dp83932.c revision 1.17 1 /* $NetBSD: dp83932.c,v 1.17 2007/06/08 17:08:46 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the National Semiconductor DP83932
41 * Systems-Oriented Network Interface Controller (SONIC).
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: dp83932.c,v 1.17 2007/06/08 17:08:46 tsutsui Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_ether.h>
64
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68
69 #include <machine/bus.h>
70 #include <machine/intr.h>
71
72 #include <dev/ic/dp83932reg.h>
73 #include <dev/ic/dp83932var.h>
74
75 void sonic_start(struct ifnet *);
76 void sonic_watchdog(struct ifnet *);
77 int sonic_ioctl(struct ifnet *, u_long, void *);
78 int sonic_init(struct ifnet *);
79 void sonic_stop(struct ifnet *, int);
80
81 void sonic_shutdown(void *);
82
83 void sonic_reset(struct sonic_softc *);
84 void sonic_rxdrain(struct sonic_softc *);
85 int sonic_add_rxbuf(struct sonic_softc *, int);
86 void sonic_set_filter(struct sonic_softc *);
87
88 uint16_t sonic_txintr(struct sonic_softc *);
89 void sonic_rxintr(struct sonic_softc *);
90
91 int sonic_copy_small = 0;
92
93 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
94
95 /*
96 * sonic_attach:
97 *
98 * Attach a SONIC interface to the system.
99 */
100 void
101 sonic_attach(struct sonic_softc *sc, const uint8_t *enaddr)
102 {
103 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
104 int i, rseg, error;
105 bus_dma_segment_t seg;
106 size_t cdatasize;
107 char *nullbuf;
108
109 /*
110 * Allocate the control data structures, and create and load the
111 * DMA map for it.
112 */
113 if (sc->sc_32bit)
114 cdatasize = sizeof(struct sonic_control_data32);
115 else
116 cdatasize = sizeof(struct sonic_control_data16);
117
118 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdatasize + ETHER_PAD_LEN,
119 PAGE_SIZE, (64 * 1024), &seg, 1, &rseg,
120 BUS_DMA_NOWAIT)) != 0) {
121 printf("%s: unable to allocate control data, error = %d\n",
122 sc->sc_dev.dv_xname, error);
123 goto fail_0;
124 }
125
126 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
127 cdatasize + ETHER_PAD_LEN, (void **) &sc->sc_cdata16,
128 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
129 printf("%s: unable to map control data, error = %d\n",
130 sc->sc_dev.dv_xname, error);
131 goto fail_1;
132 }
133 nullbuf = (char *)sc->sc_cdata16 + cdatasize;
134 memset(nullbuf, 0, ETHER_PAD_LEN);
135
136 if ((error = bus_dmamap_create(sc->sc_dmat,
137 cdatasize, 1, cdatasize, 0, BUS_DMA_NOWAIT,
138 &sc->sc_cddmamap)) != 0) {
139 printf("%s: unable to create control data DMA map, "
140 "error = %d\n", sc->sc_dev.dv_xname, error);
141 goto fail_2;
142 }
143
144 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
145 sc->sc_cdata16, cdatasize, NULL, BUS_DMA_NOWAIT)) != 0) {
146 printf("%s: unable to load control data DMA map, error = %d\n",
147 sc->sc_dev.dv_xname, error);
148 goto fail_3;
149 }
150
151 /*
152 * Create the transmit buffer DMA maps.
153 */
154 for (i = 0; i < SONIC_NTXDESC; i++) {
155 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
156 SONIC_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
157 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
158 printf("%s: unable to create tx DMA map %d, "
159 "error = %d\n", sc->sc_dev.dv_xname, i, error);
160 goto fail_4;
161 }
162 }
163
164 /*
165 * Create the receive buffer DMA maps.
166 */
167 for (i = 0; i < SONIC_NRXDESC; i++) {
168 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
169 MCLBYTES, 0, BUS_DMA_NOWAIT,
170 &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
171 printf("%s: unable to create rx DMA map %d, "
172 "error = %d\n", sc->sc_dev.dv_xname, i, error);
173 goto fail_5;
174 }
175 sc->sc_rxsoft[i].ds_mbuf = NULL;
176 }
177
178 /*
179 * create and map the pad buffer
180 */
181 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
182 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT, &sc->sc_nulldmamap)) != 0) {
183 printf("%s: unable to create pad buffer DMA map, "
184 "error = %d\n", sc->sc_dev.dv_xname, error);
185 goto fail_5;
186 }
187
188 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
189 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
190 printf("%s: unable to load pad buffer DMA map, "
191 "error = %d\n", sc->sc_dev.dv_xname, error);
192 goto fail_6;
193 }
194 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
195 BUS_DMASYNC_PREWRITE);
196
197 /*
198 * Reset the chip to a known state.
199 */
200 sonic_reset(sc);
201
202 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
203 ether_sprintf(enaddr));
204
205 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
206 ifp->if_softc = sc;
207 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
208 ifp->if_ioctl = sonic_ioctl;
209 ifp->if_start = sonic_start;
210 ifp->if_watchdog = sonic_watchdog;
211 ifp->if_init = sonic_init;
212 ifp->if_stop = sonic_stop;
213 IFQ_SET_READY(&ifp->if_snd);
214
215 /*
216 * Attach the interface.
