dm9000.c revision 1.4 1 /* $NetBSD: dm9000.c,v 1.4 2012/01/28 08:29:55 nisimura Exp $ */
2
3 /*
4 * Copyright (c) 2009 Paul Fleischer
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* based on sys/dev/ic/cs89x0.c */
30 /*
31 * Copyright (c) 2004 Christopher Gilbert
32 * All rights reserved.
33 *
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 * 3. The name of the company nor the name of the author may be used to
40 * endorse or promote products derived from this software without specific
41 * prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Copyright 1997
58 * Digital Equipment Corporation. All rights reserved.
59 *
60 * This software is furnished under license and may be used and
61 * copied only in accordance with the following terms and conditions.
62 * Subject to these conditions, you may download, copy, install,
63 * use, modify and distribute this software in source and/or binary
64 * form. No title or ownership is transferred hereby.
65 *
66 * 1) Any source code used, modified or distributed must reproduce
67 * and retain this copyright notice and list of conditions as
68 * they appear in the source file.
69 *
70 * 2) No right is granted to use any trade name, trademark, or logo of
71 * Digital Equipment Corporation. Neither the "Digital Equipment
72 * Corporation" name nor any trademark or logo of Digital Equipment
73 * Corporation may be used to endorse or promote products derived
74 * from this software without the prior written permission of
75 * Digital Equipment Corporation.
76 *
77 * 3) This software is provided "AS-IS" and any express or implied
78 * warranties, including but not limited to, any implied warranties
79 * of merchantability, fitness for a particular purpose, or
80 * non-infringement are disclaimed. In no event shall DIGITAL be
81 * liable for any damages whatsoever, and in particular, DIGITAL
82 * shall not be liable for special, indirect, consequential, or
83 * incidental damages or damages for lost profits, loss of
84 * revenue or loss of use, whether such damages arise in contract,
85 * negligence, tort, under statute, in equity, at law or otherwise,
86 * even if advised of the possibility of such damage.
87 */
88
89 #include <sys/cdefs.h>
90
91 #include <sys/param.h>
92 #include <sys/kernel.h>
93 #include <sys/systm.h>
94 #include <sys/mbuf.h>
95 #include <sys/syslog.h>
96 #include <sys/socket.h>
97 #include <sys/device.h>
98 #include <sys/malloc.h>
99 #include <sys/ioctl.h>
100 #include <sys/errno.h>
101
102 #include <net/if.h>
103 #include <net/if_ether.h>
104 #include <net/if_media.h>
105 #ifdef INET
106 #include <netinet/in.h>
107 #include <netinet/if_inarp.h>
108 #endif
109
110 #include <net/bpf.h>
111 #include <net/bpfdesc.h>
112
113 #include <sys/bus.h>
114 #include <sys/intr.h>
115
116 #include <dev/ic/dm9000var.h>
117 #include <dev/ic/dm9000reg.h>
118
119 #if 1
120 #undef DM9000_DEBUG
121 #undef DM9000_TX_DEBUG
122 #undef DM9000_TX_DATA_DEBUG
123 #undef DM9000_RX_DEBUG
124 #undef DM9000_RX_DATA_DEBUG
125 #else
126 #define DM9000_DEBUG
127 #define DM9000_TX_DEBUG
128 #define DM9000_TX_DATA_DEBUG
129 #define DM9000_RX_DEBUG
130 #define DM9000_RX_DATA_DEBUG
131 #endif
132
133 #ifdef DM9000_DEBUG
134 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
135 #else
136 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
137 #endif
138
139 #ifdef DM9000_TX_DEBUG
140 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
141 #else
142 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
143 #endif
144
145 #ifdef DM9000_RX_DEBUG
146 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
147 #else
148 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
149 #endif
150
151 #ifdef DM9000_RX_DATA_DEBUG
152 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
153 #else
154 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
155 #endif
156
