dm9000.c revision 1.41 1 /* $NetBSD: dm9000.c,v 1.41 2025/10/04 04:44:20 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2009 Paul Fleischer
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* based on sys/dev/ic/cs89x0.c */
30 /*
31 * Copyright (c) 2004 Christopher Gilbert
32 * All rights reserved.
33 *
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 * 3. The name of the company nor the name of the author may be used to
40 * endorse or promote products derived from this software without specific
41 * prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Copyright 1997
58 * Digital Equipment Corporation. All rights reserved.
59 *
60 * This software is furnished under license and may be used and
61 * copied only in accordance with the following terms and conditions.
62 * Subject to these conditions, you may download, copy, install,
63 * use, modify and distribute this software in source and/or binary
64 * form. No title or ownership is transferred hereby.
65 *
66 * 1) Any source code used, modified or distributed must reproduce
67 * and retain this copyright notice and list of conditions as
68 * they appear in the source file.
69 *
70 * 2) No right is granted to use any trade name, trademark, or logo of
71 * Digital Equipment Corporation. Neither the "Digital Equipment
72 * Corporation" name nor any trademark or logo of Digital Equipment
73 * Corporation may be used to endorse or promote products derived
74 * from this software without the prior written permission of
75 * Digital Equipment Corporation.
76 *
77 * 3) This software is provided "AS-IS" and any express or implied
78 * warranties, including but not limited to, any implied warranties
79 * of merchantability, fitness for a particular purpose, or
80 * non-infringement are disclaimed. In no event shall DIGITAL be
81 * liable for any damages whatsoever, and in particular, DIGITAL
82 * shall not be liable for special, indirect, consequential, or
83 * incidental damages or damages for lost profits, loss of
84 * revenue or loss of use, whether such damages arise in contract,
85 * negligence, tort, under statute, in equity, at law or otherwise,
86 * even if advised of the possibility of such damage.
87 */
88
89 #include <sys/cdefs.h>
90
91 #include <sys/param.h>
92 #include <sys/bus.h>
93 #include <sys/intr.h>
94 #include <sys/device.h>
95 #include <sys/mbuf.h>
96 #include <sys/sockio.h>
97 #include <sys/errno.h>
98 #include <sys/cprng.h>
99 #include <sys/rndsource.h>
100 #include <sys/kernel.h>
101 #include <sys/systm.h>
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_ether.h>
106 #include <net/if_media.h>
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include <net/bpf.h>
110
111 #include <dev/ic/dm9000var.h>
112 #include <dev/ic/dm9000reg.h>
113
114 #if 1
115 #undef DM9000_DEBUG
116 #undef DM9000_TX_DEBUG
117 #undef DM9000_TX_DATA_DEBUG
118 #undef DM9000_RX_DEBUG
119 #undef DM9000_RX_DATA_DEBUG
120 #else
121 #define DM9000_DEBUG
122 #define DM9000_TX_DEBUG
123 #define DM9000_TX_DATA_DEBUG
124 #define DM9000_RX_DEBUG
125 #define DM9000_RX_DATA_DEBUG
126 #endif
127
128 #ifdef DM9000_DEBUG
129 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
130 #else
131 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
132 #endif
133
134 #ifdef DM9000_TX_DEBUG
135 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
136 #else
137 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
138 #endif
139
140 #ifdef DM9000_RX_DEBUG
141 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
142 #else
143 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
144 #endif
145
146 #ifdef DM9000_RX_DATA_DEBUG
147 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
148 #else
149 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
150 #endif
151
152 #ifdef DM9000_TX_DATA_DEBUG
153 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
154 #else
155 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
156 #endif
157
158 static void dme_reset(struct dme_softc *);
159 static int dme_init(struct ifnet *);
160 static void dme_stop(struct ifnet *, int);
161 static void dme_start(struct ifnet *);
