Home | History | Annotate | Line # | Download | only in ic
dm9000.c revision 1.9
      1 /*	$NetBSD: dm9000.c,v 1.9 2016/02/09 08:32:10 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2009 Paul Fleischer
      5  * All rights reserved.
      6  *
      7  * 1. Redistributions of source code must retain the above copyright
      8  *    notice, this list of conditions and the following disclaimer.
      9  * 2. Redistributions in binary form must reproduce the above copyright
     10  *    notice, this list of conditions and the following disclaimer in the
     11  *    documentation and/or other materials provided with the distribution.
     12  * 3. The name of the company nor the name of the author may be used to
     13  *    endorse or promote products derived from this software without specific
     14  *    prior written permission.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     20  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /* based on sys/dev/ic/cs89x0.c */
     30 /*
     31  * Copyright (c) 2004 Christopher Gilbert
     32  * All rights reserved.
     33  *
     34  * 1. Redistributions of source code must retain the above copyright
     35  *    notice, this list of conditions and the following disclaimer.
     36  * 2. Redistributions in binary form must reproduce the above copyright
     37  *    notice, this list of conditions and the following disclaimer in the
     38  *    documentation and/or other materials provided with the distribution.
     39  * 3. The name of the company nor the name of the author may be used to
     40  *    endorse or promote products derived from this software without specific
     41  *    prior written permission.
     42  *
     43  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     44  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     45  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     46  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     47  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     48  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     49  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     50  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     51  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     52  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     53  * SUCH DAMAGE.
     54  */
     55 
     56 /*
     57  * Copyright 1997
     58  * Digital Equipment Corporation. All rights reserved.
     59  *
     60  * This software is furnished under license and may be used and
     61  * copied only in accordance with the following terms and conditions.
     62  * Subject to these conditions, you may download, copy, install,
     63  * use, modify and distribute this software in source and/or binary
     64  * form. No title or ownership is transferred hereby.
     65  *
     66  * 1) Any source code used, modified or distributed must reproduce
     67  *    and retain this copyright notice and list of conditions as
     68  *    they appear in the source file.
     69  *
     70  * 2) No right is granted to use any trade name, trademark, or logo of
     71  *    Digital Equipment Corporation. Neither the "Digital Equipment
     72  *    Corporation" name nor any trademark or logo of Digital Equipment
     73  *    Corporation may be used to endorse or promote products derived
     74  *    from this software without the prior written permission of
     75  *    Digital Equipment Corporation.
     76  *
     77  * 3) This software is provided "AS-IS" and any express or implied
     78  *    warranties, including but not limited to, any implied warranties
     79  *    of merchantability, fitness for a particular purpose, or
     80  *    non-infringement are disclaimed. In no event shall DIGITAL be
     81  *    liable for any damages whatsoever, and in particular, DIGITAL
     82  *    shall not be liable for special, indirect, consequential, or
     83  *    incidental damages or damages for lost profits, loss of
     84  *    revenue or loss of use, whether such damages arise in contract,
     85  *    negligence, tort, under statute, in equity, at law or otherwise,
     86  *    even if advised of the possibility of such damage.
     87  */
     88 
     89 #include <sys/cdefs.h>
     90 
     91 #include <sys/param.h>
     92 #include <sys/kernel.h>
     93 #include <sys/systm.h>
     94 #include <sys/mbuf.h>
     95 #include <sys/syslog.h>
     96 #include <sys/socket.h>
     97 #include <sys/device.h>
     98 #include <sys/malloc.h>
     99 #include <sys/ioctl.h>
    100 #include <sys/errno.h>
    101 
    102 #include <net/if.h>
    103 #include <net/if_ether.h>
    104 #include <net/if_media.h>
    105 #ifdef INET
    106 #include <netinet/in.h>
    107 #include <netinet/if_inarp.h>
    108 #endif
    109 
    110 #include <net/bpf.h>
    111 #include <net/bpfdesc.h>
    112 
    113 #include <sys/bus.h>
    114 #include <sys/intr.h>
    115 
    116 #include <dev/ic/dm9000var.h>
    117 #include <dev/ic/dm9000reg.h>
    118 
    119 #if 1
    120 #undef DM9000_DEBUG
    121 #undef DM9000_TX_DEBUG
    122 #undef DM9000_TX_DATA_DEBUG
    123 #undef DM9000_RX_DEBUG
    124 #undef  DM9000_RX_DATA_DEBUG
    125 #else
    126 #define DM9000_DEBUG
    127 #define  DM9000_TX_DEBUG
    128 #define DM9000_TX_DATA_DEBUG
    129 #define DM9000_RX_DEBUG
