dm9000.c revision 1.29 1 /* $NetBSD: dm9000.c,v 1.29 2020/06/27 13:34:20 jmcneill Exp $ */
2
3 /*
4 * Copyright (c) 2009 Paul Fleischer
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* based on sys/dev/ic/cs89x0.c */
30 /*
31 * Copyright (c) 2004 Christopher Gilbert
32 * All rights reserved.
33 *
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 * 3. The name of the company nor the name of the author may be used to
40 * endorse or promote products derived from this software without specific
41 * prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Copyright 1997
58 * Digital Equipment Corporation. All rights reserved.
59 *
60 * This software is furnished under license and may be used and
61 * copied only in accordance with the following terms and conditions.
62 * Subject to these conditions, you may download, copy, install,
63 * use, modify and distribute this software in source and/or binary
64 * form. No title or ownership is transferred hereby.
65 *
66 * 1) Any source code used, modified or distributed must reproduce
67 * and retain this copyright notice and list of conditions as
68 * they appear in the source file.
69 *
70 * 2) No right is granted to use any trade name, trademark, or logo of
71 * Digital Equipment Corporation. Neither the "Digital Equipment
72 * Corporation" name nor any trademark or logo of Digital Equipment
73 * Corporation may be used to endorse or promote products derived
74 * from this software without the prior written permission of
75 * Digital Equipment Corporation.
76 *
77 * 3) This software is provided "AS-IS" and any express or implied
78 * warranties, including but not limited to, any implied warranties
79 * of merchantability, fitness for a particular purpose, or
80 * non-infringement are disclaimed. In no event shall DIGITAL be
81 * liable for any damages whatsoever, and in particular, DIGITAL
82 * shall not be liable for special, indirect, consequential, or
83 * incidental damages or damages for lost profits, loss of
84 * revenue or loss of use, whether such damages arise in contract,
85 * negligence, tort, under statute, in equity, at law or otherwise,
86 * even if advised of the possibility of such damage.
87 */
88
89 #include <sys/cdefs.h>
90
91 #include <sys/param.h>
92 #include <sys/bus.h>
93 #include <sys/intr.h>
94 #include <sys/device.h>
95 #include <sys/mbuf.h>
96 #include <sys/sockio.h>
97 #include <sys/malloc.h>
98 #include <sys/errno.h>
99 #include <sys/cprng.h>
100 #include <sys/rndsource.h>
101 #include <sys/kernel.h>
102 #include <sys/systm.h>
103
104 #include <net/if.h>
105 #include <net/if_dl.h>
106 #include <net/if_ether.h>
107 #include <net/if_media.h>
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 #include <net/bpf.h>
111
112 #include <dev/ic/dm9000var.h>
113 #include <dev/ic/dm9000reg.h>
114
115 #if 1
116 #undef DM9000_DEBUG
117 #undef DM9000_TX_DEBUG
118 #undef DM9000_TX_DATA_DEBUG
119 #undef DM9000_RX_DEBUG
120 #undef DM9000_RX_DATA_DEBUG
121 #else
122 #define DM9000_DEBUG
123 #define DM9000_TX_DEBUG
124 #define DM9000_TX_DATA_DEBUG
125 #define DM9000_RX_DEBUG
126 #define DM9000_RX_DATA_DEBUG
127 #endif
128
129 #ifdef DM9000_DEBUG
130 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
131 #else
132 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
133 #endif
134
135 #ifdef DM9000_TX_DEBUG
136 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
137 #else
138 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
139 #endif
140
141 #ifdef DM9000_RX_DEBUG
142 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
143 #else
144 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
145 #endif
146
147 #ifdef DM9000_RX_DATA_DEBUG
148 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
