dp83932.c revision 1.32 1 /* $NetBSD: dp83932.c,v 1.32 2009/09/02 17:22:53 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the National Semiconductor DP83932
34 * Systems-Oriented Network Interface Controller (SONIC).
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: dp83932.c,v 1.32 2009/09/02 17:22:53 tsutsui Exp $");
39
40 #include "bpfilter.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/mbuf.h>
45 #include <sys/malloc.h>
46 #include <sys/kernel.h>
47 #include <sys/socket.h>
48 #include <sys/ioctl.h>
49 #include <sys/errno.h>
50 #include <sys/device.h>
51
52 #include <uvm/uvm_extern.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_ether.h>
57
58 #if NBPFILTER > 0
59 #include <net/bpf.h>
60 #endif
61
62 #include <sys/bus.h>
63 #include <sys/intr.h>
64
65 #include <dev/ic/dp83932reg.h>
66 #include <dev/ic/dp83932var.h>
67
68 static void sonic_start(struct ifnet *);
69 static void sonic_watchdog(struct ifnet *);
70 static int sonic_ioctl(struct ifnet *, u_long, void *);
71 static int sonic_init(struct ifnet *);
72 static void sonic_stop(struct ifnet *, int);
73
74 static bool sonic_shutdown(device_t, int);
75
76 static void sonic_reset(struct sonic_softc *);
77 static void sonic_rxdrain(struct sonic_softc *);
78 static int sonic_add_rxbuf(struct sonic_softc *, int);
79 static void sonic_set_filter(struct sonic_softc *);
80
81 static uint16_t sonic_txintr(struct sonic_softc *);
82 static void sonic_rxintr(struct sonic_softc *);
83
84 int sonic_copy_small = 0;
85
86 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
87
88 /*
89 * sonic_attach:
90 *
91 * Attach a SONIC interface to the system.
92 */
93 void
94 sonic_attach(struct sonic_softc *sc, const uint8_t *enaddr)
95 {
96 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
97 int i, rseg, error;
98 bus_dma_segment_t seg;
99 size_t cdatasize;
100 uint8_t *nullbuf;
101
102 /*
103 * Allocate the control data structures, and create and load the
104 * DMA map for it.
105 */
106 if (sc->sc_32bit)
107 cdatasize = sizeof(struct sonic_control_data32);
108 else
109 cdatasize = sizeof(struct sonic_control_data16);
110
111 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdatasize + ETHER_PAD_LEN,
112 PAGE_SIZE, (64 * 1024), &seg, 1, &rseg,
113 BUS_DMA_NOWAIT)) != 0) {
114 aprint_error_dev(sc->sc_dev,
115 "unable to allocate control data, error = %d\n", error);
116 goto fail_0;
117 }
118
119 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
120 cdatasize + ETHER_PAD_LEN, (void **) &sc->sc_cdata16,
121 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
122 aprint_error_dev(sc->sc_dev,
123 "unable to map control data, error = %d\n", error);
124 goto fail_1;
125 }
126 nullbuf = (uint8_t *)sc->sc_cdata16 + cdatasize;
127 memset(nullbuf, 0, ETHER_PAD_LEN);
128
129 if ((error = bus_dmamap_create(sc->sc_dmat,
130 cdatasize, 1, cdatasize, 0, BUS_DMA_NOWAIT,
131 &sc->sc_cddmamap)) != 0) {
132 aprint_error_dev(sc->sc_dev,
133 "unable to create control data DMA map, error = %d\n",
134 error);
135 goto fail_2;
136 }
137
138 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
139 sc->sc_cdata16, cdatasize, NULL, BUS_DMA_NOWAIT)) != 0) {
140 aprint_error_dev(sc->sc_dev,
141 "unable to load control data DMA map, error = %d\n", error);
142 goto fail_3;
143 }
144
145 /*
146 * Create the transmit buffer DMA maps.
147 */
148 for (i = 0; i < SONIC_NTXDESC; i++) {
149 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
150 SONIC_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
151 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
152 aprint_error_dev(sc->sc_dev,
153 "unable to create tx DMA map %d, error = %d\n",
154 i, error);
155 goto fail_4;
156 }
157 }
158
159 /*
160 * Create the receive buffer DMA maps.
161 */
162 for (i = 0; i < SONIC_NRXDESC; i++) {
163 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
164 MCLBYTES, 0, BUS_DMA_NOWAIT,
165 &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
166 aprint_error_dev(sc->sc_dev,
167 "unable to create rx DMA map %d, error = %d\n",
168 i, error);
169 goto fail_5;
170 }
171 sc->sc_rxsoft[i].ds_mbuf = NULL;
172 }
173
174 /*
175 * create and map the pad buffer
176 */
177 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
178 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT, &sc->sc_nulldmamap)) != 0) {
179 aprint_error_dev(sc->sc_dev,
180 "unable to create pad buffer DMA map, error = %d\n", error);
181 goto fail_5;
182 }
183
184 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
185 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
186 aprint_error_dev(sc->sc_dev,
187 "unable to load pad buffer DMA map, error = %d\n", error);
188 goto fail_6;
189 }
190 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
191 BUS_DMASYNC_PREWRITE);
192
193 /*
194 * Reset the chip to a known state.
