dp83932.c revision 1.33 1 /* $NetBSD: dp83932.c,v 1.33 2010/01/19 22:06:24 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the National Semiconductor DP83932
34 * Systems-Oriented Network Interface Controller (SONIC).
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: dp83932.c,v 1.33 2010/01/19 22:06:24 pooka Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50
51 #include <uvm/uvm_extern.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_ether.h>
56
57 #include <net/bpf.h>
58
59 #include <sys/bus.h>
60 #include <sys/intr.h>
61
62 #include <dev/ic/dp83932reg.h>
63 #include <dev/ic/dp83932var.h>
64
65 static void sonic_start(struct ifnet *);
66 static void sonic_watchdog(struct ifnet *);
67 static int sonic_ioctl(struct ifnet *, u_long, void *);
68 static int sonic_init(struct ifnet *);
69 static void sonic_stop(struct ifnet *, int);
70
71 static bool sonic_shutdown(device_t, int);
72
73 static void sonic_reset(struct sonic_softc *);
74 static void sonic_rxdrain(struct sonic_softc *);
75 static int sonic_add_rxbuf(struct sonic_softc *, int);
76 static void sonic_set_filter(struct sonic_softc *);
77
78 static uint16_t sonic_txintr(struct sonic_softc *);
79 static void sonic_rxintr(struct sonic_softc *);
80
81 int sonic_copy_small = 0;
82
83 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
84
85 /*
86 * sonic_attach:
87 *
88 * Attach a SONIC interface to the system.
89 */
90 void
91 sonic_attach(struct sonic_softc *sc, const uint8_t *enaddr)
92 {
93 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
94 int i, rseg, error;
95 bus_dma_segment_t seg;
96 size_t cdatasize;
97 uint8_t *nullbuf;
98
99 /*
100 * Allocate the control data structures, and create and load the
101 * DMA map for it.
102 */
103 if (sc->sc_32bit)
104 cdatasize = sizeof(struct sonic_control_data32);
105 else
106 cdatasize = sizeof(struct sonic_control_data16);
107
108 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdatasize + ETHER_PAD_LEN,
109 PAGE_SIZE, (64 * 1024), &seg, 1, &rseg,
110 BUS_DMA_NOWAIT)) != 0) {
111 aprint_error_dev(sc->sc_dev,
112 "unable to allocate control data, error = %d\n", error);
113 goto fail_0;
114 }
115
116 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
117 cdatasize + ETHER_PAD_LEN, (void **) &sc->sc_cdata16,
118 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
119 aprint_error_dev(sc->sc_dev,
120 "unable to map control data, error = %d\n", error);
121 goto fail_1;
122 }
123 nullbuf = (uint8_t *)sc->sc_cdata16 + cdatasize;
124 memset(nullbuf, 0, ETHER_PAD_LEN);
125
126 if ((error = bus_dmamap_create(sc->sc_dmat,
127 cdatasize, 1, cdatasize, 0, BUS_DMA_NOWAIT,
128 &sc->sc_cddmamap)) != 0) {
129 aprint_error_dev(sc->sc_dev,
130 "unable to create control data DMA map, error = %d\n",
131 error);
132 goto fail_2;
133 }
134
135 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
136 sc->sc_cdata16, cdatasize, NULL, BUS_DMA_NOWAIT)) != 0) {
137 aprint_error_dev(sc->sc_dev,
138 "unable to load control data DMA map, error = %d\n", error);
139 goto fail_3;
140 }
141
142 /*
143 * Create the transmit buffer DMA maps.
144 */
145 for (i = 0; i < SONIC_NTXDESC; i++) {
146 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
147 SONIC_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
148 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
149 aprint_error_dev(sc->sc_dev,
150 "unable to create tx DMA map %d, error = %d\n",
151 i, error);
152 goto fail_4;
153 }
154 }
155
156 /*
157 * Create the receive buffer DMA maps.
158 */
159 for (i = 0; i < SONIC_NRXDESC; i++) {
160 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
161 MCLBYTES, 0, BUS_DMA_NOWAIT,
162 &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
163 aprint_error_dev(sc->sc_dev,
164 "unable to create rx DMA map %d, error = %d\n",
165 i, error);
166 goto fail_5;
167 }
168 sc->sc_rxsoft[i].ds_mbuf = NULL;
169 }
170
171 /*
172 * create and map the pad buffer
173 */
174 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
175 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT, &sc->sc_nulldmamap)) != 0) {
176 aprint_error_dev(sc->sc_dev,
177 "unable to create pad buffer DMA map, error = %d\n", error);
178 goto fail_5;
179 }
180
181 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
182 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
183 aprint_error_dev(sc->sc_dev,
184 "unable to load pad buffer DMA map, error = %d\n", error);
185 goto fail_6;
186 }
187 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
188 BUS_DMASYNC_PREWRITE);
189
190 /*
191 * Reset the chip to a known state.
192 */
193 sonic_reset(sc);
194
195 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
196 ether_sprintf(enaddr));
197
198 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
199 ifp->if_softc = sc;
200 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
201 ifp->if_ioctl = sonic_ioctl;
202 ifp->if_start = sonic_start;
203 ifp->if_watchdog = sonic_watchdog;
204 ifp->if_init = sonic_init;
205 ifp->if_stop = sonic_stop;
206 IFQ_SET_READY(&ifp->if_snd);
207
208 /*
209 * We can support 802.1Q VLAN-sized frames.
