
732 }
733
734 int
735 dme_mediachange(struct ifnet *ifp)
736 {
737 struct dme_softc *sc = ifp->if_softc;
738
739 return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
740 }
741
742 void
743 dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
744 {
745 struct dme_softc *sc = ifp->if_softc;
746
747 ifmr->ifm_active = sc->sc_media_active;
748 ifmr->ifm_status = sc->sc_media_status;
749 }
750
751 void
752 dme_transmit(struct dme_softc *sc)
753 {
754
755 TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
756 sc->txready, sc->txbusy));
757
758 dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
759 dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
760
761 /* Request to send the packet */
762 dme_read(sc, DM9000_ISR);
763
764 dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
765
766 sc->txready = 0;
767 sc->txbusy = 1;
768 sc->txready_length = 0;
769 }
770
771 void
772 dme_receive(struct dme_softc *sc, struct ifnet *ifp)
773 {
774 uint8_t ready = 0x01;
775
776 DPRINTF(("inside dme_receive\n"));
777
778 while (ready == 0x01) {
779 /* Packet received, retrieve it */
780
781 /* Read without address increment to get the ready byte without
782 moving past it. */
783 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
784 sc->dme_io, DM9000_MRCMDX);
785 /* Dummy ready */
786 ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
787 ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
788 ready &= 0x03; /* we only want bits 1:0 */
789 if (ready == 0x01) {
790 uint8_t rx_status;
791 struct mbuf *m;
792
793 /* Read with address increment. */
794 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
795 sc->dme_io, DM9000_MRCMD);
796
797 rx_status = sc->sc_pkt_read(sc, ifp, &m);
798 if (m == NULL) {
799 /* failed to allocate a receive buffer */
800 ifp->if_ierrors++;
801 RX_DPRINTF(("dme_receive: "
802 "Error allocating buffer\n"));
803 } else if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
804 /* Error while receiving the packet,
805 * discard it and keep track of counters
806 */
807 ifp->if_ierrors++;
808 RX_DPRINTF(("dme_receive: "
809 "Error reciving packet\n"));
810 } else if (rx_status & DM9000_RSR_LCS) {
811 ifp->if_collisions++;
812 } else {
813 if_percpuq_enqueue(ifp->if_percpuq, m);
814 }
815
816 } else if (ready != 0x00) {
817 /* Should this be logged somehow? */
818 printf("%s: Resetting chip\n",
819 device_xname(sc->sc_dev));
820 dme_reset(sc);
821 }
822 }
823 }
824
825 void
826 dme_reset(struct dme_softc *sc)
827 {
828 uint8_t var;
829
830 /* We only re-initialized the PHY in this function the first time it is
831 called. */
832 if (!sc->sc_phy_initialized) {
833 /* PHY Reset */
834 dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
835
836 /* PHY Power Down */
837 var = dme_read(sc, DM9000_GPR);
838 dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
839 }
840
841 /* Reset the DM9000 twice, as described in section 2 of the Programming
842 Guide.
843 The PHY is initialized and enabled between those two resets.
844 */
845
846 /* Software Reset*/
847 dme_write(sc, DM9000_NCR,
848 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
849 delay(20);
850 dme_write(sc, DM9000_NCR, 0x0);
851
852 if (!sc->sc_phy_initialized) {
853 /* PHY Initialization */
854 dme_phy_init(sc);
855
856 /* PHY Enable */
857 var = dme_read(sc, DM9000_GPR);
858 dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
859 var = dme_read(sc, DM9000_GPCR);
860 dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
861
862 dme_write(sc, DM9000_NCR,
863 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
864 delay(20);
865 dme_write(sc, DM9000_NCR, 0x0);
866 }
867
868 /* Select internal PHY, no wakeup event, no collosion mode,
869 * normal loopback mode.
870 */
871 dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
872
873 /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
874 dme_read(sc, DM9000_NSR);
875
876 /* Enable wraparound of read/write pointer, packet received latch,
877 * and packet transmitted latch.
878 */
879 dme_write(sc, DM9000_IMR,
880 DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
881
882 /* Setup multicast address filter, and enable RX. */
883 dme_set_addr_filter(sc);
884
885 /* Obtain media information from PHY */
886 dme_phy_update_media(sc);
887
888 sc->txbusy = 0;
889 sc->txready = 0;
890 sc->sc_phy_initialized = 1;
891 }
892
893 void
894 dme_set_addr_filter(struct dme_softc *sc)
895 {
896 struct ether_multi *enm;
897 struct ether_multistep step;
898 struct ethercom *ec;
899 struct ifnet *ifp;
900 uint16_t af[4];
901 int i;
902
903 ec = &sc->sc_ethercom;
904 ifp = &ec->ec_if;
905
906 if (ifp->if_flags & IFF_PROMISC) {
907 dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN |
908 DM9000_RCR_WTDIS |
909 DM9000_RCR_PRMSC);
910 ifp->if_flags |= IFF_ALLMULTI;
911 return;
912 }
913
914 af[0] = af[1] = af[2] = af[3] = 0x0000;
915 ifp->if_flags &= ~IFF_ALLMULTI;
916
917 ETHER_LOCK(ec);
918 ETHER_FIRST_MULTI(step, ec, enm);
919 while (enm != NULL) {
920 uint16_t hash;
921 if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
922 sizeof(enm->enm_addrlo))) {
923 /*
924 * We must listen to a range of multicast addresses.