157 #ifdef DM9000_TX_DATA_DEBUG
158 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
159 #else
160 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
161 #endif
162
163 /*** Internal PHY functions ***/
164 uint16_t dme_phy_read(struct dme_softc *sc, int reg);
165 void dme_phy_write(struct dme_softc *sc, int reg, uint16_t value);
166 void dme_phy_init(struct dme_softc *sc);
167 void dme_phy_reset(struct dme_softc *sc);
168 void dme_phy_update_media(struct dme_softc *sc);
169 void dme_phy_check_link(void *arg);
170
171 /*** Methods registered in struct ifnet ***/
172 void dme_start_output(struct ifnet *ifp);
173 int dme_init(struct ifnet *ifp);
174 int dme_ioctl(struct ifnet *ifp, u_long cmd, void *data);
175 void dme_stop(struct ifnet *ifp, int disable);
176
177 int dme_mediachange(struct ifnet *ifp);
178 void dme_mediastatus(struct ifnet *ufp, struct ifmediareq *ifmr);
179
180 /*** Internal methods ***/
181
182 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
183 void dme_prepare(struct dme_softc *sc, struct ifnet *ifp);
184
185 /* Transmit prepared data */
186 void dme_transmit(struct dme_softc *sc);
187
188 /* Receive data */
189 void dme_receive(struct dme_softc *sc, struct ifnet *ifp);
190
191 /* Software Initialize/Reset of the DM9000 */
192 void dme_reset(struct dme_softc *sc);
193
194 /* Configure multicast filter */
195 void dme_set_addr_filter(struct dme_softc *sc);
196
197 /* Set media */
198 int dme_set_media(struct dme_softc *sc, int media);
199
200 /* Read/write packet data from/to DM9000 IC in various transfer sizes */
201 int dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf);
202 int dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain);
203 /* TODO: Implement 8 and 32 bit read/write functions */
204
205 uint16_t
206 dme_phy_read(struct dme_softc *sc, int reg)
207 {
208 uint16_t val;
209 /* Select Register to read*/
210 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
211 (reg & DM9000_EPAR_EROA_MASK));
212 /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
213 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
214
215 /* Wait until access to PHY has completed */
216 while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
217
218 /* Reset ERPRR-bit */
219 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
220
221 val = dme_read(sc, DM9000_EPDRL);
222 val += dme_read(sc, DM9000_EPDRH) << 8;
223
224 return val;
225 }
226
227 void
228 dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
229 {
230 /* Select Register to write*/
231 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
232 (reg & DM9000_EPAR_EROA_MASK));
233
234 /* Write data to the two data registers */
235 dme_write(sc, DM9000_EPDRL, value & 0xFF);
236 dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
237
238 /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
239 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
240
241 /* Wait until access to PHY has completed */
242 while(dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
243
244 /* Reset ERPRR-bit */
245 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
246 }
247
248 void
249 dme_phy_init(struct dme_softc *sc)
250 {
251 u_int ifm_media = sc->sc_media.ifm_media;
252 uint32_t bmcr, anar;
253
254 bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
255 anar = dme_phy_read(sc, DM9000_PHY_ANAR);
256
257 anar = anar & ~DM9000_PHY_ANAR_10_HDX
258 & ~DM9000_PHY_ANAR_10_FDX
259 & ~DM9000_PHY_ANAR_TX_HDX
260 & ~DM9000_PHY_ANAR_TX_FDX;
261
262 switch (IFM_SUBTYPE(ifm_media)) {
263 case IFM_AUTO:
264 bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
265 anar |= DM9000_PHY_ANAR_10_HDX |
266 DM9000_PHY_ANAR_10_FDX |
267 DM9000_PHY_ANAR_TX_HDX |
268 DM9000_PHY_ANAR_TX_FDX;
269 break;
270 case IFM_10_T:
271 //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
272 bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