149 #else
150 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
151 #endif
152
153 #ifdef DM9000_TX_DATA_DEBUG
154 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
155 #else
156 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
157 #endif
158
159 static void dme_reset(struct dme_softc *);
160 static int dme_init(struct ifnet *);
161 static void dme_stop(struct ifnet *, int);
162 static void dme_start(struct ifnet *);
163 static int dme_ioctl(struct ifnet *, u_long, void *);
164
165 static void dme_set_rcvfilt(struct dme_softc *);
166 static void mii_statchg(struct ifnet *);
167 static void lnkchg(struct dme_softc *);
168 static void phy_tick(void *);
169 static int mii_readreg(device_t, int, int, uint16_t *);
170 static int mii_writereg(device_t, int, int, uint16_t);
171
172 static void dme_prepare(struct ifnet *);
173 static void dme_transmit(struct ifnet *);
174 static void dme_receive(struct ifnet *);
175
176 static int pkt_read_2(struct dme_softc *, struct mbuf **);
177 static int pkt_write_2(struct dme_softc *, struct mbuf *);
178 static int pkt_read_1(struct dme_softc *, struct mbuf **);
179 static int pkt_write_1(struct dme_softc *, struct mbuf *);
180 #define PKT_READ(ii,m) (*(ii)->sc_pkt_read)((ii),(m))
181 #define PKT_WRITE(ii,m) (*(ii)->sc_pkt_write)((ii),(m))
182
183 #define ETHER_IS_ONE(x) \
184 (((x)[0] & (x)[1] & (x)[2] & (x)[3] & (x)[4] & (x)[5]) == 255)
185 #define ETHER_IS_ZERO(x) \
186 (((x)[0] | (x)[1] | (x)[2] | (x)[3] | (x)[4] | (x)[5]) == 0)
187
188 int
189 dme_attach(struct dme_softc *sc, const uint8_t *notusedanymore)
190 {
191 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
192 struct mii_data *mii = &sc->sc_mii;
193 struct ifmedia *ifm = &mii->mii_media;
194 uint8_t b[2];
195 uint16_t io_mode;
196 uint8_t enaddr[ETHER_ADDR_LEN];
197 prop_dictionary_t dict;
198 prop_data_t ea;
199
200 dme_read_c(sc, DM9000_VID0, b, 2);
201 sc->sc_vendor_id = le16toh((uint16_t)b[1] << 8 | b[0]);
202 dme_read_c(sc, DM9000_PID0, b, 2);
203 sc->sc_product_id = le16toh((uint16_t)b[1] << 8 | b[0]);
204
205 /* TODO: Check the vendor ID as well */
206 if (sc->sc_product_id != 0x9000) {
207 panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
208 sc->sc_product_id);
209 }
210 #if 1 || DM9000_DEBUG
211 {
212 dme_read_c(sc, DM9000_PAB0, enaddr, 6);
213 aprint_normal_dev(sc->sc_dev,
214 "DM9000 was configured with MAC address: %s\n",
215 ether_sprintf(enaddr));
216 }
217 #endif
218 dict = device_properties(sc->sc_dev);
219 ea = (dict) ? prop_dictionary_get(dict, "mac-address") : NULL;
220 if (ea != NULL) {
221 /*
222 * If the MAC address is overriden by a device property,
223 * use that.
224 */
225 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
226 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
227 memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN);
228 aprint_debug_dev(sc->sc_dev, "got MAC address!\n");
229 } else {
230 /*
231 * If we did not get an externaly configure address,
232 * try to read one from the current setup, before
233 * resetting the chip.
234 */
235 dme_read_c(sc, DM9000_PAB0, enaddr, 6);
236 if (ETHER_IS_ONE(enaddr) || ETHER_IS_ZERO(enaddr)) {
237 /* make a random MAC address */
238 uint32_t maclo = 0x00f2 | (cprng_strong32() << 16);
239 uint32_t machi = cprng_strong32();
240 enaddr[0] = maclo;
241 enaddr[1] = maclo >> 8;
242 enaddr[2] = maclo >> 16;
243 enaddr[3] = maclo >> 26;
244 enaddr[4] = machi;
245 enaddr[5] = machi >> 8;
246 }
247 }
248 /* TODO: perform explicit EEPROM read op if it's availble */
249
250 dme_reset(sc);
251
252 mii->mii_ifp = ifp;
253 mii->mii_readreg = mii_readreg;
254 mii->mii_writereg = mii_writereg;
255 mii->mii_statchg = mii_statchg;
256
257 /* assume davicom PHY at 1. ext PHY could be hooked but only at 0-3 */