195 */
196 sonic_reset(sc);
197
198 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
199 ether_sprintf(enaddr));
200
201 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
202 ifp->if_softc = sc;
203 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
204 ifp->if_ioctl = sonic_ioctl;
205 ifp->if_start = sonic_start;
206 ifp->if_watchdog = sonic_watchdog;
207 ifp->if_init = sonic_init;
208 ifp->if_stop = sonic_stop;
209 IFQ_SET_READY(&ifp->if_snd);
210
211 /*
212 * We can support 802.1Q VLAN-sized frames.
213 */
214 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
215
216 /*
217 * Attach the interface.
218 */
219 if_attach(ifp);
220 ether_ifattach(ifp, enaddr);
221
222 /*
223 * Make sure the interface is shutdown during reboot.
224 */
225 if (pmf_device_register1(sc->sc_dev, NULL, NULL, sonic_shutdown))
226 pmf_class_network_register(sc->sc_dev, ifp);
227 else
228 aprint_error_dev(sc->sc_dev,
229 "couldn't establish power handler\n");
230
231 return;
232
233 /*
234 * Free any resources we've allocated during the failed attach
235 * attempt. Do this in reverse order and fall through.
236 */
237 fail_6:
238 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
239 fail_5:
240 for (i = 0; i < SONIC_NRXDESC; i++) {
241 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
242 bus_dmamap_destroy(sc->sc_dmat,
243 sc->sc_rxsoft[i].ds_dmamap);
244 }
245 fail_4:
246 for (i = 0; i < SONIC_NTXDESC; i++) {
247 if (sc->sc_txsoft[i].ds_dmamap != NULL)
248 bus_dmamap_destroy(sc->sc_dmat,
249 sc->sc_txsoft[i].ds_dmamap);
250 }
251 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
252 fail_3:
253 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
254 fail_2:
255 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_cdata16, cdatasize);
256 fail_1:
257 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
258 fail_0:
259 return;
260 }
261
262 /*
263 * sonic_shutdown:
264 *
265 * Make sure the interface is stopped at reboot.
266 */
267 bool
268 sonic_shutdown(device_t self, int howto)
269 {
270 struct sonic_softc *sc = device_private(self);
271
272 sonic_stop(&sc->sc_ethercom.ec_if, 1);
273
274 return true;
275 }
276
277 /*
278 * sonic_start: [ifnet interface function]
279 *
280 * Start packet transmission on the interface.
281 */
282 void
283 sonic_start(struct ifnet *ifp)
284 {
285 struct sonic_softc *sc = ifp->if_softc;
286 struct mbuf *m0, *m;
287 struct sonic_tda16 *tda16;
288 struct sonic_tda32 *tda32;
289 struct sonic_descsoft *ds;
290 bus_dmamap_t dmamap;
291 int error, olasttx, nexttx, opending, totlen, olseg;
292 int seg = 0; /* XXX: gcc */
293
294 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
295 return;
296
297 /*
298 * Remember the previous txpending and the current "last txdesc
299 * used" index.
300 */
301 opending = sc->sc_txpending;
302 olasttx = sc->sc_txlast;
303
304 /*
305 * Loop through the send queue, setting up transmit descriptors
306 * until we drain the queue, or use up all available transmit
307 * descriptors. Leave one at the end for sanity's sake.
308 */
309 while (sc->sc_txpending < (SONIC_NTXDESC - 1)) {
310 /*
311 * Grab a packet off the queue.
312 */
313 IFQ_POLL(&ifp->if_snd, m0);
314 if (m0 == NULL)
315 break;
316 m = NULL;
317
318 /*
319 * Get the next available transmit descriptor.
320 */
321 nexttx = SONIC_NEXTTX(sc->sc_txlast);
322 ds = &sc->sc_txsoft[nexttx];
323 dmamap = ds->ds_dmamap;
324
325 /*
326 * Load the DMA map. If this fails, the packet either
327 * didn't fit in the allotted number of frags, or we were
328 * short on resources. In this case, we'll copy and try
329 * again.
330 */
331 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
332 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
333 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
334 dmamap->dm_nsegs == SONIC_NTXFRAGS)) {
335 if (error == 0)
336 bus_dmamap_unload(sc->sc_dmat, dmamap);
337 MGETHDR(m, M_DONTWAIT, MT_DATA);
338 if (m == NULL) {
339 printf("%s: unable to allocate Tx mbuf\n",
340 device_xname(sc->sc_dev));
341 break;
342 }
343 if (m0->m_pkthdr.len > MHLEN) {
344 MCLGET(m, M_DONTWAIT);
345 if ((m->m_flags & M_EXT) == 0) {
346 printf("%s: unable to allocate Tx "
347 "cluster\n",
348 device_xname(sc->sc_dev));
349 m_freem(m);
350 break;
351 }
352 }
353 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
354 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
355 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
356 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
357 if (error) {
358 printf("%s: unable to load Tx buffer, "
359 "error = %d\n", device_xname(sc->sc_dev),
360 error);
361 m_freem(m);
362 break;
363 }
364 }
365 IFQ_DEQUEUE(&ifp->if_snd, m0);
366 if (m != NULL) {
367 m_freem(m0);
368 m0 = m;
369 }
370
371 /*
372 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
373 */
374
375 /* Sync the DMA map. */
376 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
377 BUS_DMASYNC_PREWRITE);
378
379 /*
380 * Store a pointer to the packet so we can free it later.