925 * For now, just accept all multicasts, rather than
926 * trying to set only those filter bits needed to match
927 * the range. (At this time, the only use of address
928 * ranges is for IP multicast routing, for which the
929 * range is big enough to require all bits set.)
930 */
931 ifp->if_flags |= IFF_ALLMULTI;
932 af[0] = af[1] = af[2] = af[3] = 0xffff;
933 break;
934 } else {
935 hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
936 af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
937 ETHER_NEXT_MULTI(step, enm);
938 }
939 }
940 ETHER_UNLOCK(ec);
941
942 /* Write the multicast address filter */
943 for (i = 0; i < 4; i++) {
944 dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
945 dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
946 }
947
948 /* Setup RX controls */
949 dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
950 }
951
952 int
953 dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
954 {
955 int left_over_count = 0; /* Number of bytes from previous mbuf, which
956 need to be written with the next.*/
957 uint16_t left_over_buf = 0;
958 int length = 0;
959 struct mbuf *buf;
960 uint8_t *write_ptr;
961
962 /* We expect that the DM9000 has been setup to accept writes before
963 this function is called. */
964
965 for (buf = bufChain; buf != NULL; buf = buf->m_next) {
966 int to_write = buf->m_len;
967
968 length += to_write;
969
970 write_ptr = buf->m_data;
971 while (to_write > 0 ||
972 (buf->m_next == NULL && left_over_count > 0)) {
973 if (left_over_count > 0) {
974 uint8_t b = 0;
975 DPRINTF(("dme_pkt_write_16: "
976 "Writing left over byte\n"));
977
978 if (to_write > 0) {
979 b = *write_ptr;
980 to_write--;
981 write_ptr++;
982
983 DPRINTF(("Took single byte\n"));
984 } else {
985 DPRINTF(("Leftover in last run\n"));
986 length++;
987 }
988
989 /* Does shift direction depend on endianess? */
990 left_over_buf = left_over_buf | (b << 8);
991
992 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
993 sc->dme_data, left_over_buf);
994 TX_DATA_DPRINTF(("%02X ", left_over_buf));
995 left_over_count = 0;
996 } else if ((long)write_ptr % 2 != 0) {
997 /* Misaligned data */
998 DPRINTF(("dme_pkt_write_16: "
999 "Detected misaligned data\n"));
1000 left_over_buf = *write_ptr;
1001 left_over_count = 1;
1002 write_ptr++;
1003 to_write--;
1004 } else {
1005 int i;
1006 uint16_t *dptr = (uint16_t *)write_ptr;
1007
1008 /* A block of aligned data. */
1009 for (i = 0; i < to_write / 2; i++) {
1010 /* buf will be half-word aligned
1011 * all the time
1012 */
1013 bus_space_write_2(sc->sc_iot,
1014 sc->sc_ioh, sc->dme_data, *dptr);
1015 TX_DATA_DPRINTF(("%02X %02X ",
1016 *dptr & 0xFF, (*dptr >> 8) & 0xFF));
1017 dptr++;
1018 }
1019
1020 write_ptr += i * 2;
1021 if (to_write % 2 != 0) {
1022 DPRINTF(("dme_pkt_write_16: "
1023 "to_write %% 2: %d\n",
1024 to_write % 2));
1025 left_over_count = 1;
1026 /* XXX: Does this depend on
1027 * the endianess?
