dm9000.c revision 1.7 1 /* $NetBSD: dm9000.c,v 1.7 2015/03/14 13:45:43 macallan Exp $ */
2
3 /*
4 * Copyright (c) 2009 Paul Fleischer
5 * All rights reserved.
6 *
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * 3. The name of the company nor the name of the author may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /* based on sys/dev/ic/cs89x0.c */
30 /*
31 * Copyright (c) 2004 Christopher Gilbert
32 * All rights reserved.
33 *
34 * 1. Redistributions of source code must retain the above copyright
35 * notice, this list of conditions and the following disclaimer.
36 * 2. Redistributions in binary form must reproduce the above copyright
37 * notice, this list of conditions and the following disclaimer in the
38 * documentation and/or other materials provided with the distribution.
39 * 3. The name of the company nor the name of the author may be used to
40 * endorse or promote products derived from this software without specific
41 * prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
44 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
46 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
47 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
48 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
49 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * SUCH DAMAGE.
54 */
55
56 /*
57 * Copyright 1997
58 * Digital Equipment Corporation. All rights reserved.
59 *
60 * This software is furnished under license and may be used and
61 * copied only in accordance with the following terms and conditions.
62 * Subject to these conditions, you may download, copy, install,
63 * use, modify and distribute this software in source and/or binary
64 * form. No title or ownership is transferred hereby.
65 *
66 * 1) Any source code used, modified or distributed must reproduce
67 * and retain this copyright notice and list of conditions as
68 * they appear in the source file.
69 *
70 * 2) No right is granted to use any trade name, trademark, or logo of
71 * Digital Equipment Corporation. Neither the "Digital Equipment
72 * Corporation" name nor any trademark or logo of Digital Equipment
73 * Corporation may be used to endorse or promote products derived
74 * from this software without the prior written permission of
75 * Digital Equipment Corporation.
76 *
77 * 3) This software is provided "AS-IS" and any express or implied
78 * warranties, including but not limited to, any implied warranties
79 * of merchantability, fitness for a particular purpose, or
80 * non-infringement are disclaimed. In no event shall DIGITAL be
81 * liable for any damages whatsoever, and in particular, DIGITAL
82 * shall not be liable for special, indirect, consequential, or
83 * incidental damages or damages for lost profits, loss of
84 * revenue or loss of use, whether such damages arise in contract,
85 * negligence, tort, under statute, in equity, at law or otherwise,
86 * even if advised of the possibility of such damage.
87 */
88
89 #include <sys/cdefs.h>
90
91 #include <sys/param.h>
92 #include <sys/kernel.h>
93 #include <sys/systm.h>
94 #include <sys/mbuf.h>
95 #include <sys/syslog.h>
96 #include <sys/socket.h>
97 #include <sys/device.h>
98 #include <sys/malloc.h>
99 #include <sys/ioctl.h>
100 #include <sys/errno.h>
101
102 #include <net/if.h>
103 #include <net/if_ether.h>
104 #include <net/if_media.h>
105 #ifdef INET
106 #include <netinet/in.h>
107 #include <netinet/if_inarp.h>
108 #endif
109
110 #include <net/bpf.h>
111 #include <net/bpfdesc.h>
112
113 #include <sys/bus.h>
114 #include <sys/intr.h>
115
116 #include <dev/ic/dm9000var.h>
117 #include <dev/ic/dm9000reg.h>
118
119 #if 1
120 #undef DM9000_DEBUG
121 #undef DM9000_TX_DEBUG
122 #undef DM9000_TX_DATA_DEBUG
123 #undef DM9000_RX_DEBUG
124 #undef DM9000_RX_DATA_DEBUG
125 #else
126 #define DM9000_DEBUG
127 #define DM9000_TX_DEBUG
128 #define DM9000_TX_DATA_DEBUG
129 #define DM9000_RX_DEBUG
130 #define DM9000_RX_DATA_DEBUG
131 #endif
132
133 #ifdef DM9000_DEBUG
134 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
135 #else
136 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
137 #endif
138
139 #ifdef DM9000_TX_DEBUG
140 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
141 #else
142 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
143 #endif
144
145 #ifdef DM9000_RX_DEBUG
146 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
147 #else