273 if (ifm_media & IFM_FDX)
274 anar |= DM9000_PHY_ANAR_10_FDX;
275 else
276 anar |= DM9000_PHY_ANAR_10_HDX;
277 break;
278 case IFM_100_TX:
279 //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
280 bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
281 if (ifm_media & IFM_FDX)
282 anar |= DM9000_PHY_ANAR_TX_FDX;
283 else
284 anar |= DM9000_PHY_ANAR_TX_HDX;
285
286 break;
287 }
288
289 if(ifm_media & IFM_FDX) {
290 bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
291 } else {
292 bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
293 }
294
295 dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
296 dme_phy_write(sc, DM9000_PHY_ANAR, anar);
297 }
298
299 void
300 dme_phy_reset(struct dme_softc *sc)
301 {
302 uint32_t reg;
303
304 /* PHY Reset */
305 dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
306
307 reg = dme_read(sc, DM9000_GPCR);
308 dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
309 reg = dme_read(sc, DM9000_GPR);
310 dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
311
312 dme_phy_init(sc);
313
314 reg = dme_read(sc, DM9000_GPR);
315 dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
316 reg = dme_read(sc, DM9000_GPCR);
317 dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
318
319 dme_phy_update_media(sc);
320 }
321
322 void
323 dme_phy_update_media(struct dme_softc *sc)
324 {
325 u_int ifm_media = sc->sc_media.ifm_media;
326 uint32_t reg;
327
328 if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
329 /* If auto-negotiation is used, ensures that it is completed
330 before trying to extract any media information. */
331 reg = dme_phy_read(sc, DM9000_PHY_BMSR);
332 if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
333 /* Auto-negotation not possible, therefore there is no
334 reason to try obtain any media information. */
335 return;
336 }
337
338 /* Then loop until the negotiation is completed. */
339 while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
340 /* TODO: Bail out after a finite number of attempts
341 in case something goes wrong. */
342 preempt();
343 reg = dme_phy_read(sc, DM9000_PHY_BMSR);
344 }
345 }
346
347
348 sc->sc_media_active = IFM_ETHER;
349 reg = dme_phy_read(sc, DM9000_PHY_BMCR);
350
351 if (reg & DM9000_PHY_BMCR_SPEED_SELECT) {
352 sc->sc_media_active |= IFM_100_TX;
353 } else {
354 sc->sc_media_active |= IFM_10_T;
355 }
356
357 if (reg & DM9000_PHY_BMCR_DUPLEX_MODE) {
358 sc->sc_media_active |= IFM_FDX;
359 }
360 }
361
362 void
363 dme_phy_check_link(void *arg)
364 {
365 struct dme_softc *sc = arg;
366 uint32_t reg;
367 int s;
368
369 s = splnet();
370
371 reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
372
373 if( reg )
374 reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
375 else {
376 reg = IFM_ETHER | IFM_AVALID;
377 sc->sc_media_active = IFM_NONE;
378 }
379
380 if ( (sc->sc_media_status != reg) && (reg & IFM_ACTIVE)) {
381 dme_phy_reset(sc);
382 }
383
384 sc->sc_media_status = reg;
385
386 callout_schedule(&sc->sc_link_callout, mstohz(2000));
387 splx(s);
388 }
389
390 int
391 dme_set_media(struct dme_softc *sc, int media)
392 {
393 int s;
394
395 s = splnet();
396 sc->sc_media.ifm_media = media;
397 dme_phy_reset(sc);
398
399 splx(s);
400
401 return 0;
402 }
403
404 int
405 dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
406 {
407 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
408 uint8_t b[2];
409 uint16_t io_mode;
410
411 dme_read_c(sc, DM9000_VID0, b, 2);
412 #if BYTE_ORDER == BIG_ENDIAN
413 sc->sc_vendor_id = (b[0] << 8) | b[1];
414 #else
415 sc->sc_vendor_id = b[0] | (b[1] << 8);
416 #endif
417 dme_read_c(sc, DM9000_PID0, b, 2);
418 #if BYTE_ORDER == BIG_ENDIAN
419 sc->sc_product_id = (b[0] << 8) | b[1];
420 #else
421 sc->sc_product_id = b[0] | (b[1] << 8);
422 #endif
423 /* TODO: Check the vendor ID as well */
424 if (sc->sc_product_id != 0x9000) {