381 */
382 ds->ds_mbuf = m0;
383
384 /*
385 * Initialize the transmit descriptor.
386 */
387 totlen = 0;
388 if (sc->sc_32bit) {
389 tda32 = &sc->sc_tda32[nexttx];
390 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
391 tda32->tda_frags[seg].frag_ptr1 =
392 htosonic32(sc,
393 (dmamap->dm_segs[seg].ds_addr >> 16) &
394 0xffff);
395 tda32->tda_frags[seg].frag_ptr0 =
396 htosonic32(sc,
397 dmamap->dm_segs[seg].ds_addr & 0xffff);
398 tda32->tda_frags[seg].frag_size =
399 htosonic32(sc, dmamap->dm_segs[seg].ds_len);
400 totlen += dmamap->dm_segs[seg].ds_len;
401 }
402 if (totlen < ETHER_PAD_LEN) {
403 tda32->tda_frags[seg].frag_ptr1 =
404 htosonic32(sc,
405 (sc->sc_nulldma >> 16) & 0xffff);
406 tda32->tda_frags[seg].frag_ptr0 =
407 htosonic32(sc, sc->sc_nulldma & 0xffff);
408 tda32->tda_frags[seg].frag_size =
409 htosonic32(sc, ETHER_PAD_LEN - totlen);
410 totlen = ETHER_PAD_LEN;
411 seg++;
412 }
413
414 tda32->tda_status = 0;
415 tda32->tda_pktconfig = 0;
416 tda32->tda_pktsize = htosonic32(sc, totlen);
417 tda32->tda_fragcnt = htosonic32(sc, seg);
418
419 /* Link it up. */
420 tda32->tda_frags[seg].frag_ptr0 =
421 htosonic32(sc, SONIC_CDTXADDR32(sc,
422 SONIC_NEXTTX(nexttx)) & 0xffff);
423
424 /* Sync the Tx descriptor. */
425 SONIC_CDTXSYNC32(sc, nexttx,
426 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
427 } else {
428 tda16 = &sc->sc_tda16[nexttx];
429 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
430 tda16->tda_frags[seg].frag_ptr1 =
431 htosonic16(sc,
432 (dmamap->dm_segs[seg].ds_addr >> 16) &
433 0xffff);
434 tda16->tda_frags[seg].frag_ptr0 =
435 htosonic16(sc,
436 dmamap->dm_segs[seg].ds_addr & 0xffff);
437 tda16->tda_frags[seg].frag_size =
438 htosonic16(sc, dmamap->dm_segs[seg].ds_len);
439 totlen += dmamap->dm_segs[seg].ds_len;
440 }
441 if (totlen < ETHER_PAD_LEN) {
442 tda16->tda_frags[seg].frag_ptr1 =
443 htosonic16(sc,
444 (sc->sc_nulldma >> 16) & 0xffff);
445 tda16->tda_frags[seg].frag_ptr0 =
446 htosonic16(sc, sc->sc_nulldma & 0xffff);
447 tda16->tda_frags[seg].frag_size =
448 htosonic16(sc, ETHER_PAD_LEN - totlen);
449 totlen = ETHER_PAD_LEN;
450 seg++;
451 }
452
453 tda16->tda_status = 0;
454 tda16->tda_pktconfig = 0;
455 tda16->tda_pktsize = htosonic16(sc, totlen);
456 tda16->tda_fragcnt = htosonic16(sc, seg);
457
458 /* Link it up. */
459 tda16->tda_frags[seg].frag_ptr0 =
460 htosonic16(sc, SONIC_CDTXADDR16(sc,
461 SONIC_NEXTTX(nexttx)) & 0xffff);
462
463 /* Sync the Tx descriptor. */
464 SONIC_CDTXSYNC16(sc, nexttx,
465 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
466 }
467
468 /* Advance the Tx pointer. */
469 sc->sc_txpending++;
470 sc->sc_txlast = nexttx;
471
472 #if NBPFILTER > 0
473 /*
474 * Pass the packet to any BPF listeners.
475 */
476 if (ifp->if_bpf)
477 bpf_mtap(ifp->if_bpf, m0);
478 #endif
479 }
480
481 if (sc->sc_txpending == (SONIC_NTXDESC - 1)) {
482 /* No more slots left; notify upper layer. */
483 ifp->if_flags |= IFF_OACTIVE;
484 }
485
486 if (sc->sc_txpending != opending) {
487 /*
488 * We enqueued packets. If the transmitter was idle,
489 * reset the txdirty pointer.
490 */
491 if (opending == 0)
492 sc->sc_txdirty = SONIC_NEXTTX(olasttx);
493
494 /*
495 * Stop the SONIC on the last packet we've set up,
496 * and clear end-of-list on the descriptor previous
497 * to our new chain.
498 *
499 * NOTE: our `seg' variable should still be valid!