217 */
218 if_attach(ifp);
219 ether_ifattach(ifp, enaddr);
220
221 /*
222 * Make sure the interface is shutdown during reboot.
223 */
224 sc->sc_sdhook = shutdownhook_establish(sonic_shutdown, sc);
225 if (sc->sc_sdhook == NULL)
226 printf("%s: WARNING: unable to establish shutdown hook\n",
227 sc->sc_dev.dv_xname);
228 return;
229
230 /*
231 * Free any resources we've allocated during the failed attach
232 * attempt. Do this in reverse order and fall through.
233 */
234 fail_6:
235 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
236 fail_5:
237 for (i = 0; i < SONIC_NRXDESC; i++) {
238 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
239 bus_dmamap_destroy(sc->sc_dmat,
240 sc->sc_rxsoft[i].ds_dmamap);
241 }
242 fail_4:
243 for (i = 0; i < SONIC_NTXDESC; i++) {
244 if (sc->sc_txsoft[i].ds_dmamap != NULL)
245 bus_dmamap_destroy(sc->sc_dmat,
246 sc->sc_txsoft[i].ds_dmamap);
247 }
248 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
249 fail_3:
250 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
251 fail_2:
252 bus_dmamem_unmap(sc->sc_dmat, (void *) sc->sc_cdata16, cdatasize);
253 fail_1:
254 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
255 fail_0:
256 return;
257 }
258
259 /*
260 * sonic_shutdown:
261 *
262 * Make sure the interface is stopped at reboot.
263 */
264 void
265 sonic_shutdown(void *arg)
266 {
267 struct sonic_softc *sc = arg;
268
269 sonic_stop(&sc->sc_ethercom.ec_if, 1);
270 }
271
272 /*
273 * sonic_start: [ifnet interface function]
274 *
275 * Start packet transmission on the interface.
276 */
277 void
278 sonic_start(struct ifnet *ifp)
279 {
280 struct sonic_softc *sc = ifp->if_softc;
281 struct mbuf *m0, *m;
282 struct sonic_tda16 *tda16;
283 struct sonic_tda32 *tda32;
284 struct sonic_descsoft *ds;
285 bus_dmamap_t dmamap;
286 int error, olasttx, nexttx, opending, totlen, olseg;
287 int seg = 0; /* XXX: gcc */
288
289 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
290 return;
291
292 /*
293 * Remember the previous txpending and the current "last txdesc
294 * used" index.
295 */
296 opending = sc->sc_txpending;
297 olasttx = sc->sc_txlast;
298
299 /*
300 * Loop through the send queue, setting up transmit descriptors
301 * until we drain the queue, or use up all available transmit
302 * descriptors. Leave one at the end for sanity's sake.
303 */
304 while (sc->sc_txpending < (SONIC_NTXDESC - 1)) {
305 /*
306 * Grab a packet off the queue.
307 */
308 IFQ_POLL(&ifp->if_snd, m0);
309 if (m0 == NULL)
310 break;
311 m = NULL;
312
313 /*
314 * Get the next available transmit descriptor.
315 */
316 nexttx = SONIC_NEXTTX(sc->sc_txlast);
317 ds = &sc->sc_txsoft[nexttx];
318 dmamap = ds->ds_dmamap;
319
320 /*
321 * Load the DMA map. If this fails, the packet either
322 * didn't fit in the allotted number of frags, or we were
323 * short on resources. In this case, we'll copy and try
324 * again.
325 */
326 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
327 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
328 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
329 dmamap->dm_nsegs == SONIC_NTXFRAGS)) {
330 if (error == 0)
331 bus_dmamap_unload(sc->sc_dmat, dmamap);
332 MGETHDR(m, M_DONTWAIT, MT_DATA);
333 if (m == NULL) {
334 printf("%s: unable to allocate Tx mbuf\n",
335 sc->sc_dev.dv_xname);
336 break;
337 }
338 if (m0->m_pkthdr.len > MHLEN) {
339 MCLGET(m, M_DONTWAIT);
340 if ((m->m_flags & M_EXT) == 0) {
341 printf("%s: unable to allocate Tx "
342 "cluster\n", sc->sc_dev.dv_xname);
343 m_freem(m);
344 break;
345 }
346 }
347 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
348 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
349 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
350 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
351 if (error) {
352 printf("%s: unable to load Tx buffer, "
353 "error = %d\n", sc->sc_dev.dv_xname, error);
354 m_freem(m);
355 break;
356 }
357 }
358 IFQ_DEQUEUE(&ifp->if_snd, m0);
359 if (m != NULL) {
360 m_freem(m0);
361 m0 = m;
362 }
363
364 /*
365 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
366 */
367
368 /* Sync the DMA map. */
369 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
370 BUS_DMASYNC_PREWRITE);
371
372 /*
373 * Store a pointer to the packet so we can free it later.
374 */
375 ds->ds_mbuf = m0;
376
377 /*
378 * Initialize the transmit descriptor.