148 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
149 #endif
150
151 #ifdef DM9000_RX_DATA_DEBUG
152 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
153 #else
154 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
155 #endif
156
157 #ifdef DM9000_TX_DATA_DEBUG
158 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
159 #else
160 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
161 #endif
162
163 /*** Internal PHY functions ***/
164 uint16_t dme_phy_read(struct dme_softc *, int );
165 void dme_phy_write(struct dme_softc *, int, uint16_t);
166 void dme_phy_init(struct dme_softc *);
167 void dme_phy_reset(struct dme_softc *);
168 void dme_phy_update_media(struct dme_softc *);
169 void dme_phy_check_link(void *);
170
171 /*** Methods registered in struct ifnet ***/
172 void dme_start_output(struct ifnet *);
173 int dme_init(struct ifnet *);
174 int dme_ioctl(struct ifnet *, u_long, void *);
175 void dme_stop(struct ifnet *, int);
176
177 int dme_mediachange(struct ifnet *);
178 void dme_mediastatus(struct ifnet *, struct ifmediareq *);
179
180 /*** Internal methods ***/
181
182 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
183 void dme_prepare(struct dme_softc *, struct ifnet *);
184
185 /* Transmit prepared data */
186 void dme_transmit(struct dme_softc *);
187
188 /* Receive data */
189 void dme_receive(struct dme_softc *, struct ifnet *);
190
191 /* Software Initialize/Reset of the DM9000 */
192 void dme_reset(struct dme_softc *);
193
194 /* Configure multicast filter */
195 void dme_set_addr_filter(struct dme_softc *);
196
197 /* Set media */
198 int dme_set_media(struct dme_softc *, int );
199
200 /* Read/write packet data from/to DM9000 IC in various transfer sizes */
201 int dme_pkt_read_2(struct dme_softc *, struct ifnet *, struct mbuf **);
202 int dme_pkt_write_2(struct dme_softc *, struct mbuf *);
203 int dme_pkt_read_1(struct dme_softc *, struct ifnet *, struct mbuf **);
204 int dme_pkt_write_1(struct dme_softc *, struct mbuf *);
205 /* TODO: Implement 32 bit read/write functions */
206
207 uint16_t
208 dme_phy_read(struct dme_softc *sc, int reg)
209 {
210 uint16_t val;
211 /* Select Register to read*/
212 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
213 (reg & DM9000_EPAR_EROA_MASK));
214 /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
215 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
216
217 /* Wait until access to PHY has completed */
218 while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
219
220 /* Reset ERPRR-bit */
221 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
222
223 val = dme_read(sc, DM9000_EPDRL);
224 val += dme_read(sc, DM9000_EPDRH) << 8;
225
226 return val;
227 }
228
229 void
230 dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
231 {
232 /* Select Register to write*/
233 dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
234 (reg & DM9000_EPAR_EROA_MASK));
235
236 /* Write data to the two data registers */
237 dme_write(sc, DM9000_EPDRL, value & 0xFF);
238 dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
239
240 /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
241 dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
242
243 /* Wait until access to PHY has completed */
244 while(dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
245
246 /* Reset ERPRR-bit */
247 dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
248 }
249
250 void
251 dme_phy_init(struct dme_softc *sc)
252 {
253 u_int ifm_media = sc->sc_media.ifm_media;
254 uint32_t bmcr, anar;
255
256 bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
257 anar = dme_phy_read(sc, DM9000_PHY_ANAR);
258
259 anar = anar & ~DM9000_PHY_ANAR_10_HDX
260 & ~DM9000_PHY_ANAR_10_FDX
261 & ~DM9000_PHY_ANAR_TX_HDX
262 & ~DM9000_PHY_ANAR_TX_FDX;
263
264 switch (IFM_SUBTYPE(ifm_media)) {
265 case IFM_AUTO:
266 bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
267 anar |= DM9000_PHY_ANAR_10_HDX |
268 DM9000_PHY_ANAR_10_FDX |
269 DM9000_PHY_ANAR_TX_HDX |
270 DM9000_PHY_ANAR_TX_FDX;
271 break;
272 case IFM_10_T:
273 //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
274 bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
275 if (ifm_media & IFM_FDX)
276 anar |= DM9000_PHY_ANAR_10_FDX;
277 else
278 anar |= DM9000_PHY_ANAR_10_HDX;
279 break;
280 case IFM_100_TX:
281 //bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
282 bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