162 static int dme_ioctl(struct ifnet *, u_long, void *);
163
164 static void dme_set_rcvfilt(struct dme_softc *);
165 static void mii_statchg(struct ifnet *);
166 static void lnkchg(struct dme_softc *);
167 static void phy_tick(void *);
168 static int mii_readreg(device_t, int, int, uint16_t *);
169 static int mii_writereg(device_t, int, int, uint16_t);
170
171 static void dme_prepare(struct ifnet *);
172 static void dme_transmit(struct ifnet *);
173 static void dme_receive(struct ifnet *);
174
175 static int pkt_read_2(struct dme_softc *, struct mbuf **);
176 static int pkt_write_2(struct dme_softc *, struct mbuf *);
177 static int pkt_read_1(struct dme_softc *, struct mbuf **);
178 static int pkt_write_1(struct dme_softc *, struct mbuf *);
179 #define PKT_READ(ii,m) (*(ii)->sc_pkt_read)((ii),(m))
180 #define PKT_WRITE(ii,m) (*(ii)->sc_pkt_write)((ii),(m))
181
182 #define ETHER_IS_ONE(x) \
183 (((x)[0] & (x)[1] & (x)[2] & (x)[3] & (x)[4] & (x)[5]) == 255)
184 #define ETHER_IS_ZERO(x) \
185 (((x)[0] | (x)[1] | (x)[2] | (x)[3] | (x)[4] | (x)[5]) == 0)
186
187 int
188 dme_attach(struct dme_softc *sc, const uint8_t *notusedanymore)
189 {
190 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
191 struct mii_data *mii = &sc->sc_mii;
192 struct ifmedia *ifm = &mii->mii_media;
193 uint8_t b[2];
194 uint16_t io_mode;
195 uint8_t enaddr[ETHER_ADDR_LEN];
196
197 dme_read_c(sc, DM9000_VID0, b, 2);
198 sc->sc_vendor_id = le16toh((uint16_t)b[1] << 8 | b[0]);
199 dme_read_c(sc, DM9000_PID0, b, 2);
200 sc->sc_product_id = le16toh((uint16_t)b[1] << 8 | b[0]);
201
202 /* TODO: Check the vendor ID as well */
203 if (sc->sc_product_id != 0x9000) {
204 panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
205 sc->sc_product_id);
206 }
207 #if 1 || DM9000_DEBUG
208 {
209 dme_read_c(sc, DM9000_PAB0, enaddr, 6);
210 aprint_normal_dev(sc->sc_dev,
211 "DM9000 was configured with MAC address: %s\n",
212 ether_sprintf(enaddr));
213 }
214 #endif
215 if (! ether_getaddr(sc->sc_dev, enaddr)) {
216 /*
217 * If we did not get an externally configure address,
218 * try to read one from the current setup, before
219 * resetting the chip.
220 */
221 dme_read_c(sc, DM9000_PAB0, enaddr, 6);
222 if (ETHER_IS_ONE(enaddr) || ETHER_IS_ZERO(enaddr)) {
223 /* make a random MAC address */
224 uint32_t maclo = 0x00f2 | (cprng_strong32() << 16);
225 uint32_t machi = cprng_strong32();
226 enaddr[0] = maclo;
227 enaddr[1] = maclo >> 8;
228 enaddr[2] = maclo >> 16;
229 enaddr[3] = maclo >> 26;
230 enaddr[4] = machi;
231 enaddr[5] = machi >> 8;
232 }
233 }
234 /* TODO: perform explicit EEPROM read op if it's available */
235
236 dme_reset(sc);
237
238 mii->mii_ifp = ifp;
239 mii->mii_readreg = mii_readreg;
240 mii->mii_writereg = mii_writereg;
241 mii->mii_statchg = mii_statchg;
242
243 /* assume davicom PHY at 1. ext PHY could be hooked but only at 0-3 */
244 sc->sc_ethercom.ec_mii = mii;
245 ifmedia_init(ifm, 0, ether_mediachange, ether_mediastatus);
246 mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY 1 */,
247 MII_OFFSET_ANY, 0);
248 if (LIST_FIRST(&mii->mii_phys) == NULL) {
249 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
250 ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
251 } else
252 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
253 ifm->ifm_media = ifm->ifm_cur->ifm_media;
254
255 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
256 ifp->if_softc = sc;
257 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
258 ifp->if_init = dme_init;
259 ifp->if_start = dme_start;
260 ifp->if_stop = dme_stop;
261 ifp->if_ioctl = dme_ioctl;
262 ifp->if_watchdog = NULL; /* no watchdog used */
263 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
264 IFQ_SET_READY(&ifp->if_snd);
265
266 if_attach(ifp);
267 ether_ifattach(ifp, enaddr);
268 if_deferred_start_init(ifp, NULL);
269
270 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
271 RND_TYPE_NET, RND_FLAG_DEFAULT);
272
273 /* might be unnecessary as link change interrupt works well */
274 callout_init(&sc->sc_link_callout, 0);
275 callout_setfunc(&sc->sc_link_callout, phy_tick, sc);