379 */
380 totlen = 0;
381 if (sc->sc_32bit) {
382 tda32 = &sc->sc_tda32[nexttx];
383 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
384 tda32->tda_frags[seg].frag_ptr1 =
385 htosonic32(sc,
386 (dmamap->dm_segs[seg].ds_addr >> 16) &
387 0xffff);
388 tda32->tda_frags[seg].frag_ptr0 =
389 htosonic32(sc,
390 dmamap->dm_segs[seg].ds_addr & 0xffff);
391 tda32->tda_frags[seg].frag_size =
392 htosonic32(sc, dmamap->dm_segs[seg].ds_len);
393 totlen += dmamap->dm_segs[seg].ds_len;
394 }
395 if (totlen < ETHER_PAD_LEN) {
396 tda32->tda_frags[seg].frag_ptr1 =
397 htosonic32(sc,
398 (sc->sc_nulldma >> 16) & 0xffff);
399 tda32->tda_frags[seg].frag_ptr0 =
400 htosonic32(sc, sc->sc_nulldma & 0xffff);
401 tda32->tda_frags[seg].frag_size =
402 htosonic32(sc, ETHER_PAD_LEN - totlen);
403 totlen = ETHER_PAD_LEN;
404 seg++;
405 }
406
407 tda32->tda_status = 0;
408 tda32->tda_pktconfig = 0;
409 tda32->tda_pktsize = htosonic32(sc, totlen);
410 tda32->tda_fragcnt = htosonic32(sc, seg);
411
412 /* Link it up. */
413 tda32->tda_frags[seg].frag_ptr0 =
414 htosonic32(sc, SONIC_CDTXADDR32(sc,
415 SONIC_NEXTTX(nexttx)) & 0xffff);
416
417 /* Sync the Tx descriptor. */
418 SONIC_CDTXSYNC32(sc, nexttx,
419 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
420 } else {
421 tda16 = &sc->sc_tda16[nexttx];
422 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
423 tda16->tda_frags[seg].frag_ptr1 =
424 htosonic16(sc,
425 (dmamap->dm_segs[seg].ds_addr >> 16) &
426 0xffff);
427 tda16->tda_frags[seg].frag_ptr0 =
428 htosonic16(sc,
429 dmamap->dm_segs[seg].ds_addr & 0xffff);
430 tda16->tda_frags[seg].frag_size =
431 htosonic16(sc, dmamap->dm_segs[seg].ds_len);
432 totlen += dmamap->dm_segs[seg].ds_len;
433 }
434 if (totlen < ETHER_PAD_LEN) {
435 tda16->tda_frags[seg].frag_ptr1 =
436 htosonic16(sc,
437 (sc->sc_nulldma >> 16) & 0xffff);
438 tda16->tda_frags[seg].frag_ptr0 =
439 htosonic16(sc, sc->sc_nulldma & 0xffff);
440 tda16->tda_frags[seg].frag_size =
441 htosonic16(sc, ETHER_PAD_LEN - totlen);
442 totlen = ETHER_PAD_LEN;
443 seg++;
444 }
445
446 tda16->tda_status = 0;
447 tda16->tda_pktconfig = 0;
448 tda16->tda_pktsize = htosonic16(sc, totlen);
449 tda16->tda_fragcnt = htosonic16(sc, seg);
450
451 /* Link it up. */
452 tda16->tda_frags[seg].frag_ptr0 =
453 htosonic16(sc, SONIC_CDTXADDR16(sc,
454 SONIC_NEXTTX(nexttx)) & 0xffff);
455
456 /* Sync the Tx descriptor. */
457 SONIC_CDTXSYNC16(sc, nexttx,
458 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
459 }
460
461 /* Advance the Tx pointer. */
462 sc->sc_txpending++;
463 sc->sc_txlast = nexttx;
464
465 #if NBPFILTER > 0
466 /*
467 * Pass the packet to any BPF listeners.
468 */
469 if (ifp->if_bpf)
470 bpf_mtap(ifp->if_bpf, m0);
471 #endif
472 }
473
474 if (sc->sc_txpending == (SONIC_NTXDESC - 1)) {
475 /* No more slots left; notify upper layer. */
476 ifp->if_flags |= IFF_OACTIVE;
477 }
478
479 if (sc->sc_txpending != opending) {
480 /*
481 * We enqueued packets. If the transmitter was idle,
482 * reset the txdirty pointer.
483 */
484 if (opending == 0)
485 sc->sc_txdirty = SONIC_NEXTTX(olasttx);
486
487 /*
488 * Stop the SONIC on the last packet we've set up,
489 * and clear end-of-list on the descriptor previous
490 * to our new chain.
491 *
492 * NOTE: our `seg' variable should still be valid!