500 */
501 if (sc->sc_32bit) {
502 olseg =
503 sonic32toh(sc, sc->sc_tda32[olasttx].tda_fragcnt);
504 sc->sc_tda32[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
505 htosonic32(sc, TDA_LINK_EOL);
506 SONIC_CDTXSYNC32(sc, sc->sc_txlast,
507 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
508 sc->sc_tda32[olasttx].tda_frags[olseg].frag_ptr0 &=
509 htosonic32(sc, ~TDA_LINK_EOL);
510 SONIC_CDTXSYNC32(sc, olasttx,
511 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
512 } else {
513 olseg =
514 sonic16toh(sc, sc->sc_tda16[olasttx].tda_fragcnt);
515 sc->sc_tda16[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
516 htosonic16(sc, TDA_LINK_EOL);
517 SONIC_CDTXSYNC16(sc, sc->sc_txlast,
518 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
519 sc->sc_tda16[olasttx].tda_frags[olseg].frag_ptr0 &=
520 htosonic16(sc, ~TDA_LINK_EOL);
521 SONIC_CDTXSYNC16(sc, olasttx,
522 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
523 }
524
525 /* Start the transmitter. */
526 CSR_WRITE(sc, SONIC_CR, CR_TXP);
527
528 /* Set a watchdog timer in case the chip flakes out. */
529 ifp->if_timer = 5;
530 }
531 }
532
533 /*
534 * sonic_watchdog: [ifnet interface function]
535 *
536 * Watchdog timer handler.
537 */
538 void
539 sonic_watchdog(struct ifnet *ifp)
540 {
541 struct sonic_softc *sc = ifp->if_softc;
542
543 printf("%s: device timeout\n", device_xname(sc->sc_dev));
544 ifp->if_oerrors++;
545
546 (void)sonic_init(ifp);
547 }
548
549 /*
550 * sonic_ioctl: [ifnet interface function]
551 *
552 * Handle control requests from the operator.
553 */
554 int
555 sonic_ioctl(struct ifnet *ifp, u_long cmd, void *data)
556 {
557 int s, error;
558
559 s = splnet();
560
561 error = ether_ioctl(ifp, cmd, data);
562 if (error == ENETRESET) {
563 /*
564 * Multicast list has changed; set the hardware
565 * filter accordingly.
566 */
567 if (ifp->if_flags & IFF_RUNNING)
568 (void)sonic_init(ifp);
569 error = 0;
570 }
571
572 splx(s);
573 return error;
574 }
575
576 /*
577 * sonic_intr:
578 *
579 * Interrupt service routine.
580 */
581 int
582 sonic_intr(void *arg)
583 {
584 struct sonic_softc *sc = arg;
585 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
586 uint16_t isr;
587 int handled = 0, wantinit;
588
589 for (wantinit = 0; wantinit == 0;) {
590 isr = CSR_READ(sc, SONIC_ISR) & sc->sc_imr;
591 if (isr == 0)
592 break;
593 CSR_WRITE(sc, SONIC_ISR, isr); /* ACK */
594
595 handled = 1;
596
597 if (isr & IMR_PRX)
598 sonic_rxintr(sc);
599
600 if (isr & (IMR_PTX|IMR_TXER)) {
601 if (sonic_txintr(sc) & TCR_FU) {
602 printf("%s: transmit FIFO underrun\n",
603 device_xname(sc->sc_dev));
604 wantinit = 1;
605 }
606 }
607
608 if (isr & (IMR_RFO|IMR_RBA|IMR_RBE|IMR_RDE)) {
609 #define PRINTERR(bit, str) \
610 if (isr & (bit)) \
611 printf("%s: %s\n",device_xname(sc->sc_dev), str)
612 PRINTERR(IMR_RFO, "receive FIFO overrun");
613 PRINTERR(IMR_RBA, "receive buffer exceeded");
614 PRINTERR(IMR_RBE, "receive buffers exhausted");
615 PRINTERR(IMR_RDE, "receive descriptors exhausted");
616 wantinit = 1;
617 }
618 }
619
620 if (handled) {
621 if (wantinit)
622 (void)sonic_init(ifp);
623 sonic_start(ifp);
624 }
625
626 return handled;
627 }
628
629 /*
630 * sonic_txintr:
631 *
632 * Helper; handle transmit complete interrupts.
633 */
634 uint16_t
635 sonic_txintr(struct sonic_softc *sc)
636 {
637 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
638 struct sonic_descsoft *ds;
639 struct sonic_tda32 *tda32;
640 struct sonic_tda16 *tda16;
641 uint16_t status, totstat = 0;
642 int i;
643
644 ifp->if_flags &= ~IFF_OACTIVE;
645
646 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
647 i = SONIC_NEXTTX(i), sc->sc_txpending--) {
648 ds = &sc->sc_txsoft[i];
649
650 if (sc->sc_32bit) {
651 SONIC_CDTXSYNC32(sc, i,
652 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
653 tda32 = &sc->sc_tda32[i];
654 status = sonic32toh(sc, tda32->tda_status);
655 SONIC_CDTXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
656 } else {
657 SONIC_CDTXSYNC16(sc, i,
658 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
659 tda16 = &sc->sc_tda16[i];
660 status = sonic16toh(sc, tda16->tda_status);
661 SONIC_CDTXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
662 }
663
664 if ((status & ~(TCR_EXDIS|TCR_CRCI|TCR_POWC|TCR_PINT)) == 0)
665 break;
666
667 totstat |= status;
668
669 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
670 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
671 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
672 m_freem(ds->ds_mbuf);
673 ds->ds_mbuf = NULL;
674
675 /*
676 * Check for errors and collisions.