283 if (ifm_media & IFM_FDX)
284 anar |= DM9000_PHY_ANAR_TX_FDX;
285 else
286 anar |= DM9000_PHY_ANAR_TX_HDX;
287
288 break;
289 }
290
291 if(ifm_media & IFM_FDX) {
292 bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
293 } else {
294 bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
295 }
296
297 dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
298 dme_phy_write(sc, DM9000_PHY_ANAR, anar);
299 }
300
301 void
302 dme_phy_reset(struct dme_softc *sc)
303 {
304 uint32_t reg;
305
306 /* PHY Reset */
307 dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
308
309 reg = dme_read(sc, DM9000_GPCR);
310 dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
311 reg = dme_read(sc, DM9000_GPR);
312 dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
313
314 dme_phy_init(sc);
315
316 reg = dme_read(sc, DM9000_GPR);
317 dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
318 reg = dme_read(sc, DM9000_GPCR);
319 dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
320
321 dme_phy_update_media(sc);
322 }
323
324 void
325 dme_phy_update_media(struct dme_softc *sc)
326 {
327 u_int ifm_media = sc->sc_media.ifm_media;
328 uint32_t reg;
329
330 if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
331 /* If auto-negotiation is used, ensures that it is completed
332 before trying to extract any media information. */
333 reg = dme_phy_read(sc, DM9000_PHY_BMSR);
334 if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
335 /* Auto-negotation not possible, therefore there is no
336 reason to try obtain any media information. */
337 return;
338 }
339
340 /* Then loop until the negotiation is completed. */
341 while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
342 /* TODO: Bail out after a finite number of attempts
343 in case something goes wrong. */
344 preempt();
345 reg = dme_phy_read(sc, DM9000_PHY_BMSR);
346 }
347 }
348
349
350 sc->sc_media_active = IFM_ETHER;
351 reg = dme_phy_read(sc, DM9000_PHY_BMCR);
352
353 if (reg & DM9000_PHY_BMCR_SPEED_SELECT) {
354 sc->sc_media_active |= IFM_100_TX;
355 } else {
356 sc->sc_media_active |= IFM_10_T;
357 }
358
359 if (reg & DM9000_PHY_BMCR_DUPLEX_MODE) {
360 sc->sc_media_active |= IFM_FDX;
361 }
362 }
363
364 void
365 dme_phy_check_link(void *arg)
366 {
367 struct dme_softc *sc = arg;
368 uint32_t reg;
369 int s;
370
371 s = splnet();
372
373 reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
374
375 if( reg )
376 reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
377 else {
378 reg = IFM_ETHER | IFM_AVALID;
379 sc->sc_media_active = IFM_NONE;
380 }
381
382 if ( (sc->sc_media_status != reg) && (reg & IFM_ACTIVE)) {
383 dme_phy_reset(sc);
384 }
385
386 sc->sc_media_status = reg;
387
388 callout_schedule(&sc->sc_link_callout, mstohz(2000));
389 splx(s);
390 }
391
392 int
393 dme_set_media(struct dme_softc *sc, int media)
394 {
395 int s;
396
397 s = splnet();
398 sc->sc_media.ifm_media = media;
399 dme_phy_reset(sc);
400
401 splx(s);
402
403 return 0;
404 }
405
406 int
407 dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
408 {
409 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
410 uint8_t b[2];
411 uint16_t io_mode;
412
413 dme_read_c(sc, DM9000_VID0, b, 2);
414 #if BYTE_ORDER == BIG_ENDIAN
415 sc->sc_vendor_id = (b[0] << 8) | b[1];
416 #else
417 sc->sc_vendor_id = b[0] | (b[1] << 8);
418 #endif
419 dme_read_c(sc, DM9000_PID0, b, 2);
420 #if BYTE_ORDER == BIG_ENDIAN
421 sc->sc_product_id = (b[0] << 8) | b[1];
422 #else
423 sc->sc_product_id = b[0] | (b[1] << 8);
424 #endif
425 /* TODO: Check the vendor ID as well */
426 if (sc->sc_product_id != 0x9000) {
427 panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
428 sc->sc_product_id);
429 }
430
431 /* Initialize ifnet structure. */
432 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
433 ifp->if_softc = sc;
434 ifp->if_start = dme_start_output;
435 ifp->if_init = dme_init;
436 ifp->if_ioctl = dme_ioctl;
437 ifp->if_stop = dme_stop;
438 ifp->if_watchdog = NULL; /* no watchdog at this stage */
439 ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_BROADCAST |
440 IFF_MULTICAST;
441 IFQ_SET_READY(&ifp->if_snd);
442
443 /* Initialize ifmedia structures. */
444 ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
445 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
446 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
447 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