1028 */
1029 left_over_buf = *write_ptr;
1030
1031 write_ptr++;
1032 to_write--;
1033 DPRINTF(("dme_pkt_write_16: "
1034 "to_write (after): %d\n",
1035 to_write));
1036 DPRINTF(("dme_pkt_write_16: i * 2: %d\n",
1037 i*2));
1038 }
1039 to_write -= i * 2;
1040 }
1041 } /* while (...) */
1042 } /* for (...) */
1043
1044 return length;
1045 }
1046
1047 int
1048 dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1049 {
1050 uint8_t rx_status;
1051 struct mbuf *m;
1052 uint16_t data;
1053 uint16_t frame_length;
1054 uint16_t i;
1055 uint16_t *buf;
1056
1057 data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1058
1059 rx_status = data & 0xFF;
1060 frame_length = bus_space_read_2(sc->sc_iot,
1061 sc->sc_ioh, sc->dme_data);
1062 if (frame_length > ETHER_MAX_LEN) {
1063 printf("Got frame of length: %d\n", frame_length);
1064 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1065 panic("Something is rotten");
1066 }
1067 RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
1068 rx_status, frame_length));
1069
1070
1071 m = dme_alloc_receive_buffer(ifp, frame_length);
1072 if (m == NULL) {
1073 /*
1074 * didn't get a receive buffer, so we read the rest of the
1075 * packet, throw it away and return an error
1076 */
1077 for (i = 0; i < frame_length; i += 2 ) {
1078 data = bus_space_read_2(sc->sc_iot,
1079 sc->sc_ioh, sc->dme_data);
1080 }
1081 *outBuf = NULL;
1082 return 0;
1083 }
1084
1085 buf = mtod(m, uint16_t*);
1086
1087 RX_DPRINTF(("dme_receive: "));
1088
1089 for (i = 0; i < frame_length; i += 2 ) {
1090 data = bus_space_read_2(sc->sc_iot,
1091 sc->sc_ioh, sc->dme_data);
1092 if ( (frame_length % 2 != 0) &&
1093 (i == frame_length - 1) ) {
1094 data = data & 0xff;
1095 RX_DPRINTF((" L "));
1096 }
1097 *buf = data;
1098 buf++;
1099 RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1100 (data >> 8) & 0xff));
1101 }
1102
1103 RX_DATA_DPRINTF(("\n"));
1104 RX_DPRINTF(("Read %d bytes\n", i));
1105
1106 *outBuf = m;
1107 return rx_status;
1108 }
1109
1110 int
1111 dme_pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
1112 {
1113 int length = 0, i;
1114 struct mbuf *buf;
1115 uint8_t *write_ptr;
1116
1117 /*
1118 * We expect that the DM9000 has been setup to accept writes before
1119 * this function is called.
1120 */
1121
1122 for (buf = bufChain; buf != NULL; buf = buf->m_next) {
1123 int to_write = buf->m_len;
1124
1125 length += to_write;
1126
1127 write_ptr = buf->m_data;
1128 for (i = 0; i < to_write; i++) {
1129 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1130 sc->dme_data, *write_ptr);
1131 write_ptr++;
1132 }
1133 } /* for (...) */
1134
1135 return length;
1136 }
1137
1138 int
1139 dme_pkt_read_1(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1140 {
1141 uint8_t rx_status;
1142 struct mbuf *m;
1143 uint8_t *buf;
1144 uint16_t frame_length;
1145 uint16_t i, reg;
1146 uint8_t data;
1147
1148 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1149 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1150 rx_status = reg & 0xFF;
1151
1152 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1153 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1154 frame_length = reg;
1155
1156 if (frame_length > ETHER_MAX_LEN) {
1157 printf("Got frame of length: %d\n", frame_length);
1158 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1159 panic("Something is rotten");
1160 }
1161 RX_DPRINTF(("dme_receive: "
1162 "rx_statux: 0x%x, frame_length: %d\n",
1163 rx_status, frame_length));
1164
1165
1166 m = dme_alloc_receive_buffer(ifp, frame_length);
1167 if (m == NULL) {
1168 /*
1169 * didn't get a receive buffer, so we read the rest of the
1170 * packet, throw it away and return an error
1171 */
1172 for (i = 0; i < frame_length; i++ ) {
1173 data = bus_space_read_2(sc->sc_iot,
1174 sc->sc_ioh, sc->dme_data);
1175 }
1176 *outBuf = NULL;
1177 return 0;
1178 }
1179
1180 buf = mtod(m, uint8_t *);
1181
1182 RX_DPRINTF(("dme_receive: "));
1183
1184 for (i = 0; i< frame_length; i += 1 ) {
1185 data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1186 *buf = data;
1187 buf++;
1188 RX_DATA_DPRINTF(("%02X ", data));
1189 }
1190
1191 RX_DATA_DPRINTF(("\n"));
1192 RX_DPRINTF(("Read %d bytes\n", i));
1193
1194 *outBuf = m;
1195 return rx_status;
1196 }
1197
1198 struct mbuf*
1199 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
1200 {
1201 struct dme_softc *sc = ifp->if_softc;
1202 struct mbuf *m;
1203 int pad;
1204
1205 MGETHDR(m, M_DONTWAIT, MT_DATA);
1206 if (m == NULL) return NULL;
1207
1208 m_set_rcvif(m, ifp);
1209 /* Ensure that we always allocate an even number of
1210 * bytes in order to avoid writing beyond the buffer
1211 */
1212 m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
1213 pad = ALIGN(sizeof(struct ether_header)) -
1214 sizeof(struct ether_header);
1215 /* All our frames have the CRC attached */
1216 m->m_flags |= M_HASFCS;
1217 if (m->m_pkthdr.len + pad > MHLEN) {
1218 MCLGET(m, M_DONTWAIT);
1219 if ((m->m_flags & M_EXT) == 0) {
1220 m_freem(m);
1221 return NULL;
1222 }
1223 }
1224
1225 m->m_data += pad;
1226 m->m_len = frame_length + (frame_length % sc->sc_data_width);
1227
1228 return m;
1229 }
1230