210 */
211 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
212
213 /*
214 * Attach the interface.
215 */
216 if_attach(ifp);
217 ether_ifattach(ifp, enaddr);
218
219 /*
220 * Make sure the interface is shutdown during reboot.
221 */
222 if (pmf_device_register1(sc->sc_dev, NULL, NULL, sonic_shutdown))
223 pmf_class_network_register(sc->sc_dev, ifp);
224 else
225 aprint_error_dev(sc->sc_dev,
226 "couldn't establish power handler\n");
227
228 return;
229
230 /*
231 * Free any resources we've allocated during the failed attach
232 * attempt. Do this in reverse order and fall through.
233 */
234 fail_6:
235 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
236 fail_5:
237 for (i = 0; i < SONIC_NRXDESC; i++) {
238 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
239 bus_dmamap_destroy(sc->sc_dmat,
240 sc->sc_rxsoft[i].ds_dmamap);
241 }
242 fail_4:
243 for (i = 0; i < SONIC_NTXDESC; i++) {
244 if (sc->sc_txsoft[i].ds_dmamap != NULL)
245 bus_dmamap_destroy(sc->sc_dmat,
246 sc->sc_txsoft[i].ds_dmamap);
247 }
248 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
249 fail_3:
250 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
251 fail_2:
252 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_cdata16, cdatasize);
253 fail_1:
254 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
255 fail_0:
256 return;
257 }
258
259 /*
260 * sonic_shutdown:
261 *
262 * Make sure the interface is stopped at reboot.
263 */
264 bool
265 sonic_shutdown(device_t self, int howto)
266 {
267 struct sonic_softc *sc = device_private(self);
268
269 sonic_stop(&sc->sc_ethercom.ec_if, 1);
270
271 return true;
272 }
273
274 /*
275 * sonic_start: [ifnet interface function]
276 *
277 * Start packet transmission on the interface.
278 */
279 void
280 sonic_start(struct ifnet *ifp)
281 {
282 struct sonic_softc *sc = ifp->if_softc;
283 struct mbuf *m0, *m;
284 struct sonic_tda16 *tda16;
285 struct sonic_tda32 *tda32;
286 struct sonic_descsoft *ds;
287 bus_dmamap_t dmamap;
288 int error, olasttx, nexttx, opending, totlen, olseg;
289 int seg = 0; /* XXX: gcc */
290
291 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
292 return;
293
294 /*
295 * Remember the previous txpending and the current "last txdesc
296 * used" index.
297 */
298 opending = sc->sc_txpending;
299 olasttx = sc->sc_txlast;
300
301 /*
302 * Loop through the send queue, setting up transmit descriptors
303 * until we drain the queue, or use up all available transmit
304 * descriptors. Leave one at the end for sanity's sake.
305 */
306 while (sc->sc_txpending < (SONIC_NTXDESC - 1)) {
307 /*
308 * Grab a packet off the queue.
309 */
310 IFQ_POLL(&ifp->if_snd, m0);
311 if (m0 == NULL)
312 break;
313 m = NULL;
314
315 /*
316 * Get the next available transmit descriptor.
317 */
318 nexttx = SONIC_NEXTTX(sc->sc_txlast);
319 ds = &sc->sc_txsoft[nexttx];
320 dmamap = ds->ds_dmamap;
321
322 /*
323 * Load the DMA map. If this fails, the packet either
324 * didn't fit in the allotted number of frags, or we were
325 * short on resources. In this case, we'll copy and try
326 * again.
327 */
328 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
329 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
330 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
331 dmamap->dm_nsegs == SONIC_NTXFRAGS)) {
332 if (error == 0)
333 bus_dmamap_unload(sc->sc_dmat, dmamap);
334 MGETHDR(m, M_DONTWAIT, MT_DATA);
335 if (m == NULL) {
336 printf("%s: unable to allocate Tx mbuf\n",
337 device_xname(sc->sc_dev));
338 break;
339 }
340 if (m0->m_pkthdr.len > MHLEN) {
341 MCLGET(m, M_DONTWAIT);
342 if ((m->m_flags & M_EXT) == 0) {
343 printf("%s: unable to allocate Tx "
344 "cluster\n",
345 device_xname(sc->sc_dev));
346 m_freem(m);
347 break;
348 }
349 }
350 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
351 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
352 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
353 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
354 if (error) {
355 printf("%s: unable to load Tx buffer, "
356 "error = %d\n", device_xname(sc->sc_dev),
357 error);
358 m_freem(m);
359 break;
360 }
361 }
362 IFQ_DEQUEUE(&ifp->if_snd, m0);
363 if (m != NULL) {
364 m_freem(m0);
365 m0 = m;
366 }
367
368 /*
369 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
370 */
371
372 /* Sync the DMA map. */
373 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
374 BUS_DMASYNC_PREWRITE);
375
376 /*
377 * Store a pointer to the packet so we can free it later.
378 */
379 ds->ds_mbuf = m0;
380
381 /*
382 * Initialize the transmit descriptor.