448 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
449 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
450
451 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
452
453 if (enaddr != NULL)
454 memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
455 /* TODO: Support an EEPROM attached to the DM9000 chip */
456
457 callout_init(&sc->sc_link_callout, 0);
458 callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
459
460 sc->sc_media_status = 0;
461
462 /* Configure DM9000 with the MAC address */
463 dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
464
465 #ifdef DM9000_DEBUG
466 {
467 uint8_t macAddr[6];
468 dme_read_c(sc, DM9000_PAB0, macAddr, 6);
469 printf("DM9000 configured with MAC address: ");
470 for (int i = 0; i < 6; i++) {
471 printf("%02X:", macAddr[i]);
472 }
473 printf("\n");
474 }
475 #endif
476
477 if_attach(ifp);
478 ether_ifattach(ifp, sc->sc_enaddr);
479
480 #ifdef DM9000_DEBUG
481 {
482 uint8_t network_state;
483 network_state = dme_read(sc, DM9000_NSR);
484 printf("DM9000 Link status: ");
485 if (network_state & DM9000_NSR_LINKST) {
486 if (network_state & DM9000_NSR_SPEED)
487 printf("10Mbps");
488 else
489 printf("100Mbps");
490 } else {
491 printf("Down");
492 }
493 printf("\n");
494 }
495 #endif
496
497 io_mode = (dme_read(sc, DM9000_ISR) &
498 DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
499
500 DPRINTF(("DM9000 Operation Mode: "));
501 switch( io_mode) {
502 case DM9000_MODE_16BIT:
503 DPRINTF(("16-bit mode"));
504 sc->sc_data_width = 2;
505 sc->sc_pkt_write = dme_pkt_write_2;
506 sc->sc_pkt_read = dme_pkt_read_2;
507 break;
508 case DM9000_MODE_32BIT:
509 DPRINTF(("32-bit mode"));
510 sc->sc_data_width = 4;
511 panic("32bit mode is unsupported\n");
512 break;
513 case DM9000_MODE_8BIT:
514 DPRINTF(("8-bit mode"));
515 sc->sc_data_width = 1;
516 sc->sc_pkt_write = dme_pkt_write_1;
517 sc->sc_pkt_read = dme_pkt_read_1;
518 break;
519 default:
520 DPRINTF(("Invalid mode"));
521 break;
522 }
523 DPRINTF(("\n"));
524
525 callout_schedule(&sc->sc_link_callout, mstohz(2000));
526
527 return 0;
528 }
529
530 int dme_intr(void *arg)
531 {
532 struct dme_softc *sc = arg;
533 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
534 uint8_t status;
535
536
537 DPRINTF(("dme_intr: Begin\n"));
538
539 /* Disable interrupts */
540 dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
541
542 status = dme_read(sc, DM9000_ISR);
543 dme_write(sc, DM9000_ISR, status);
544
545 if (status & DM9000_ISR_PRS) {
546 if (ifp->if_flags & IFF_RUNNING )
547 dme_receive(sc, ifp);
548 }
549 if (status & DM9000_ISR_PTS) {
550 uint8_t nsr;
551 uint8_t tx_status = 0x01; /* Initialize to an error value */
552
553 /* A packet has been transmitted */
554 sc->txbusy = 0;
555
556 nsr = dme_read(sc, DM9000_NSR);
557
558 if (nsr & DM9000_NSR_TX1END) {
559 tx_status = dme_read(sc, DM9000_TSR1);
560 TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
561 } else if (nsr & DM9000_NSR_TX2END) {
562 tx_status = dme_read(sc, DM9000_TSR2);
563 TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
564 }
565
566 if (tx_status == 0x0) {
567 /* Frame successfully sent */
568 ifp->if_opackets++;
569 } else {
570 ifp->if_oerrors++;
571 }
572
573 /* If we have nothing ready to transmit, prepare something */
574 if (!sc->txready) {
575 dme_prepare(sc, ifp);
576 }
577
578 if (sc->txready)
579 dme_transmit(sc);
580
581 /* Prepare the next frame */
582 dme_prepare(sc, ifp);
583
584 }
585 #ifdef notyet
586 if (status & DM9000_ISR_LNKCHNG) {
587 }
588 #endif
589
590 /* Enable interrupts again */
591 dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM |
592 DM9000_IMR_PTM);
593
594 DPRINTF(("dme_intr: End\n"));
595
596 return 1;
597 }
598
599 void
600 dme_start_output(struct ifnet *ifp)
601 {
602 struct dme_softc *sc;
603
604 sc = ifp->if_softc;
605
606 DPRINTF(("dme_start_output: Begin\n"));
607
608 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
609 printf("No output\n");
610 return;
611 }
612
613 if (sc->txbusy && sc->txready) {
614 panic("DM9000: Internal error, trying to send without"
615 " any empty queue\n");
616 }
617
618 dme_prepare(sc, ifp);
619
620 if (sc->txbusy == 0) {
621 /* We are ready to transmit right away */
622 dme_transmit(sc);
623 dme_prepare(sc, ifp); /* Prepare next one */
624 } else {
625 /* We need to wait until the current packet has
626 * been transmitted.