258 sc->sc_ethercom.ec_mii = mii;
259 ifmedia_init(ifm, 0, ether_mediachange, ether_mediastatus);
260 mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY 1 */,
261 MII_OFFSET_ANY, 0);
262 if (LIST_FIRST(&mii->mii_phys) == NULL) {
263 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
264 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
265 } else
266 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
267 ifm->ifm_media = ifm->ifm_cur->ifm_media;
268
269 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
270 ifp->if_softc = sc;
271 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
272 ifp->if_init = dme_init;
273 ifp->if_start = dme_start;
274 ifp->if_stop = dme_stop;
275 ifp->if_ioctl = dme_ioctl;
276 ifp->if_watchdog = NULL; /* no watchdog used */
277 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
278 IFQ_SET_READY(&ifp->if_snd);
279
280 if_attach(ifp);
281 ether_ifattach(ifp, enaddr);
282 if_deferred_start_init(ifp, NULL);
283
284 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
285 RND_TYPE_NET, RND_FLAG_DEFAULT);
286
287 /* might be unnecessary as link change interrupt works well */
288 callout_init(&sc->sc_link_callout, 0);
289 callout_setfunc(&sc->sc_link_callout, phy_tick, sc);
290
291 io_mode = (dme_read(sc, DM9000_ISR) &
292 DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
293
294 /* frame body read/write ops in 2 byte quantity or byte-wise. */
295 DPRINTF(("DM9000 Operation Mode: "));
296 switch (io_mode) {
297 case DM9000_MODE_8BIT:
298 DPRINTF(("8-bit mode"));
299 sc->sc_data_width = 1;
300 sc->sc_pkt_write = pkt_write_1;
301 sc->sc_pkt_read = pkt_read_1;
302 break;
303 case DM9000_MODE_16BIT:
304 DPRINTF(("16-bit mode"));
305 sc->sc_data_width = 2;
306 sc->sc_pkt_write = pkt_write_2;
307 sc->sc_pkt_read = pkt_read_2;
308 break;
309 case DM9000_MODE_32BIT:
310 DPRINTF(("32-bit mode"));
311 sc->sc_data_width = 4;
312 panic("32bit mode is unsupported\n");
313 break;
314 default:
315 DPRINTF(("Invalid mode"));
316 break;
317 }
318 DPRINTF(("\n"));
319
320 return 0;
321 }
322
323 int
324 dme_detach(struct dme_softc *sc)
325 {
326 return 0;
327 }
328
329 /* Software Initialize/Reset of the DM9000 */
330 static void
331 dme_reset(struct dme_softc *sc)
332 {
333 uint8_t misc;
334
335 /* We only re-initialized the PHY in this function the first time it is
336 * called. */
337 if (!sc->sc_phy_initialized) {
338 /* PHY Reset */
339 mii_writereg(sc->sc_dev, 1, MII_BMCR, BMCR_RESET);
340
341 /* PHY Power Down */
342 misc = dme_read(sc, DM9000_GPR);
343 dme_write(sc, DM9000_GPR, misc | DM9000_GPR_PHY_PWROFF);
344 }
345
346 /* Reset the DM9000 twice, as described in section 2 of the Programming
347 * Guide.
348 * The PHY is initialized and enabled between those two resets.
349 */
350
351 /* Software Reset */
352 dme_write(sc, DM9000_NCR,
353 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
354 delay(20);
355 dme_write(sc, DM9000_NCR, 0x0);
356
357 if (!sc->sc_phy_initialized) {
358 /* PHY Enable */
359 misc = dme_read(sc, DM9000_GPR);
360 dme_write(sc, DM9000_GPR, misc & ~DM9000_GPR_PHY_PWROFF);
361 misc = dme_read(sc, DM9000_GPCR);
362 dme_write(sc, DM9000_GPCR, misc | DM9000_GPCR_GPIO0_OUT);
363
364 dme_write(sc, DM9000_NCR,
365 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
366 delay(20);
367 dme_write(sc, DM9000_NCR, 0x0);
368 }
369
370 /* Select internal PHY, no wakeup event, no collosion mode,
371 * normal loopback mode.
372 */
373 dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL);
374
375 /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
376 dme_read(sc, DM9000_NSR);
377
378 /* Enable wraparound of read/write pointer, frame received latch,
379 * and frame transmitted latch.