493 */
494 if (sc->sc_32bit) {
495 olseg =
496 sonic32toh(sc, sc->sc_tda32[olasttx].tda_fragcnt);
497 sc->sc_tda32[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
498 htosonic32(sc, TDA_LINK_EOL);
499 SONIC_CDTXSYNC32(sc, sc->sc_txlast,
500 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
501 sc->sc_tda32[olasttx].tda_frags[olseg].frag_ptr0 &=
502 htosonic32(sc, ~TDA_LINK_EOL);
503 SONIC_CDTXSYNC32(sc, olasttx,
504 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
505 } else {
506 olseg =
507 sonic16toh(sc, sc->sc_tda16[olasttx].tda_fragcnt);
508 sc->sc_tda16[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
509 htosonic16(sc, TDA_LINK_EOL);
510 SONIC_CDTXSYNC16(sc, sc->sc_txlast,
511 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
512 sc->sc_tda16[olasttx].tda_frags[olseg].frag_ptr0 &=
513 htosonic16(sc, ~TDA_LINK_EOL);
514 SONIC_CDTXSYNC16(sc, olasttx,
515 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
516 }
517
518 /* Start the transmitter. */
519 CSR_WRITE(sc, SONIC_CR, CR_TXP);
520
521 /* Set a watchdog timer in case the chip flakes out. */
522 ifp->if_timer = 5;
523 }
524 }
525
526 /*
527 * sonic_watchdog: [ifnet interface function]
528 *
529 * Watchdog timer handler.
530 */
531 void
532 sonic_watchdog(struct ifnet *ifp)
533 {
534 struct sonic_softc *sc = ifp->if_softc;
535
536 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
537 ifp->if_oerrors++;
538
539 (void) sonic_init(ifp);
540 }
541
542 /*
543 * sonic_ioctl: [ifnet interface function]
544 *
545 * Handle control requests from the operator.
546 */
547 int
548 sonic_ioctl(struct ifnet *ifp, u_long cmd, void *data)
549 {
550 int s, error;
551
552 s = splnet();
553
554 switch (cmd) {
555 default:
556 error = ether_ioctl(ifp, cmd, data);
557 if (error == ENETRESET) {
558 /*
559 * Multicast list has changed; set the hardware
560 * filter accordingly.
561 */
562 if (ifp->if_flags & IFF_RUNNING)
563 (void) sonic_init(ifp);
564 error = 0;
565 }
566 break;
567 }
568
569 splx(s);
570 return (error);
571 }
572
573 /*
574 * sonic_intr:
575 *
576 * Interrupt service routine.
577 */
578 int
579 sonic_intr(void *arg)
580 {
581 struct sonic_softc *sc = arg;
582 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
583 uint16_t isr;
584 int handled = 0, wantinit;
585
586 for (wantinit = 0; wantinit == 0;) {
587 isr = CSR_READ(sc, SONIC_ISR) & sc->sc_imr;
588 if (isr == 0)
589 break;
590 CSR_WRITE(sc, SONIC_ISR, isr); /* ACK */
591
592 handled = 1;
593
594 if (isr & IMR_PRX)
595 sonic_rxintr(sc);
596
597 if (isr & (IMR_PTX|IMR_TXER)) {
598 if (sonic_txintr(sc) & TCR_FU) {
599 printf("%s: transmit FIFO underrun\n",
600 sc->sc_dev.dv_xname);
601 wantinit = 1;
602 }
603 }
604
605 if (isr & (IMR_RFO|IMR_RBA|IMR_RBE|IMR_RDE)) {
606 #define PRINTERR(bit, str) \
607 if (isr & (bit)) \
608 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
609 PRINTERR(IMR_RFO, "receive FIFO overrun");
610 PRINTERR(IMR_RBA, "receive buffer exceeded");
611 PRINTERR(IMR_RBE, "receive buffers exhausted");
612 PRINTERR(IMR_RDE, "receive descriptors exhausted");
613 wantinit = 1;
614 }
615 }
616
617 if (handled) {
618 if (wantinit)
619 (void) sonic_init(ifp);
620 sonic_start(ifp);
621 }
622
623 return (handled);
624 }
625
626 /*
627 * sonic_txintr:
628 *
629 * Helper; handle transmit complete interrupts.
630 */
631 uint16_t
632 sonic_txintr(struct sonic_softc *sc)
633 {
634 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
635 struct sonic_descsoft *ds;
636 struct sonic_tda32 *tda32;
637 struct sonic_tda16 *tda16;
638 uint16_t status, totstat = 0;
639 int i;
640
641 ifp->if_flags &= ~IFF_OACTIVE;
642
643 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
644 i = SONIC_NEXTTX(i), sc->sc_txpending--) {
645 ds = &sc->sc_txsoft[i];
646
647 if (sc->sc_32bit) {
648 SONIC_CDTXSYNC32(sc, i,
649 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
650 tda32 = &sc->sc_tda32[i];
651 status = sonic32toh(sc, tda32->tda_status);
652 SONIC_CDTXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
653 } else {
654 SONIC_CDTXSYNC16(sc, i,
655 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
656 tda16 = &sc->sc_tda16[i];
657 status = sonic16toh(sc, tda16->tda_status);
658 SONIC_CDTXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
659 }
660
661 if ((status & ~(TCR_EXDIS|TCR_CRCI|TCR_POWC|TCR_PINT)) == 0)
662 break;
663
664 totstat |= status;
665
666 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
667 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
668 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
669 m_freem(ds->ds_mbuf);
670 ds->ds_mbuf = NULL;
671
672 /*
673 * Check for errors and collisions.