627 */
628 ifp->if_flags |= IFF_OACTIVE;
629 }
630
631 DPRINTF(("dme_start_output: End\n"));
632 }
633
634 void
635 dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
636 {
637 struct mbuf *bufChain;
638 uint16_t length;
639
640 TX_DPRINTF(("dme_prepare: Entering\n"));
641
642 if (sc->txready)
643 panic("dme_prepare: Someone called us with txready set\n");
644
645 IFQ_DEQUEUE(&ifp->if_snd, bufChain);
646 if (bufChain == NULL) {
647 TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
648 ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
649 return; /* Nothing to transmit */
650 }
651
652 /* Element has now been removed from the queue, so we better send it */
653
654 if (ifp->if_bpf)
655 bpf_mtap(ifp, bufChain);
656
657 /* Setup the DM9000 to accept the writes, and then write each buf in
658 the chain. */
659
660 TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
661 bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
662 length = sc->sc_pkt_write(sc, bufChain);
663 TX_DATA_DPRINTF(("\n"));
664
665 if (length % sc->sc_data_width != 0) {
666 panic("dme_prepare: length is not compatible with IO_MODE");
667 }
668
669 sc->txready_length = length;
670 sc->txready = 1;
671
672 TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
673 "txready: %d, txready_length: %d\n",
674 sc->txbusy, sc->txready, sc->txready_length));
675
676 m_freem(bufChain);
677
678 TX_DPRINTF(("dme_prepare: Leaving\n"));
679 }
680
681 int
682 dme_init(struct ifnet *ifp)
683 {
684 int s;
685 struct dme_softc *sc = ifp->if_softc;
686
687 dme_stop(ifp, 0);
688
689 s = splnet();
690
691 dme_reset(sc);
692
693 sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
694 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
695 sc->sc_ethercom.ec_if.if_timer = 0;
696
697 splx(s);
698
699 return 0;
700 }
701
702 int
703 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
704 {
705 struct dme_softc *sc = ifp->if_softc;
706 struct ifreq *ifr = data;
707 int s, error = 0;
708
709 s = splnet();
710
711 switch(cmd) {
712 case SIOCGIFMEDIA:
713 case SIOCSIFMEDIA:
714 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
715 break;
716 default:
717 error = ether_ioctl(ifp, cmd, data);
718 if (error == ENETRESET) {
719 if (ifp->if_flags && IFF_RUNNING) {
720 /* Address list has changed, reconfigure
721 filter */
722 dme_set_addr_filter(sc);
723 }
724 error = 0;
725 }
726 break;
727 }
728
729 splx(s);
730 return error;
731 }
732
733 void
734 dme_stop(struct ifnet *ifp, int disable)
735 {
736 struct dme_softc *sc = ifp->if_softc;
737
738 /* Not quite sure what to do when called with disable == 0 */
739 if (disable) {
740 /* Disable RX */
741 dme_write(sc, DM9000_RCR, 0x0);
742 }
743
744 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
745 ifp->if_timer = 0;
746 }
747
748 int
749 dme_mediachange(struct ifnet *ifp)
750 {
751 struct dme_softc *sc = ifp->if_softc;
752
753 return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
754 }
755
756 void
757 dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
758 {
759 struct dme_softc *sc = ifp->if_softc;
760
761 ifmr->ifm_active = sc->sc_media_active;
762 ifmr->ifm_status = sc->sc_media_status;
763 }
764
765 void
766 dme_transmit(struct dme_softc *sc)
767 {
768
769 TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
770 sc->txready, sc->txbusy));
771
772 dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
773 dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
774
775 /* Request to send the packet */
776 dme_read(sc, DM9000_ISR);
777
778 dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
779
780 sc->txready = 0;
781 sc->txbusy = 1;
782 sc->txready_length = 0;
783 }
784
785 void
786 dme_receive(struct dme_softc *sc, struct ifnet *ifp)
787 {
788 uint8_t ready = 0x01;
789
790 DPRINTF(("inside dme_receive\n"));
791
792 while (ready == 0x01) {
793 /* Packet received, retrieve it */
794