276
277 io_mode = (dme_read(sc, DM9000_ISR) &
278 DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
279
280 /* frame body read/write ops in 2 byte quantity or byte-wise. */
281 DPRINTF(("DM9000 Operation Mode: "));
282 switch (io_mode) {
283 case DM9000_MODE_8BIT:
284 DPRINTF(("8-bit mode"));
285 sc->sc_data_width = 1;
286 sc->sc_pkt_write = pkt_write_1;
287 sc->sc_pkt_read = pkt_read_1;
288 break;
289 case DM9000_MODE_16BIT:
290 DPRINTF(("16-bit mode"));
291 sc->sc_data_width = 2;
292 sc->sc_pkt_write = pkt_write_2;
293 sc->sc_pkt_read = pkt_read_2;
294 break;
295 case DM9000_MODE_32BIT:
296 DPRINTF(("32-bit mode"));
297 sc->sc_data_width = 4;
298 panic("32bit mode is unsupported\n");
299 break;
300 default:
301 DPRINTF(("Invalid mode"));
302 break;
303 }
304 DPRINTF(("\n"));
305
306 return 0;
307 }
308
309 int
310 dme_detach(struct dme_softc *sc)
311 {
312 return 0;
313 }
314
315 /* Software Initialize/Reset of the DM9000 */
316 static void
317 dme_reset(struct dme_softc *sc)
318 {
319 uint8_t misc;
320
321 /* We only re-initialized the PHY in this function the first time it is
322 * called. */
323 if (!sc->sc_phy_initialized) {
324 /* PHY Reset */
325 mii_writereg(sc->sc_dev, 1, MII_BMCR, BMCR_RESET);
326
327 /* PHY Power Down */
328 misc = dme_read(sc, DM9000_GPR);
329 dme_write(sc, DM9000_GPR, misc | DM9000_GPR_PHY_PWROFF);
330 }
331
332 /* Reset the DM9000 twice, as described in section 2 of the Programming
333 * Guide.
334 * The PHY is initialized and enabled between those two resets.
335 */
336
337 /* Software Reset */
338 dme_write(sc, DM9000_NCR,
339 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
340 delay(20);
341 dme_write(sc, DM9000_NCR, 0x0);
342
343 if (!sc->sc_phy_initialized) {
344 /* PHY Enable */
345 misc = dme_read(sc, DM9000_GPR);
346 dme_write(sc, DM9000_GPR, misc & ~DM9000_GPR_PHY_PWROFF);
347 misc = dme_read(sc, DM9000_GPCR);
348 dme_write(sc, DM9000_GPCR, misc | DM9000_GPCR_GPIO0_OUT);
349
350 dme_write(sc, DM9000_NCR,
351 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
352 delay(20);
353 dme_write(sc, DM9000_NCR, 0x0);
354 }
355
356 /* Select internal PHY, no wakeup event, no collision mode,
357 * normal loopback mode.
358 */
359 dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL);
360
361 /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
362 dme_read(sc, DM9000_NSR);
363
364 /* Enable wraparound of read/write pointer, frame received latch,
365 * and frame transmitted latch.
366 */
367 dme_write(sc, DM9000_IMR,
368 DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
369
370 dme_write(sc, DM9000_RCR,
371 DM9000_RCR_DIS_CRC | DM9000_RCR_DIS_LONG | DM9000_RCR_WTDIS);
372
373 sc->sc_phy_initialized = 1;
374 }
375
376 static int
377 dme_init(struct ifnet *ifp)
378 {
379 struct dme_softc *sc = ifp->if_softc;
380
381 dme_stop(ifp, 0);
382 dme_reset(sc);
383 dme_write_c(sc, DM9000_PAB0, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
384 dme_set_rcvfilt(sc);
385 (void)ether_mediachange(ifp);
386
387 sc->txbusy = sc->txready = 0;
388
389 ifp->if_flags |= IFF_RUNNING;
390 callout_schedule(&sc->sc_link_callout, hz);
391
392 return 0;
393 }
394
395 /* Configure multicast filter */
396 static void
397 dme_set_rcvfilt(struct dme_softc *sc)
398 {
399 struct ethercom *ec = &sc->sc_ethercom;
400 struct ifnet *ifp = &ec->ec_if;
401 struct ether_multi *enm;
402 struct ether_multistep step;
403 uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* 64bit mchash */
404 uint32_t h = 0;
405 int rcr;
406
407 rcr = dme_read(sc, DM9000_RCR);
408 rcr &= ~(DM9000_RCR_PRMSC | DM9000_RCR_ALL);
409 dme_write(sc, DM9000_RCR, rcr &~ DM9000_RCR_RXEN);
410
411 ETHER_LOCK(ec);
412 if (ifp->if_flags & IFF_PROMISC) {
413 ec->ec_flags |= ETHER_F_ALLMULTI;
414 ETHER_UNLOCK(ec);
415 /* run promisc. mode */
416 rcr |= DM9000_RCR_PRMSC;
417 goto update;
418 }
419 ec->ec_flags &= ~ETHER_F_ALLMULTI;
420 ETHER_FIRST_MULTI(step, ec, enm);
421 while (enm != NULL) {
422 if (memcpy(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
423 /*
424 * We must listen to a range of multicast addresses.