380 */
381 dme_write(sc, DM9000_IMR,
382 DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
383
384 dme_write(sc, DM9000_RCR,
385 DM9000_RCR_DIS_CRC | DM9000_RCR_DIS_LONG | DM9000_RCR_WTDIS);
386
387 sc->sc_phy_initialized = 1;
388 }
389
390 static int
391 dme_init(struct ifnet *ifp)
392 {
393 struct dme_softc *sc = ifp->if_softc;
394
395 dme_stop(ifp, 0);
396 dme_reset(sc);
397 dme_write_c(sc, DM9000_PAB0, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
398 dme_set_rcvfilt(sc);
399 (void)ether_mediachange(ifp);
400
401 sc->txbusy = sc->txready = 0;
402
403 ifp->if_flags |= IFF_RUNNING;
404 ifp->if_flags &= ~IFF_OACTIVE;
405 callout_schedule(&sc->sc_link_callout, hz);
406
407 return 0;
408 }
409
410 /* Configure multicast filter */
411 static void
412 dme_set_rcvfilt(struct dme_softc *sc)
413 {
414 struct ethercom *ec = &sc->sc_ethercom;
415 struct ifnet *ifp = &ec->ec_if;
416 struct ether_multi *enm;
417 struct ether_multistep step;
418 uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* 64bit mchash */
419 uint32_t h = 0;
420 int rcr;
421
422 rcr = dme_read(sc, DM9000_RCR);
423 rcr &= ~(DM9000_RCR_PRMSC | DM9000_RCR_ALL);
424 dme_write(sc, DM9000_RCR, rcr &~ DM9000_RCR_RXEN);
425
426 ETHER_LOCK(ec);
427 if (ifp->if_flags & IFF_PROMISC) {
428 ec->ec_flags |= ETHER_F_ALLMULTI;
429 ETHER_UNLOCK(ec);
430 /* run promisc. mode */
431 rcr |= DM9000_RCR_PRMSC;
432 goto update;
433 }
434 ec->ec_flags &= ~ETHER_F_ALLMULTI;
435 ETHER_FIRST_MULTI(step, ec, enm);
436 while (enm != NULL) {
437 if (memcpy(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
438 /*
439 * We must listen to a range of multicast addresses.
440 * For now, just accept all multicasts, rather than
441 * trying to set only those filter bits needed to match
442 * the range. (At this time, the only use of address
443 * ranges is for IP multicast routing, for which the
444 * range is big enough to require all bits set.)
445 */
446 ec->ec_flags |= ETHER_F_ALLMULTI;
447 ETHER_UNLOCK(ec);
448 memset(mchash, 0xff, sizeof(mchash)); /* necessary? */
449 /* accept all mulicast frame */
450 rcr |= DM9000_RCR_ALL;
451 break;
452 }
453 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
454 /* 3(5:3) and 3(2:0) sampling to have uint8_t[8] */
455 mchash[h / 8] |= 1 << (h % 8);
456 ETHER_NEXT_MULTI(step, enm);
457 }
458 ETHER_UNLOCK(ec);
459 /* DM9000 receive filter is always on */
460 mchash[7] |= 0x80; /* to catch bcast frame */
461 update:
462 dme_write_c(sc, DM9000_MAB0, mchash, sizeof(mchash));
463 dme_write(sc, DM9000_RCR, rcr | DM9000_RCR_RXEN);
464 return;
465 }
466
467 void
468 lnkchg(struct dme_softc *sc)
469 {
470 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
471 struct ifmediareq ifmr;
472
473 ether_mediastatus(ifp, &ifmr);
474 }
475
476 static void
477 mii_statchg(struct ifnet *ifp)
478 {
479 struct dme_softc *sc = ifp->if_softc;
480 struct mii_data *mii = &sc->sc_mii;
481 uint8_t fcr, ncr;
482
483 #if 0
484 const uint8_t Mbps[2] = { 10, 100 };
485 uint8_t nsr = dme_read(sc, DM9000_NSR);
486 int spd = Mbps[!!(nsr & DM9000_NSR_SPEED)];
487 /* speed/duplexity available also in reg 0x11 of internal PHY */
488 if (nsr & DM9000_NSR_LINKST)
489 printf("link up,spd%d", spd);
490 else
491 printf("link down");
492
493 /* show resolved mii(4) parameters */
494 printf("MII spd%d",
495 (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
496 if (mii->mii_media_active & IFM_FDX)
497 printf(",full-duplex");
498 printf("\n");
499 #endif
500
501 /* Adjust duplexity and PAUSE flow control. */
502 fcr = dme_read(sc, DM9000_FCR) &~ DM9000_FCR_FLCE;
503 ncr = dme_read(sc, DM9000_NCR) &~ DM9000_NCR_FDX;
504 if ((mii->mii_media_active & IFM_FDX)
505 && (mii->mii_media_active & IFM_FLOW)) {
506 fcr |= DM9000_FCR_FLCE;
507 ncr |= DM9000_NCR_FDX;
508 }
509 dme_write(sc, DM9000_FCR, fcr);
510 dme_write(sc, DM9000_NCR, ncr);
511 }
512
513 static void
514 phy_tick(void *arg)
515 {
516 struct dme_softc *sc = arg;
517 struct mii_data *mii = &sc->sc_mii;
