Home | History | Annotate | Line # | Download | only in ic
dm9000.c revision 1.27
      1 /*	$NetBSD: dm9000.c,v 1.27 2020/04/02 07:26:45 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2009 Paul Fleischer
      5  * All rights reserved.
      6  *
      7  * 1. Redistributions of source code must retain the above copyright
      8  *    notice, this list of conditions and the following disclaimer.
      9  * 2. Redistributions in binary form must reproduce the above copyright
     10  *    notice, this list of conditions and the following disclaimer in the
     11  *    documentation and/or other materials provided with the distribution.
     12  * 3. The name of the company nor the name of the author may be used to
     13  *    endorse or promote products derived from this software without specific
     14  *    prior written permission.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /* based on sys/dev/ic/cs89x0.c */
     30 /*
     31  * Copyright (c) 2004 Christopher Gilbert
     32  * All rights reserved.
     33  *
     34  * 1. Redistributions of source code must retain the above copyright
     35  *    notice, this list of conditions and the following disclaimer.
     36  * 2. Redistributions in binary form must reproduce the above copyright
     37  *    notice, this list of conditions and the following disclaimer in the
     38  *    documentation and/or other materials provided with the distribution.
     39  * 3. The name of the company nor the name of the author may be used to
     40  *    endorse or promote products derived from this software without specific
     41  *    prior written permission.
     42  *
     43  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     44  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     45  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     46  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     47  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     48  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     49  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     50  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     51  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     52  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     53  * SUCH DAMAGE.
     54  */
     55 
     56 /*
     57  * Copyright 1997
     58  * Digital Equipment Corporation. All rights reserved.
     59  *
     60  * This software is furnished under license and may be used and
     61  * copied only in accordance with the following terms and conditions.
     62  * Subject to these conditions, you may download, copy, install,
     63  * use, modify and distribute this software in source and/or binary
     64  * form. No title or ownership is transferred hereby.
     65  *
     66  * 1) Any source code used, modified or distributed must reproduce
     67  *    and retain this copyright notice and list of conditions as
     68  *    they appear in the source file.
     69  *
     70  * 2) No right is granted to use any trade name, trademark, or logo of
     71  *    Digital Equipment Corporation. Neither the "Digital Equipment
     72  *    Corporation" name nor any trademark or logo of Digital Equipment
     73  *    Corporation may be used to endorse or promote products derived
     74  *    from this software without the prior written permission of
     75  *    Digital Equipment Corporation.
     76  *
     77  * 3) This software is provided "AS-IS" and any express or implied
     78  *    warranties, including but not limited to, any implied warranties
     79  *    of merchantability, fitness for a particular purpose, or
     80  *    non-infringement are disclaimed. In no event shall DIGITAL be
     81  *    liable for any damages whatsoever, and in particular, DIGITAL
     82  *    shall not be liable for special, indirect, consequential, or
     83  *    incidental damages or damages for lost profits, loss of
     84  *    revenue or loss of use, whether such damages arise in contract,
     85  *    negligence, tort, under statute, in equity, at law or otherwise,
     86  *    even if advised of the possibility of such damage.
     87  */
     88 
     89 #include <sys/cdefs.h>
     90 
     91 #include <sys/param.h>
     92 #include <sys/bus.h>
     93 #include <sys/intr.h>
     94 #include <sys/device.h>
     95 #include <sys/mbuf.h>
     96 #include <sys/sockio.h>
     97 #include <sys/malloc.h>
     98 #include <sys/errno.h>
     99 #include <sys/cprng.h>
    100 #include <sys/rndsource.h>
    101 #include <sys/kernel.h>
    102 #include <sys/systm.h>
    103 
    104 #include <net/if.h>
    105 #include <net/if_dl.h>