425 * For now, just accept all multicasts, rather than
426 * trying to set only those filter bits needed to match
427 * the range. (At this time, the only use of address
428 * ranges is for IP multicast routing, for which the
429 * range is big enough to require all bits set.)
430 */
431 ec->ec_flags |= ETHER_F_ALLMULTI;
432 ETHER_UNLOCK(ec);
433 memset(mchash, 0xff, sizeof(mchash)); /* necessary? */
434 /* accept all multicast frame */
435 rcr |= DM9000_RCR_ALL;
436 goto update;
437 }
438 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
439 /* 3(5:3) and 3(2:0) sampling to have uint8_t[8] */
440 mchash[h / 8] |= 1 << (h % 8);
441 ETHER_NEXT_MULTI(step, enm);
442 }
443 ETHER_UNLOCK(ec);
444 /* DM9000 receive filter is always on */
445 mchash[7] |= 0x80; /* to catch bcast frame */
446 update:
447 dme_write_c(sc, DM9000_MAB0, mchash, sizeof(mchash));
448 dme_write(sc, DM9000_RCR, rcr | DM9000_RCR_RXEN);
449 return;
450 }
451
452 void
453 lnkchg(struct dme_softc *sc)
454 {
455 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
456 struct ifmediareq ifmr;
457
458 ether_mediastatus(ifp, &ifmr);
459 }
460
461 static void
462 mii_statchg(struct ifnet *ifp)
463 {
464 struct dme_softc *sc = ifp->if_softc;
465 struct mii_data *mii = &sc->sc_mii;
466 uint8_t fcr, ncr;
467
468 #if 0
469 const uint8_t Mbps[2] = { 10, 100 };
470 uint8_t nsr = dme_read(sc, DM9000_NSR);
471 int spd = Mbps[!!(nsr & DM9000_NSR_SPEED)];
472 /* speed/duplexity available also in reg 0x11 of internal PHY */
473 if (nsr & DM9000_NSR_LINKST)
474 printf("link up,spd%d", spd);
475 else
476 printf("link down");
477
478 /* show resolved mii(4) parameters */
479 printf("MII spd%d",
480 (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
481 if (mii->mii_media_active & IFM_FDX)
482 printf(",full-duplex");
483 printf("\n");
484 #endif
485
486 /* Adjust duplexity and PAUSE flow control. */
487 fcr = dme_read(sc, DM9000_FCR) &~ DM9000_FCR_FLCE;
488 ncr = dme_read(sc, DM9000_NCR) &~ DM9000_NCR_FDX;
489 if ((mii->mii_media_active & IFM_FDX)
490 && (mii->mii_media_active & IFM_FLOW)) {
491 fcr |= DM9000_FCR_FLCE;
492 ncr |= DM9000_NCR_FDX;
493 }
494 dme_write(sc, DM9000_FCR, fcr);
495 dme_write(sc, DM9000_NCR, ncr);
496 }
497
498 static void
499 phy_tick(void *arg)
500 {
501 struct dme_softc *sc = arg;
502 struct mii_data *mii = &sc->sc_mii;
503 int s;
504
505 s = splnet();
506 mii_tick(mii);
507 splx(s);
508
509 callout_schedule(&sc->sc_link_callout, hz);
510 }
511
512 static int
513 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
514 {
515 struct dme_softc *sc = device_private(self);
516
517 if (phy != 1)
518 return EINVAL;
519
520 /* Select Register to read*/
521 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
522 (reg & DM9000_EPAR_EROA_MASK));
523 /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
524 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
525
526 /* Wait until access to PHY has completed */
527 while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
528 ;
529
530 /* Reset ERPRR-bit */
531 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
532
533 *val = dme_read(sc, DM9000_EPDRL) | (dme_read(sc, DM9000_EPDRH) << 8);
534 return 0;
535 }
536
537 static int
538 mii_writereg(device_t self, int phy, int reg, uint16_t val)
539 {
540 struct dme_softc *sc = device_private(self);
541
542 if (phy != 1)
543 return EINVAL;
544
545 /* Select Register to write */
546 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
547 (reg & DM9000_EPAR_EROA_MASK));