677 */
678 if (status & TCR_PTX)
679 ifp->if_opackets++;
680 else
681 ifp->if_oerrors++;
682 ifp->if_collisions += TDA_STATUS_NCOL(status);
683 }
684
685 /* Update the dirty transmit buffer pointer. */
686 sc->sc_txdirty = i;
687
688 /*
689 * Cancel the watchdog timer if there are no pending
690 * transmissions.
691 */
692 if (sc->sc_txpending == 0)
693 ifp->if_timer = 0;
694
695 return totstat;
696 }
697
698 /*
699 * sonic_rxintr:
700 *
701 * Helper; handle receive interrupts.
702 */
703 void
704 sonic_rxintr(struct sonic_softc *sc)
705 {
706 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
707 struct sonic_descsoft *ds;
708 struct sonic_rda32 *rda32;
709 struct sonic_rda16 *rda16;
710 struct mbuf *m;
711 int i, len;
712 uint16_t status, bytecount, ptr0, ptr1, seqno;
713
714 for (i = sc->sc_rxptr;; i = SONIC_NEXTRX(i)) {
715 ds = &sc->sc_rxsoft[i];
716
717 if (sc->sc_32bit) {
718 SONIC_CDRXSYNC32(sc, i,
719 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
720 rda32 = &sc->sc_rda32[i];
721 SONIC_CDRXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
722 if (rda32->rda_inuse != 0)
723 break;
724 status = sonic32toh(sc, rda32->rda_status);
725 bytecount = sonic32toh(sc, rda32->rda_bytecount);
726 ptr0 = sonic32toh(sc, rda32->rda_pkt_ptr0);
727 ptr1 = sonic32toh(sc, rda32->rda_pkt_ptr1);
728 seqno = sonic32toh(sc, rda32->rda_seqno);
729 } else {
730 SONIC_CDRXSYNC16(sc, i,
731 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
732 rda16 = &sc->sc_rda16[i];
733 SONIC_CDRXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
734 if (rda16->rda_inuse != 0)
735 break;
736 status = sonic16toh(sc, rda16->rda_status);
737 bytecount = sonic16toh(sc, rda16->rda_bytecount);
738 ptr0 = sonic16toh(sc, rda16->rda_pkt_ptr0);
739 ptr1 = sonic16toh(sc, rda16->rda_pkt_ptr1);
740 seqno = sonic16toh(sc, rda16->rda_seqno);
741 }
742
743 /*
744 * Make absolutely sure this is the only packet
745 * in this receive buffer. Our entire Rx buffer
746 * management scheme depends on this, and if the
747 * SONIC didn't follow our rule, it means we've
748 * misconfigured it.
749 */
750 KASSERT(status & RCR_LPKT);
751
752 /*
753 * Make sure the packet arrived OK. If an error occurred,
754 * update stats and reset the descriptor. The buffer will
755 * be reused the next time the descriptor comes up in the
756 * ring.
757 */
758 if ((status & RCR_PRX) == 0) {
759 if (status & RCR_FAER)
760 printf("%s: Rx frame alignment error\n",
761 device_xname(sc->sc_dev));
762 else if (status & RCR_CRCR)
763 printf("%s: Rx CRC error\n",
764 device_xname(sc->sc_dev));
765 ifp->if_ierrors++;
766 SONIC_INIT_RXDESC(sc, i);
767 continue;
768 }
769
770 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
771 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
772
773 /*
774 * The SONIC includes the CRC with every packet.
775 */
776 len = bytecount - ETHER_CRC_LEN;
777
778 /*
779 * Ok, if the chip is in 32-bit mode, then receive
780 * buffers must be aligned to 32-bit boundaries,
781 * which means the payload is misaligned. In this
782 * case, we must allocate a new mbuf, and copy the
783 * packet into it, scooted forward 2 bytes to ensure
784 * proper alignment.
785 *
786 * Note, in 16-bit mode, we can configure the SONIC
787 * to do what we want, and we have.
788 */
789 #ifndef __NO_STRICT_ALIGNMENT
790 if (sc->sc_32bit) {
791 MGETHDR(m, M_DONTWAIT, MT_DATA);
792 if (m == NULL)
793 goto dropit;
794 if (len > (MHLEN - 2)) {
795 MCLGET(m, M_DONTWAIT);
796 if ((m->m_flags & M_EXT) == 0)
797 goto dropit;
798 }
799 m->m_data += 2;
800 /*
801 * Note that we use a cluster for incoming frames,
802 * so the buffer is virtually contiguous.
803 */
804 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
805 len);
806 SONIC_INIT_RXDESC(sc, i);
807 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
808 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
809 } else
810 #endif /* ! __NO_STRICT_ALIGNMENT */
811 /*
812 * If the packet is small enough to fit in a single
813 * header mbuf, allocate one and copy the data into
814 * it. This greatly reduces memory consumption when
815 * we receive lots of small packets.
816 */
817 if (sonic_copy_small != 0 && len <= (MHLEN - 2)) {
818 MGETHDR(m, M_DONTWAIT, MT_DATA);
819 if (m == NULL)
820 goto dropit;
821 m->m_data += 2;
822 /*
823 * Note that we use a cluster for incoming frames,
824 * so the buffer is virtually contiguous.