    106 #include <net/if_ether.h>
    107 #include <net/if_media.h>
    108 #include <dev/mii/mii.h>
    109 #include <dev/mii/miivar.h>
    110 #include <net/bpf.h>
    111 
    112 #include <dev/ic/dm9000var.h>
    113 #include <dev/ic/dm9000reg.h>
    114 
    115 #if 1
    116 #undef DM9000_DEBUG
    117 #undef DM9000_TX_DEBUG
    118 #undef DM9000_TX_DATA_DEBUG
    119 #undef DM9000_RX_DEBUG
    120 #undef  DM9000_RX_DATA_DEBUG
    121 #else
    122 #define DM9000_DEBUG
    123 #define  DM9000_TX_DEBUG
    124 #define DM9000_TX_DATA_DEBUG
    125 #define DM9000_RX_DEBUG
    126 #define  DM9000_RX_DATA_DEBUG
    127 #endif
    128 
    129 #ifdef DM9000_DEBUG
    130 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    131 #else
    132 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
    133 #endif
    134 
    135 #ifdef DM9000_TX_DEBUG
    136 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    137 #else
    138 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    139 #endif
    140 
    141 #ifdef DM9000_RX_DEBUG
    142 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    143 #else
    144 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    145 #endif
    146 
    147 #ifdef DM9000_RX_DATA_DEBUG
    148 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    149 #else
    150 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    151 #endif
    152 
    153 #ifdef DM9000_TX_DATA_DEBUG
    154 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    155 #else
    156 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    157 #endif
    158 
    159 static void dme_reset(struct dme_softc *);
    160 static int dme_init(struct ifnet *);
    161 static void dme_stop(struct ifnet *, int);
    162 static void dme_start(struct ifnet *);
    163 static int dme_ioctl(struct ifnet *, u_long, void *);
    164 
    165 static void dme_set_rcvfilt(struct dme_softc *);
    166 static void mii_statchg(struct ifnet *);
    167 static void lnkchg(struct dme_softc *);
    168 static void phy_tick(void *);
    169 static int mii_readreg(device_t, int, int, uint16_t *);
    170 static int mii_writereg(device_t, int, int, uint16_t);
    171 
    172 static void dme_prepare(struct ifnet *);
    173 static void dme_transmit(struct ifnet *);
    174 static void dme_receive(struct ifnet *);
    175 
    176 static int pkt_read_2(struct dme_softc *, struct mbuf **);
    177 static int pkt_write_2(struct dme_softc *, struct mbuf *);
    178 static int pkt_read_1(struct dme_softc *, struct mbuf **);
    179 static int pkt_write_1(struct dme_softc *, struct mbuf *);
    180 #define PKT_READ(ii,m) (*(ii)->sc_pkt_read)((ii),(m))
    181 #define PKT_WRITE(ii,m) (*(ii)->sc_pkt_write)((ii),(m))
    182 
    183 #define ETHER_IS_ONE(x) \
    184 	   (((x)[0] & (x)[1] & (x)[2] & (x)[3] & (x)[4] & (x)[5]) == 255)
    185 #define ETHER_IS_ZERO(x) \
    186 	   (((x)[0] | (x)[1] | (x)[2] | (x)[3] | (x)[4] | (x)[5]) == 0)
    187 
    188 int
    189 dme_attach(struct dme_softc *sc, const uint8_t *notusedanymore)
    190 {
    191 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    192 	struct mii_data *mii = &sc->sc_mii;
    193 	struct ifmedia *ifm = &mii->mii_media;
    194 	uint8_t b[2];
    195 	uint16_t io_mode;
    196 	uint8_t enaddr[ETHER_ADDR_LEN];
    197 	prop_dictionary_t dict;
    198 	prop_data_t ea;
    199 
    200 	dme_read_c(sc, DM9000_VID0, b, 2);
    201 	sc->sc_vendor_id = le16toh((uint16_t)b[1] << 8 | b[0]);
    202 	dme_read_c(sc, DM9000_PID0, b, 2);
    203 	sc->sc_product_id = le16toh((uint16_t)b[1] << 8 | b[0]);
    204 
    205 	/* TODO: Check the vendor ID as well */
    206 	if (sc->sc_product_id != 0x9000) {
    207 		panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
    208 		    sc->sc_product_id);
    209 	}
    210 #if 1 || DM9000_DEBUG
    211 	{
    212 		dme_read_c(sc, DM9000_PAB0, enaddr, 6);
    213 		aprint_normal_dev(sc->sc_dev,
    214 		    "DM9000 was configured with MAC address: %s\n",
    215 		    ether_sprintf(enaddr));
    216 	}
    217 #endif
    218 	dict = device_properties(sc->sc_dev);
    219 	ea = (dict) ? prop_dictionary_get(dict, "mac-address") : NULL;
    220 	if (ea != NULL) {
    221 	       /*
    222 		 * If the MAC address is overriden by a device property,
    223 		 * use that.
    224 		 */
    225 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
    226 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
    227 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
    228 	} else {
    229 		/*
    230 		 * If we did not get an externaly configure address,
    231 		 * try to read one from the current setup, before
    232 		 * resetting the chip.