    130 #define  DM9000_RX_DATA_DEBUG
    131 #endif
    132 
    133 #ifdef DM9000_DEBUG
    134 #define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    135 #else
    136 #define DPRINTF(s) do {} while (/*CONSTCOND*/0)
    137 #endif
    138 
    139 #ifdef DM9000_TX_DEBUG
    140 #define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    141 #else
    142 #define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    143 #endif
    144 
    145 #ifdef DM9000_RX_DEBUG
    146 #define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    147 #else
    148 #define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    149 #endif
    150 
    151 #ifdef DM9000_RX_DATA_DEBUG
    152 #define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    153 #else
    154 #define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    155 #endif
    156 
    157 #ifdef DM9000_TX_DATA_DEBUG
    158 #define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
    159 #else
    160 #define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
    161 #endif
    162 
    163 /*** Internal PHY functions ***/
    164 uint16_t dme_phy_read(struct dme_softc *, int );
    165 void	dme_phy_write(struct dme_softc *, int, uint16_t);
    166 void	dme_phy_init(struct dme_softc *);
    167 void	dme_phy_reset(struct dme_softc *);
    168 void	dme_phy_update_media(struct dme_softc *);
    169 void	dme_phy_check_link(void *);
    170 
    171 /*** Methods registered in struct ifnet ***/
    172 void	dme_start_output(struct ifnet *);
    173 int	dme_init(struct ifnet *);
    174 int	dme_ioctl(struct ifnet *, u_long, void *);
    175 void	dme_stop(struct ifnet *, int);
    176 
    177 int	dme_mediachange(struct ifnet *);
    178 void	dme_mediastatus(struct ifnet *, struct ifmediareq *);
    179 
    180 /*** Internal methods ***/
    181 
    182 /* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
    183 void    dme_prepare(struct dme_softc *, struct ifnet *);
    184 
    185 /* Transmit prepared data */
    186 void    dme_transmit(struct dme_softc *);
    187 
    188 /* Receive data */
    189 void    dme_receive(struct dme_softc *, struct ifnet *);
    190 
    191 /* Software Initialize/Reset of the DM9000 */
    192 void    dme_reset(struct dme_softc *);
    193 
    194 /* Configure multicast filter */
    195 void	dme_set_addr_filter(struct dme_softc *);
    196 
    197 /* Set media */
    198 int	dme_set_media(struct dme_softc *, int );
    199 
    200 /* Read/write packet data from/to DM9000 IC in various transfer sizes */
    201 int	dme_pkt_read_2(struct dme_softc *, struct ifnet *, struct mbuf **);
    202 int	dme_pkt_write_2(struct dme_softc *, struct mbuf *);
    203 int	dme_pkt_read_1(struct dme_softc *, struct ifnet *, struct mbuf **);
    204 int	dme_pkt_write_1(struct dme_softc *, struct mbuf *);
    205 /* TODO: Implement 32 bit read/write functions */
    206 
    207 uint16_t
    208 dme_phy_read(struct dme_softc *sc, int reg)
    209 {
    210 	uint16_t val;
    211 	/* Select Register to read*/
    212 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
    213 	    (reg & DM9000_EPAR_EROA_MASK));
    214 	/* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
    215 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);
    216 
    217 	/* Wait until access to PHY has completed */
    218 	while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
    219 
    220 	/* Reset ERPRR-bit */
    221 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
    222 
    223 	val = dme_read(sc, DM9000_EPDRL);
    224 	val += dme_read(sc, DM9000_EPDRH) << 8;
    225 
    226 	return val;
    227 }
    228 
    229 void
    230 dme_phy_write(struct dme_softc *sc, int reg, uint16_t value)
    231 {
    232 	/* Select Register to write*/
    233 	dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
    234 	    (reg & DM9000_EPAR_EROA_MASK));
    235 
    236 	/* Write data to the two data registers */
    237 	dme_write(sc, DM9000_EPDRL, value & 0xFF);
    238 	dme_write(sc, DM9000_EPDRH, (value >> 8) & 0xFF);
    239 
    240 	/* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
    241 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);
    242 
    243 	/* Wait until access to PHY has completed */
    244 	while(dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE);
    245 
    246 	/* Reset ERPRR-bit */
    247 	dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);
    248 }
    249 
    250 void
    251 dme_phy_init(struct dme_softc *sc)
    252 {
    253 	u_int ifm_media = sc->sc_media.ifm_media;
    254 	uint32_t bmcr, anar;
    255 
    256 	bmcr = dme_phy_read(sc, DM9000_PHY_BMCR);
    257 	anar = dme_phy_read(sc, DM9000_PHY_ANAR);
    258 
    259 	anar = anar & ~DM9000_PHY_ANAR_10_HDX
    260 		& ~DM9000_PHY_ANAR_10_FDX
    261 		& ~DM9000_PHY_ANAR_TX_HDX
    262 		& ~DM9000_PHY_ANAR_TX_FDX;
    263 
    264 	switch (IFM_SUBTYPE(ifm_media)) {
    265 	case IFM_AUTO:
    266 		bmcr |= DM9000_PHY_BMCR_AUTO_NEG_EN;
    267 		anar |= DM9000_PHY_ANAR_10_HDX |
    268 			DM9000_PHY_ANAR_10_FDX |
    269 			DM9000_PHY_ANAR_TX_HDX |
    270 			DM9000_PHY_ANAR_TX_FDX;
    271 		break;
    272 	case IFM_10_T:
    273 		//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
    274 		bmcr &= ~DM9000_PHY_BMCR_SPEED_SELECT;
    275 		if (ifm_media & IFM_FDX)