425 panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
426 sc->sc_product_id);
427 }
428
429 /* Initialize ifnet structure. */
430 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
431 ifp->if_softc = sc;
432 ifp->if_start = dme_start_output;
433 ifp->if_init = dme_init;
434 ifp->if_ioctl = dme_ioctl;
435 ifp->if_stop = dme_stop;
436 ifp->if_watchdog = NULL; /* no watchdog at this stage */
437 ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_BROADCAST |
438 IFF_MULTICAST;
439 IFQ_SET_READY(&ifp->if_snd);
440
441 /* Initialize ifmedia structures. */
442 ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
443 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
444 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
445 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
446 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
447 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
448
449 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
450
451 if (enaddr != NULL)
452 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
453 /* TODO: Support an EEPROM attached to the DM9000 chip */
454
455 callout_init(&sc->sc_link_callout, 0);
456 callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
457
458 sc->sc_media_status = 0;
459
460 /* Configure DM9000 with the MAC address */
461 dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
462
463 #ifdef DM9000_DEBUG
464 {
465 uint8_t macAddr[6];
466 dme_read_c(sc, DM9000_PAB0, macAddr, 6);
467 printf("DM9000 configured with MAC address: ");
468 for (int i = 0; i < 6; i++) {
469 printf("%02X:", macAddr[i]);
470 }
471 printf("\n");
472 }
473 #endif
474
475 if_attach(ifp);
476 ether_ifattach(ifp, sc->sc_enaddr);
477
478 #ifdef DM9000_DEBUG
479 {
480 uint8_t network_state;
481 network_state = dme_read(sc, DM9000_NSR);
482 printf("DM9000 Link status: ");
483 if (network_state & DM9000_NSR_LINKST) {
484 if (network_state & DM9000_NSR_SPEED)
485 printf("10Mbps");
486 else
487 printf("100Mbps");
488 } else {
489 printf("Down");
490 }
491 printf("\n");
492 }
493 #endif
494
495 io_mode = (dme_read(sc, DM9000_ISR) &
496 DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
497 if (io_mode != DM9000_MODE_16BIT )
498 panic("DM9000: Only 16-bit mode is supported!\n");
499
500 DPRINTF(("DM9000 Operation Mode: "));
501 switch( io_mode) {
502 case DM9000_MODE_16BIT:
503 DPRINTF(("16-bit mode"));
504 sc->sc_data_width = 2;
505 sc->sc_pkt_write = dme_pkt_write_2;
506 sc->sc_pkt_read = dme_pkt_read_2;
507 break;
508 case DM9000_MODE_32BIT:
509 DPRINTF(("32-bit mode"));
510 sc->sc_data_width = 4;
511 break;
512 case DM9000_MODE_8BIT:
513 DPRINTF(("8-bit mode"));
514 sc->sc_data_width = 1;
515 break;
516 default:
517 DPRINTF(("Invalid mode"));
518 break;
519 }
520 DPRINTF(("\n"));
521
522 callout_schedule(&sc->sc_link_callout, mstohz(2000));
523
524 return 0;
525 }
526
527 int dme_intr(void *arg)
528 {
529 struct dme_softc *sc = arg;
530 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
531 uint8_t status;
532
533
534 DPRINTF(("dme_intr: Begin\n"));
535
536 /* Disable interrupts */
537 dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
538
539 status = dme_read(sc, DM9000_ISR);
540 dme_write(sc, DM9000_ISR, status);
541
542 if (status & DM9000_ISR_PRS) {
543 if (ifp->if_flags & IFF_RUNNING )
544 dme_receive(sc, ifp);
545 }
546 if (status & DM9000_ISR_PTS) {
547 uint8_t nsr;
548 uint8_t tx_status = 0x01; /* Initialize to an error value */
549
550 /* A packet has been transmitted */
551 sc->txbusy = 0;
552
553 nsr = dme_read(sc, DM9000_NSR);
554
555 if (nsr & DM9000_NSR_TX1END) {
556 tx_status = dme_read(sc, DM9000_TSR1);
557 TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
558 } else if (nsr & DM9000_NSR_TX2END) {
559 tx_status = dme_read(sc, DM9000_TSR2);
560 TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
561 }