    233 		 */
    234 		dme_read_c(sc, DM9000_PAB0, enaddr, 6);
    235 		if (ETHER_IS_ONE(enaddr) || ETHER_IS_ZERO(enaddr)) {
    236 			/* make a random MAC address */
    237 			uint32_t maclo = 0x00f2 | (cprng_strong32() << 16);
    238 			uint32_t machi = cprng_strong32();
    239 			enaddr[0] = maclo;
    240 			enaddr[1] = maclo >> 8;
    241 			enaddr[2] = maclo >> 16;
    242 			enaddr[3] = maclo >> 26;
    243 			enaddr[4] = machi;
    244 			enaddr[5] = machi >> 8;
    245 		}
    246 	}
    247 	/* TODO: perform explicit EEPROM read op if it's availble */
    248 
    249 	dme_reset(sc);
    250 
    251 	mii->mii_ifp = ifp;
    252 	mii->mii_readreg = mii_readreg;
    253 	mii->mii_writereg = mii_writereg;
    254 	mii->mii_statchg = mii_statchg;
    255 
    256 	/* assume davicom PHY at 1. ext PHY could be hooked but only at 0-3 */
    257 	sc->sc_ethercom.ec_mii = mii;
    258 	ifmedia_init(ifm, 0, ether_mediachange, ether_mediastatus);
    259 	mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY 1 */,
    260 		MII_OFFSET_ANY, 0);
    261 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    262 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    263 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    264 	} else
    265 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
    266 	ifm->ifm_media = ifm->ifm_cur->ifm_media;
    267 
    268 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    269 	ifp->if_softc = sc;
    270 	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
    271 	ifp->if_init = dme_init;
    272 	ifp->if_start = dme_start;
    273 	ifp->if_stop = dme_stop;
    274 	ifp->if_ioctl = dme_ioctl;
    275 	ifp->if_watchdog = NULL; /* no watchdog used */
    276 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
    277 	IFQ_SET_READY(&ifp->if_snd);
    278 
    279 	if_attach(ifp);
    280 	ether_ifattach(ifp, enaddr);
    281 	if_deferred_start_init(ifp, NULL);
    282 
    283 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    284             RND_TYPE_NET, RND_FLAG_DEFAULT);
    285 
    286 	/* might be unnecessary as link change interrupt works well */
    287 	callout_init(&sc->sc_link_callout, 0);
    288 	callout_setfunc(&sc->sc_link_callout, phy_tick, sc);
    289 
    290 	io_mode = (dme_read(sc, DM9000_ISR) &
    291 	    DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
    292 
    293 	/* frame body read/write ops in 2 byte quantity or byte-wise. */
    294 	DPRINTF(("DM9000 Operation Mode: "));
    295 	switch (io_mode) {
    296 	case DM9000_MODE_8BIT:
    297 		DPRINTF(("8-bit mode"));
    298 		sc->sc_data_width = 1;
    299 		sc->sc_pkt_write = pkt_write_1;
    300 		sc->sc_pkt_read = pkt_read_1;
    301 		break;
    302 	case DM9000_MODE_16BIT:
    303 		DPRINTF(("16-bit mode"));
    304 		sc->sc_data_width = 2;
    305 		sc->sc_pkt_write = pkt_write_2;
    306 		sc->sc_pkt_read = pkt_read_2;
    307 		break;
    308 	case DM9000_MODE_32BIT:
    309 		DPRINTF(("32-bit mode"));
    310 		sc->sc_data_width = 4;
    311 		panic("32bit mode is unsupported\n");
    312 		break;
    313 	default:
    314 		DPRINTF(("Invalid mode"));
    315 		break;
    316 	}
    317 	DPRINTF(("\n"));
    318 
    319 	return 0;
    320 }
    321 
    322 int
    323 dme_detach(struct dme_softc *sc)
    324 {
    325 	return 0;
    326 }
    327 
    328 /* Software Initialize/Reset of the DM9000 */
    329 static void
    330 dme_reset(struct dme_softc *sc)
    331 {
    332 	uint8_t misc;
    333 
    334 	/* We only re-initialized the PHY in this function the first time it is
    335 	 * called. */
    336 	if (!sc->sc_phy_initialized) {
    337 		/* PHY Reset */
    338 		mii_writereg(sc->sc_dev, 1, MII_BMCR, BMCR_RESET);
    339 
    340 		/* PHY Power Down */
    341 		misc = dme_read(sc, DM9000_GPR);
    342 		dme_write(sc, DM9000_GPR, misc | DM9000_GPR_PHY_PWROFF);
    343 	}
    344 
    345 	/* Reset the DM9000 twice, as described in section 2 of the Programming
    346 	 * Guide.
    347 	 * The PHY is initialized and enabled between those two resets.
    348 	 */
    349 
    350 	/* Software Reset */
    351 	dme_write(sc, DM9000_NCR,
    352 	    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
    353 	delay(20);
    354 	dme_write(sc, DM9000_NCR, 0x0);
    355 
    356 	if (!sc->sc_phy_initialized) {
    357 		/* PHY Enable */
    358 		misc = dme_read(sc, DM9000_GPR);
    359 		dme_write(sc, DM9000_GPR, misc & ~DM9000_GPR_PHY_PWROFF);
    360 		misc = dme_read(sc, DM9000_GPCR);
    361 		dme_write(sc, DM9000_GPCR, misc | DM9000_GPCR_GPIO0_OUT);
    362 
    363 		dme_write(sc, DM9000_NCR,
    364 		    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
    365 		delay(20);
    366 		dme_write(sc, DM9000_NCR, 0x0);
    367 	}
    368 
    369 	/* Select internal PHY, no wakeup event, no collosion mode,
    370 	 * normal loopback mode.
    371 	 */
    372 	dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL);
    373 
    374 	/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
    375 	dme_read(sc, DM9000_NSR);
    376 
    377 	/* Enable wraparound of read/write pointer, frame received latch,
    378 	 * and frame transmitted latch.