795 /* Read without address increment to get the ready byte without
796 moving past it. */
797 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
798 sc->dme_io, DM9000_MRCMDX);
799 /* Dummy ready */
800 ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
801 ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
802 ready &= 0x03; /* we only want bits 1:0 */
803 if (ready == 0x01) {
804 uint8_t rx_status;
805 struct mbuf *m;
806
807 /* Read with address increment. */
808 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
809 sc->dme_io, DM9000_MRCMD);
810
811 rx_status = sc->sc_pkt_read(sc, ifp, &m);
812
813 if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
814 /* Error while receiving the packet,
815 * discard it and keep track of counters
816 */
817 ifp->if_ierrors++;
818 RX_DPRINTF(("dme_receive: "
819 "Error reciving packet\n"));
820 } else if (rx_status & DM9000_RSR_LCS) {
821 ifp->if_collisions++;
822 } else {
823 if (ifp->if_bpf)
824 bpf_mtap(ifp, m);
825 ifp->if_ipackets++;
826 (*ifp->if_input)(ifp, m);
827 }
828
829 } else if (ready != 0x00) {
830 /* Should this be logged somehow? */
831 printf("%s: Resetting chip\n",
832 device_xname(sc->sc_dev));
833 dme_reset(sc);
834 }
835 }
836 }
837
838 void
839 dme_reset(struct dme_softc *sc)
840 {
841 uint8_t var;
842
843 /* We only re-initialized the PHY in this function the first time it is
844 called. */
845 if( !sc->sc_phy_initialized) {
846 /* PHY Reset */
847 dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
848
849 /* PHY Power Down */
850 var = dme_read(sc, DM9000_GPR);
851 dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
852 }
853
854 /* Reset the DM9000 twice, as described in section 2 of the Programming
855 Guide.
856 The PHY is initialized and enabled between those two resets.
857 */
858
859 /* Software Reset*/
860 dme_write(sc, DM9000_NCR,
861 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
862 delay(20);
863 dme_write(sc, DM9000_NCR, 0x0);
864
865 if( !sc->sc_phy_initialized) {
866 /* PHY Initialization */
867 dme_phy_init(sc);
868
869 /* PHY Enable */
870 var = dme_read(sc, DM9000_GPR);
871 dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
872 var = dme_read(sc, DM9000_GPCR);
873 dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
874
875 dme_write(sc, DM9000_NCR,
876 DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
877 delay(20);
878 dme_write(sc, DM9000_NCR, 0x0);
879 }
880
881 /* Select internal PHY, no wakeup event, no collosion mode,
882 * normal loopback mode.
883 */
884 dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
885
886 /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
887 dme_read(sc, DM9000_NSR);
888
889 /* Enable wraparound of read/write pointer, packet received latch,
890 * and packet transmitted latch.
891 */
892 dme_write(sc, DM9000_IMR,
893 DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
894
895 /* Setup multicast address filter, and enable RX. */
896 dme_set_addr_filter(sc);
897
898 /* Obtain media information from PHY */
899 dme_phy_update_media(sc);
900
901 sc->txbusy = 0;
902 sc->txready = 0;
903 sc->sc_phy_initialized = 1;
904 }
905
906 void
907 dme_set_addr_filter(struct dme_softc *sc)
908 {
909 struct ether_multi *enm;
910 struct ether_multistep step;
911 struct ethercom *ec;
912 struct ifnet *ifp;
913 uint16_t af[4];
914 int i;
915
916 ec = &sc->sc_ethercom;
917 ifp = &ec->ec_if;
918
919 if (ifp->if_flags & IFF_PROMISC) {
920 dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN |
921 DM9000_RCR_WTDIS |
922 DM9000_RCR_PRMSC);
923 ifp->if_flags |= IFF_ALLMULTI;
924 return;
925 }
926
927 af[0] = af[1] = af[2] = af[3] = 0x0000;
928 ifp->if_flags &= ~IFF_ALLMULTI;
929
930 ETHER_FIRST_MULTI(step, ec, enm);
931 while (enm != NULL) {
932 uint16_t hash;
933 if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
934 sizeof(enm->enm_addrlo))) {
935 /*
936 * We must listen to a range of multicast addresses.