825 */
826 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
827 len);
828 SONIC_INIT_RXDESC(sc, i);
829 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
830 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
831 } else {
832 m = ds->ds_mbuf;
833 if (sonic_add_rxbuf(sc, i) != 0) {
834 dropit:
835 ifp->if_ierrors++;
836 SONIC_INIT_RXDESC(sc, i);
837 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
838 ds->ds_dmamap->dm_mapsize,
839 BUS_DMASYNC_PREREAD);
840 continue;
841 }
842 }
843
844 ifp->if_ipackets++;
845 m->m_pkthdr.rcvif = ifp;
846 m->m_pkthdr.len = m->m_len = len;
847
848 #if NBPFILTER > 0
849 /*
850 * Pass this up to any BPF listeners.
851 */
852 if (ifp->if_bpf)
853 bpf_mtap(ifp->if_bpf, m);
854 #endif /* NBPFILTER > 0 */
855
856 /* Pass it on. */
857 (*ifp->if_input)(ifp, m);
858 }
859
860 /* Update the receive pointer. */
861 sc->sc_rxptr = i;
862 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_PREVRX(i)));
863 }
864
865 /*
866 * sonic_reset:
867 *
868 * Perform a soft reset on the SONIC.
869 */
870 void
871 sonic_reset(struct sonic_softc *sc)
872 {
873
874 /* stop TX, RX and timer, and ensure RST is clear */
875 CSR_WRITE(sc, SONIC_CR, CR_STP | CR_RXDIS | CR_HTX);
876 delay(1000);
877
878 CSR_WRITE(sc, SONIC_CR, CR_RST);
879 delay(1000);
880
881 /* clear all interrupts */
882 CSR_WRITE(sc, SONIC_IMR, 0);
883 CSR_WRITE(sc, SONIC_ISR, IMR_ALL);
884
885 CSR_WRITE(sc, SONIC_CR, 0);
886 delay(1000);
887 }
888
889 /*
890 * sonic_init: [ifnet interface function]
891 *
892 * Initialize the interface. Must be called at splnet().
893 */
894 int
895 sonic_init(struct ifnet *ifp)
896 {
897 struct sonic_softc *sc = ifp->if_softc;
898 struct sonic_descsoft *ds;
899 int i, error = 0;
900 uint16_t reg;
901
902 /*
903 * Cancel any pending I/O.
904 */
905 sonic_stop(ifp, 0);
906
907 /*
908 * Reset the SONIC to a known state.
909 */
910 sonic_reset(sc);
911
912 /*
913 * Bring the SONIC into reset state, and program the DCR.
914 *
915 * Note: We don't bother optimizing the transmit and receive
916 * thresholds, here. TFT/RFT values should be set in MD attachments.
917 */
918 reg = sc->sc_dcr;
919 if (sc->sc_32bit)
920 reg |= DCR_DW;
921 CSR_WRITE(sc, SONIC_CR, CR_RST);
922 CSR_WRITE(sc, SONIC_DCR, reg);
923 CSR_WRITE(sc, SONIC_DCR2, sc->sc_dcr2);
924 CSR_WRITE(sc, SONIC_CR, 0);
925
926 /*
927 * Initialize the transmit descriptors.
928 */
929 if (sc->sc_32bit) {
930 for (i = 0; i < SONIC_NTXDESC; i++) {
931 memset(&sc->sc_tda32[i], 0, sizeof(struct sonic_tda32));
932 SONIC_CDTXSYNC32(sc, i,
933 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
934 }
935 } else {
936 for (i = 0; i < SONIC_NTXDESC; i++) {
937 memset(&sc->sc_tda16[i], 0, sizeof(struct sonic_tda16));
938 SONIC_CDTXSYNC16(sc, i,
939 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
940 }
941 }
942 sc->sc_txpending = 0;
943 sc->sc_txdirty = 0;
944 sc->sc_txlast = SONIC_NTXDESC - 1;
945
946 /*
947 * Initialize the receive descriptor ring.
948 */
949 for (i = 0; i < SONIC_NRXDESC; i++) {
950 ds = &sc->sc_rxsoft[i];
951 if (ds->ds_mbuf == NULL) {
952 if ((error = sonic_add_rxbuf(sc, i)) != 0) {
953 printf("%s: unable to allocate or map Rx "
954 "buffer %d, error = %d\n",
955 device_xname(sc->sc_dev), i, error);
956 /*
957 * XXX Should attempt to run with fewer receive
958 * XXX buffers instead of just failing.
959 */
960 sonic_rxdrain(sc);
961 goto out;
962 }
963 } else
964 SONIC_INIT_RXDESC(sc, i);
965 }
966 sc->sc_rxptr = 0;
967
968 /* Give the transmit ring to the SONIC. */
969 CSR_WRITE(sc, SONIC_UTDAR, (SONIC_CDTXADDR(sc, 0) >> 16) & 0xffff);
970 CSR_WRITE(sc, SONIC_CTDAR, SONIC_CDTXADDR(sc, 0) & 0xffff);
971
972 /* Give the receive descriptor ring to the SONIC. */
973 CSR_WRITE(sc, SONIC_URDAR, (SONIC_CDRXADDR(sc, 0) >> 16) & 0xffff);
974 CSR_WRITE(sc, SONIC_CRDAR, SONIC_CDRXADDR(sc, 0) & 0xffff);
975
976 /* Give the receive buffer ring to the SONIC. */
977 CSR_WRITE(sc, SONIC_URRAR, (SONIC_CDRRADDR(sc, 0) >> 16) & 0xffff);
978 CSR_WRITE(sc, SONIC_RSAR, SONIC_CDRRADDR(sc, 0) & 0xffff);
979 if (sc->sc_32bit)
980 CSR_WRITE(sc, SONIC_REAR,
981 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
982 sizeof(struct sonic_rra32)) & 0xffff);
983 else
984 CSR_WRITE(sc, SONIC_REAR,
985 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
986 sizeof(struct sonic_rra16)) & 0xffff);
987 CSR_WRITE(sc, SONIC_RRR, SONIC_CDRRADDR(sc, 0) & 0xffff);
988 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1));
989
990 /*
991 * Set the End-Of-Buffer counter such that only one packet
992 * will be placed into each buffer we provide. Note we are
993 * following the recommendation of section 3.4.4 of the manual
994 * here, and have "lengthened" the receive buffers accordingly.