    379 	 */
    380 	dme_write(sc, DM9000_IMR,
    381 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
    382 
    383 	dme_write(sc, DM9000_RCR,
    384 	    DM9000_RCR_DIS_CRC | DM9000_RCR_DIS_LONG | DM9000_RCR_WTDIS);
    385 
    386 	sc->sc_phy_initialized = 1;
    387 }
    388 
    389 static int
    390 dme_init(struct ifnet *ifp)
    391 {
    392 	struct dme_softc *sc = ifp->if_softc;
    393 
    394 	dme_stop(ifp, 0);
    395 	dme_reset(sc);
    396 	dme_write_c(sc, DM9000_PAB0, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
    397 	dme_set_rcvfilt(sc);
    398 	(void)ether_mediachange(ifp);
    399 
    400 	sc->txbusy = sc->txready = 0;
    401 
    402 	ifp->if_flags |= IFF_RUNNING;
    403 	ifp->if_flags &= ~IFF_OACTIVE;
    404 	callout_schedule(&sc->sc_link_callout, hz);
    405 
    406 	return 0;
    407 }
    408 
    409 /* Configure multicast filter */
    410 static void
    411 dme_set_rcvfilt(struct dme_softc *sc)
    412 {
    413 	struct ethercom	*ec = &sc->sc_ethercom;
    414 	struct ifnet *ifp = &ec->ec_if;
    415 	struct ether_multi *enm;
    416 	struct ether_multistep step;
    417 	uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* 64bit mchash */
    418 	uint32_t h = 0;
    419 	int rcr;
    420 
    421 	rcr = dme_read(sc, DM9000_RCR);
    422 	rcr &= ~(DM9000_RCR_PRMSC | DM9000_RCR_ALL);
    423 	dme_write(sc, DM9000_RCR, rcr &~ DM9000_RCR_RXEN);
    424 
    425 	ETHER_LOCK(ec);
    426 	if (ifp->if_flags & IFF_PROMISC) {
    427 		ec->ec_flags |= ETHER_F_ALLMULTI;
    428 		ETHER_UNLOCK(ec);
    429 		/* run promisc. mode */
    430 		rcr |= DM9000_RCR_PRMSC;
    431 		goto update;
    432 	}
    433 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
    434 	ETHER_FIRST_MULTI(step, ec, enm);
    435 	while (enm != NULL) {
    436 		if (memcpy(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
    437 			/*
    438 			 * We must listen to a range of multicast addresses.
    439 			 * For now, just accept all multicasts, rather than
    440 			 * trying to set only those filter bits needed to match
    441 			 * the range.  (At this time, the only use of address
    442 			 * ranges is for IP multicast routing, for which the
    443 			 * range is big enough to require all bits set.)
    444 			 */
    445 			ec->ec_flags |= ETHER_F_ALLMULTI;
    446 			ETHER_UNLOCK(ec);
    447 			memset(mchash, 0xff, sizeof(mchash)); /* necessary? */
    448 			/* accept all mulicast frame */
    449 			rcr |= DM9000_RCR_ALL;
    450 			break;
    451 		}
    452 		h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
    453 		/* 3(5:3) and 3(2:0) sampling to have uint8_t[8] */
    454 		mchash[h / 8] |= 1 << (h % 8);
    455 		ETHER_NEXT_MULTI(step, enm);
    456 	}
    457 	ETHER_UNLOCK(ec);
    458 	/* DM9000 receive filter is always on */
    459 	mchash[7] |= 0x80; /* to catch bcast frame */
    460  update:
    461 	dme_write_c(sc, DM9000_MAB0, mchash, sizeof(mchash));
    462 	dme_write(sc, DM9000_RCR, rcr | DM9000_RCR_RXEN);
    463 	return;
    464 }
    465 
    466 void
    467 lnkchg(struct dme_softc *sc)
    468 {
    469 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    470 	struct ifmediareq ifmr;
    471 
    472 	ether_mediastatus(ifp, &ifmr);
    473 }
    474 
    475 static void
    476 mii_statchg(struct ifnet *ifp)
    477 {
    478 	struct dme_softc *sc = ifp->if_softc;
    479 	struct mii_data *mii = &sc->sc_mii;
    480 	uint8_t fcr, ncr;
    481 
    482 #if 0
    483 	const uint8_t Mbps[2] = { 10, 100 };
    484 	uint8_t nsr = dme_read(sc, DM9000_NSR);
    485 	int spd = Mbps[!!(nsr & DM9000_NSR_SPEED)];
    486 	/* speed/duplexity available also in reg 0x11 of internal PHY */
    487 	if (nsr & DM9000_NSR_LINKST)
    488 		printf("link up,spd%d", spd);
    489 	else
    490 		printf("link down");
    491 
    492 	/* show resolved mii(4) parameters */
    493 	printf("MII spd%d",
    494 	    (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
    495 	if (mii->mii_media_active & IFM_FDX)
    496 		printf(",full-duplex");
    497 	printf("\n");
    498 #endif
    499 
    500 	/* Adjust duplexity and PAUSE flow control. */
    501 	fcr = dme_read(sc, DM9000_FCR) &~ DM9000_FCR_FLCE;
    502 	ncr = dme_read(sc, DM9000_NCR) &~ DM9000_NCR_FDX;
    503 	if ((mii->mii_media_active & IFM_FDX)
    504 	    && (mii->mii_media_active & IFM_FLOW)) {
    505 		fcr |= DM9000_FCR_FLCE;
    506 		ncr |= DM9000_NCR_FDX;
    507 	}
    508 	dme_write(sc, DM9000_FCR, fcr);
    509 	dme_write(sc, DM9000_NCR, ncr);
    510 }
    511 
    512 static void
    513 phy_tick(void *arg)
    514 {
    515 	struct dme_softc *sc = arg;
    516 	struct mii_data *mii = &sc->sc_mii;
    517 	int s;
    518 
    519 	s = splnet();
    520 	mii_tick(mii);