383 */
384 totlen = 0;
385 if (sc->sc_32bit) {
386 tda32 = &sc->sc_tda32[nexttx];
387 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
388 tda32->tda_frags[seg].frag_ptr1 =
389 htosonic32(sc,
390 (dmamap->dm_segs[seg].ds_addr >> 16) &
391 0xffff);
392 tda32->tda_frags[seg].frag_ptr0 =
393 htosonic32(sc,
394 dmamap->dm_segs[seg].ds_addr & 0xffff);
395 tda32->tda_frags[seg].frag_size =
396 htosonic32(sc, dmamap->dm_segs[seg].ds_len);
397 totlen += dmamap->dm_segs[seg].ds_len;
398 }
399 if (totlen < ETHER_PAD_LEN) {
400 tda32->tda_frags[seg].frag_ptr1 =
401 htosonic32(sc,
402 (sc->sc_nulldma >> 16) & 0xffff);
403 tda32->tda_frags[seg].frag_ptr0 =
404 htosonic32(sc, sc->sc_nulldma & 0xffff);
405 tda32->tda_frags[seg].frag_size =
406 htosonic32(sc, ETHER_PAD_LEN - totlen);
407 totlen = ETHER_PAD_LEN;
408 seg++;
409 }
410
411 tda32->tda_status = 0;
412 tda32->tda_pktconfig = 0;
413 tda32->tda_pktsize = htosonic32(sc, totlen);
414 tda32->tda_fragcnt = htosonic32(sc, seg);
415
416 /* Link it up. */
417 tda32->tda_frags[seg].frag_ptr0 =
418 htosonic32(sc, SONIC_CDTXADDR32(sc,
419 SONIC_NEXTTX(nexttx)) & 0xffff);
420
421 /* Sync the Tx descriptor. */
422 SONIC_CDTXSYNC32(sc, nexttx,
423 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
424 } else {
425 tda16 = &sc->sc_tda16[nexttx];
426 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
427 tda16->tda_frags[seg].frag_ptr1 =
428 htosonic16(sc,
429 (dmamap->dm_segs[seg].ds_addr >> 16) &
430 0xffff);
431 tda16->tda_frags[seg].frag_ptr0 =
432 htosonic16(sc,
433 dmamap->dm_segs[seg].ds_addr & 0xffff);
434 tda16->tda_frags[seg].frag_size =
435 htosonic16(sc, dmamap->dm_segs[seg].ds_len);
436 totlen += dmamap->dm_segs[seg].ds_len;
437 }
438 if (totlen < ETHER_PAD_LEN) {
439 tda16->tda_frags[seg].frag_ptr1 =
440 htosonic16(sc,
441 (sc->sc_nulldma >> 16) & 0xffff);
442 tda16->tda_frags[seg].frag_ptr0 =
443 htosonic16(sc, sc->sc_nulldma & 0xffff);
444 tda16->tda_frags[seg].frag_size =
445 htosonic16(sc, ETHER_PAD_LEN - totlen);
446 totlen = ETHER_PAD_LEN;
447 seg++;
448 }
449
450 tda16->tda_status = 0;
451 tda16->tda_pktconfig = 0;
452 tda16->tda_pktsize = htosonic16(sc, totlen);
453 tda16->tda_fragcnt = htosonic16(sc, seg);
454
455 /* Link it up. */
456 tda16->tda_frags[seg].frag_ptr0 =
457 htosonic16(sc, SONIC_CDTXADDR16(sc,
458 SONIC_NEXTTX(nexttx)) & 0xffff);
459
460 /* Sync the Tx descriptor. */
461 SONIC_CDTXSYNC16(sc, nexttx,
462 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
463 }
464
465 /* Advance the Tx pointer. */
466 sc->sc_txpending++;
467 sc->sc_txlast = nexttx;
468
469 /*
470 * Pass the packet to any BPF listeners.
471 */
472 if (ifp->if_bpf)
473 bpf_ops->bpf_mtap(ifp->if_bpf, m0);
474 }
475
476 if (sc->sc_txpending == (SONIC_NTXDESC - 1)) {
477 /* No more slots left; notify upper layer. */
478 ifp->if_flags |= IFF_OACTIVE;
479 }
480
481 if (sc->sc_txpending != opending) {
482 /*
483 * We enqueued packets. If the transmitter was idle,
484 * reset the txdirty pointer.
485 */
486 if (opending == 0)
487 sc->sc_txdirty = SONIC_NEXTTX(olasttx);
488
489 /*
490 * Stop the SONIC on the last packet we've set up,
491 * and clear end-of-list on the descriptor previous
492 * to our new chain.
493 *
494 * NOTE: our `seg' variable should still be valid!