    276 			anar |= DM9000_PHY_ANAR_10_FDX;
    277 		else
    278 			anar |= DM9000_PHY_ANAR_10_HDX;
    279 		break;
    280 	case IFM_100_TX:
    281 		//bmcr &= ~DM9000_PHY_BMCR_AUTO_NEG_EN;
    282 		bmcr |= DM9000_PHY_BMCR_SPEED_SELECT;
    283 		if (ifm_media & IFM_FDX)
    284 			anar |= DM9000_PHY_ANAR_TX_FDX;
    285 		else
    286 			anar |= DM9000_PHY_ANAR_TX_HDX;
    287 
    288 		break;
    289 	}
    290 
    291 	if(ifm_media & IFM_FDX) {
    292 		bmcr |= DM9000_PHY_BMCR_DUPLEX_MODE;
    293 	} else {
    294 		bmcr &= ~DM9000_PHY_BMCR_DUPLEX_MODE;
    295 	}
    296 
    297 	dme_phy_write(sc, DM9000_PHY_BMCR, bmcr);
    298 	dme_phy_write(sc, DM9000_PHY_ANAR, anar);
    299 }
    300 
    301 void
    302 dme_phy_reset(struct dme_softc *sc)
    303 {
    304 	uint32_t reg;
    305 
    306 	/* PHY Reset */
    307 	dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
    308 
    309 	reg = dme_read(sc, DM9000_GPCR);
    310 	dme_write(sc, DM9000_GPCR, reg & ~DM9000_GPCR_GPIO0_OUT);
    311 	reg = dme_read(sc, DM9000_GPR);
    312 	dme_write(sc, DM9000_GPR, reg | DM9000_GPR_PHY_PWROFF);
    313 
    314 	dme_phy_init(sc);
    315 
    316 	reg = dme_read(sc, DM9000_GPR);
    317 	dme_write(sc, DM9000_GPR, reg & ~DM9000_GPR_PHY_PWROFF);
    318 	reg = dme_read(sc, DM9000_GPCR);
    319 	dme_write(sc, DM9000_GPCR, reg | DM9000_GPCR_GPIO0_OUT);
    320 
    321 	dme_phy_update_media(sc);
    322 }
    323 
    324 void
    325 dme_phy_update_media(struct dme_softc *sc)
    326 {
    327 	u_int ifm_media = sc->sc_media.ifm_media;
    328 	uint32_t reg;
    329 
    330 	if (IFM_SUBTYPE(ifm_media) == IFM_AUTO) {
    331 		/* If auto-negotiation is used, ensures that it is completed
    332 		 before trying to extract any media information. */
    333 		reg = dme_phy_read(sc, DM9000_PHY_BMSR);
    334 		if ((reg & DM9000_PHY_BMSR_AUTO_NEG_AB) == 0) {
    335 			/* Auto-negotation not possible, therefore there is no
    336 			   reason to try obtain any media information. */
    337 			return;
    338 		}
    339 
    340 		/* Then loop until the negotiation is completed. */
    341 		while ((reg & DM9000_PHY_BMSR_AUTO_NEG_COM) == 0) {
    342 			/* TODO: Bail out after a finite number of attempts
    343 			 in case something goes wrong. */
    344 			preempt();
    345 			reg = dme_phy_read(sc, DM9000_PHY_BMSR);
    346 		}
    347 	}
    348 
    349 
    350 	sc->sc_media_active = IFM_ETHER;
    351 	reg = dme_phy_read(sc, DM9000_PHY_BMCR);
    352 
    353 	if (reg & DM9000_PHY_BMCR_SPEED_SELECT) {
    354 		sc->sc_media_active |= IFM_100_TX;
    355 	} else {
    356 		sc->sc_media_active |= IFM_10_T;
    357 	}
    358 
    359 	if (reg & DM9000_PHY_BMCR_DUPLEX_MODE) {
    360 		sc->sc_media_active |= IFM_FDX;
    361 	}
    362 }
    363 
    364 void
    365 dme_phy_check_link(void *arg)
    366 {
    367 	struct dme_softc *sc = arg;
    368 	uint32_t reg;
    369 	int s;
    370 
    371 	s = splnet();
    372 
    373 	reg = dme_read(sc, DM9000_NSR) & DM9000_NSR_LINKST;
    374 
    375 	if( reg )
    376 		reg = IFM_ETHER | IFM_AVALID | IFM_ACTIVE;
    377 	else {
    378 		reg = IFM_ETHER | IFM_AVALID;
    379 		sc->sc_media_active = IFM_NONE;
    380 	}
    381 
    382 	if ( (sc->sc_media_status != reg) && (reg & IFM_ACTIVE)) {
    383 		dme_phy_reset(sc);
    384 	}
    385 
    386 	sc->sc_media_status = reg;
    387 
    388 	callout_schedule(&sc->sc_link_callout, mstohz(2000));
    389 	splx(s);
    390 }
    391 
    392 int
    393 dme_set_media(struct dme_softc *sc, int media)
    394 {
    395 	int s;
    396 
    397 	s = splnet();
    398 	sc->sc_media.ifm_media = media;
    399 	dme_phy_reset(sc);
    400 
    401 	splx(s);
    402 
    403 	return 0;
    404 }
    405 
    406 int
    407 dme_attach(struct dme_softc *sc, const uint8_t *enaddr)
    408 {
    409 	struct ifnet	*ifp = &sc->sc_ethercom.ec_if;
    410 	uint8_t		b[2];
    411 	uint16_t	io_mode;
    412 
    413 	dme_read_c(sc, DM9000_VID0, b, 2);
    414 #if BYTE_ORDER == BIG_ENDIAN
    415 	sc->sc_vendor_id = (b[0] << 8) | b[1];
    416 #else
    417 	sc->sc_vendor_id = b[0] | (b[1] << 8);
    418 #endif
    419 	dme_read_c(sc, DM9000_PID0, b, 2);
    420 #if BYTE_ORDER == BIG_ENDIAN
    421 	sc->sc_product_id = (b[0] << 8) | b[1];
    422 #else
    423 	sc->sc_product_id = b[0] | (b[1] << 8);
    424 #endif
    425 	/* TODO: Check the vendor ID as well */
    426 	if (sc->sc_product_id != 0x9000) {
    427 		panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
    428 		    sc->sc_product_id);
    429 	}
    430 
    431 	/* Initialize ifnet structure. */
    432 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    433 	ifp->if_softc = sc;
    434 	ifp->if_start = dme_start_output;
    435 	ifp->if_init = dme_init;
    436 	ifp->if_ioctl = dme_ioctl;
    437 	ifp->if_stop = dme_stop;
    438 	ifp->if_watchdog = NULL;	/* no watchdog at this stage */
    439 	ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_BROADCAST |
    440 			IFF_MULTICAST;
    441 	IFQ_SET_READY(&ifp->if_snd);
    442 
    443 	/* Initialize ifmedia structures. */
    444 	ifmedia_init(&sc->sc_media, 0, dme_mediachange, dme_mediastatus);
    445 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_AUTO, 0, NULL);
    446 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    447 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10_T, 0, NULL);