995 */
996 if (sc->sc_32bit)
997 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN + 2) / 2);
998 else
999 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN / 2));
1000
1001 /* Reset the receive sequence counter. */
1002 CSR_WRITE(sc, SONIC_RSC, 0);
1003
1004 /* Clear the tally registers. */
1005 CSR_WRITE(sc, SONIC_CRCETC, 0xffff);
1006 CSR_WRITE(sc, SONIC_FAET, 0xffff);
1007 CSR_WRITE(sc, SONIC_MPT, 0xffff);
1008
1009 /* Set the receive filter. */
1010 sonic_set_filter(sc);
1011
1012 /*
1013 * Set the interrupt mask register.
1014 */
1015 sc->sc_imr = IMR_RFO | IMR_RBA | IMR_RBE | IMR_RDE |
1016 IMR_TXER | IMR_PTX | IMR_PRX;
1017 CSR_WRITE(sc, SONIC_IMR, sc->sc_imr);
1018
1019 /*
1020 * Start the receive process in motion. Note, we don't
1021 * start the transmit process until we actually try to
1022 * transmit packets.
1023 */
1024 CSR_WRITE(sc, SONIC_CR, CR_RXEN | CR_RRRA);
1025
1026 /*
1027 * ...all done!
1028 */
1029 ifp->if_flags |= IFF_RUNNING;
1030 ifp->if_flags &= ~IFF_OACTIVE;
1031
1032 out:
1033 if (error)
1034 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1035 return error;
1036 }
1037
1038 /*
1039 * sonic_rxdrain:
1040 *
1041 * Drain the receive queue.
1042 */
1043 void
1044 sonic_rxdrain(struct sonic_softc *sc)
1045 {
1046 struct sonic_descsoft *ds;
1047 int i;
1048
1049 for (i = 0; i < SONIC_NRXDESC; i++) {
1050 ds = &sc->sc_rxsoft[i];
1051 if (ds->ds_mbuf != NULL) {
1052 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1053 m_freem(ds->ds_mbuf);
1054 ds->ds_mbuf = NULL;
1055 }
1056 }
1057 }
1058
1059 /*
1060 * sonic_stop: [ifnet interface function]
1061 *
1062 * Stop transmission on the interface.
1063 */
1064 void
1065 sonic_stop(struct ifnet *ifp, int disable)
1066 {
1067 struct sonic_softc *sc = ifp->if_softc;
1068 struct sonic_descsoft *ds;
1069 int i;
1070
1071 /*
1072 * Disable interrupts.
1073 */
1074 CSR_WRITE(sc, SONIC_IMR, 0);
1075
1076 /*
1077 * Stop the transmitter, receiver, and timer.
1078 */
1079 CSR_WRITE(sc, SONIC_CR, CR_HTX|CR_RXDIS|CR_STP);
1080 for (i = 0; i < 1000; i++) {
1081 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) == 0)
1082 break;
1083 delay(2);
1084 }
1085 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) != 0)
1086 printf("%s: SONIC failed to stop\n", device_xname(sc->sc_dev));
1087
1088 /*
1089 * Release any queued transmit buffers.
1090 */
1091 for (i = 0; i < SONIC_NTXDESC; i++) {
1092 ds = &sc->sc_txsoft[i];
1093 if (ds->ds_mbuf != NULL) {
1094 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1095 m_freem(ds->ds_mbuf);
1096 ds->ds_mbuf = NULL;
1097 }
1098 }
1099
1100 /*
1101 * Mark the interface down and cancel the watchdog timer.
1102 */
1103 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1104 ifp->if_timer = 0;
1105
1106 if (disable)
1107 sonic_rxdrain(sc);
1108 }
1109
1110 /*
1111 * sonic_add_rxbuf:
1112 *
1113 * Add a receive buffer to the indicated descriptor.