495 */
496 if (sc->sc_32bit) {
497 olseg =
498 sonic32toh(sc, sc->sc_tda32[olasttx].tda_fragcnt);
499 sc->sc_tda32[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
500 htosonic32(sc, TDA_LINK_EOL);
501 SONIC_CDTXSYNC32(sc, sc->sc_txlast,
502 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
503 sc->sc_tda32[olasttx].tda_frags[olseg].frag_ptr0 &=
504 htosonic32(sc, ~TDA_LINK_EOL);
505 SONIC_CDTXSYNC32(sc, olasttx,
506 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
507 } else {
508 olseg =
509 sonic16toh(sc, sc->sc_tda16[olasttx].tda_fragcnt);
510 sc->sc_tda16[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
511 htosonic16(sc, TDA_LINK_EOL);
512 SONIC_CDTXSYNC16(sc, sc->sc_txlast,
513 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
514 sc->sc_tda16[olasttx].tda_frags[olseg].frag_ptr0 &=
515 htosonic16(sc, ~TDA_LINK_EOL);
516 SONIC_CDTXSYNC16(sc, olasttx,
517 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
518 }
519
520 /* Start the transmitter. */
521 CSR_WRITE(sc, SONIC_CR, CR_TXP);
522
523 /* Set a watchdog timer in case the chip flakes out. */
524 ifp->if_timer = 5;
525 }
526 }
527
528 /*
529 * sonic_watchdog: [ifnet interface function]
530 *
531 * Watchdog timer handler.
532 */
533 void
534 sonic_watchdog(struct ifnet *ifp)
535 {
536 struct sonic_softc *sc = ifp->if_softc;
537
538 printf("%s: device timeout\n", device_xname(sc->sc_dev));
539 ifp->if_oerrors++;
540
541 (void)sonic_init(ifp);
542 }
543
544 /*
545 * sonic_ioctl: [ifnet interface function]
546 *
547 * Handle control requests from the operator.
548 */
549 int
550 sonic_ioctl(struct ifnet *ifp, u_long cmd, void *data)
551 {
552 int s, error;
553
554 s = splnet();
555
556 error = ether_ioctl(ifp, cmd, data);
557 if (error == ENETRESET) {
558 /*
559 * Multicast list has changed; set the hardware
560 * filter accordingly.
561 */
562 if (ifp->if_flags & IFF_RUNNING)
563 (void)sonic_init(ifp);
564 error = 0;
565 }
566
567 splx(s);
568 return error;
569 }
570
571 /*
572 * sonic_intr:
573 *
574 * Interrupt service routine.
575 */
576 int
577 sonic_intr(void *arg)
578 {
579 struct sonic_softc *sc = arg;
580 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
581 uint16_t isr;
582 int handled = 0, wantinit;
583
584 for (wantinit = 0; wantinit == 0;) {
585 isr = CSR_READ(sc, SONIC_ISR) & sc->sc_imr;
586 if (isr == 0)
587 break;
588 CSR_WRITE(sc, SONIC_ISR, isr); /* ACK */
589
590 handled = 1;
591
592 if (isr & IMR_PRX)
593 sonic_rxintr(sc);
594
595 if (isr & (IMR_PTX|IMR_TXER)) {
596 if (sonic_txintr(sc) & TCR_FU) {
597 printf("%s: transmit FIFO underrun\n",
598 device_xname(sc->sc_dev));
599 wantinit = 1;
600 }
601 }
602
603 if (isr & (IMR_RFO|IMR_RBA|IMR_RBE|IMR_RDE)) {
604 #define PRINTERR(bit, str) \
605 if (isr & (bit)) \
606 printf("%s: %s\n",device_xname(sc->sc_dev), str)
607 PRINTERR(IMR_RFO, "receive FIFO overrun");
608 PRINTERR(IMR_RBA, "receive buffer exceeded");
609 PRINTERR(IMR_RBE, "receive buffers exhausted");
610 PRINTERR(IMR_RDE, "receive descriptors exhausted");
611 wantinit = 1;
612 }
613 }
614
615 if (handled) {
616 if (wantinit)
617 (void)sonic_init(ifp);
618 sonic_start(ifp);
619 }
620
621 return handled;
622 }
623
624 /*
625 * sonic_txintr:
626 *
627 * Helper; handle transmit complete interrupts.
628 */
629 uint16_t
630 sonic_txintr(struct sonic_softc *sc)
631 {
632 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
633 struct sonic_descsoft *ds;
634 struct sonic_tda32 *tda32;
635 struct sonic_tda16 *tda16;
636 uint16_t status, totstat = 0;
637 int i;
638
639 ifp->if_flags &= ~IFF_OACTIVE;
640
641 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
642 i = SONIC_NEXTTX(i), sc->sc_txpending--) {
643 ds = &sc->sc_txsoft[i];
644
645 if (sc->sc_32bit) {
646 SONIC_CDTXSYNC32(sc, i,
647 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
648 tda32 = &sc->sc_tda32[i];
649 status = sonic32toh(sc, tda32->tda_status);
650 SONIC_CDTXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
651 } else {
652 SONIC_CDTXSYNC16(sc, i,
653 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
654 tda16 = &sc->sc_tda16[i];
655 status = sonic16toh(sc, tda16->tda_status);
656 SONIC_CDTXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
657 }
658
659 if ((status & ~(TCR_EXDIS|TCR_CRCI|TCR_POWC|TCR_PINT)) == 0)
660 break;
661
662 totstat |= status;
663
664 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
665 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
666 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
667 m_freem(ds->ds_mbuf);
668 ds->ds_mbuf = NULL;
669
670 /*
671 * Check for errors and collisions.
672 */
673 if (status & TCR_PTX)
674 ifp->if_opackets++;
675 else
676 ifp->if_oerrors++;
677 ifp->if_collisions += TDA_STATUS_NCOL(status);
678 }
679
680 /* Update the dirty transmit buffer pointer. */
681 sc->sc_txdirty = i;
682
683 /*
684 * Cancel the watchdog timer if there are no pending
685 * transmissions.