    448 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    449 	ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_100_TX, 0, NULL);
    450 
    451 	ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
    452 
    453 	if (enaddr != NULL)
    454 		memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
    455 	/* TODO: Support an EEPROM attached to the DM9000 chip */
    456 
    457 	callout_init(&sc->sc_link_callout, 0);
    458 	callout_setfunc(&sc->sc_link_callout, dme_phy_check_link, sc);
    459 
    460 	sc->sc_media_status = 0;
    461 
    462 	/* Configure DM9000 with the MAC address */
    463 	dme_write_c(sc, DM9000_PAB0, sc->sc_enaddr, 6);
    464 
    465 #ifdef DM9000_DEBUG
    466 	{
    467 		uint8_t macAddr[6];
    468 		dme_read_c(sc, DM9000_PAB0, macAddr, 6);
    469 		printf("DM9000 configured with MAC address: ");
    470 		for (int i = 0; i < 6; i++) {
    471 			printf("%02X:", macAddr[i]);
    472 		}
    473 		printf("\n");
    474 	}
    475 #endif
    476 
    477 	if_attach(ifp);
    478 	ether_ifattach(ifp, sc->sc_enaddr);
    479 
    480 #ifdef DM9000_DEBUG
    481 	{
    482 		uint8_t network_state;
    483 		network_state = dme_read(sc, DM9000_NSR);
    484 		printf("DM9000 Link status: ");
    485 		if (network_state & DM9000_NSR_LINKST) {
    486 			if (network_state & DM9000_NSR_SPEED)
    487 				printf("10Mbps");
    488 			else
    489 				printf("100Mbps");
    490 		} else {
    491 			printf("Down");
    492 		}
    493 		printf("\n");
    494 	}
    495 #endif
    496 
    497 	io_mode = (dme_read(sc, DM9000_ISR) &
    498 	    DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;
    499 
    500 	DPRINTF(("DM9000 Operation Mode: "));
    501 	switch( io_mode) {
    502 	case DM9000_MODE_16BIT:
    503 		DPRINTF(("16-bit mode"));
    504 		sc->sc_data_width = 2;
    505 		sc->sc_pkt_write = dme_pkt_write_2;
    506 		sc->sc_pkt_read = dme_pkt_read_2;
    507 		break;
    508 	case DM9000_MODE_32BIT:
    509 		DPRINTF(("32-bit mode"));
    510 		sc->sc_data_width = 4;
    511 		panic("32bit mode is unsupported\n");
    512 		break;
    513 	case DM9000_MODE_8BIT:
    514 		DPRINTF(("8-bit mode"));
    515 		sc->sc_data_width = 1;
    516 		sc->sc_pkt_write = dme_pkt_write_1;
    517 		sc->sc_pkt_read = dme_pkt_read_1;
    518 		break;
    519 	default:
    520 		DPRINTF(("Invalid mode"));
    521 		break;
    522 	}
    523 	DPRINTF(("\n"));
    524 
    525 	callout_schedule(&sc->sc_link_callout, mstohz(2000));
    526 
    527 	return 0;
    528 }
    529 
    530 int dme_intr(void *arg)
    531 {
    532 	struct dme_softc *sc = arg;
    533 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    534 	uint8_t status;
    535 
    536 
    537 	DPRINTF(("dme_intr: Begin\n"));
    538 
    539 	/* Disable interrupts */
    540 	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR );
    541 
    542 	status = dme_read(sc, DM9000_ISR);
    543 	dme_write(sc, DM9000_ISR, status);
    544 
    545 	if (status & DM9000_ISR_PRS) {
    546 		if (ifp->if_flags & IFF_RUNNING )
    547 			dme_receive(sc, ifp);
    548 	}
    549 	if (status & DM9000_ISR_PTS) {
    550 		uint8_t nsr;
    551 		uint8_t tx_status = 0x01; /* Initialize to an error value */
    552 
    553 		/* A packet has been transmitted */
    554 		sc->txbusy = 0;
    555 
    556 		nsr = dme_read(sc, DM9000_NSR);
    557 
    558 		if (nsr & DM9000_NSR_TX1END) {
    559 			tx_status = dme_read(sc, DM9000_TSR1);
    560 			TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
    561 		} else if (nsr & DM9000_NSR_TX2END) {
    562 			tx_status = dme_read(sc, DM9000_TSR2);
    563 			TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
    564 		}
    565 
    566 		if (tx_status == 0x0) {
    567 			/* Frame successfully sent */
    568 			ifp->if_opackets++;
    569 		} else {
    570 			ifp->if_oerrors++;
    571 		}
    572 
    573 		/* If we have nothing ready to transmit, prepare something */
    574 		if (!sc->txready) {
    575 			dme_prepare(sc, ifp);
    576 		}
    577 
    578 		if (sc->txready)
    579 			dme_transmit(sc);
    580 
    581 		/* Prepare the next frame */
    582 		dme_prepare(sc, ifp);
    583 
    584 	}
    585 #ifdef notyet
    586 	if (status & DM9000_ISR_LNKCHNG) {
    587 	}
    588 #endif
    589 
    590 	/* Enable interrupts again */
    591 	dme_write(sc, DM9000_IMR, DM9000_IMR_PAR | DM9000_IMR_PRM |
    592 		 DM9000_IMR_PTM);
    593 
    594 	DPRINTF(("dme_intr: End\n"));
    595 
    596 	return 1;
    597 }
    598 
    599 void
    600 dme_start_output(struct ifnet *ifp)
    601 {
    602 	struct dme_softc *sc;
    603 
    604 	sc = ifp->if_softc;
    605 
    606 	DPRINTF(("dme_start_output: Begin\n"));
    607 
    608 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
    609 		printf("No output\n");
    610 		return;
    611 	}
    612 
    613 	if (sc->txbusy && sc->txready) {
    614 		panic("DM9000: Internal error, trying to send without"
    615 		    " any empty queue\n");
    616 	}
    617 
    618 	dme_prepare(sc, ifp);
    619 
    620 	if (sc->txbusy == 0) {
    621 		/* We are ready to transmit right away */
    622 		dme_transmit(sc);
    623 		dme_prepare(sc, ifp); /* Prepare next one */
    624 	} else {
    625 		/* We need to wait until the current packet has
    626 		 * been transmitted.