548
549 /* Write data to the two data registers */
550 dme_write(sc, DM9000_EPDRL, val & 0xFF);
551 dme_write(sc, DM9000_EPDRH, (val >> 8) & 0xFF);
552
553 /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
554 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
555
556 /* Wait until access to PHY has completed */
557 while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
558 ;
559
560 /* Reset ERPRR-bit */
561 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
562
563 return 0;
564 }
565
566 void
567 dme_stop(struct ifnet *ifp, int disable)
568 {
569 struct dme_softc *sc = ifp->if_softc;
570
571 /* Not quite sure what to do when called with disable == 0 */
572 if (disable) {
573 /* Disable RX */
574 dme_write(sc, DM9000_RCR, 0x0);
575 }
576 mii_down(&sc->sc_mii);
577 callout_stop(&sc->sc_link_callout);
578
579 ifp->if_flags &= ~IFF_RUNNING;
580 ifp->if_timer = 0;
581 }
582
583 static void
584 dme_start(struct ifnet *ifp)
585 {
586 struct dme_softc *sc = ifp->if_softc;
587
588 if ((ifp->if_flags & IFF_RUNNING) == 0) {
589 return;
590 }
591 if (!sc->txready) {
592 dme_prepare(ifp);
593 }
594 if (sc->txbusy) {
595 /*
596 * We need to wait until the current frame has
597 * been transmitted.
598 */
599 return;
600 }
601 if (sc->txready) {
602 /* We are ready to transmit right away */
603 dme_transmit(ifp);
604 }
605 dme_prepare(ifp); /* Prepare next one */
606 }
607
608 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
609 static void
610 dme_prepare(struct ifnet *ifp)
611 {
612 struct dme_softc *sc = ifp->if_softc;
613 uint16_t length;
614 struct mbuf *m;
615
616 KASSERT(!sc->txready);
617
618 IFQ_DEQUEUE(&ifp->if_snd, m);
619 if (m == NULL) {
620 TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
621 return; /* Nothing to transmit */
622 }
623
624 /* Element has now been removed from the queue, so we better send it */
625
626 bpf_mtap(ifp, m, BPF_D_OUT);
627
628 /* Setup the DM9000 to accept the writes, and then write each buf in
629 the chain. */
630
631 TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
632 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
633 length = PKT_WRITE(sc, m);
634 bpf_mtap(ifp, m, BPF_D_OUT);
635 TX_DATA_DPRINTF(("\n"));
636
637 if (length % sc->sc_data_width != 0)
638 panic("dme_prepare: length is not compatible with IO_MODE");
639
640 sc->txready_length = length;
641 sc->txready = 1;
642 m_freem(m);
643 }
644
645 /* Transmit prepared data */
646 static void
647 dme_transmit(struct ifnet *ifp)
648 {
649 struct dme_softc *sc = ifp->if_softc;
650
651 TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
652 sc->txready, sc->txbusy));
653
654 /* prime frame length first */
655 dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
656 dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff);
657 /* read isr next */
658 dme_read(sc, DM9000_ISR);
659 /* finally issue a request to send */
660 dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
661 sc->txready = 0;
662 sc->txbusy = 1;
663 sc->txready_length = 0;
664 }
665
666 /* Receive data */
667 static void
668 dme_receive(struct ifnet *ifp)
669 {
670 struct dme_softc *sc = ifp->if_softc;
671 struct mbuf *m;
672 uint8_t avail, rsr;
673
674 DPRINTF(("inside dme_receive\n"));
675
676 /* frame has just arrived, retrieve it */
677 /* called right after Rx frame available interrupt */
678 do {
679 /* "no increment" read to get the avail byte without
680 moving past it. */
681 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