686 */
687 if (sc->sc_txpending == 0)
688 ifp->if_timer = 0;
689
690 return totstat;
691 }
692
693 /*
694 * sonic_rxintr:
695 *
696 * Helper; handle receive interrupts.
697 */
698 void
699 sonic_rxintr(struct sonic_softc *sc)
700 {
701 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
702 struct sonic_descsoft *ds;
703 struct sonic_rda32 *rda32;
704 struct sonic_rda16 *rda16;
705 struct mbuf *m;
706 int i, len;
707 uint16_t status, bytecount, ptr0, ptr1, seqno;
708
709 for (i = sc->sc_rxptr;; i = SONIC_NEXTRX(i)) {
710 ds = &sc->sc_rxsoft[i];
711
712 if (sc->sc_32bit) {
713 SONIC_CDRXSYNC32(sc, i,
714 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
715 rda32 = &sc->sc_rda32[i];
716 SONIC_CDRXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
717 if (rda32->rda_inuse != 0)
718 break;
719 status = sonic32toh(sc, rda32->rda_status);
720 bytecount = sonic32toh(sc, rda32->rda_bytecount);
721 ptr0 = sonic32toh(sc, rda32->rda_pkt_ptr0);
722 ptr1 = sonic32toh(sc, rda32->rda_pkt_ptr1);
723 seqno = sonic32toh(sc, rda32->rda_seqno);
724 } else {
725 SONIC_CDRXSYNC16(sc, i,
726 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
727 rda16 = &sc->sc_rda16[i];
728 SONIC_CDRXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
729 if (rda16->rda_inuse != 0)
730 break;
731 status = sonic16toh(sc, rda16->rda_status);
732 bytecount = sonic16toh(sc, rda16->rda_bytecount);
733 ptr0 = sonic16toh(sc, rda16->rda_pkt_ptr0);
734 ptr1 = sonic16toh(sc, rda16->rda_pkt_ptr1);
735 seqno = sonic16toh(sc, rda16->rda_seqno);
736 }
737
738 /*
739 * Make absolutely sure this is the only packet
740 * in this receive buffer. Our entire Rx buffer
741 * management scheme depends on this, and if the
742 * SONIC didn't follow our rule, it means we've
743 * misconfigured it.
744 */
745 KASSERT(status & RCR_LPKT);
746
747 /*
748 * Make sure the packet arrived OK. If an error occurred,
749 * update stats and reset the descriptor. The buffer will
750 * be reused the next time the descriptor comes up in the
751 * ring.
752 */
753 if ((status & RCR_PRX) == 0) {
754 if (status & RCR_FAER)
755 printf("%s: Rx frame alignment error\n",
756 device_xname(sc->sc_dev));
757 else if (status & RCR_CRCR)
758 printf("%s: Rx CRC error\n",
759 device_xname(sc->sc_dev));
760 ifp->if_ierrors++;
761 SONIC_INIT_RXDESC(sc, i);
762 continue;
763 }
764
765 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
766 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
767
768 /*
769 * The SONIC includes the CRC with every packet.
770 */
771 len = bytecount - ETHER_CRC_LEN;
772
773 /*
774 * Ok, if the chip is in 32-bit mode, then receive
775 * buffers must be aligned to 32-bit boundaries,
776 * which means the payload is misaligned. In this
777 * case, we must allocate a new mbuf, and copy the
778 * packet into it, scooted forward 2 bytes to ensure
779 * proper alignment.
780 *
781 * Note, in 16-bit mode, we can configure the SONIC
782 * to do what we want, and we have.
783 */
784 #ifndef __NO_STRICT_ALIGNMENT
785 if (sc->sc_32bit) {
786 MGETHDR(m, M_DONTWAIT, MT_DATA);
787 if (m == NULL)
788 goto dropit;
789 if (len > (MHLEN - 2)) {
790 MCLGET(m, M_DONTWAIT);
791 if ((m->m_flags & M_EXT) == 0)
792 goto dropit;
793 }
794 m->m_data += 2;
795 /*
796 * Note that we use a cluster for incoming frames,
797 * so the buffer is virtually contiguous.
798 */
799 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
800 len);
801 SONIC_INIT_RXDESC(sc, i);
802 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
803 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
804 } else
805 #endif /* ! __NO_STRICT_ALIGNMENT */
806 /*
807 * If the packet is small enough to fit in a single
808 * header mbuf, allocate one and copy the data into
809 * it. This greatly reduces memory consumption when
810 * we receive lots of small packets.
811 */
812 if (sonic_copy_small != 0 && len <= (MHLEN - 2)) {
813 MGETHDR(m, M_DONTWAIT, MT_DATA);
814 if (m == NULL)
815 goto dropit;
816 m->m_data += 2;
817 /*
818 * Note that we use a cluster for incoming frames,
819 * so the buffer is virtually contiguous.