    521 	splx(s);
    522 
    523 	callout_schedule(&sc->sc_link_callout, hz);
    524 }
    525 
    526 static int
    527 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
    528 {
    529 	struct dme_softc *sc = device_private(self);
    530 
    531 	if (phy != 1)
    532 		return EINVAL;
    533 
    534 	/* Select Register to read*/
    535 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
    536 	    (reg & DM9000_EPAR_EROA_MASK));
    537 	/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
    538 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
    539 
    540 	/* Wait until access to PHY has completed */
    541 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
    542 		;
    543 
    544 	/* Reset ERPRR-bit */
    545 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
    546 
    547 	*val = dme_read(sc, DM9000_EPDRL) | (dme_read(sc, DM9000_EPDRH) << 8);
    548 	return 0;
    549 }
    550 
    551 static int
    552 mii_writereg(device_t self, int phy, int reg, uint16_t val)
    553 {
    554 	struct dme_softc *sc = device_private(self);
    555 
    556 	if (phy != 1)
    557 		return EINVAL;
    558 
    559 	/* Select Register to write */
    560 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
    561 	    (reg & DM9000_EPAR_EROA_MASK));
    562 
    563 	/* Write data to the two data registers */
    564 	dme_write(sc, DM9000_EPDRL, val & 0xFF);
    565 	dme_write(sc, DM9000_EPDRH, (val >> 8) & 0xFF);
    566 
    567 	/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
    568 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
    569 
    570 	/* Wait until access to PHY has completed */
    571 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
    572 		;
    573 
    574 	/* Reset ERPRR-bit */
    575 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
    576 
    577 	return 0;
    578 }
    579 
    580 void
    581 dme_stop(struct ifnet *ifp, int disable)
    582 {
    583 	struct dme_softc *sc = ifp->if_softc;
    584 
    585 	/* Not quite sure what to do when called with disable == 0 */
    586 	if (disable) {
    587 		/* Disable RX */
    588 		dme_write(sc, DM9000_RCR, 0x0);
    589 	}
    590 	mii_down(&sc->sc_mii);
    591 	callout_stop(&sc->sc_link_callout);
    592 
    593 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    594 	ifp->if_timer = 0;
    595 }
    596 
    597 static void
    598 dme_start(struct ifnet *ifp)
    599 {
    600 	struct dme_softc *sc = ifp->if_softc;
    601 
    602 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
    603 		printf("No output\n");
    604 		return;
    605 	}
    606 	if (sc->txbusy && sc->txready)
    607 		panic("DM9000: Internal error, trying to send without"
    608 		    " any empty queue\n");
    609 
    610 	dme_prepare(ifp);
    611 	if (sc->txbusy) {
    612 		/* We need to wait until the current frame has
    613 		 * been transmitted.
    614 		 */
    615 		ifp->if_flags |= IFF_OACTIVE;
    616 		return;
    617 	}
    618 	/* We are ready to transmit right away */
    619 	dme_transmit(ifp);
    620 	dme_prepare(ifp); /* Prepare next one */
    621 }
    622 
    623 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
    624 static void
    625 dme_prepare(struct ifnet *ifp)
    626 {
    627 	struct dme_softc *sc = ifp->if_softc;
    628 	uint16_t length;
    629 	struct mbuf *m;
    630 
    631 	if (sc->txready)
    632 		panic("dme_prepare: Someone called us with txready set\n");
    633 
    634 	IFQ_DEQUEUE(&ifp->if_snd, m);
    635 	if (m == NULL) {
    636 		TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
    637 		ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
    638 		return; /* Nothing to transmit */
    639 	}
    640 
    641 	/* Element has now been removed from the queue, so we better send it */
    642 
    643 	bpf_mtap(ifp, m, BPF_D_OUT);
    644 
    645 	/* Setup the DM9000 to accept the writes, and then write each buf in
    646 	   the chain. */
    647 
    648 	TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
    649 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
    650 	length = PKT_WRITE(sc, m);
    651 	bpf_mtap(ifp, m, BPF_D_OUT);
    652 	TX_DATA_DPRINTF(("\n"));
    653 
    654 	if (length % sc->sc_data_width != 0)
    655 		panic("dme_prepare: length is not compatible with IO_MODE");
    656 
    657 	sc->txready_length = length;
    658 	sc->txready = 1;
    659 	m_freem(m);
    660 }
    661 
    662 /* Transmit prepared data */
    663 static void
    664 dme_transmit(struct ifnet *ifp)
    665 {
    666 	struct dme_softc *sc = ifp->if_softc;
    667 
    668 	TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
    669 		sc->txready, sc->txbusy));
    670 
    671 	/* prime frame length first */