    627 		 */
    628 		ifp->if_flags |= IFF_OACTIVE;
    629 	}
    630 
    631 	DPRINTF(("dme_start_output: End\n"));
    632 }
    633 
    634 void
    635 dme_prepare(struct dme_softc *sc, struct ifnet *ifp)
    636 {
    637 	struct mbuf *bufChain;
    638 	uint16_t length;
    639 
    640 	TX_DPRINTF(("dme_prepare: Entering\n"));
    641 
    642 	if (sc->txready)
    643 		panic("dme_prepare: Someone called us with txready set\n");
    644 
    645 	IFQ_DEQUEUE(&ifp->if_snd, bufChain);
    646 	if (bufChain == NULL) {
    647 		TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
    648 		ifp->if_flags &= ~IFF_OACTIVE; /* Clear OACTIVE bit */
    649 		return; /* Nothing to transmit */
    650 	}
    651 
    652 	/* Element has now been removed from the queue, so we better send it */
    653 
    654 	if (ifp->if_bpf)
    655 		bpf_mtap(ifp, bufChain);
    656 
    657 	/* Setup the DM9000 to accept the writes, and then write each buf in
    658 	   the chain. */
    659 
    660 	TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
    661 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
    662 	length = sc->sc_pkt_write(sc, bufChain);
    663 	TX_DATA_DPRINTF(("\n"));
    664 
    665 	if (length % sc->sc_data_width != 0) {
    666 		panic("dme_prepare: length is not compatible with IO_MODE");
    667 	}
    668 
    669 	sc->txready_length = length;
    670 	sc->txready = 1;
    671 
    672 	TX_DPRINTF(("dme_prepare: txbusy: %d\ndme_prepare: "
    673 		"txready: %d, txready_length: %d\n",
    674 		sc->txbusy, sc->txready, sc->txready_length));
    675 
    676 	m_freem(bufChain);
    677 
    678 	TX_DPRINTF(("dme_prepare: Leaving\n"));
    679 }
    680 
    681 int
    682 dme_init(struct ifnet *ifp)
    683 {
    684 	int s;
    685 	struct dme_softc *sc = ifp->if_softc;
    686 
    687 	dme_stop(ifp, 0);
    688 
    689 	s = splnet();
    690 
    691 	dme_reset(sc);
    692 
    693 	sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
    694 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
    695 	sc->sc_ethercom.ec_if.if_timer = 0;
    696 
    697 	splx(s);
    698 
    699 	return 0;
    700 }
    701 
    702 int
    703 dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    704 {
    705 	struct dme_softc *sc = ifp->if_softc;
    706 	struct ifreq *ifr = data;
    707 	int s, error = 0;
    708 
    709 	s = splnet();
    710 
    711 	switch(cmd) {
    712 	case SIOCGIFMEDIA:
    713 	case SIOCSIFMEDIA:
    714 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    715 		break;
    716 	default:
    717 		error = ether_ioctl(ifp, cmd, data);
    718 		if (error == ENETRESET) {
    719 			if (ifp->if_flags && IFF_RUNNING) {
    720 				/* Address list has changed, reconfigure
    721 				   filter */
    722 				dme_set_addr_filter(sc);
    723 			}
    724 			error = 0;
    725 		}
    726 		break;
    727 	}
    728 
    729 	splx(s);
    730 	return error;
    731 }
    732 
    733 void
    734 dme_stop(struct ifnet *ifp, int disable)
    735 {
    736 	struct dme_softc *sc = ifp->if_softc;
    737 
    738 	/* Not quite sure what to do when called with disable == 0 */
    739 	if (disable) {
    740 		/* Disable RX */
    741 		dme_write(sc, DM9000_RCR, 0x0);
    742 	}
    743 
    744 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    745 	ifp->if_timer = 0;
    746 }
    747 
    748 int
    749 dme_mediachange(struct ifnet *ifp)
    750 {
    751 	struct dme_softc *sc = ifp->if_softc;
    752 
    753 	return dme_set_media(sc, sc->sc_media.ifm_cur->ifm_media);
    754 }
    755 
    756 void
    757 dme_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
    758 {
    759 	struct dme_softc *sc = ifp->if_softc;
    760 
    761 	ifmr->ifm_active = sc->sc_media_active;
    762 	ifmr->ifm_status = sc->sc_media_status;
    763 }
    764 
    765 void
    766 dme_transmit(struct dme_softc *sc)
    767 {
    768 
    769 	TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
    770 		sc->txready, sc->txbusy));
    771 
    772 	dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
    773 	dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff );
    774 
    775 	/* Request to send the packet */
    776 	dme_read(sc, DM9000_ISR);
    777 
    778 	dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
    779 
    780 	sc->txready = 0;
    781 	sc->txbusy = 1;
    782 	sc->txready_length = 0;
    783 }
    784 
    785 void
    786 dme_receive(struct dme_softc *sc, struct ifnet *ifp)
    787 {
    788 	uint8_t ready = 0x01;
    789 
    790 	DPRINTF(("inside dme_receive\n"));
    791 
    792 	while (ready == 0x01) {
    793 		/* Packet received, retrieve it */
    794 
    795 		/* Read without address increment to get the ready byte without
    796 		   moving past it. */
    797 		bus_space_write_1(sc->sc_iot, sc->sc_ioh,