820 */
821 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
822 len);
823 SONIC_INIT_RXDESC(sc, i);
824 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
825 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
826 } else {
827 m = ds->ds_mbuf;
828 if (sonic_add_rxbuf(sc, i) != 0) {
829 dropit:
830 ifp->if_ierrors++;
831 SONIC_INIT_RXDESC(sc, i);
832 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
833 ds->ds_dmamap->dm_mapsize,
834 BUS_DMASYNC_PREREAD);
835 continue;
836 }
837 }
838
839 ifp->if_ipackets++;
840 m->m_pkthdr.rcvif = ifp;
841 m->m_pkthdr.len = m->m_len = len;
842
843 /*
844 * Pass this up to any BPF listeners.
845 */
846 if (ifp->if_bpf)
847 bpf_ops->bpf_mtap(ifp->if_bpf, m);
848
849 /* Pass it on. */
850 (*ifp->if_input)(ifp, m);
851 }
852
853 /* Update the receive pointer. */
854 sc->sc_rxptr = i;
855 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_PREVRX(i)));
856 }
857
858 /*
859 * sonic_reset:
860 *
861 * Perform a soft reset on the SONIC.
862 */
863 void
864 sonic_reset(struct sonic_softc *sc)
865 {
866
867 /* stop TX, RX and timer, and ensure RST is clear */
868 CSR_WRITE(sc, SONIC_CR, CR_STP | CR_RXDIS | CR_HTX);
869 delay(1000);
870
871 CSR_WRITE(sc, SONIC_CR, CR_RST);
872 delay(1000);
873
874 /* clear all interrupts */
875 CSR_WRITE(sc, SONIC_IMR, 0);
876 CSR_WRITE(sc, SONIC_ISR, IMR_ALL);
877
878 CSR_WRITE(sc, SONIC_CR, 0);
879 delay(1000);
880 }
881
882 /*
883 * sonic_init: [ifnet interface function]
884 *
885 * Initialize the interface. Must be called at splnet().
886 */
887 int
888 sonic_init(struct ifnet *ifp)
889 {
890 struct sonic_softc *sc = ifp->if_softc;
891 struct sonic_descsoft *ds;
892 int i, error = 0;
893 uint16_t reg;
894
895 /*
896 * Cancel any pending I/O.
897 */
898 sonic_stop(ifp, 0);
899
900 /*
901 * Reset the SONIC to a known state.
902 */
903 sonic_reset(sc);
904
905 /*
906 * Bring the SONIC into reset state, and program the DCR.
907 *
908 * Note: We don't bother optimizing the transmit and receive
909 * thresholds, here. TFT/RFT values should be set in MD attachments.
910 */
911 reg = sc->sc_dcr;
912 if (sc->sc_32bit)
913 reg |= DCR_DW;
914 CSR_WRITE(sc, SONIC_CR, CR_RST);
915 CSR_WRITE(sc, SONIC_DCR, reg);
916 CSR_WRITE(sc, SONIC_DCR2, sc->sc_dcr2);
917 CSR_WRITE(sc, SONIC_CR, 0);
918
919 /*
920 * Initialize the transmit descriptors.
921 */
922 if (sc->sc_32bit) {
923 for (i = 0; i < SONIC_NTXDESC; i++) {
924 memset(&sc->sc_tda32[i], 0, sizeof(struct sonic_tda32));
925 SONIC_CDTXSYNC32(sc, i,
926 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
927 }
928 } else {
929 for (i = 0; i < SONIC_NTXDESC; i++) {
930 memset(&sc->sc_tda16[i], 0, sizeof(struct sonic_tda16));
931 SONIC_CDTXSYNC16(sc, i,
932 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
933 }
934 }
935 sc->sc_txpending = 0;
936 sc->sc_txdirty = 0;
937 sc->sc_txlast = SONIC_NTXDESC - 1;
938
939 /*
940 * Initialize the receive descriptor ring.
941 */
942 for (i = 0; i < SONIC_NRXDESC; i++) {
943 ds = &sc->sc_rxsoft[i];
944 if (ds->ds_mbuf == NULL) {
945 if ((error = sonic_add_rxbuf(sc, i)) != 0) {
946 printf("%s: unable to allocate or map Rx "
947 "buffer %d, error = %d\n",
948 device_xname(sc->sc_dev), i, error);
949 /*
950 * XXX Should attempt to run with fewer receive
951 * XXX buffers instead of just failing.
952 */
953 sonic_rxdrain(sc);
954 goto out;
955 }
956 } else
957 SONIC_INIT_RXDESC(sc, i);
958 }
959 sc->sc_rxptr = 0;
960
961 /* Give the transmit ring to the SONIC. */
962 CSR_WRITE(sc, SONIC_UTDAR, (SONIC_CDTXADDR(sc, 0) >> 16) & 0xffff);
963 CSR_WRITE(sc, SONIC_CTDAR, SONIC_CDTXADDR(sc, 0) & 0xffff);
964
965 /* Give the receive descriptor ring to the SONIC. */
966 CSR_WRITE(sc, SONIC_URDAR, (SONIC_CDRXADDR(sc, 0) >> 16) & 0xffff);
967 CSR_WRITE(sc, SONIC_CRDAR, SONIC_CDRXADDR(sc, 0) & 0xffff);
968
969 /* Give the receive buffer ring to the SONIC. */
970 CSR_WRITE(sc, SONIC_URRAR, (SONIC_CDRRADDR(sc, 0) >> 16) & 0xffff);
971 CSR_WRITE(sc, SONIC_RSAR, SONIC_CDRRADDR(sc, 0) & 0xffff);
972 if (sc->sc_32bit)
973 CSR_WRITE(sc, SONIC_REAR,
974 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
975 sizeof(struct sonic_rra32)) & 0xffff);
976 else
977 CSR_WRITE(sc, SONIC_REAR,
978 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
979 sizeof(struct sonic_rra16)) & 0xffff);
980 CSR_WRITE(sc, SONIC_RRR, SONIC_CDRRADDR(sc, 0) & 0xffff);
981 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1));
982
983 /*
984 * Set the End-Of-Buffer counter such that only one packet
985 * will be placed into each buffer we provide. Note we are
986 * following the recommendation of section 3.4.4 of the manual
987 * here, and have "lengthened" the receive buffers accordingly.