    672 	dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
    673 	dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff);
    674 	/* read isr next */
    675 	dme_read(sc, DM9000_ISR);
    676 	/* finally issue a request to send */
    677 	dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
    678 	sc->txready = 0;
    679 	sc->txbusy = 1;
    680 	sc->txready_length = 0;
    681 }
    682 
    683 /* Receive data */
    684 static void
    685 dme_receive(struct ifnet *ifp)
    686 {
    687 	struct dme_softc *sc = ifp->if_softc;
    688 	struct mbuf *m;
    689 	uint8_t avail, rsr;
    690 
    691 	DPRINTF(("inside dme_receive\n"));
    692 
    693 	/* frame has just arrived, retrieve it */
    694 	/* called right after Rx frame available interrupt */
    695 	do {
    696 		/* "no increment" read to get the avail byte without
    697 		   moving past it. */
    698 		bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
    699 			DM9000_MRCMDX);
    700 		/* Read twice */
    701 		avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    702 		avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    703 		avail &= 03;	/* 1:0 we only want these bits */
    704 		if (avail == 01) {
    705 			/* Read with address increment. */
    706 			bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
    707 				DM9000_MRCMD);
    708 			rsr = PKT_READ(sc, &m);
    709 			if (m == NULL) {
    710 				/* failed to allocate a receive buffer */
    711 				RX_DPRINTF(("dme_receive: "
    712 					"Error allocating buffer\n"));
    713 				if_statinc(ifp, if_ierrors);
    714 				continue;
    715 			}
    716 			if (rsr & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
    717 				/* Error while receiving the frame,
    718 				 * discard it and keep track of counters
    719 				 */
    720 				RX_DPRINTF(("dme_receive: "
    721 					"Error reciving frame\n"));
    722 				if_statinc(ifp, if_ierrors);
    723 				continue;
    724 			}
    725 			if (rsr & DM9000_RSR_LCS) {
    726 				if_statinc(ifp, if_collisions);
    727 				continue;
    728 			}
    729 			/* pick and forward this frame to ifq */
    730 			if_percpuq_enqueue(ifp->if_percpuq, m);
    731 		} else if (avail != 00) {
    732 			/* Should this be logged somehow? */
    733 			printf("%s: Resetting chip\n",
    734 			       device_xname(sc->sc_dev));
    735 			dme_reset(sc);
    736 			break;
    737 		}
    738 	} while (avail == 01);
    739 	/* frame receieved successfully */
    740 }
    741 
    742 int
    743 dme_intr(void *arg)
    744 {
    745 	struct dme_softc *sc = arg;
    746 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    747 	uint8_t isr, nsr, tsr;
    748 
    749 	DPRINTF(("dme_intr: Begin\n"));
    750 
    751 	/* Disable interrupts */
    752 	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR);
    753 
    754 	isr = dme_read(sc, DM9000_ISR);
    755 	dme_write(sc, DM9000_ISR, isr); /* write to clear */
    756 
    757 	if (isr & DM9000_ISR_PRS) {
    758 		KASSERT(ifp->if_flags & IFF_RUNNING);
    759 		dme_receive(ifp);
    760 	}
    761 	if (isr & DM9000_ISR_LNKCHNG)
    762 		lnkchg(sc);
    763 	if (isr & DM9000_ISR_PTS) {
    764 		tsr = 0x01; /* Initialize to an error value */
    765 
    766 		/* A frame has been transmitted */
    767 		sc->txbusy = 0;
    768 
    769 		nsr = dme_read(sc, DM9000_NSR);
    770 		if (nsr & DM9000_NSR_TX1END) {
    771 			tsr = dme_read(sc, DM9000_TSR1);
    772 			TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
    773 		} else if (nsr & DM9000_NSR_TX2END) {
    774 			tsr = dme_read(sc, DM9000_TSR2);
    775 			TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
    776 		}
    777 
    778 		if (tsr == 0x0) {
    779 			/* Frame successfully sent */
    780 			if_statinc(ifp, if_opackets);
    781 		} else {
    782 			if_statinc(ifp, if_oerrors);
    783 		}
    784 
    785 		/* If we have nothing ready to transmit, prepare something */
    786 		if (!sc->txready)
    787 			dme_prepare(ifp);
    788 
    789 		if (sc->txready)
    790 			dme_transmit(ifp);
    791 
    792 		/* Prepare the next frame */
    793 		dme_prepare(ifp);
    794 
    795 		if_schedule_deferred_start(ifp);
    796 	}
    797 
    798 	/* Enable interrupts again */
    799 	dme_write(sc, DM9000_IMR,
    800 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
    801 
    802 	DPRINTF(("dme_intr: End\n"));
    803 
    804 	return (isr != 0);
    805 }
    806 
    807 static int
    808 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    809 {
    810 	struct dme_softc *sc = ifp->if_softc;
    811 	struct ifreq *ifr = (struct ifreq *)data;
    812 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    813 	int s, error;
    814 
    815 	s = splnet();