682 DM9000_MRCMDX);
683 /* Read twice */
684 avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
685 avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
686 avail &= 03; /* 1:0 we only want these bits */
687 if (avail == 01) {
688 /* Read with address increment. */
689 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
690 DM9000_MRCMD);
691 rsr = PKT_READ(sc, &m);
692 if (m == NULL) {
693 /* failed to allocate a receive buffer */
694 RX_DPRINTF(("dme_receive: "
695 "Error allocating buffer\n"));
696 if_statinc(ifp, if_ierrors);
697 continue;
698 }
699 if (rsr & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
700 /* Error while receiving the frame,
701 * discard it and keep track of counters
702 */
703 RX_DPRINTF(("dme_receive: "
704 "Error reciving frame\n"));
705 if_statinc(ifp, if_ierrors);
706 continue;
707 }
708 if (rsr & DM9000_RSR_LCS) {
709 if_statinc(ifp, if_collisions);
710 continue;
711 }
712 /* pick and forward this frame to ifq */
713 if_percpuq_enqueue(ifp->if_percpuq, m);
714 } else if (avail != 00) {
715 /* Should this be logged somehow? */
716 printf("%s: Resetting chip\n",
717 device_xname(sc->sc_dev));
718 dme_reset(sc);
719 break;
720 }
721 } while (avail == 01);
722 /* frame received successfully */
723 }
724
725 int
726 dme_intr(void *arg)
727 {
728 struct dme_softc *sc = arg;
729 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
730 uint8_t isr, nsr, tsr;
731
732 DPRINTF(("dme_intr: Begin\n"));
733
734 /* Disable interrupts */
735 dme_write(sc, DM9000_IMR, DM9000_IMR_PAR);
736
737 isr = dme_read(sc, DM9000_ISR);
738 dme_write(sc, DM9000_ISR, isr); /* write to clear */
739
740 if (isr & DM9000_ISR_PRS) {
741 KASSERT(ifp->if_flags & IFF_RUNNING);
742 dme_receive(ifp);
743 }
744 if (isr & DM9000_ISR_LNKCHNG)
745 lnkchg(sc);
746 if (isr & DM9000_ISR_PTS) {
747 tsr = 0x01; /* Initialize to an error value */
748
749 /* A frame has been transmitted */
750 sc->txbusy = 0;
751
752 nsr = dme_read(sc, DM9000_NSR);
753 if (nsr & DM9000_NSR_TX1END) {
754 tsr = dme_read(sc, DM9000_TSR1);
755 TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
756 } else if (nsr & DM9000_NSR_TX2END) {
757 tsr = dme_read(sc, DM9000_TSR2);
758 TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
759 }
760
761 if (tsr == 0x0) {
762 /* Frame successfully sent */
763 if_statinc(ifp, if_opackets);
764 } else {
765 if_statinc(ifp, if_oerrors);
766 }
767
768 /* If we have nothing ready to transmit, prepare something */
769 if (!sc->txready)
770 dme_prepare(ifp);
771
772 if (sc->txready)
773 dme_transmit(ifp);
774
775 /* Prepare the next frame */
776 dme_prepare(ifp);
777
778 if_schedule_deferred_start(ifp);
779 }
780
781 /* Enable interrupts again */
782 dme_write(sc, DM9000_IMR,
783 DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
784
785 DPRINTF(("dme_intr: End\n"));
786
787 return (isr != 0);
788 }
789
790 static int
791 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
792 {
793 struct dme_softc *sc = ifp->if_softc;
794 struct ifreq *ifr = (struct ifreq *)data;
795 struct ifmedia *ifm = &sc->sc_mii.mii_media;
796 int s, error;
797
798 s = splnet();
799 switch (cmd) {
800 case SIOCSIFMEDIA:
801 /* Flow control requires full-duplex mode. */
802 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
803 (ifr->ifr_media & IFM_FDX) == 0)
804 ifr->ifr_media &= ~IFM_ETH_FMASK;
805 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
806 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
807 ifr->ifr_media |=