518 int s;
519
520 s = splnet();
521 mii_tick(mii);
522 splx(s);
523
524 callout_schedule(&sc->sc_link_callout, hz);
525 }
526
527 static int
528 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
529 {
530 struct dme_softc *sc = device_private(self);
531
532 if (phy != 1)
533 return EINVAL;
534
535 /* Select Register to read*/
536 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
537 (reg & DM9000_EPAR_EROA_MASK));
538 /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
539 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
540
541 /* Wait until access to PHY has completed */
542 while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
543 ;
544
545 /* Reset ERPRR-bit */
546 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
547
548 *val = dme_read(sc, DM9000_EPDRL) | (dme_read(sc, DM9000_EPDRH) << 8);
549 return 0;
550 }
551
552 static int
553 mii_writereg(device_t self, int phy, int reg, uint16_t val)
554 {
555 struct dme_softc *sc = device_private(self);
556
557 if (phy != 1)
558 return EINVAL;
559
560 /* Select Register to write */
561 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
562 (reg & DM9000_EPAR_EROA_MASK));
563
564 /* Write data to the two data registers */
565 dme_write(sc, DM9000_EPDRL, val & 0xFF);
566 dme_write(sc, DM9000_EPDRH, (val >> 8) & 0xFF);
567
568 /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
569 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
570
571 /* Wait until access to PHY has completed */
572 while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
573 ;
574
575 /* Reset ERPRR-bit */
576 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
577
578 return 0;
579 }
580
581 void
582 dme_stop(struct ifnet *ifp, int disable)
583 {
584 struct dme_softc *sc = ifp->if_softc;
585
586 /* Not quite sure what to do when called with disable == 0 */
587 if (disable) {
588 /* Disable RX */
589 dme_write(sc, DM9000_RCR, 0x0);
590 }
591 mii_down(&sc->sc_mii);
592 callout_stop(&sc->sc_link_callout);
593
594 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
595 ifp->if_timer = 0;
596 }
597
598 static void
599 dme_start(struct ifnet *ifp)
600 {
601 struct dme_softc *sc = ifp->if_softc;
602
603 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
604 printf("No output\n");
605 return;
606 }
607 if (sc->txbusy && sc->txready)
608 panic("DM9000: Internal error, trying to send without"
609 " any empty queue\n");
610
611 dme_prepare(ifp);
612 if (sc->txbusy) {
613 /* We need to wait until the current frame has
614 * been transmitted.
615 */
616 ifp->if_flags |= IFF_OACTIVE;
617 return;
618 }
619 /* We are ready to transmit right away */
620 dme_transmit(ifp);
621 dme_prepare(ifp); /* Prepare next one */
622 }
623
624 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
625 static void
626 dme_prepare(struct ifnet *ifp)
627 {
628 struct dme_softc *sc = ifp->if_softc;
629 uint16_t length;
630 struct mbuf *m;
631
632 if (sc->txready)
633 panic("dme_prepare: Someone called us with txready set\n");
634
635 IFQ_DEQUEUE(&ifp->if_snd, m);
636 if (m == NULL) {
637 TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
638 ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
639 return; /* Nothing to transmit */
640 }
641
642 /* Element has now been removed from the queue, so we better send it */
643
644 bpf_mtap(ifp, m, BPF_D_OUT);
645
646 /* Setup the DM9000 to accept the writes, and then write each buf in
647 the chain. */
648
649 TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
650 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
651 length = PKT_WRITE(sc, m);
652 bpf_mtap(ifp, m, BPF_D_OUT);
653 TX_DATA_DPRINTF(("\n"));
654
655 if (length % sc->sc_data_width != 0)
656 panic("dme_prepare: length is not compatible with IO_MODE");
657
658 sc->txready_length = length;
659 sc->txready = 1;
660 m_freem(m);
661 }
662
663 /* Transmit prepared data */
664 static void
665 dme_transmit(struct ifnet *ifp)
666 {
667 struct dme_softc *sc = ifp->if_softc;