562
563 if (tx_status == 0x0) {
564 /* Frame successfully sent */
565 ifp->if_opackets++;
566 } else {
567 ifp->if_oerrors++;
568 }
569
570 /* If we have nothing ready to transmit, prepare something */
571 if (!sc->txready) {
572 dme_prepare(sc, ifp);
573 }
574
575 if (sc->txready)
576 dme_transmit(sc);
577
578 /* Prepare the next frame */
579 dme_prepare(sc, ifp);
580
581 }
582 #ifdef notyet
583 if (status & DM9000_ISR_LNKCHNG) {
584 }
585 #endif
586
587 /* Enable interrupts again */
588 dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM |
589 DM9000_IMR_PTM);
590
591 DPRINTF(("dme_intr: End\n"));
592
593 return 1;
594 }
595
596 void
597 dme_start_output(struct ifnet *ifp)
598 {
599 struct dme_softc *sc;
600
601 sc = ifp->if_softc;
602
603 DPRINTF(("dme_start_output: Begin\n"));
604
605 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
606 printf("No output\n");
607 return;
608 }
609
610 if (sc->txbusy && sc->txready) {
611 panic("DM9000: Internal error, trying to send without"
612 " any empty queue\n");
613 }
614
615 dme_prepare(sc, ifp);
616
617 if (sc->txbusy == 0) {
618 /* We are ready to transmit right away */
619 dme_transmit(sc);
620 dme_prepare(sc, ifp); /* Prepare next one */
621 } else {
622 /* We need to wait until the current packet has
623 * been transmitted.
624 */
625 ifp->if_flags |= IFF_OACTIVE;
626 }
627
628 DPRINTF(("dme_start_output: End\n"));
629 }
630
631 void
632 dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
633 {
634 struct mbuf *bufChain;
635 uint16_t length;
636
637 TX_DPRINTF(("dme_prepare: Entering\n"));
638
639 if (sc->txready)
640 panic("dme_prepare: Someone called us with txready set\n");
641
642 IFQ_DEQUEUE(&ifp->if_snd, bufChain);
643 if (bufChain == NULL) {
644 TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
645 ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
646 return; /* Nothing to transmit */
647 }
648
649 /* Element has now been removed from the queue, so we better send it */
650
651 if (ifp->if_bpf)
652 bpf_mtap(ifp, bufChain);
653
654 /* Setup the DM9000 to accept the writes, and then write each buf in
655 the chain. */
656
657 TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
658 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
659 length = sc->sc_pkt_write(sc, bufChain);
660 TX_DATA_DPRINTF(("\n"));
661
662 if (length % sc->sc_data_width != 0) {
663 panic("dme_prepare: length is not compatible with IO_MODE");
664 }
665
666 sc->txready_length = length;
667 sc->txready = 1;
668
669 TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
670 "txready: %d, txready_length: %d\n",
671 sc->txbusy, sc->txready, sc->txready_length));
672
673 m_freem(bufChain);
674
675 TX_DPRINTF(("dme_prepare: Leaving\n"));
676 }
677
678 int
679 dme_init(struct ifnet *ifp)
680 {
681 int s;
682 struct dme_softc *sc = ifp->if_softc;
683
684 dme_stop(ifp, 0);
685
686 s = splnet();
687
688 dme_reset(sc);
689
690 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
691 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
692 sc->sc_ethercom.ec_if.if_timer = 0;
693
694 splx(s);
695
696 return 0;
697 }
698
699 int
700 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
701 {
702 struct dme_softc *sc = ifp->if_softc;
703 struct ifreq *ifr = data;
704 int s, error = 0;
705
706 s = splnet();
707
708 switch(cmd) {
709 case SIOCGIFMEDIA:
710 case SIOCSIFMEDIA:
711 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
712 break;
713 default:
714 error = ether_ioctl(ifp, cmd, data);
715 if (error == ENETRESET) {
716 if (ifp->if_flags && IFF_RUNNING) {
717 /* Address list has changed, reconfigure
718 filter */
719 dme_set_addr_filter(sc);
720 }
721 error = 0;
722 }
723 break;
724 }
725
726 splx(s);
727 return error;
728 }
729
730 void
731 dme_stop(struct ifnet *ifp, int disable)
732 {
733 struct dme_softc *sc = ifp->if_softc;
734
