dp83932.c revision 1.40 1 /* $NetBSD: dp83932.c,v 1.40 2017/05/23 02:19:14 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the National Semiconductor DP83932
34 * Systems-Oriented Network Interface Controller (SONIC).
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: dp83932.c,v 1.40 2017/05/23 02:19:14 ozaki-r Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54
55 #include <net/bpf.h>
56
57 #include <sys/bus.h>
58 #include <sys/intr.h>
59
60 #include <dev/ic/dp83932reg.h>
61 #include <dev/ic/dp83932var.h>
62
63 static void sonic_start(struct ifnet *);
64 static void sonic_watchdog(struct ifnet *);
65 static int sonic_ioctl(struct ifnet *, u_long, void *);
66 static int sonic_init(struct ifnet *);
67 static void sonic_stop(struct ifnet *, int);
68
69 static bool sonic_shutdown(device_t, int);
70
71 static void sonic_reset(struct sonic_softc *);
72 static void sonic_rxdrain(struct sonic_softc *);
73 static int sonic_add_rxbuf(struct sonic_softc *, int);
74 static void sonic_set_filter(struct sonic_softc *);
75
76 static uint16_t sonic_txintr(struct sonic_softc *);
77 static void sonic_rxintr(struct sonic_softc *);
78
79 int sonic_copy_small = 0;
80
81 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
82
83 /*
84 * sonic_attach:
85 *
86 * Attach a SONIC interface to the system.
87 */
88 void
89 sonic_attach(struct sonic_softc *sc, const uint8_t *enaddr)
90 {
91 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
92 int i, rseg, error;
93 bus_dma_segment_t seg;
94 size_t cdatasize;
95 uint8_t *nullbuf;
96
97 /*
98 * Allocate the control data structures, and create and load the
99 * DMA map for it.
100 */
101 if (sc->sc_32bit)
102 cdatasize = sizeof(struct sonic_control_data32);
103 else
104 cdatasize = sizeof(struct sonic_control_data16);
105
106 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdatasize + ETHER_PAD_LEN,
107 PAGE_SIZE, (64 * 1024), &seg, 1, &rseg,
108 BUS_DMA_NOWAIT)) != 0) {
109 aprint_error_dev(sc->sc_dev,
110 "unable to allocate control data, error = %d\n", error);
111 goto fail_0;
112 }
113
114 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
115 cdatasize + ETHER_PAD_LEN, (void **) &sc->sc_cdata16,
116 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
117 aprint_error_dev(sc->sc_dev,
118 "unable to map control data, error = %d\n", error);
119 goto fail_1;
120 }
121 nullbuf = (uint8_t *)sc->sc_cdata16 + cdatasize;
122 memset(nullbuf, 0, ETHER_PAD_LEN);
123
124 if ((error = bus_dmamap_create(sc->sc_dmat,
125 cdatasize, 1, cdatasize, 0, BUS_DMA_NOWAIT,
126 &sc->sc_cddmamap)) != 0) {
127 aprint_error_dev(sc->sc_dev,
128 "unable to create control data DMA map, error = %d\n",
129 error);
130 goto fail_2;
131 }
132
133 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
134 sc->sc_cdata16, cdatasize, NULL, BUS_DMA_NOWAIT)) != 0) {
135 aprint_error_dev(sc->sc_dev,
136 "unable to load control data DMA map, error = %d\n", error);
137 goto fail_3;
138 }
139
140 /*
141 * Create the transmit buffer DMA maps.
142 */
143 for (i = 0; i < SONIC_NTXDESC; i++) {
144 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
145 SONIC_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
146 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
147 aprint_error_dev(sc->sc_dev,
148 "unable to create tx DMA map %d, error = %d\n",
149 i, error);
150 goto fail_4;
151 }
152 }
153
154 /*
155 * Create the receive buffer DMA maps.
156 */
157 for (i = 0; i < SONIC_NRXDESC; i++) {
158 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
159 MCLBYTES, 0, BUS_DMA_NOWAIT,
160 &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
161 aprint_error_dev(sc->sc_dev,
162 "unable to create rx DMA map %d, error = %d\n",
163 i, error);
164 goto fail_5;
165 }
166 sc->sc_rxsoft[i].ds_mbuf = NULL;
167 }
168
169 /*
170 * create and map the pad buffer
171 */
172 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
173 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT, &sc->sc_nulldmamap)) != 0) {
174 aprint_error_dev(sc->sc_dev,
175 "unable to create pad buffer DMA map, error = %d\n", error);
176 goto fail_5;
177 }
178
179 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
180 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
181 aprint_error_dev(sc->sc_dev,
182 "unable to load pad buffer DMA map, error = %d\n", error);
183 goto fail_6;
184 }
185 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
186 BUS_DMASYNC_PREWRITE);
187
188 /*
189 * Reset the chip to a known state.