937 * For now, just accept all multicasts, rather than
938 * trying to set only those filter bits needed to match
939 * the range. (At this time, the only use of address
940 * ranges is for IP multicast routing, for which the
941 * range is big enough to require all bits set.)
942 */
943 ifp->if_flags |= IFF_ALLMULTI;
944 af[0] = af[1] = af[2] = af[3] = 0xffff;
945 break;
946 } else {
947 hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
948 af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
949 ETHER_NEXT_MULTI(step, enm);
950 }
951 }
952
953 /* Write the multicast address filter */
954 for(i=0; i<4; i++) {
955 dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
956 dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
957 }
958
959 /* Setup RX controls */
960 dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
961 }
962
963 int
964 dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
965 {
966 int left_over_count = 0; /* Number of bytes from previous mbuf, which
967 need to be written with the next.*/
968 uint16_t left_over_buf = 0;
969 int length = 0;
970 struct mbuf *buf;
971 uint8_t *write_ptr;
972
973 /* We expect that the DM9000 has been setup to accept writes before
974 this function is called. */
975
976 for (buf = bufChain; buf != NULL; buf = buf->m_next) {
977 int to_write = buf->m_len;
978
979 length += to_write;
980
981 write_ptr = buf->m_data;
982 while (to_write > 0 ||
983 (buf->m_next == NULL && left_over_count > 0)
984 ) {
985 if (left_over_count > 0) {
986 uint8_t b = 0;
987 DPRINTF(("dme_pkt_write_16: "
988 "Writing left over byte\n"));
989
990 if (to_write > 0) {
991 b = *write_ptr;
992 to_write--;
993 write_ptr++;
994
995 DPRINTF(("Took single byte\n"));
996 } else {
997 DPRINTF(("Leftover in last run\n"));
998 length++;
999 }
1000
1001 /* Does shift direction depend on endianess? */
1002 left_over_buf = left_over_buf | (b << 8);
1003
1004 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
1005 sc->dme_data, left_over_buf);
1006 TX_DATA_DPRINTF(("%02X ", left_over_buf));
1007 left_over_count = 0;
1008 } else if ((long)write_ptr % 2 != 0) {
1009 /* Misaligned data */
1010 DPRINTF(("dme_pkt_write_16: "
1011 "Detected misaligned data\n"));
1012 left_over_buf = *write_ptr;
1013 left_over_count = 1;
1014 write_ptr++;
1015 to_write--;
1016 } else {
1017 int i;
1018 uint16_t *dptr = (uint16_t *)write_ptr;
1019
1020 /* A block of aligned data. */
1021 for(i = 0; i < to_write / 2; i++) {
1022 /* buf will be half-word aligned
1023 * all the time
1024 */
1025 bus_space_write_2(sc->sc_iot,
1026 sc->sc_ioh, sc->dme_data, *dptr);
1027 TX_DATA_DPRINTF(("%02X %02X ",
1028 *dptr & 0xFF, (*dptr >> 8) & 0xFF));
1029 dptr++;
1030 }
1031
1032 write_ptr += i * 2;
1033 if (to_write % 2 != 0) {
1034 DPRINTF(("dme_pkt_write_16: "
1035 "to_write %% 2: %d\n",
1036 to_write % 2));
1037 left_over_count = 1;
1038 /* XXX: Does this depend on
1039 * the endianess?