    816 	switch (cmd) {
    817 	case SIOCSIFMEDIA:
    818 		/* Flow control requires full-duplex mode. */
    819 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
    820 		    (ifr->ifr_media & IFM_FDX) == 0)
    821 			ifr->ifr_media &= ~IFM_ETH_FMASK;
    822 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
    823 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
    824 				ifr->ifr_media |=
    825 					IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
    826 			}
    827 		}
    828 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
    829 		break;
    830 	default:
    831 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    832 			break;
    833 		error = 0;
    834 		if (cmd == SIOCSIFCAP)
    835 			error = (*ifp->if_init)(ifp);
    836 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    837 			;
    838 		else if (ifp->if_flags && IFF_RUNNING) {
    839 			/* Address list has changed, reconfigure filter */
    840 			dme_set_rcvfilt(sc);
    841 		}
    842 		break;
    843 	}
    844 	splx(s);
    845 	return error;
    846 }
    847 
    848 static struct mbuf *
    849 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
    850 {
    851 	struct dme_softc *sc = ifp->if_softc;
    852 	struct mbuf *m;
    853 	int pad, quantum;
    854 
    855 	quantum = sc->sc_data_width;
    856 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    857 	if (m == NULL)
    858 		return NULL;
    859 
    860 	m_set_rcvif(m, ifp);
    861 	/* Ensure that we always allocate an even number of
    862 	 * bytes in order to avoid writing beyond the buffer
    863 	 */
    864 	m->m_pkthdr.len = frame_length + (frame_length % quantum);
    865 	pad = ALIGN(sizeof(struct ether_header)) -
    866 		sizeof(struct ether_header);
    867 	/* All our frames have the CRC attached */
    868 	m->m_flags |= M_HASFCS;
    869 	if (m->m_pkthdr.len + pad > MHLEN) {
    870 		MCLGET(m, M_DONTWAIT);
    871 		if ((m->m_flags & M_EXT) == 0) {
    872 			m_freem(m);
    873 			return NULL;
    874 		}
    875 	}
    876 
    877 	m->m_data += pad;
    878 	m->m_len = frame_length + (frame_length % quantum);
    879 
    880 	return m;
    881 }
    882 
    883 static int
    884 pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
    885 {
    886 	int left_over_count = 0; /* Number of bytes from previous mbuf, which
    887 				    need to be written with the next.*/
    888 	uint16_t left_over_buf = 0;
    889 	int length = 0;
    890 	struct mbuf *buf;
    891 	uint8_t *write_ptr;
    892 
    893 	/* We expect that the DM9000 has been setup to accept writes before
    894 	   this function is called. */
    895 
    896 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
    897 		int to_write = buf->m_len;
    898 
    899 		length += to_write;
    900 
    901 		write_ptr = buf->m_data;
    902 		while (to_write > 0 ||
    903 		    (buf->m_next == NULL && left_over_count > 0)) {
    904 			if (left_over_count > 0) {
    905 				uint8_t b = 0;
    906 				DPRINTF(("pkt_write_16: "
    907 					 "Writing left over byte\n"));
    908 
    909 				if (to_write > 0) {
    910 					b = *write_ptr;
    911 					to_write--;
    912 					write_ptr++;
    913 
    914 					DPRINTF(("Took single byte\n"));
    915 				} else {
    916 					DPRINTF(("Leftover in last run\n"));
    917 					length++;
    918 				}
    919 
    920 				/* Does shift direction depend on endianess? */
    921 				left_over_buf = left_over_buf | (b << 8);
    922 
    923 				bus_space_write_2(sc->sc_iot, sc->sc_ioh,
    924 						  sc->dme_data, left_over_buf);
    925 				TX_DATA_DPRINTF(("%02X ", left_over_buf));
    926 				left_over_count = 0;
    927 			} else if ((long)write_ptr % 2 != 0) {
    928 				/* Misaligned data */
    929 				DPRINTF(("pkt_write_16: "
    930 					 "Detected misaligned data\n"));
    931 				left_over_buf = *write_ptr;
    932 				left_over_count = 1;
    933 				write_ptr++;
    934 				to_write--;
    935 			} else {
    936 				int i;
    937 				uint16_t *dptr = (uint16_t *)write_ptr;
    938 
    939 				/* A block of aligned data. */
    940 				for (i = 0; i < to_write / 2; i++) {
    941 					/* buf will be half-word aligned
    942 					 * all the time
    943 					 */
    944 					bus_space_write_2(sc->sc_iot,
    945 					    sc->sc_ioh, sc->dme_data, *dptr);
    946 					TX_DATA_DPRINTF(("%02X %02X ",
    947 					    *dptr & 0xFF, (*dptr >> 8) & 0xFF));
    948 					dptr++;
    949 				}
    950 
    951 				write_ptr += i * 2;
    952 				if (to_write % 2 != 0) {
    953 					DPRINTF(("pkt_write_16: "
    954 						 "to_write %% 2: %d\n",
    955 						 to_write % 2));
    956 					left_over_count = 1;
    957 					/* XXX: Does this depend on
    958 					 * the endianess?