808 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
809 }
810 }
811 error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
812 break;
813 default:
814 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
815 break;
816 error = 0;
817 if (cmd == SIOCSIFCAP)
818 error = if_init(ifp);
819 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
820 ;
821 else if (ifp->if_flags && IFF_RUNNING) {
822 /* Address list has changed, reconfigure filter */
823 dme_set_rcvfilt(sc);
824 }
825 break;
826 }
827 splx(s);
828 return error;
829 }
830
831 static struct mbuf *
832 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
833 {
834 struct dme_softc *sc = ifp->if_softc;
835 struct mbuf *m;
836 int pad, quantum;
837
838 quantum = sc->sc_data_width;
839 MGETHDR(m, M_DONTWAIT, MT_DATA);
840 if (m == NULL)
841 return NULL;
842
843 m_set_rcvif(m, ifp);
844 /* Ensure that we always allocate an even number of
845 * bytes in order to avoid writing beyond the buffer
846 */
847 m->m_pkthdr.len = frame_length + (frame_length % quantum);
848 pad = ALIGN(sizeof(struct ether_header)) -
849 sizeof(struct ether_header);
850 /* All our frames have the CRC attached */
851 m->m_flags |= M_HASFCS;
852 if (m->m_pkthdr.len + pad > MHLEN) {
853 MCLGET(m, M_DONTWAIT);
854 if ((m->m_flags & M_EXT) == 0) {
855 m_freem(m);
856 return NULL;
857 }
858 }
859
860 m->m_data += pad;
861 m->m_len = frame_length + (frame_length % quantum);
862
863 return m;
864 }
865
866 static int
867 pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
868 {
869 int left_over_count = 0; /* Number of bytes from previous mbuf, which
870 need to be written with the next.*/
871 uint16_t left_over_buf = 0;
872 int length = 0;
873 struct mbuf *buf;
874 uint8_t *write_ptr;
875
876 /* We expect that the DM9000 has been setup to accept writes before
877 this function is called. */
878
879 for (buf = bufChain; buf != NULL; buf = buf->m_next) {
880 int to_write = buf->m_len;
881
882 length += to_write;
883
884 write_ptr = buf->m_data;
885 while (to_write > 0 ||
886 (buf->m_next == NULL && left_over_count > 0)) {
887 if (left_over_count > 0) {
888 uint8_t b = 0;
889 DPRINTF(("pkt_write_16: "
890 "Writing left over byte\n"));
891
892 if (to_write > 0) {
893 b = *write_ptr;
894 to_write--;
895 write_ptr++;
896
897 DPRINTF(("Took single byte\n"));
898 } else {
899 DPRINTF(("Leftover in last run\n"));
900 length++;
901 }
902
903 /* Does shift direction depend on endianness? */
904 left_over_buf = left_over_buf | (b << 8);
905
906 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
907 sc->dme_data, left_over_buf);
908 TX_DATA_DPRINTF(("%02X ", left_over_buf));
909 left_over_count = 0;
910 } else if ((long)write_ptr % 2 != 0) {
911 /* Misaligned data */
912 DPRINTF(("pkt_write_16: "
913 "Detected misaligned data\n"));
914 left_over_buf = *write_ptr;
915 left_over_count = 1;
916 write_ptr++;
917 to_write--;
918 } else {
919 int i;
920 uint16_t *dptr = (uint16_t *)write_ptr;
921
922 /* A block of aligned data. */
923 for (i = 0; i < to_write / 2; i++) {
924 /* buf will be half-word aligned
925 * all the time
926 */
927 bus_space_write_2(sc->sc_iot,
928 sc->sc_ioh, sc->dme_data, *dptr);
929 TX_DATA_DPRINTF(("%02X %02X ",
930 *dptr & 0xFF, (*dptr >> 8) & 0xFF));
931 dptr++;
932 }
933
934 write_ptr += i * 2;
935 if (to_write % 2 != 0) {
936 DPRINTF(("pkt_write_16: "
937 "to_write %% 2: %d\n",
938 to_write % 2));
939 left_over_count = 1;
940 /* XXX: Does this depend on
941 * the endianness?