    798 		    sc->dme_io, DM9000_MRCMDX);
    799 		/* Dummy ready */
    800 		ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    801 		ready = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
    802 		ready &= 0x03;	/* we only want bits 1:0 */
    803 		if (ready == 0x01) {
    804 			uint8_t		rx_status;
    805 			struct mbuf	*m;
    806 
    807 			/* Read with address increment. */
    808 			bus_space_write_1(sc->sc_iot, sc->sc_ioh,
    809 					  sc->dme_io, DM9000_MRCMD);
    810 
    811 			rx_status = sc->sc_pkt_read(sc, ifp, &m);
    812 			if (m == NULL) {
    813 				/* failed to allocate a receive buffer */
    814 				ifp->if_ierrors++;
    815 				RX_DPRINTF(("dme_receive: "
    816 					"Error allocating buffer\n"));
    817 			} else if (rx_status & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
    818 				/* Error while receiving the packet,
    819 				 * discard it and keep track of counters
    820 				 */
    821 				ifp->if_ierrors++;
    822 				RX_DPRINTF(("dme_receive: "
    823 					"Error reciving packet\n"));
    824 			} else if (rx_status & DM9000_RSR_LCS) {
    825 				ifp->if_collisions++;
    826 			} else {
    827 				if (ifp->if_bpf)
    828 					bpf_mtap(ifp, m);
    829 				ifp->if_ipackets++;
    830 				if_percpuq_enqueue(ifp->if_percpuq, m);
    831 			}
    832 
    833 		} else if (ready != 0x00) {
    834 			/* Should this be logged somehow? */
    835 			printf("%s: Resetting chip\n",
    836 			       device_xname(sc->sc_dev));
    837 			dme_reset(sc);
    838 		}
    839 	}
    840 }
    841 
    842 void
    843 dme_reset(struct dme_softc *sc)
    844 {
    845 	uint8_t var;
    846 
    847 	/* We only re-initialized the PHY in this function the first time it is
    848 	   called. */
    849 	if( !sc->sc_phy_initialized) {
    850 		/* PHY Reset */
    851 		dme_phy_write(sc, DM9000_PHY_BMCR, DM9000_PHY_BMCR_RESET);
    852 
    853 		/* PHY Power Down */
    854 		var = dme_read(sc, DM9000_GPR);
    855 		dme_write(sc, DM9000_GPR, var | DM9000_GPR_PHY_PWROFF);
    856 	}
    857 
    858 	/* Reset the DM9000 twice, as described in section 2 of the Programming
    859 	   Guide.
    860 	   The PHY is initialized and enabled between those two resets.
    861 	 */
    862 
    863 	/* Software Reset*/
    864 	dme_write(sc, DM9000_NCR,
    865 	    DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
    866 	delay(20);
    867 	dme_write(sc, DM9000_NCR, 0x0);
    868 
    869 	if( !sc->sc_phy_initialized) {
    870 		/* PHY Initialization */
    871 		dme_phy_init(sc);
    872 
    873 		/* PHY Enable */
    874 		var = dme_read(sc, DM9000_GPR);
    875 		dme_write(sc, DM9000_GPR, var & ~DM9000_GPR_PHY_PWROFF);
    876 		var = dme_read(sc, DM9000_GPCR);
    877 		dme_write(sc, DM9000_GPCR, var | DM9000_GPCR_GPIO0_OUT);
    878 
    879 		dme_write(sc, DM9000_NCR,
    880 			  DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
    881 		delay(20);
    882 		dme_write(sc, DM9000_NCR, 0x0);
    883 	}
    884 
    885 	/* Select internal PHY, no wakeup event, no collosion mode,
    886 	 * normal loopback mode.
    887 	 */
    888 	dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL );
    889 
    890 	/* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
    891 	dme_read(sc, DM9000_NSR);
    892 
    893 	/* Enable wraparound of read/write pointer, packet received latch,
    894 	 * and packet transmitted latch.
    895 	 */
    896 	dme_write(sc, DM9000_IMR,
    897 	    DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);
    898 
    899 	/* Setup multicast address filter, and enable RX. */
    900 	dme_set_addr_filter(sc);
    901 
    902 	/* Obtain media information from PHY */
    903 	dme_phy_update_media(sc);
    904 
    905 	sc->txbusy = 0;
    906 	sc->txready = 0;
    907 	sc->sc_phy_initialized = 1;
    908 }
    909 
    910 void
    911 dme_set_addr_filter(struct dme_softc *sc)
    912 {
    913 	struct ether_multi	*enm;
    914 	struct ether_multistep	step;
    915 	struct ethercom		*ec;
    916 	struct ifnet		*ifp;
    917 	uint16_t		af[4];
    918 	int			i;
    919 
    920 	ec = &sc->sc_ethercom;
    921 	ifp = &ec->ec_if;
    922 
    923 	if (ifp->if_flags & IFF_PROMISC) {
    924 		dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN  |
    925 					  DM9000_RCR_WTDIS |
    926 					  DM9000_RCR_PRMSC);
    927 		ifp->if_flags |= IFF_ALLMULTI;
    928 		return;
    929 	}
    930 
    931 	af[0] = af[1] = af[2] = af[3] = 0x0000;
    932 	ifp->if_flags &= ~IFF_ALLMULTI;
    933 
    934 	ETHER_FIRST_MULTI(step, ec, enm);
    935 	while (enm != NULL) {
    936 		uint16_t hash;
    937 		if (memcpy(enm->enm_addrlo, enm->enm_addrhi,
    938 		    sizeof(enm->enm_addrlo))) {
    939 			/*
    940 	                 * We must listen to a range of multicast addresses.