668
669 TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
670 sc->txready, sc->txbusy));
671
672 /* prime frame length first */
673 dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
674 dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff);
675 /* read isr next */
676 dme_read(sc, DM9000_ISR);
677 /* finally issue a request to send */
678 dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
679 sc->txready = 0;
680 sc->txbusy = 1;
681 sc->txready_length = 0;
682 }
683
684 /* Receive data */
685 static void
686 dme_receive(struct ifnet *ifp)
687 {
688 struct dme_softc *sc = ifp->if_softc;
689 struct mbuf *m;
690 uint8_t avail, rsr;
691
692 DPRINTF(("inside dme_receive\n"));
693
694 /* frame has just arrived, retrieve it */
695 /* called right after Rx frame available interrupt */
696 do {
697 /* "no increment" read to get the avail byte without
698 moving past it. */
699 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
700 DM9000_MRCMDX);
701 /* Read twice */
702 avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
703 avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
704 avail &= 03; /* 1:0 we only want these bits */
705 if (avail == 01) {
706 /* Read with address increment. */
707 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
708 DM9000_MRCMD);
709 rsr = PKT_READ(sc, &m);
710 if (m == NULL) {
711 /* failed to allocate a receive buffer */
712 RX_DPRINTF(("dme_receive: "
713 "Error allocating buffer\n"));
714 if_statinc(ifp, if_ierrors);
715 continue;
716 }
717 if (rsr & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
718 /* Error while receiving the frame,
719 * discard it and keep track of counters
720 */
721 RX_DPRINTF(("dme_receive: "
722 "Error reciving frame\n"));
723 if_statinc(ifp, if_ierrors);
724 continue;
725 }
726 if (rsr & DM9000_RSR_LCS) {
727 if_statinc(ifp, if_collisions);
728 continue;
729 }
730 /* pick and forward this frame to ifq */
731 if_percpuq_enqueue(ifp->if_percpuq, m);
732 } else if (avail != 00) {
733 /* Should this be logged somehow? */
734 printf("%s: Resetting chip\n",
735 device_xname(sc->sc_dev));
736 dme_reset(sc);
737 break;
738 }
739 } while (avail == 01);
740 /* frame receieved successfully */
741 }
742
743 int
744 dme_intr(void *arg)
745 {
746 struct dme_softc *sc = arg;
747 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
748 uint8_t isr, nsr, tsr;
749
750 DPRINTF(("dme_intr: Begin\n"));
751
752 /* Disable interrupts */
753 dme_write(sc, DM9000_IMR, DM9000_IMR_PAR);
754
755 isr = dme_read(sc, DM9000_ISR);
756 dme_write(sc, DM9000_ISR, isr); /* write to clear */
757
758 if (isr & DM9000_ISR_PRS) {
759 KASSERT(ifp->if_flags & IFF_RUNNING);
760 dme_receive(ifp);
761 }
762 if (isr & DM9000_ISR_LNKCHNG)
763 lnkchg(sc);
764 if (isr & DM9000_ISR_PTS) {
765 tsr = 0x01; /* Initialize to an error value */
766
767 /* A frame has been transmitted */
768 sc->txbusy = 0;
769
770 nsr = dme_read(sc, DM9000_NSR);
771 if (nsr & DM9000_NSR_TX1END) {
772 tsr = dme_read(sc, DM9000_TSR1);
773 TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
774 } else if (nsr & DM9000_NSR_TX2END) {
775 tsr = dme_read(sc, DM9000_TSR2);
776 TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
777 }
778
779 if (tsr == 0x0) {
780 /* Frame successfully sent */
781 if_statinc(ifp, if_opackets);
782 } else {
783 if_statinc(ifp, if_oerrors);
784 }
785
786 /* If we have nothing ready to transmit, prepare something */
787 if (!sc->txready)
788 dme_prepare(ifp);
789
790 if (sc->txready)
791 dme_transmit(ifp);
792
793 /* Prepare the next frame */
794 dme_prepare(ifp);
795
796 if_schedule_deferred_start(ifp);
797 }
798
799 /* Enable interrupts again */
800 dme_write(sc, DM9000_IMR,
801 DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
802
803 DPRINTF(("dme_intr: End\n"));
804
805 return (isr != 0);
806 }
807
808 static int
809 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
810 {
811 struct dme_softc *sc = ifp->if_softc;