735 /* Not quite sure what to do when called with disable == 0 */
736 if (disable) {
737 /* Disable RX */
738 dme_write(sc, DM9000_RCR, 0x0);
739 }
740
741 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
742 ifp->if_timer = 0;
743 }
744
745 int
746 dme_mediachange(struct ifnet *ifp)
747 {
748 struct dme_softc *sc = ifp->if_softc;
749
750 return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
751 }
752
753 void
754 dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
755 {
756 struct dme_softc *sc = ifp->if_softc;
757
758 ifmr->ifm_active = sc->sc_media_active;
759 ifmr->ifm_status = sc->sc_media_status;
760 }
761
762 void
763 dme_transmit(struct dme_softc *sc)
764 {
765 uint8_t status;
766
767 TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
768 sc->txready, sc->txbusy));
769
770 dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
771 dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
772
773 /* Request to send the packet */
774 status = dme_read(sc, DM9000_ISR);
775
776 dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
777
778 sc->txready = 0;
779 sc->txbusy = 1;
780 sc->txready_length = 0;
781 }
782
783 void
784 dme_receive(struct dme_softc *sc, struct ifnet *ifp)
785 {
786 uint8_t ready = 0x01;
787
788 DPRINTF(("inside dme_receive\n"));
789
790 while (ready == 0x01) {
791 /* Packet received, retrieve it */
792
793 /* Read without address increment to get the ready byte without moving past it. */
794 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
795 sc->dme_io, DM9000_MRCMDX);
796 /* Dummy ready */
797 ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
798 ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
799 ready &= 0x03; /* we only want bits 1:0 */
800 if (ready == 0x01) {
801 uint8_t rx_status;
802 struct mbuf *m;
803
804 /* Read with address increment. */
805 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
806 sc->dme_io, DM9000_MRCMD);
807
808 rx_status = sc->sc_pkt_read(sc, ifp, &m);
809
810 if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
811 /* Error while receiving the packet,
812 * discard it and keep track of counters
813 */
814 ifp->if_ierrors++;
815 RX_DPRINTF(("dme_receive: "
816 "Error reciving packet\n"));
817 } else if (rx_status & DM9000_RSR_LCS) {
818 ifp->if_collisions++;
819 } else {
820 if (ifp->if_bpf)
821 bpf_mtap(ifp, m);
822 ifp->if_ipackets++;
823 (*ifp->if_input)(ifp, m);
824 }
825
826 } else if (ready != 0x00) {
827 /* Should this be logged somehow? */
828 printf("%s: Resetting chip\n",
829 device_xname(sc->sc_dev));
830 dme_reset(sc);
831 }
832 }
833 }
834
835 void
836 dme_reset(struct dme_softc *sc)
837 {
838 uint8_t var;
839
840 /* We only re-initialized the PHY in this function the first time it is
841 called. */
842 if( !sc->sc_phy_initialized) {
843 /* PHY Reset */
844 dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
845
846 /* PHY Power Down */
847 var = dme_read(sc, DM9000_GPR);
848 dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
849 }
850
851 /* Reset the DM9000 twice, as described in section 2 of the Programming
852 Guide.
853 The PHY is initialized and enabled between those two resets.
854 */
855
856 /* Software Reset*/
857 dme_write(sc, DM9000_NCR,
858 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
859 delay(20);
860 dme_write(sc, DM9000_NCR, 0x0);
861
862 if( !sc->sc_phy_initialized) {
863 /* PHY Initialization */
864 dme_phy_init(sc);
865
866 /* PHY Enable */
867 var = dme_read(sc, DM9000_GPR);
868 dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
869 var = dme_read(sc, DM9000_GPCR);
870 dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
871
872 dme_write(sc, DM9000_NCR,
873 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
874 delay(20);
875 dme_write(sc, DM9000_NCR, 0x0);
876 }
877
878 /* Select internal PHY, no wakeup event, no collosion mode,
879 * normal loopback mode.