674 */
675 if (status & TCR_PTX)
676 ifp->if_opackets++;
677 else
678 ifp->if_oerrors++;
679 ifp->if_collisions += TDA_STATUS_NCOL(status);
680 }
681
682 /* Update the dirty transmit buffer pointer. */
683 sc->sc_txdirty = i;
684
685 /*
686 * Cancel the watchdog timer if there are no pending
687 * transmissions.
688 */
689 if (sc->sc_txpending == 0)
690 ifp->if_timer = 0;
691
692 return (totstat);
693 }
694
695 /*
696 * sonic_rxintr:
697 *
698 * Helper; handle receive interrupts.
699 */
700 void
701 sonic_rxintr(struct sonic_softc *sc)
702 {
703 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
704 struct sonic_descsoft *ds;
705 struct sonic_rda32 *rda32;
706 struct sonic_rda16 *rda16;
707 struct mbuf *m;
708 int i, len;
709 uint16_t status, bytecount, ptr0, ptr1, seqno;
710
711 for (i = sc->sc_rxptr;; i = SONIC_NEXTRX(i)) {
712 ds = &sc->sc_rxsoft[i];
713
714 if (sc->sc_32bit) {
715 SONIC_CDRXSYNC32(sc, i,
716 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
717 rda32 = &sc->sc_rda32[i];
718 SONIC_CDRXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
719 if (rda32->rda_inuse != 0)
720 break;
721 status = sonic32toh(sc, rda32->rda_status);
722 bytecount = sonic32toh(sc, rda32->rda_bytecount);
723 ptr0 = sonic32toh(sc, rda32->rda_pkt_ptr0);
724 ptr1 = sonic32toh(sc, rda32->rda_pkt_ptr1);
725 seqno = sonic32toh(sc, rda32->rda_seqno);
726 } else {
727 SONIC_CDRXSYNC16(sc, i,
728 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
729 rda16 = &sc->sc_rda16[i];
730 SONIC_CDRXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
731 if (rda16->rda_inuse != 0)
732 break;
733 status = sonic16toh(sc, rda16->rda_status);
734 bytecount = sonic16toh(sc, rda16->rda_bytecount);
735 ptr0 = sonic16toh(sc, rda16->rda_pkt_ptr0);
736 ptr1 = sonic16toh(sc, rda16->rda_pkt_ptr1);
737 seqno = sonic16toh(sc, rda16->rda_seqno);
738 }
739
740 /*
741 * Make absolutely sure this is the only packet
742 * in this receive buffer. Our entire Rx buffer
743 * management scheme depends on this, and if the
744 * SONIC didn't follow our rule, it means we've
745 * misconfigured it.
746 */
747 KASSERT(status & RCR_LPKT);
748
749 /*
750 * Make sure the packet arrived OK. If an error occurred,
751 * update stats and reset the descriptor. The buffer will
752 * be reused the next time the descriptor comes up in the
753 * ring.
754 */
755 if ((status & RCR_PRX) == 0) {
756 if (status & RCR_FAER)
757 printf("%s: Rx frame alignment error\n",
758 sc->sc_dev.dv_xname);
759 else if (status & RCR_CRCR)
760 printf("%s: Rx CRC error\n",
761 sc->sc_dev.dv_xname);
762 ifp->if_ierrors++;
763 SONIC_INIT_RXDESC(sc, i);
764 continue;
765 }
766
767 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
768 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
769
770 /*
771 * The SONIC includes the CRC with every packet.
772 */
773 len = bytecount - ETHER_CRC_LEN;
774
775 /*
776 * Ok, if the chip is in 32-bit mode, then receive
777 * buffers must be aligned to 32-bit boundaries,
778 * which means the payload is misaligned. In this
779 * case, we must allocate a new mbuf, and copy the
780 * packet into it, scooted forward 2 bytes to ensure
781 * proper alignment.
782 *
783 * Note, in 16-bit mode, we can configure the SONIC
784 * to do what we want, and we have.
785 */
786 #ifndef __NO_STRICT_ALIGNMENT
787 if (sc->sc_32bit) {
788 MGETHDR(m, M_DONTWAIT, MT_DATA);
789 if (m == NULL)
790 goto dropit;
791 if (len > (MHLEN - 2)) {
792 MCLGET(m, M_DONTWAIT);
793 if ((m->m_flags & M_EXT) == 0)
794 goto dropit;
795 }
796 m->m_data += 2;
797 /*
798 * Note that we use a cluster for incoming frames,
799 * so the buffer is virtually contiguous.
800 */
801 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
802 len);
803 SONIC_INIT_RXDESC(sc, i);
804 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
805 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
806 } else
807 #endif /* ! __NO_STRICT_ALIGNMENT */
808 /*
809 * If the packet is small enough to fit in a single
810 * header mbuf, allocate one and copy the data into
811 * it. This greatly reduces memory consumption when
812 * we receive lots of small packets.
813 */
814 if (sonic_copy_small != 0 && len <= (MHLEN - 2)) {
815 MGETHDR(m, M_DONTWAIT, MT_DATA);
816 if (m == NULL)
817 goto dropit;
818 m->m_data += 2;
819 /*
820 * Note that we use a cluster for incoming frames,
821 * so the buffer is virtually contiguous.