812 struct ifreq *ifr = (struct ifreq *)data;
813 struct ifmedia *ifm = &sc->sc_mii.mii_media;
814 int s, error;
815
816 s = splnet();
817 switch (cmd) {
818 case SIOCSIFMEDIA:
819 /* Flow control requires full-duplex mode. */
820 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
821 (ifr->ifr_media & IFM_FDX) == 0)
822 ifr->ifr_media &= ~IFM_ETH_FMASK;
823 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
824 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
825 ifr->ifr_media |=
826 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
827 }
828 }
829 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
830 break;
831 default:
832 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
833 break;
834 error = 0;
835 if (cmd == SIOCSIFCAP)
836 error = (*ifp->if_init)(ifp);
837 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
838 ;
839 else if (ifp->if_flags && IFF_RUNNING) {
840 /* Address list has changed, reconfigure filter */
841 dme_set_rcvfilt(sc);
842 }
843 break;
844 }
845 splx(s);
846 return error;
847 }
848
849 static struct mbuf *
850 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
851 {
852 struct dme_softc *sc = ifp->if_softc;
853 struct mbuf *m;
854 int pad, quantum;
855
856 quantum = sc->sc_data_width;
857 MGETHDR(m, M_DONTWAIT, MT_DATA);
858 if (m == NULL)
859 return NULL;
860
861 m_set_rcvif(m, ifp);
862 /* Ensure that we always allocate an even number of
863 * bytes in order to avoid writing beyond the buffer
864 */
865 m->m_pkthdr.len = frame_length + (frame_length % quantum);
866 pad = ALIGN(sizeof(struct ether_header)) -
867 sizeof(struct ether_header);
868 /* All our frames have the CRC attached */
869 m->m_flags |= M_HASFCS;
870 if (m->m_pkthdr.len + pad > MHLEN) {
871 MCLGET(m, M_DONTWAIT);
872 if ((m->m_flags & M_EXT) == 0) {
873 m_freem(m);
874 return NULL;
875 }
876 }
877
878 m->m_data += pad;
879 m->m_len = frame_length + (frame_length % quantum);
880
881 return m;
882 }
883
884 static int
885 pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
886 {
887 int left_over_count = 0; /* Number of bytes from previous mbuf, which
888 need to be written with the next.*/
889 uint16_t left_over_buf = 0;
890 int length = 0;
891 struct mbuf *buf;
892 uint8_t *write_ptr;
893
894 /* We expect that the DM9000 has been setup to accept writes before
895 this function is called. */
896
897 for (buf = bufChain; buf != NULL; buf = buf->m_next) {
898 int to_write = buf->m_len;
899
900 length += to_write;
901
902 write_ptr = buf->m_data;
903 while (to_write > 0 ||
904 (buf->m_next == NULL && left_over_count > 0)) {
905 if (left_over_count > 0) {
906 uint8_t b = 0;
907 DPRINTF(("pkt_write_16: "
908 "Writing left over byte\n"));
909
910 if (to_write > 0) {
911 b = *write_ptr;
912 to_write--;
913 write_ptr++;
914
915 DPRINTF(("Took single byte\n"));
916 } else {
917 DPRINTF(("Leftover in last run\n"));
918 length++;
919 }
920
921 /* Does shift direction depend on endianess? */
922 left_over_buf = left_over_buf | (b << 8);
923
924 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
925 sc->dme_data, left_over_buf);
926 TX_DATA_DPRINTF(("%02X ", left_over_buf));
927 left_over_count = 0;
928 } else if ((long)write_ptr % 2 != 0) {
929 /* Misaligned data */
930 DPRINTF(("pkt_write_16: "
931 "Detected misaligned data\n"));
932 left_over_buf = *write_ptr;
933 left_over_count = 1;
934 write_ptr++;
935 to_write--;
936 } else {
937 int i;
938 uint16_t *dptr = (uint16_t *)write_ptr;
939
940 /* A block of aligned data. */
941 for (i = 0; i < to_write / 2; i++) {
942 /* buf will be half-word aligned
943 * all the time
944 */
945 bus_space_write_2(sc->sc_iot,
946 sc->sc_ioh, sc->dme_data, *dptr);
947 TX_DATA_DPRINTF(("%02X %02X ",
948 *dptr & 0xFF, (*dptr >> 8) & 0xFF));
949 dptr++;
950 }
951
952 write_ptr += i * 2;
953 if (to_write % 2 != 0) {
954 DPRINTF(("pkt_write_16: "
955 "to_write %% 2: %d\n",
956 to_write % 2));
957 left_over_count = 1;
958 /* XXX: Does this depend on
959 * the endianess?