    959 					 */
    960 					left_over_buf = *write_ptr;
    961 
    962 					write_ptr++;
    963 					to_write--;
    964 					DPRINTF(("pkt_write_16: "
    965 						 "to_write (after): %d\n",
    966 						 to_write));
    967 					DPRINTF(("pkt_write_16: i * 2: %d\n",
    968 						 i*2));
    969 				}
    970 				to_write -= i * 2;
    971 			}
    972 		} /* while (...) */
    973 	} /* for (...) */
    974 
    975 	return length;
    976 }
    977 
    978 static int
    979 pkt_read_2(struct dme_softc *sc, struct mbuf **outBuf)
    980 {
    981 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    982 	uint8_t rx_status;
    983 	struct mbuf *m;
    984 	uint16_t data;
    985 	uint16_t frame_length;
    986 	uint16_t i;
    987 	uint16_t *buf;
    988 
    989 	data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    990 	rx_status = data & 0xFF;
    991 
    992 	frame_length = bus_space_read_2(sc->sc_iot,
    993 					sc->sc_ioh, sc->dme_data);
    994 	if (frame_length > ETHER_MAX_LEN) {
    995 		printf("Got frame of length: %d\n", frame_length);
    996 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
    997 		panic("Something is rotten");
    998 	}
    999 	RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
   1000 		rx_status, frame_length));
   1001 
   1002 	m = dme_alloc_receive_buffer(ifp, frame_length);
   1003 	if (m == NULL) {
   1004 		/*
   1005 		 * didn't get a receive buffer, so we read the rest of the
   1006 		 * frame, throw it away and return an error
   1007 		 */
   1008 		for (i = 0; i < frame_length; i += 2) {
   1009 			data = bus_space_read_2(sc->sc_iot,
   1010 					sc->sc_ioh, sc->dme_data);
   1011 		}
   1012 		*outBuf = NULL;
   1013 		return 0;
   1014 	}
   1015 
   1016 	buf = mtod(m, uint16_t*);
   1017 
   1018 	RX_DPRINTF(("dme_receive: "));
   1019 
   1020 	for (i = 0; i < frame_length; i += 2) {
   1021 		data = bus_space_read_2(sc->sc_iot,
   1022 					sc->sc_ioh, sc->dme_data);
   1023 		if ( (frame_length % 2 != 0) &&
   1024 		     (i == frame_length - 1) ) {
   1025 			data = data & 0xff;
   1026 			RX_DPRINTF((" L "));
   1027 		}
   1028 		*buf = data;
   1029 		buf++;
   1030 		RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
   1031 				 (data >> 8) & 0xff));
   1032 	}
   1033 
   1034 	RX_DATA_DPRINTF(("\n"));
   1035 	RX_DPRINTF(("Read %d bytes\n", i));
   1036 
   1037 	*outBuf = m;
   1038 	return rx_status;
   1039 }
   1040 
   1041 static int
   1042 pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
   1043 {
   1044 	int length = 0, i;
   1045 	struct mbuf *buf;
   1046 	uint8_t *write_ptr;
   1047 
   1048 	/*
   1049 	 * We expect that the DM9000 has been setup to accept writes before
   1050 	 * this function is called.
   1051 	 */
   1052 
   1053 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
   1054 		int to_write = buf->m_len;
   1055 
   1056 		length += to_write;
   1057 
   1058 		write_ptr = buf->m_data;
   1059 		for (i = 0; i < to_write; i++) {
   1060 			bus_space_write_1(sc->sc_iot, sc->sc_ioh,
   1061 			    sc->dme_data, *write_ptr);
   1062 			write_ptr++;
   1063 		}
   1064 	} /* for (...) */
   1065 
   1066 	return length;
   1067 }
   1068 
   1069 static int
   1070 pkt_read_1(struct dme_softc *sc, struct mbuf **outBuf)
   1071 {
   1072 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1073 	uint8_t rx_status;
   1074 	struct mbuf *m;
   1075 	uint8_t *buf;
   1076 	uint16_t frame_length;
   1077 	uint16_t i, reg;
   1078 	uint8_t data;
   1079 
   1080 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1081 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
   1082 	rx_status = reg & 0xFF;
   1083 
   1084 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1085 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
   1086 	frame_length = reg;
   1087 
   1088 	if (frame_length > ETHER_MAX_LEN) {
   1089 		printf("Got frame of length: %d\n", frame_length);
   1090 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
   1091 		panic("Something is rotten");
   1092 	}
   1093 	RX_DPRINTF(("dme_receive: "
   1094 		    "rx_statux: 0x%x, frame_length: %d\n",
   1095 		    rx_status, frame_length));
   1096 
   1097 	m = dme_alloc_receive_buffer(ifp, frame_length);
   1098 	if (m == NULL) {
   1099 		/*
   1100 		 * didn't get a receive buffer, so we read the rest of the
   1101 		 * frame, throw it away and return an error
   1102 		 */
   1103 		for (i = 0; i < frame_length; i++ ) {
   1104 			data = bus_space_read_2(sc->sc_iot,
   1105 					sc->sc_ioh, sc->dme_data);
   1106 		}
   1107 		*outBuf = NULL;
   1108 		return 0;
   1109 	}
   1110 
   1111 	buf = mtod(m, uint8_t *);
   1112 
   1113 	RX_DPRINTF(("dme_receive: "));
   1114 	for (i = 0; i< frame_length; i += 1) {
   1115 		data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1116 		*buf = data;
   1117 		buf++;
   1118 		RX_DATA_DPRINTF(("%02X ", data));
   1119 	}
   1120 
   1121 	RX_DATA_DPRINTF(("\n"));
   1122 	RX_DPRINTF(("Read %d bytes\n", i));
   1123 
   1124 	*outBuf = m;
   1125 	return rx_status;
   1126 }
   1127