988 */
989 if (sc->sc_32bit)
990 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN + 2) / 2);
991 else
992 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN / 2));
993
994 /* Reset the receive sequence counter. */
995 CSR_WRITE(sc, SONIC_RSC, 0);
996
997 /* Clear the tally registers. */
998 CSR_WRITE(sc, SONIC_CRCETC, 0xffff);
999 CSR_WRITE(sc, SONIC_FAET, 0xffff);
1000 CSR_WRITE(sc, SONIC_MPT, 0xffff);
1001
1002 /* Set the receive filter. */
1003 sonic_set_filter(sc);
1004
1005 /*
1006 * Set the interrupt mask register.
1007 */
1008 sc->sc_imr = IMR_RFO | IMR_RBA | IMR_RBE | IMR_RDE |
1009 IMR_TXER | IMR_PTX | IMR_PRX;
1010 CSR_WRITE(sc, SONIC_IMR, sc->sc_imr);
1011
1012 /*
1013 * Start the receive process in motion. Note, we don't
1014 * start the transmit process until we actually try to
1015 * transmit packets.
1016 */
1017 CSR_WRITE(sc, SONIC_CR, CR_RXEN | CR_RRRA);
1018
1019 /*
1020 * ...all done!
1021 */
1022 ifp->if_flags |= IFF_RUNNING;
1023 ifp->if_flags &= ~IFF_OACTIVE;
1024
1025 out:
1026 if (error)
1027 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1028 return error;
1029 }
1030
1031 /*
1032 * sonic_rxdrain:
1033 *
1034 * Drain the receive queue.
1035 */
1036 void
1037 sonic_rxdrain(struct sonic_softc *sc)
1038 {
1039 struct sonic_descsoft *ds;
1040 int i;
1041
1042 for (i = 0; i < SONIC_NRXDESC; i++) {
1043 ds = &sc->sc_rxsoft[i];
1044 if (ds->ds_mbuf != NULL) {
1045 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1046 m_freem(ds->ds_mbuf);
1047 ds->ds_mbuf = NULL;
1048 }
1049 }
1050 }
1051
1052 /*
1053 * sonic_stop: [ifnet interface function]
1054 *
1055 * Stop transmission on the interface.
1056 */
1057 void
1058 sonic_stop(struct ifnet *ifp, int disable)
1059 {
1060 struct sonic_softc *sc = ifp->if_softc;
1061 struct sonic_descsoft *ds;
1062 int i;
1063
1064 /*
1065 * Disable interrupts.
1066 */
1067 CSR_WRITE(sc, SONIC_IMR, 0);
1068
1069 /*
1070 * Stop the transmitter, receiver, and timer.
1071 */
1072 CSR_WRITE(sc, SONIC_CR, CR_HTX|CR_RXDIS|CR_STP);
1073 for (i = 0; i < 1000; i++) {
1074 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) == 0)
1075 break;
1076 delay(2);
1077 }
1078 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) != 0)
1079 printf("%s: SONIC failed to stop\n", device_xname(sc->sc_dev));
1080
1081 /*
1082 * Release any queued transmit buffers.
1083 */
1084 for (i = 0; i < SONIC_NTXDESC; i++) {
1085 ds = &sc->sc_txsoft[i];
1086 if (ds->ds_mbuf != NULL) {
1087 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1088 m_freem(ds->ds_mbuf);
1089 ds->ds_mbuf = NULL;
1090 }
1091 }
1092
1093 /*
1094 * Mark the interface down and cancel the watchdog timer.
1095 */
1096 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1097 ifp->if_timer = 0;
1098
1099 if (disable)
1100 sonic_rxdrain(sc);
1101 }
1102
1103 /*
1104 * sonic_add_rxbuf:
1105 *
1106 * Add a receive buffer to the indicated descriptor.