    941 	                 * For now, just accept all multicasts, rather than
    942 	                 * trying to set only those filter bits needed to match
    943 	                 * the range.  (At this time, the only use of address
    944 	                 * ranges is for IP multicast routing, for which the
    945 	                 * range is big enough to require all bits set.)
    946 	                 */
    947 			ifp->if_flags |= IFF_ALLMULTI;
    948 			af[0] = af[1] = af[2] = af[3] = 0xffff;
    949 			break;
    950 		} else {
    951 			hash = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3F;
    952 			af[(uint16_t)(hash>>4)] |= (uint16_t)(1 << (hash % 16));
    953 			ETHER_NEXT_MULTI(step, enm);
    954 		}
    955 	}
    956 
    957 	/* Write the multicast address filter */
    958 	for(i=0; i<4; i++) {
    959 		dme_write(sc, DM9000_MAB0+i*2, af[i] & 0xFF);
    960 		dme_write(sc, DM9000_MAB0+i*2+1, (af[i] >> 8) & 0xFF);
    961 	}
    962 
    963 	/* Setup RX controls */
    964 	dme_write(sc, DM9000_RCR, DM9000_RCR_RXEN | DM9000_RCR_WTDIS);
    965 }
    966 
    967 int
    968 dme_pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
    969 {
    970 	int left_over_count = 0; /* Number of bytes from previous mbuf, which
    971 				    need to be written with the next.*/
    972 	uint16_t left_over_buf = 0;
    973 	int length = 0;
    974 	struct mbuf *buf;
    975 	uint8_t *write_ptr;
    976 
    977 	/* We expect that the DM9000 has been setup to accept writes before
    978 	   this function is called. */
    979 
    980 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
    981 		int to_write = buf->m_len;
    982 
    983 		length += to_write;
    984 
    985 		write_ptr = buf->m_data;
    986 		while (to_write > 0 ||
    987 		       (buf->m_next == NULL && left_over_count > 0)
    988 		       ) {
    989 			if (left_over_count > 0) {
    990 				uint8_t b = 0;
    991 				DPRINTF(("dme_pkt_write_16: "
    992 					 "Writing left over byte\n"));
    993 
    994 				if (to_write > 0) {
    995 					b = *write_ptr;
    996 					to_write--;
    997 					write_ptr++;
    998 
    999 					DPRINTF(("Took single byte\n"));
   1000 				} else {
   1001 					DPRINTF(("Leftover in last run\n"));
   1002 					length++;
   1003 				}
   1004 
   1005 				/* Does shift direction depend on endianess? */
   1006 				left_over_buf = left_over_buf | (b << 8);
   1007 
   1008 				bus_space_write_2(sc->sc_iot, sc->sc_ioh,
   1009 						  sc->dme_data, left_over_buf);
   1010 				TX_DATA_DPRINTF(("%02X ", left_over_buf));
   1011 				left_over_count = 0;
   1012 			} else if ((long)write_ptr % 2 != 0) {
   1013 				/* Misaligned data */
   1014 				DPRINTF(("dme_pkt_write_16: "
   1015 					 "Detected misaligned data\n"));
   1016 				left_over_buf = *write_ptr;
   1017 				left_over_count = 1;
   1018 				write_ptr++;
   1019 				to_write--;
   1020 			} else {
   1021 				int i;
   1022 				uint16_t *dptr = (uint16_t *)write_ptr;
   1023 
   1024 				/* A block of aligned data. */
   1025 				for(i = 0; i < to_write / 2; i++) {
   1026 					/* buf will be half-word aligned
   1027 					 * all the time
   1028 					 */
   1029 					bus_space_write_2(sc->sc_iot,
   1030 					    sc->sc_ioh, sc->dme_data, *dptr);
   1031 					TX_DATA_DPRINTF(("%02X %02X ",
   1032 					    *dptr & 0xFF, (*dptr >> 8) & 0xFF));
   1033 					dptr++;
   1034 				}
   1035 
   1036 				write_ptr += i * 2;
   1037 				if (to_write % 2 != 0) {
   1038 					DPRINTF(("dme_pkt_write_16: "
   1039 						 "to_write %% 2: %d\n",
   1040 						 to_write % 2));
   1041 					left_over_count = 1;
   1042 					/* XXX: Does this depend on
   1043 					 * the endianess?