822 */
823 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
824 len);
825 SONIC_INIT_RXDESC(sc, i);
826 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
827 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
828 } else {
829 m = ds->ds_mbuf;
830 if (sonic_add_rxbuf(sc, i) != 0) {
831 dropit:
832 ifp->if_ierrors++;
833 SONIC_INIT_RXDESC(sc, i);
834 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
835 ds->ds_dmamap->dm_mapsize,
836 BUS_DMASYNC_PREREAD);
837 continue;
838 }
839 }
840
841 ifp->if_ipackets++;
842 m->m_pkthdr.rcvif = ifp;
843 m->m_pkthdr.len = m->m_len = len;
844
845 #if NBPFILTER > 0
846 /*
847 * Pass this up to any BPF listeners.
848 */
849 if (ifp->if_bpf)
850 bpf_mtap(ifp->if_bpf, m);
851 #endif /* NBPFILTER > 0 */
852
853 /* Pass it on. */
854 (*ifp->if_input)(ifp, m);
855 }
856
857 /* Update the receive pointer. */
858 sc->sc_rxptr = i;
859 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_PREVRX(i)));
860 }
861
862 /*
863 * sonic_reset:
864 *
865 * Perform a soft reset on the SONIC.
866 */
867 void
868 sonic_reset(struct sonic_softc *sc)
869 {
870
871 /* stop TX, RX and timer, and ensure RST is clear */
872 CSR_WRITE(sc, SONIC_CR, CR_STP | CR_RXDIS | CR_HTX);
873 delay(1000);
874
875 CSR_WRITE(sc, SONIC_CR, CR_RST);
876 delay(1000);
877
878 /* clear all interrupts */
879 CSR_WRITE(sc, SONIC_IMR, 0);
880 CSR_WRITE(sc, SONIC_ISR, IMR_ALL);
881
882 CSR_WRITE(sc, SONIC_CR, 0);
883 delay(1000);
884 }
885
886 /*
887 * sonic_init: [ifnet interface function]
888 *
889 * Initialize the interface. Must be called at splnet().
890 */
891 int
892 sonic_init(struct ifnet *ifp)
893 {
894 struct sonic_softc *sc = ifp->if_softc;
895 struct sonic_descsoft *ds;
896 int i, error = 0;
897 uint16_t reg;
898
899 /*
900 * Cancel any pending I/O.
901 */
902 sonic_stop(ifp, 0);
903
904 /*
905 * Reset the SONIC to a known state.
906 */
907 sonic_reset(sc);
908
909 /*
910 * Bring the SONIC into reset state, and program the DCR.
911 *
912 * Note: We don't bother optimizing the transmit and receive
913 * thresholds, here. TFT/RFT values should be set in MD attachments.
914 */
915 reg = sc->sc_dcr;
916 if (sc->sc_32bit)
917 reg |= DCR_DW;
918 CSR_WRITE(sc, SONIC_CR, CR_RST);
919 CSR_WRITE(sc, SONIC_DCR, reg);
920 CSR_WRITE(sc, SONIC_DCR2, sc->sc_dcr2);
921 CSR_WRITE(sc, SONIC_CR, 0);
922
923 /*
924 * Initialize the transmit descriptors.
925 */
926 if (sc->sc_32bit) {
927 for (i = 0; i < SONIC_NTXDESC; i++) {
928 memset(&sc->sc_tda32[i], 0, sizeof(struct sonic_tda32));
929 SONIC_CDTXSYNC32(sc, i,
930 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
931 }
932 } else {
933 for (i = 0; i < SONIC_NTXDESC; i++) {
934 memset(&sc->sc_tda16[i], 0, sizeof(struct sonic_tda16));
935 SONIC_CDTXSYNC16(sc, i,
936 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
937 }
938 }
939 sc->sc_txpending = 0;
940 sc->sc_txdirty = 0;
941 sc->sc_txlast = SONIC_NTXDESC - 1;
942
943 /*
944 * Initialize the receive descriptor ring.
945 */
946 for (i = 0; i < SONIC_NRXDESC; i++) {
947 ds = &sc->sc_rxsoft[i];
948 if (ds->ds_mbuf == NULL) {
949 if ((error = sonic_add_rxbuf(sc, i)) != 0) {
950 printf("%s: unable to allocate or map Rx "
951 "buffer %d, error = %d\n",
952 sc->sc_dev.dv_xname, i, error);
953 /*
954 * XXX Should attempt to run with fewer receive
955 * XXX buffers instead of just failing.