942 */
943 left_over_buf = *write_ptr;
944
945 write_ptr++;
946 to_write--;
947 DPRINTF(("pkt_write_16: "
948 "to_write (after): %d\n",
949 to_write));
950 DPRINTF(("pkt_write_16: i * 2: %d\n",
951 i*2));
952 }
953 to_write -= i * 2;
954 }
955 } /* while (...) */
956 } /* for (...) */
957
958 return length;
959 }
960
961 static int
962 pkt_read_2(struct dme_softc *sc, struct mbuf **outBuf)
963 {
964 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
965 uint8_t rx_status;
966 struct mbuf *m;
967 uint16_t data;
968 uint16_t frame_length;
969 uint16_t i;
970 uint16_t *buf;
971
972 data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
973 rx_status = data & 0xFF;
974
975 frame_length = bus_space_read_2(sc->sc_iot,
976 sc->sc_ioh, sc->dme_data);
977 if (frame_length > ETHER_MAX_LEN) {
978 printf("Got frame of length: %d\n", frame_length);
979 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
980 panic("Something is rotten");
981 }
982 RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
983 rx_status, frame_length));
984
985 m = dme_alloc_receive_buffer(ifp, frame_length);
986 if (m == NULL) {
987 /*
988 * didn't get a receive buffer, so we read the rest of the
989 * frame, throw it away and return an error
990 */
991 for (i = 0; i < frame_length; i += 2) {
992 data = bus_space_read_2(sc->sc_iot,
993 sc->sc_ioh, sc->dme_data);
994 }
995 *outBuf = NULL;
996 return 0;
997 }
998
999 buf = mtod(m, uint16_t*);
1000
1001 RX_DPRINTF(("dme_receive: "));
1002
1003 for (i = 0; i < frame_length; i += 2) {
1004 data = bus_space_read_2(sc->sc_iot,
1005 sc->sc_ioh, sc->dme_data);
1006 if ( (frame_length % 2 != 0) &&
1007 (i == frame_length - 1) ) {
1008 data = data & 0xff;
1009 RX_DPRINTF((" L "));
1010 }
1011 *buf = data;
1012 buf++;
1013 RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1014 (data >> 8) & 0xff));
1015 }
1016
1017 RX_DATA_DPRINTF(("\n"));
1018 RX_DPRINTF(("Read %d bytes\n", i));
1019
1020 *outBuf = m;
1021 return rx_status;
1022 }
1023
1024 static int
1025 pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
1026 {
1027 int length = 0, i;
1028 struct mbuf *buf;
1029 uint8_t *write_ptr;
1030
1031 /*
1032 * We expect that the DM9000 has been setup to accept writes before
1033 * this function is called.
1034 */
1035
1036 for (buf = bufChain; buf != NULL; buf = buf->m_next) {
1037 int to_write = buf->m_len;
1038
1039 length += to_write;
1040
1041 write_ptr = buf->m_data;
1042 for (i = 0; i < to_write; i++) {
1043 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1044 sc->dme_data, *write_ptr);
1045 write_ptr++;
1046 }
1047 } /* for (...) */
1048
1049 return length;
1050 }
1051
1052 static int
1053 pkt_read_1(struct dme_softc *sc, struct mbuf **outBuf)
1054 {
1055 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1056 uint8_t rx_status;
1057 struct mbuf *m;
1058 uint8_t *buf;
1059 uint16_t frame_length;
1060 uint16_t i, reg;
1061 uint8_t data;
1062
1063 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1064 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1065 rx_status = reg & 0xFF;
1066
1067 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1068 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1069 frame_length = reg;
1070
1071 if (frame_length > ETHER_MAX_LEN) {
1072 printf("Got frame of length: %d\n", frame_length);
1073 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1074 panic("Something is rotten");
1075 }
1076 RX_DPRINTF(("dme_receive: "
1077 "rx_statux: 0x%x, frame_length: %d\n",
1078 rx_status, frame_length));
1079
1080 m = dme_alloc_receive_buffer(ifp, frame_length);
1081 if (m == NULL) {
1082 /*
1083 * didn't get a receive buffer, so we read the rest of the
1084 * frame, throw it away and return an error
1085 */
1086 for (i = 0; i < frame_length; i++ ) {
1087 data = bus_space_read_2(sc->sc_iot,
1088 sc->sc_ioh, sc->dme_data);
1089 }
1090 *outBuf = NULL;
1091 return 0;
1092 }
1093
1094 buf = mtod(m, uint8_t *);
1095
1096 RX_DPRINTF(("dme_receive: "));
1097 for (i = 0; i< frame_length; i += 1) {
1098 data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1099 *buf = data;
1100 buf++;
1101 RX_DATA_DPRINTF(("%02X ", data));
1102 }
1103
1104 RX_DATA_DPRINTF(("\n"));
1105 RX_DPRINTF(("Read %d bytes\n", i));
1106
1107 *outBuf = m;
1108 return rx_status;
1109 }
1110