   1044 					 */
   1045 					left_over_buf = *write_ptr;
   1046 
   1047 					write_ptr++;
   1048 					to_write--;
   1049 					DPRINTF(("dme_pkt_write_16: "
   1050 						 "to_write (after): %d\n",
   1051 						 to_write));
   1052 					DPRINTF(("dme_pkt_write_16: i * 2: %d\n",
   1053 						 i*2));
   1054 				}
   1055 				to_write -= i * 2;
   1056 			}
   1057 		} /* while(...) */
   1058 	} /* for(...) */
   1059 
   1060 	return length;
   1061 }
   1062 
   1063 int
   1064 dme_pkt_read_2(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
   1065 {
   1066 	uint8_t rx_status;
   1067 	struct mbuf *m;
   1068 	uint16_t data;
   1069 	uint16_t frame_length;
   1070 	uint16_t i;
   1071 	uint16_t *buf;
   1072 
   1073 	data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1074 
   1075 	rx_status = data & 0xFF;
   1076 	frame_length = bus_space_read_2(sc->sc_iot,
   1077 					sc->sc_ioh, sc->dme_data);
   1078 	if (frame_length > ETHER_MAX_LEN) {
   1079 		printf("Got frame of length: %d\n", frame_length);
   1080 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
   1081 		panic("Something is rotten");
   1082 	}
   1083 	RX_DPRINTF(("dme_receive: "
   1084 		    "rx_statux: 0x%x, frame_length: %d\n",
   1085 		    rx_status, frame_length));
   1086 
   1087 
   1088 	m = dme_alloc_receive_buffer(ifp, frame_length);
   1089 	if (m == NULL) {
   1090 		/*
   1091 		 * didn't get a receive buffer, so we read the rest of the
   1092 		 * packet, throw it away and return an error
   1093 		 */
   1094 		for (i = 0; i < frame_length; i += 2 ) {
   1095 			data = bus_space_read_2(sc->sc_iot,
   1096 					sc->sc_ioh, sc->dme_data);
   1097 		}
   1098 		*outBuf = NULL;
   1099 		return 0;
   1100 	}
   1101 
   1102 	buf = mtod(m, uint16_t*);
   1103 
   1104 	RX_DPRINTF(("dme_receive: "));
   1105 
   1106 	for (i = 0; i < frame_length; i += 2 ) {
   1107 		data = bus_space_read_2(sc->sc_iot,
   1108 					sc->sc_ioh, sc->dme_data);
   1109 		if ( (frame_length % 2 != 0) &&
   1110 		     (i == frame_length - 1) ) {
   1111 			data = data & 0xff;
   1112 			RX_DPRINTF((" L "));
   1113 		}
   1114 		*buf = data;
   1115 		buf++;
   1116 		RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
   1117 				 (data >> 8) & 0xff));
   1118 	}
   1119 
   1120 	RX_DATA_DPRINTF(("\n"));
   1121 	RX_DPRINTF(("Read %d bytes\n", i));
   1122 
   1123 	*outBuf = m;
   1124 	return rx_status;
   1125 }
   1126 
   1127 int
   1128 dme_pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
   1129 {
   1130 	int length = 0, i;
   1131 	struct mbuf *buf;
   1132 	uint8_t *write_ptr;
   1133 
   1134 	/* We expect that the DM9000 has been setup to accept writes before
   1135 	   this function is called. */
   1136 
   1137 	for (buf = bufChain; buf != NULL; buf = buf->m_next) {
   1138 		int to_write = buf->m_len;
   1139 
   1140 		length += to_write;
   1141 
   1142 		write_ptr = buf->m_data;
   1143 		for (i = 0; i < to_write; i++) {
   1144 			bus_space_write_1(sc->sc_iot, sc->sc_ioh,
   1145 			    sc->dme_data, *write_ptr);
   1146 			write_ptr++;
   1147 		}
   1148 	} /* for(...) */
   1149 
   1150 	return length;
   1151 }
   1152 
   1153 int
   1154 dme_pkt_read_1(struct dme_softc *sc, struct ifnet *ifp, struct mbuf **outBuf)
   1155 {
   1156 	uint8_t rx_status;
   1157 	struct mbuf *m;
   1158 	uint8_t *buf;
   1159 	uint16_t frame_length;
   1160 	uint16_t i, reg;
   1161 	uint8_t data;
   1162 
   1163 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1164 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
   1165 	rx_status = reg & 0xFF;
   1166 
   1167 	reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1168 	reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
   1169 	frame_length = reg;
   1170 
   1171 	if (frame_length > ETHER_MAX_LEN) {
   1172 		printf("Got frame of length: %d\n", frame_length);
   1173 		printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
   1174 		panic("Something is rotten");
   1175 	}
   1176 	RX_DPRINTF(("dme_receive: "
   1177 		    "rx_statux: 0x%x, frame_length: %d\n",
   1178 		    rx_status, frame_length));
   1179 
   1180 
   1181 	m = dme_alloc_receive_buffer(ifp, frame_length);
   1182 	if (m == NULL) {
   1183 		/*
   1184 		 * didn't get a receive buffer, so we read the rest of the
   1185 		 * packet, throw it away and return an error
   1186 		 */
   1187 		for (i = 0; i < frame_length; i++ ) {
   1188 			data = bus_space_read_2(sc->sc_iot,
   1189 					sc->sc_ioh, sc->dme_data);
   1190 		}
   1191 		*outBuf = NULL;
   1192 		return 0;
   1193 	}
   1194 
   1195 	buf = mtod(m, uint8_t *);
   1196 
   1197 	RX_DPRINTF(("dme_receive: "));
   1198 
   1199 	for (i = 0; i< frame_length; i += 1 ) {
   1200 		data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
   1201 		*buf = data;
   1202 		buf++;
   1203 		RX_DATA_DPRINTF(("%02X ", data));
   1204 	}
   1205 
   1206 	RX_DATA_DPRINTF(("\n"));
   1207 	RX_DPRINTF(("Read %d bytes\n", i));
   1208 
   1209 	*outBuf = m;
   1210 	return rx_status;
   1211 }
   1212 
   1213 struct mbuf*
   1214 dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
   1215 {
   1216 	struct dme_softc *sc = ifp->if_softc;
   1217 	struct mbuf *m;
   1218 	int pad;
   1219 
   1220 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1221 	if (m == NULL) return NULL;
   1222 
   1223 	m->m_pkthdr.rcvif = ifp;
   1224 	/* Ensure that we always allocate an even number of
   1225 	 * bytes in order to avoid writing beyond the buffer
   1226 	 */
   1227 	m->m_pkthdr.len = frame_length + (frame_length % sc->sc_data_width);
   1228 	pad = ALIGN(sizeof(struct ether_header)) -
   1229 		sizeof(struct ether_header);
   1230 	/* All our frames have the CRC attached */
   1231 	m->m_flags |= M_HASFCS;
   1232 	if (m->m_pkthdr.len + pad > MHLEN )
   1233 		MCLGET(m, M_DONTWAIT);
   1234 
   1235 	m->m_data += pad;
   1236 	m->m_len = frame_length + (frame_length % sc->sc_data_width);
   1237 
   1238 	return m;
   1239 }
   1240