956 */
957 sonic_rxdrain(sc);
958 goto out;
959 }
960 } else
961 SONIC_INIT_RXDESC(sc, i);
962 }
963 sc->sc_rxptr = 0;
964
965 /* Give the transmit ring to the SONIC. */
966 CSR_WRITE(sc, SONIC_UTDAR, (SONIC_CDTXADDR(sc, 0) >> 16) & 0xffff);
967 CSR_WRITE(sc, SONIC_CTDAR, SONIC_CDTXADDR(sc, 0) & 0xffff);
968
969 /* Give the receive descriptor ring to the SONIC. */
970 CSR_WRITE(sc, SONIC_URDAR, (SONIC_CDRXADDR(sc, 0) >> 16) & 0xffff);
971 CSR_WRITE(sc, SONIC_CRDAR, SONIC_CDRXADDR(sc, 0) & 0xffff);
972
973 /* Give the receive buffer ring to the SONIC. */
974 CSR_WRITE(sc, SONIC_URRAR, (SONIC_CDRRADDR(sc, 0) >> 16) & 0xffff);
975 CSR_WRITE(sc, SONIC_RSAR, SONIC_CDRRADDR(sc, 0) & 0xffff);
976 if (sc->sc_32bit)
977 CSR_WRITE(sc, SONIC_REAR,
978 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
979 sizeof(struct sonic_rra32)) & 0xffff);
980 else
981 CSR_WRITE(sc, SONIC_REAR,
982 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
983 sizeof(struct sonic_rra16)) & 0xffff);
984 CSR_WRITE(sc, SONIC_RRR, SONIC_CDRRADDR(sc, 0) & 0xffff);
985 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1));
986
987 /*
988 * Set the End-Of-Buffer counter such that only one packet
989 * will be placed into each buffer we provide. Note we are
990 * following the recommendation of section 3.4.4 of the manual
991 * here, and have "lengthened" the receive buffers accordingly.
992 */
993 if (sc->sc_32bit)
994 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN + 2) / 2);
995 else
996 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN / 2));
997
998 /* Reset the receive sequence counter. */
999 CSR_WRITE(sc, SONIC_RSC, 0);
1000
1001 /* Clear the tally registers. */
1002 CSR_WRITE(sc, SONIC_CRCETC, 0xffff);
1003 CSR_WRITE(sc, SONIC_FAET, 0xffff);
1004 CSR_WRITE(sc, SONIC_MPT, 0xffff);
1005
1006 /* Set the receive filter. */
1007 sonic_set_filter(sc);
1008
1009 /*
1010 * Set the interrupt mask register.
1011 */
1012 sc->sc_imr = IMR_RFO | IMR_RBA | IMR_RBE | IMR_RDE |
1013 IMR_TXER | IMR_PTX | IMR_PRX;
1014 CSR_WRITE(sc, SONIC_IMR, sc->sc_imr);
1015
1016 /*
1017 * Start the receive process in motion. Note, we don't
1018 * start the transmit process until we actually try to
1019 * transmit packets.
1020 */
1021 CSR_WRITE(sc, SONIC_CR, CR_RXEN | CR_RRRA);
1022
1023 /*
1024 * ...all done!
1025 */
1026 ifp->if_flags |= IFF_RUNNING;
1027 ifp->if_flags &= ~IFF_OACTIVE;
1028
1029 out:
1030 if (error)
1031 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1032 return (error);
1033 }
1034
1035 /*
1036 * sonic_rxdrain:
1037 *
1038 * Drain the receive queue.
1039 */
1040 void
1041 sonic_rxdrain(struct sonic_softc *sc)
1042 {
1043 struct sonic_descsoft *ds;
1044 int i;
1045
1046 for (i = 0; i < SONIC_NRXDESC; i++) {
1047 ds = &sc->sc_rxsoft[i];
1048 if (ds->ds_mbuf != NULL) {
1049 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1050 m_freem(ds->ds_mbuf);
1051 ds->ds_mbuf = NULL;
1052 }
1053 }
1054 }
1055
1056 /*
1057 * sonic_stop: [ifnet interface function]
1058 *
1059 * Stop transmission on the interface.
1060 */
1061 void
1062 sonic_stop(struct ifnet *ifp, int disable)
1063 {
1064 struct sonic_softc *sc = ifp->if_softc;
1065 struct sonic_descsoft *ds;
1066 int i;
1067
1068 /*
1069 * Disable interrupts.
1070 */
1071 CSR_WRITE(sc, SONIC_IMR, 0);
1072
1073 /*
1074 * Stop the transmitter, receiver, and timer.
1075 */
1076 CSR_WRITE(sc, SONIC_CR, CR_HTX|CR_RXDIS|CR_STP);
1077 for (i = 0; i < 1000; i++) {
1078 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) == 0)
1079 break;
1080 delay(2);
1081 }
1082 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) != 0)
1083 printf("%s: SONIC failed to stop\n", sc->sc_dev.dv_xname);
1084
1085 /*
1086 * Release any queued transmit buffers.
1087 */
1088 for (i = 0; i < SONIC_NTXDESC; i++) {
1089 ds = &sc->sc_txsoft[i];
1090 if (ds->ds_mbuf != NULL) {
1091 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1092 m_freem(ds->ds_mbuf);
1093 ds->ds_mbuf = NULL;
1094 }
1095 }
1096
1097 if (disable)
1098 sonic_rxdrain(sc);
1099
1100 /*
1101 * Mark the interface down and cancel the watchdog timer.
1102 */
1103 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1104 ifp->if_timer = 0;
1105 }
1106
1107 /*
1108 * sonic_add_rxbuf:
1109 *
1110 * Add a receive buffer to the indicated descriptor.