1107 */
1108 int
1109 sonic_add_rxbuf(struct sonic_softc *sc, int idx)
1110 {
1111 struct sonic_descsoft *ds = &sc->sc_rxsoft[idx];
1112 struct mbuf *m;
1113 int error;
1114
1115 MGETHDR(m, M_DONTWAIT, MT_DATA);
1116 if (m == NULL)
1117 return ENOBUFS;
1118
1119 MCLGET(m, M_DONTWAIT);
1120 if ((m->m_flags & M_EXT) == 0) {
1121 m_freem(m);
1122 return ENOBUFS;
1123 }
1124
1125 if (ds->ds_mbuf != NULL)
1126 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1127
1128 ds->ds_mbuf = m;
1129
1130 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1131 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1132 BUS_DMA_READ|BUS_DMA_NOWAIT);
1133 if (error) {
1134 printf("%s: can't load rx DMA map %d, error = %d\n",
1135 device_xname(sc->sc_dev), idx, error);
1136 panic("sonic_add_rxbuf"); /* XXX */
1137 }
1138
1139 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1140 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1141
1142 SONIC_INIT_RXDESC(sc, idx);
1143
1144 return 0;
1145 }
1146
1147 static void
1148 sonic_set_camentry(struct sonic_softc *sc, int entry, const uint8_t *enaddr)
1149 {
1150
1151 if (sc->sc_32bit) {
1152 struct sonic_cda32 *cda = &sc->sc_cda32[entry];
1153
1154 cda->cda_entry = htosonic32(sc, entry);
1155 cda->cda_addr0 = htosonic32(sc, enaddr[0] | (enaddr[1] << 8));
1156 cda->cda_addr1 = htosonic32(sc, enaddr[2] | (enaddr[3] << 8));
1157 cda->cda_addr2 = htosonic32(sc, enaddr[4] | (enaddr[5] << 8));
1158 } else {
1159 struct sonic_cda16 *cda = &sc->sc_cda16[entry];
1160
1161 cda->cda_entry = htosonic16(sc, entry);
1162 cda->cda_addr0 = htosonic16(sc, enaddr[0] | (enaddr[1] << 8));
1163 cda->cda_addr1 = htosonic16(sc, enaddr[2] | (enaddr[3] << 8));
1164 cda->cda_addr2 = htosonic16(sc, enaddr[4] | (enaddr[5] << 8));
1165 }
1166 }
1167
1168 /*
1169 * sonic_set_filter:
1170 *
1171 * Set the SONIC receive filter.
1172 */
1173 void
1174 sonic_set_filter(struct sonic_softc *sc)
1175 {
1176 struct ethercom *ec = &sc->sc_ethercom;
1177 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1178 struct ether_multi *enm;
1179 struct ether_multistep step;
1180 int i, entry = 0;
1181 uint16_t camvalid = 0;
1182 uint16_t rcr = 0;
1183
1184 if (ifp->if_flags & IFF_BROADCAST)
1185 rcr |= RCR_BRD;
1186
1187 if (ifp->if_flags & IFF_PROMISC) {
1188 rcr |= RCR_PRO;
1189 goto allmulti;
1190 }
1191
1192 /* Put our station address in the first CAM slot. */
1193 sonic_set_camentry(sc, entry, CLLADDR(ifp->if_sadl));
1194 camvalid |= (1U << entry);
1195 entry++;
1196
1197 /* Add the multicast addresses to the CAM. */
1198 ETHER_FIRST_MULTI(step, ec, enm);
1199 while (enm != NULL) {
1200 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1201 /*
1202 * We must listen to a range of multicast addresses.
1203 * The only way to do this on the SONIC is to enable
1204 * reception of all multicast packets.
1205 */
1206 goto allmulti;
1207 }
1208
1209 if (entry == SONIC_NCAMENT) {
1210 /*
1211 * Out of CAM slots. Have to enable reception
1212 * of all multicast addresses.
1213 */
1214 goto allmulti;
1215 }
1216
1217 sonic_set_camentry(sc, entry, enm->enm_addrlo);
1218 camvalid |= (1U << entry);
1219 entry++;
1220
1221 ETHER_NEXT_MULTI(step, enm);
1222 }
1223
1224 ifp->if_flags &= ~IFF_ALLMULTI;
1225 goto setit;
1226
1227 allmulti:
1228 /* Use only the first CAM slot (station address). */
1229 camvalid = 0x0001;
1230 entry = 1;
1231 rcr |= RCR_AMC;
1232
1233 setit:
1234 /* set mask for the CAM Enable register */
1235 if (sc->sc_32bit) {
1236 if (entry == SONIC_NCAMENT)
1237 sc->sc_cdaenable32 = htosonic32(sc, camvalid);
1238 else
1239 sc->sc_cda32[entry].cda_entry =
1240 htosonic32(sc, camvalid);
1241 } else {
1242 if (entry == SONIC_NCAMENT)
1243 sc->sc_cdaenable16 = htosonic16(sc, camvalid);
1244 else
1245 sc->sc_cda16[entry].cda_entry =
1246 htosonic16(sc, camvalid);
1247 }
1248
1249 /* Load the CAM. */
1250 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_PREWRITE);
1251 CSR_WRITE(sc, SONIC_CDP, SONIC_CDCAMADDR(sc) & 0xffff);
1252 CSR_WRITE(sc, SONIC_CDC, entry);
1253 CSR_WRITE(sc, SONIC_CR, CR_LCAM);
1254 for (i = 0; i < 10000; i++) {
1255 if ((CSR_READ(sc, SONIC_CR) & CR_LCAM) == 0)
1256 break;
1257 delay(2);
1258 }
1259 if (CSR_READ(sc, SONIC_CR) & CR_LCAM)
1260 printf("%s: CAM load failed\n", device_xname(sc->sc_dev));
1261 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_POSTWRITE);
1262
1263 /* Set the receive control register. */
1264 CSR_WRITE(sc, SONIC_RCR, rcr);
1265 }
1266