880 */
881 dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
882
883 /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
884 dme_read(sc, DM9000_NSR);
885
886 /* Enable wraparound of read/write pointer, packet received latch,
887 * and packet transmitted latch.
888 */
889 dme_write(sc, DM9000_IMR,
890 DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
891
892 /* Setup multicast address filter, and enable RX. */
893 dme_set_addr_filter(sc);
894
895 /* Obtain media information from PHY */
896 dme_phy_update_media(sc);
897
898 sc->txbusy = 0;
899 sc->txready = 0;
900 sc->sc_phy_initialized = 1;
901 }
902
903 void
904 dme_set_addr_filter(struct dme_softc *sc)
905 {
906 struct ether_multi *enm;
907 struct ether_multistep step;
908 struct ethercom *ec;
909 struct ifnet *ifp;
910 uint16_t af[4];
911 int i;
912
913 ec = &sc->sc_ethercom;
914 ifp = &ec->ec_if;
915
916 if (ifp->if_flags & IFF_PROMISC) {
917 dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN |
918 DM9000_RCR_WTDIS |
919 DM9000_RCR_PRMSC);
920 ifp->if_flags |= IFF_ALLMULTI;
921 return;
922 }
923
924 af[0] = af[1] = af[2] = af[3] = 0x0000;
925 ifp->if_flags &= ~IFF_ALLMULTI;
926
927 ETHER_FIRST_MULTI(step, ec, enm);
928 while (enm != NULL) {
929 uint16_t hash;
930 if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
931 sizeof(enm->enm_addrlo))) {
932 /*
933 * We must listen to a range of multicast addresses.
934 * For now, just accept all multicasts, rather than
935 * trying to set only those filter bits needed to match
936 * the range. (At this time, the only use of address
937 * ranges is for IP multicast routing, for which the
938 * range is big enough to require all bits set.)
939 */
940 ifp->if_flags |= IFF_ALLMULTI;
941 af[0] = af[1] = af[2] = af[3] = 0xffff;
942 break;
943 } else {
944 hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
945 af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
946 ETHER_NEXT_MULTI(step, enm);
947 }
948 }
949
950 /* Write the multicast address filter */
951 for(i=0; i<4; i++) {
952 dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
953 dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
954 }
955
956 /* Setup RX controls */
957 dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
958 }
959
960 int
961 dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
962 {
963 int left_over_count = 0; /* Number of bytes from previous mbuf, which
964 need to be written with the next.*/
965 uint16_t left_over_buf = 0;
966 int length = 0;
967 struct mbuf *buf;
968 uint8_t *write_ptr;
969
970 /* We expect that the DM9000 has been setup to accept writes before
971 this function is called. */
972
973 for (buf = bufChain; buf != NULL; buf = buf->m_next) {
974 int to_write = buf->m_len;
975
976 length += to_write;
977
978 write_ptr = buf->m_data;
979 while (to_write > 0 ||
980 (buf->m_next == NULL && left_over_count > 0)
981 ) {
982 if (left_over_count > 0) {
983 uint8_t b = 0;
984 DPRINTF(("dme_pkt_write_16: "
985 "Writing left over byte\n"));
986
987 if (to_write > 0) {
988 b = *write_ptr;
989 to_write--;
990 write_ptr++;
991
992 DPRINTF(("Took single byte\n"));
993 } else {
994 DPRINTF(("Leftover in last run\n"));
995 length++;
996 }
997
998 /* Does shift direction depend on endianess? */
999 left_over_buf = left_over_buf | (b << 8);
1000
1001 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
1002 sc->dme_data, left_over_buf);
1003 TX_DATA_DPRINTF(("%02X ", left_over_buf));
1004 left_over_count = 0;
1005 } else if ((long)write_ptr % 2 != 0) {
1006 /* Misaligned data */
1007 DPRINTF(("dme_pkt_write_16: "
1008 "Detected misaligned data\n"));
1009 left_over_buf = *write_ptr;
1010 left_over_count = 1;
1011 write_ptr++;
1012 to_write--;
1013 } else {
1014 int i;
1015 uint16_t *dptr = (uint16_t*)write_ptr;
1016
1017 /* A block of aligned data. */
1018 for(i = 0; i < to_write/2; i++) {
1019 /* buf will be half-word aligned
1020 * all the time
1021 */
1022 bus_space_write_2(sc->sc_iot,
1023 sc->sc_ioh, sc->dme_data, *dptr);
1024 TX_DATA_DPRINTF(("%02X %02X ",
1025 *dptr & 0xFF, (*dptr>>8) & 0xFF));
1026 dptr++;
1027 }
1028
1029 write_ptr += i*2;
1030 if (to_write % 2 != 0) {
1031 DPRINTF(("dme_pkt_write_16: "
1032 "to_write %% 2: %d\n",
1033 to_write % 2));
1034 left_over_count = 1;
1035 /* XXX: Does this depend on
1036 * the endianess?