1111 */
1112 int
1113 sonic_add_rxbuf(struct sonic_softc *sc, int idx)
1114 {
1115 struct sonic_descsoft *ds = &sc->sc_rxsoft[idx];
1116 struct mbuf *m;
1117 int error;
1118
1119 MGETHDR(m, M_DONTWAIT, MT_DATA);
1120 if (m == NULL)
1121 return (ENOBUFS);
1122
1123 MCLGET(m, M_DONTWAIT);
1124 if ((m->m_flags & M_EXT) == 0) {
1125 m_freem(m);
1126 return (ENOBUFS);
1127 }
1128
1129 if (ds->ds_mbuf != NULL)
1130 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1131
1132 ds->ds_mbuf = m;
1133
1134 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1135 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1136 BUS_DMA_READ|BUS_DMA_NOWAIT);
1137 if (error) {
1138 printf("%s: can't load rx DMA map %d, error = %d\n",
1139 sc->sc_dev.dv_xname, idx, error);
1140 panic("sonic_add_rxbuf"); /* XXX */
1141 }
1142
1143 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1144 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1145
1146 SONIC_INIT_RXDESC(sc, idx);
1147
1148 return (0);
1149 }
1150
1151 static void
1152 sonic_set_camentry(struct sonic_softc *sc, int entry, const uint8_t *enaddr)
1153 {
1154
1155 if (sc->sc_32bit) {
1156 struct sonic_cda32 *cda = &sc->sc_cda32[entry];
1157
1158 cda->cda_entry = htosonic32(sc, entry);
1159 cda->cda_addr0 = htosonic32(sc, enaddr[0] | (enaddr[1] << 8));
1160 cda->cda_addr1 = htosonic32(sc, enaddr[2] | (enaddr[3] << 8));
1161 cda->cda_addr2 = htosonic32(sc, enaddr[4] | (enaddr[5] << 8));
1162 } else {
1163 struct sonic_cda16 *cda = &sc->sc_cda16[entry];
1164
1165 cda->cda_entry = htosonic16(sc, entry);
1166 cda->cda_addr0 = htosonic16(sc, enaddr[0] | (enaddr[1] << 8));
1167 cda->cda_addr1 = htosonic16(sc, enaddr[2] | (enaddr[3] << 8));
1168 cda->cda_addr2 = htosonic16(sc, enaddr[4] | (enaddr[5] << 8));
1169 }
1170 }
1171
1172 /*
1173 * sonic_set_filter:
1174 *
1175 * Set the SONIC receive filter.
1176 */
1177 void
1178 sonic_set_filter(struct sonic_softc *sc)
1179 {
1180 struct ethercom *ec = &sc->sc_ethercom;
1181 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1182 struct ether_multi *enm;
1183 struct ether_multistep step;
1184 int i, entry = 0;
1185 uint16_t camvalid = 0;
1186 uint16_t rcr = 0;
1187
1188 if (ifp->if_flags & IFF_BROADCAST)
1189 rcr |= RCR_BRD;
1190
1191 if (ifp->if_flags & IFF_PROMISC) {
1192 rcr |= RCR_PRO;
1193 goto allmulti;
1194 }
1195
1196 /* Put our station address in the first CAM slot. */
1197 sonic_set_camentry(sc, entry, LLADDR(ifp->if_sadl));
1198 camvalid |= (1U << entry);
1199 entry++;
1200
1201 /* Add the multicast addresses to the CAM. */
1202 ETHER_FIRST_MULTI(step, ec, enm);
1203 while (enm != NULL) {
1204 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1205 /*
1206 * We must listen to a range of multicast addresses.
1207 * The only way to do this on the SONIC is to enable
1208 * reception of all multicast packets.
1209 */
1210 goto allmulti;
1211 }
1212
1213 if (entry == 16) {
1214 /*
1215 * Out of CAM slots. Have to enable reception
1216 * of all multicast addresses.
1217 */
1218 goto allmulti;
1219 }
1220
1221 sonic_set_camentry(sc, entry, enm->enm_addrlo);
1222 camvalid |= (1U << entry);
1223 entry++;
1224
1225 ETHER_NEXT_MULTI(step, enm);
1226 }
1227
1228 ifp->if_flags &= ~IFF_ALLMULTI;
1229 goto setit;
1230
1231 allmulti:
1232 /* Use only the first CAM slot (station address). */
1233 camvalid = 0x0001;
1234 entry = 1;
1235 rcr |= RCR_AMC;
1236
1237 setit:
1238 /* Load the CAM. */
1239 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_PREWRITE);
1240 CSR_WRITE(sc, SONIC_CDP, SONIC_CDCAMADDR(sc) & 0xffff);
1241 CSR_WRITE(sc, SONIC_CDC, entry);
1242 CSR_WRITE(sc, SONIC_CR, CR_LCAM);
1243 for (i = 0; i < 10000; i++) {
1244 if ((CSR_READ(sc, SONIC_CR) & CR_LCAM) == 0)
1245 break;
1246 delay(2);
1247 }
1248 if (CSR_READ(sc, SONIC_CR) & CR_LCAM)
1249 printf("%s: CAM load failed\n", sc->sc_dev.dv_xname);
1250 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_POSTWRITE);
1251
1252 /* Set the CAM enable resgiter. */
1253 CSR_WRITE(sc, SONIC_CER, camvalid);
1254
1255 /* Set the receive control register. */
1256 CSR_WRITE(sc, SONIC_RCR, rcr);
1257 }
1258