960 */
961 left_over_buf = *write_ptr;
962
963 write_ptr++;
964 to_write--;
965 DPRINTF(("pkt_write_16: "
966 "to_write (after): %d\n",
967 to_write));
968 DPRINTF(("pkt_write_16: i * 2: %d\n",
969 i*2));
970 }
971 to_write -= i * 2;
972 }
973 } /* while (...) */
974 } /* for (...) */
975
976 return length;
977 }
978
979 static int
980 pkt_read_2(struct dme_softc *sc, struct mbuf **outBuf)
981 {
982 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
983 uint8_t rx_status;
984 struct mbuf *m;
985 uint16_t data;
986 uint16_t frame_length;
987 uint16_t i;
988 uint16_t *buf;
989
990 data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
991 rx_status = data & 0xFF;
992
993 frame_length = bus_space_read_2(sc->sc_iot,
994 sc->sc_ioh, sc->dme_data);
995 if (frame_length > ETHER_MAX_LEN) {
996 printf("Got frame of length: %d\n", frame_length);
997 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
998 panic("Something is rotten");
999 }
1000 RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
1001 rx_status, frame_length));
1002
1003 m = dme_alloc_receive_buffer(ifp, frame_length);
1004 if (m == NULL) {
1005 /*
1006 * didn't get a receive buffer, so we read the rest of the
1007 * frame, throw it away and return an error
1008 */
1009 for (i = 0; i < frame_length; i += 2) {
1010 data = bus_space_read_2(sc->sc_iot,
1011 sc->sc_ioh, sc->dme_data);
1012 }
1013 *outBuf = NULL;
1014 return 0;
1015 }
1016
1017 buf = mtod(m, uint16_t*);
1018
1019 RX_DPRINTF(("dme_receive: "));
1020
1021 for (i = 0; i < frame_length; i += 2) {
1022 data = bus_space_read_2(sc->sc_iot,
1023 sc->sc_ioh, sc->dme_data);
1024 if ( (frame_length % 2 != 0) &&
1025 (i == frame_length - 1) ) {
1026 data = data & 0xff;
1027 RX_DPRINTF((" L "));
1028 }
1029 *buf = data;
1030 buf++;
1031 RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1032 (data >> 8) & 0xff));
1033 }
1034
1035 RX_DATA_DPRINTF(("\n"));
1036 RX_DPRINTF(("Read %d bytes\n", i));
1037
1038 *outBuf = m;
1039 return rx_status;
1040 }
1041
1042 static int
1043 pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
1044 {
1045 int length = 0, i;
1046 struct mbuf *buf;
1047 uint8_t *write_ptr;
1048
1049 /*
1050 * We expect that the DM9000 has been setup to accept writes before
1051 * this function is called.
1052 */
1053
1054 for (buf = bufChain; buf != NULL; buf = buf->m_next) {
1055 int to_write = buf->m_len;
1056
1057 length += to_write;
1058
1059 write_ptr = buf->m_data;
1060 for (i = 0; i < to_write; i++) {
1061 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1062 sc->dme_data, *write_ptr);
1063 write_ptr++;
1064 }
1065 } /* for (...) */
1066
1067 return length;
1068 }
1069
1070 static int
1071 pkt_read_1(struct dme_softc *sc, struct mbuf **outBuf)
1072 {
1073 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1074 uint8_t rx_status;
1075 struct mbuf *m;
1076 uint8_t *buf;
1077 uint16_t frame_length;
1078 uint16_t i, reg;
1079 uint8_t data;
1080
1081 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1082 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1083 rx_status = reg & 0xFF;
1084
1085 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1086 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1087 frame_length = reg;
1088
1089 if (frame_length > ETHER_MAX_LEN) {
1090 printf("Got frame of length: %d\n", frame_length);
1091 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1092 panic("Something is rotten");
1093 }
1094 RX_DPRINTF(("dme_receive: "
1095 "rx_statux: 0x%x, frame_length: %d\n",
1096 rx_status, frame_length));
1097
1098 m = dme_alloc_receive_buffer(ifp, frame_length);
1099 if (m == NULL) {
1100 /*
1101 * didn't get a receive buffer, so we read the rest of the
1102 * frame, throw it away and return an error
1103 */
1104 for (i = 0; i < frame_length; i++ ) {
1105 data = bus_space_read_2(sc->sc_iot,
1106 sc->sc_ioh, sc->dme_data);
1107 }
1108 *outBuf = NULL;
1109 return 0;
1110 }
1111
1112 buf = mtod(m, uint8_t *);
1113
1114 RX_DPRINTF(("dme_receive: "));
1115 for (i = 0; i< frame_length; i += 1) {
1116 data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1117 *buf = data;
1118 buf++;
1119 RX_DATA_DPRINTF(("%02X ", data));
1120 }
1121
1122 RX_DATA_DPRINTF(("\n"));
1123 RX_DPRINTF(("Read %d bytes\n", i));
1124
1125 *outBuf = m;
1126 return rx_status;
1127 }
1128