1037 */
1038 left_over_buf = *write_ptr;
1039
1040 write_ptr++;
1041 to_write--;
1042 DPRINTF(("dme_pkt_write_16: "
1043 "to_write (after): %d\n",
1044 to_write));
1045 DPRINTF(("dme_pkt_write_16: i*2: %d\n",
1046 i*2));
1047 }
1048 to_write -= i*2;
1049 }
1050 } /* while(...) */
1051 } /* for(...) */
1052
1053 return length;
1054 }
1055
1056 int
1057 dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1058 {
1059 uint8_t rx_status;
1060 struct mbuf *m;
1061 uint16_t data;
1062 uint16_t frame_length;
1063 uint16_t i;
1064 uint16_t *buf;
1065
1066 data = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
1067 sc->dme_data);
1068
1069 rx_status = data & 0xFF;
1070 frame_length = bus_space_read_2(sc->sc_iot,
1071 sc->sc_ioh, sc->dme_data);
1072 if (frame_length > ETHER_MAX_LEN) {
1073 printf("Got frame of length: %d\n", frame_length);
1074 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1075 panic("Something is rotten");
1076 }
1077 RX_DPRINTF(("dme_receive: "
1078 "rx_statux: 0x%x, frame_length: %d\n",
1079 rx_status, frame_length));
1080
1081
1082 m = dme_alloc_receive_buffer(ifp, frame_length);
1083
1084 buf = mtod(m, uint16_t*);
1085
1086 RX_DPRINTF(("dme_receive: "));
1087
1088 for(i=0; i< frame_length; i+=2 ) {
1089 data = bus_space_read_2(sc->sc_iot,
1090 sc->sc_ioh, sc->dme_data);
1091 if ( (frame_length % 2 != 0) &&
1092 (i == frame_length-1) ) {
1093 data = data & 0xff;
1094 RX_DPRINTF((" L "));
1095 }
1096 *buf = data;
1097 buf++;
1098 RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1099 (data>>8) & 0xff));
1100 }
1101
1102 RX_DATA_DPRINTF(("\n"));
1103 RX_DPRINTF(("Read %d bytes\n", i));
1104
1105 *outBuf = m;
1106 return rx_status;
1107 }
1108
1109 struct mbuf*
1110 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
1111 {
1112 struct dme_softc *sc = ifp->if_softc;
1113 struct mbuf *m;
1114 int pad;
1115
1116 MGETHDR(m, M_DONTWAIT, MT_DATA);
1117 m->m_pkthdr.rcvif = ifp;
1118 /* Ensure that we always allocate an even number of
1119 * bytes in order to avoid writing beyond the buffer
1120 */
1121 m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
1122 pad = ALIGN(sizeof(struct ether_header)) -
1123 sizeof(struct ether_header);
1124 /* All our frames have the CRC attached */
1125 m->m_flags |= M_HASFCS;
1126 if (m->m_pkthdr.len + pad > MHLEN )
1127 MCLGET(m, M_DONTWAIT);
1128
1129 m->m_data += pad;
1130 m->m_len = frame_length + (frame_length % sc->sc_data_width);
1131
1132 return m;
1133 }
1134