1040 */
1041 left_over_buf = *write_ptr;
1042
1043 write_ptr++;
1044 to_write--;
1045 DPRINTF(("dme_pkt_write_16: "
1046 "to_write (after): %d\n",
1047 to_write));
1048 DPRINTF(("dme_pkt_write_16: i * 2: %d\n",
1049 i*2));
1050 }
1051 to_write -= i * 2;
1052 }
1053 } /* while(...) */
1054 } /* for(...) */
1055
1056 return length;
1057 }
1058
1059 int
1060 dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1061 {
1062 uint8_t rx_status;
1063 struct mbuf *m;
1064 uint16_t data;
1065 uint16_t frame_length;
1066 uint16_t i;
1067 uint16_t *buf;
1068
1069 data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1070
1071 rx_status = data & 0xFF;
1072 frame_length = bus_space_read_2(sc->sc_iot,
1073 sc->sc_ioh, sc->dme_data);
1074 if (frame_length > ETHER_MAX_LEN) {
1075 printf("Got frame of length: %d\n", frame_length);
1076 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1077 panic("Something is rotten");
1078 }
1079 RX_DPRINTF(("dme_receive: "
1080 "rx_statux: 0x%x, frame_length: %d\n",
1081 rx_status, frame_length));
1082
1083
1084 m = dme_alloc_receive_buffer(ifp, frame_length);
1085
1086 buf = mtod(m, uint16_t*);
1087
1088 RX_DPRINTF(("dme_receive: "));
1089
1090 for (i = 0; i < frame_length; i += 2 ) {
1091 data = bus_space_read_2(sc->sc_iot,
1092 sc->sc_ioh, sc->dme_data);
1093 if ( (frame_length % 2 != 0) &&
1094 (i == frame_length - 1) ) {
1095 data = data & 0xff;
1096 RX_DPRINTF((" L "));
1097 }
1098 *buf = data;
1099 buf++;
1100 RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
1101 (data >> 8) & 0xff));
1102 }
1103
1104 RX_DATA_DPRINTF(("\n"));
1105 RX_DPRINTF(("Read %d bytes\n", i));
1106
1107 *outBuf = m;
1108 return rx_status;
1109 }
1110
1111 int
1112 dme_pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
1113 {
1114 int length = 0, i;
1115 struct mbuf *buf;
1116 uint8_t *write_ptr;
1117
1118 /* We expect that the DM9000 has been setup to accept writes before
1119 this function is called. */
1120
1121 for (buf = bufChain; buf != NULL; buf = buf->m_next) {
1122 int to_write = buf->m_len;
1123
1124 length += to_write;
1125
1126 write_ptr = buf->m_data;
1127 for (i = 0; i < to_write; i++) {
1128 bus_space_write_1(sc->sc_iot, sc->sc_ioh,
1129 sc->dme_data, *write_ptr);
1130 write_ptr++;
1131 }
1132 } /* for(...) */
1133
1134 return length;
1135 }
1136
1137 int
1138 dme_pkt_read_1(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
1139 {
1140 uint8_t rx_status;
1141 struct mbuf *m;
1142 uint8_t *buf;
1143 uint16_t frame_length;
1144 uint16_t i, reg;
1145 uint8_t data;
1146
1147 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1148 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1149 rx_status = reg & 0xFF;
1150
1151 reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1152 reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
1153 frame_length = reg;
1154
1155 if (frame_length > ETHER_MAX_LEN) {
1156 printf("Got frame of length: %d\n", frame_length);
1157 printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
1158 panic("Something is rotten");
1159 }
1160 RX_DPRINTF(("dme_receive: "
1161 "rx_statux: 0x%x, frame_length: %d\n",
1162 rx_status, frame_length));
1163
1164
1165 m = dme_alloc_receive_buffer(ifp, frame_length);
1166
1167 buf = mtod(m, uint8_t *);
1168
1169 RX_DPRINTF(("dme_receive: "));
1170
1171 for (i = 0; i< frame_length; i += 1 ) {
1172 data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
1173 *buf = data;
1174 buf++;
1175 RX_DATA_DPRINTF(("%02X ", data));
1176 }
1177
1178 RX_DATA_DPRINTF(("\n"));
1179 RX_DPRINTF(("Read %d bytes\n", i));
1180
1181 *outBuf = m;
1182 return rx_status;
1183 }
1184
1185 struct mbuf*
1186 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
1187 {
1188 struct dme_softc *sc = ifp->if_softc;
1189 struct mbuf *m;
1190 int pad;
1191
1192 MGETHDR(m, M_DONTWAIT, MT_DATA);
1193 m->m_pkthdr.rcvif = ifp;
1194 /* Ensure that we always allocate an even number of
1195 * bytes in order to avoid writing beyond the buffer
1196 */
1197 m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
1198 pad = ALIGN(sizeof(struct ether_header)) -
1199 sizeof(struct ether_header);
1200 /* All our frames have the CRC attached */
1201 m->m_flags |= M_HASFCS;
1202 if (m->m_pkthdr.len + pad > MHLEN )
1203 MCLGET(m, M_DONTWAIT);
1204
1205 m->m_data += pad;
1206 m->m_len = frame_length + (frame_length % sc->sc_data_width);
1207
1208 return m;
1209 }
1210