1114 */
1115 int
1116 sonic_add_rxbuf(struct sonic_softc *sc, int idx)
1117 {
1118 struct sonic_descsoft *ds = &sc->sc_rxsoft[idx];
1119 struct mbuf *m;
1120 int error;
1121
1122 MGETHDR(m, M_DONTWAIT, MT_DATA);
1123 if (m == NULL)
1124 return ENOBUFS;
1125
1126 MCLGET(m, M_DONTWAIT);
1127 if ((m->m_flags & M_EXT) == 0) {
1128 m_freem(m);
1129 return ENOBUFS;
1130 }
1131
1132 if (ds->ds_mbuf != NULL)
1133 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1134
1135 ds->ds_mbuf = m;
1136
1137 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1138 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1139 BUS_DMA_READ|BUS_DMA_NOWAIT);
1140 if (error) {
1141 printf("%s: can't load rx DMA map %d, error = %d\n",
1142 device_xname(sc->sc_dev), idx, error);
1143 panic("sonic_add_rxbuf"); /* XXX */
1144 }
1145
1146 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1147 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1148
1149 SONIC_INIT_RXDESC(sc, idx);
1150
1151 return 0;
1152 }
1153
1154 static void
1155 sonic_set_camentry(struct sonic_softc *sc, int entry, const uint8_t *enaddr)
1156 {
1157
1158 if (sc->sc_32bit) {
1159 struct sonic_cda32 *cda = &sc->sc_cda32[entry];
1160
1161 cda->cda_entry = htosonic32(sc, entry);
1162 cda->cda_addr0 = htosonic32(sc, enaddr[0] | (enaddr[1] << 8));
1163 cda->cda_addr1 = htosonic32(sc, enaddr[2] | (enaddr[3] << 8));
1164 cda->cda_addr2 = htosonic32(sc, enaddr[4] | (enaddr[5] << 8));
1165 } else {
1166 struct sonic_cda16 *cda = &sc->sc_cda16[entry];
1167
1168 cda->cda_entry = htosonic16(sc, entry);
1169 cda->cda_addr0 = htosonic16(sc, enaddr[0] | (enaddr[1] << 8));
1170 cda->cda_addr1 = htosonic16(sc, enaddr[2] | (enaddr[3] << 8));
1171 cda->cda_addr2 = htosonic16(sc, enaddr[4] | (enaddr[5] << 8));
1172 }
1173 }
1174
1175 /*
1176 * sonic_set_filter:
1177 *
1178 * Set the SONIC receive filter.
1179 */
1180 void
1181 sonic_set_filter(struct sonic_softc *sc)
1182 {
1183 struct ethercom *ec = &sc->sc_ethercom;
1184 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1185 struct ether_multi *enm;
1186 struct ether_multistep step;
1187 int i, entry = 0;
1188 uint16_t camvalid = 0;
1189 uint16_t rcr = 0;
1190
1191 if (ifp->if_flags & IFF_BROADCAST)
1192 rcr |= RCR_BRD;
1193
1194 if (ifp->if_flags & IFF_PROMISC) {
1195 rcr |= RCR_PRO;
1196 goto allmulti;
1197 }
1198
1199 /* Put our station address in the first CAM slot. */
1200 sonic_set_camentry(sc, entry, CLLADDR(ifp->if_sadl));
1201 camvalid |= (1U << entry);
1202 entry++;
1203
1204 /* Add the multicast addresses to the CAM. */
1205 ETHER_FIRST_MULTI(step, ec, enm);
1206 while (enm != NULL) {
1207 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1208 /*
1209 * We must listen to a range of multicast addresses.
1210 * The only way to do this on the SONIC is to enable
1211 * reception of all multicast packets.
1212 */
1213 goto allmulti;
1214 }
1215
1216 if (entry == SONIC_NCAMENT) {
1217 /*
1218 * Out of CAM slots. Have to enable reception
1219 * of all multicast addresses.
1220 */
1221 goto allmulti;
1222 }
1223
1224 sonic_set_camentry(sc, entry, enm->enm_addrlo);
1225 camvalid |= (1U << entry);
1226 entry++;
1227
1228 ETHER_NEXT_MULTI(step, enm);
1229 }
1230
1231 ifp->if_flags &= ~IFF_ALLMULTI;
1232 goto setit;
1233
1234 allmulti:
1235 /* Use only the first CAM slot (station address). */
1236 camvalid = 0x0001;
1237 entry = 1;
1238 rcr |= RCR_AMC;
1239
1240 setit:
1241 /* set mask for the CAM Enable register */
1242 if (sc->sc_32bit) {
1243 if (entry == SONIC_NCAMENT)
1244 sc->sc_cdaenable32 = htosonic32(sc, camvalid);
1245 else
1246 sc->sc_cda32[entry].cda_entry =
1247 htosonic32(sc, camvalid);
1248 } else {
1249 if (entry == SONIC_NCAMENT)
1250 sc->sc_cdaenable16 = htosonic16(sc, camvalid);
1251 else
1252 sc->sc_cda16[entry].cda_entry =
1253 htosonic16(sc, camvalid);
1254 }
1255
1256 /* Load the CAM. */
1257 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_PREWRITE);
1258 CSR_WRITE(sc, SONIC_CDP, SONIC_CDCAMADDR(sc) & 0xffff);
1259 CSR_WRITE(sc, SONIC_CDC, entry);
1260 CSR_WRITE(sc, SONIC_CR, CR_LCAM);
1261 for (i = 0; i < 10000; i++) {
1262 if ((CSR_READ(sc, SONIC_CR) & CR_LCAM) == 0)
1263 break;
1264 delay(2);
1265 }
1266 if (CSR_READ(sc, SONIC_CR) & CR_LCAM)
1267 printf("%s: CAM load failed\n", device_xname(sc->sc_dev));
1268 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_POSTWRITE);
1269
1270 /* Set the receive control register. */
1271 CSR_WRITE(sc, SONIC_RCR, rcr);
1272 }
1273