190 */
191 sonic_reset(sc);
192
193 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
194 ether_sprintf(enaddr));
195
196 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
197 ifp->if_softc = sc;
198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
199 ifp->if_ioctl = sonic_ioctl;
200 ifp->if_start = sonic_start;
201 ifp->if_watchdog = sonic_watchdog;
202 ifp->if_init = sonic_init;
203 ifp->if_stop = sonic_stop;
204 IFQ_SET_READY(&ifp->if_snd);
205
206 /*
207 * We can support 802.1Q VLAN-sized frames.
208 */
209 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
210
211 /*
212 * Attach the interface.
213 */
214 if_attach(ifp);
215 if_deferred_start_init(ifp, NULL);
216 ether_ifattach(ifp, enaddr);
217
218 /*
219 * Make sure the interface is shutdown during reboot.
220 */
221 if (pmf_device_register1(sc->sc_dev, NULL, NULL, sonic_shutdown))
222 pmf_class_network_register(sc->sc_dev, ifp);
223 else
224 aprint_error_dev(sc->sc_dev,
225 "couldn't establish power handler\n");
226
227 return;
228
229 /*
230 * Free any resources we've allocated during the failed attach
231 * attempt. Do this in reverse order and fall through.
232 */
233 fail_6:
234 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
235 fail_5:
236 for (i = 0; i < SONIC_NRXDESC; i++) {
237 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
238 bus_dmamap_destroy(sc->sc_dmat,
239 sc->sc_rxsoft[i].ds_dmamap);
240 }
241 fail_4:
242 for (i = 0; i < SONIC_NTXDESC; i++) {
243 if (sc->sc_txsoft[i].ds_dmamap != NULL)
244 bus_dmamap_destroy(sc->sc_dmat,
245 sc->sc_txsoft[i].ds_dmamap);
246 }
247 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
248 fail_3:
249 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
250 fail_2:
251 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_cdata16, cdatasize);
252 fail_1:
253 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
254 fail_0:
255 return;
256 }
257
258 /*
259 * sonic_shutdown:
260 *
261 * Make sure the interface is stopped at reboot.
262 */
263 bool
264 sonic_shutdown(device_t self, int howto)
265 {
266 struct sonic_softc *sc = device_private(self);
267
268 sonic_stop(&sc->sc_ethercom.ec_if, 1);
269
270 return true;
271 }
272
273 /*
274 * sonic_start: [ifnet interface function]
275 *
276 * Start packet transmission on the interface.
277 */
278 void
279 sonic_start(struct ifnet *ifp)
280 {
281 struct sonic_softc *sc = ifp->if_softc;
282 struct mbuf *m0, *m;
283 struct sonic_tda16 *tda16;
284 struct sonic_tda32 *tda32;
285 struct sonic_descsoft *ds;
286 bus_dmamap_t dmamap;
287 int error, olasttx, nexttx, opending, totlen, olseg;
288 int seg = 0; /* XXX: gcc */
289
290 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
291 return;
292
293 /*
294 * Remember the previous txpending and the current "last txdesc
295 * used" index.
296 */
297 opending = sc->sc_txpending;
298 olasttx = sc->sc_txlast;
299
300 /*
301 * Loop through the send queue, setting up transmit descriptors
302 * until we drain the queue, or use up all available transmit
303 * descriptors. Leave one at the end for sanity's sake.
304 */
305 while (sc->sc_txpending < (SONIC_NTXDESC - 1)) {
306 /*
307 * Grab a packet off the queue.
308 */
309 IFQ_POLL(&ifp->if_snd, m0);
310 if (m0 == NULL)
311 break;
312 m = NULL;
313
314 /*
315 * Get the next available transmit descriptor.
316 */
317 nexttx = SONIC_NEXTTX(sc->sc_txlast);
318 ds = &sc->sc_txsoft[nexttx];
319 dmamap = ds->ds_dmamap;
320
321 /*
322 * Load the DMA map. If this fails, the packet either
323 * didn't fit in the allotted number of frags, or we were
324 * short on resources. In this case, we'll copy and try
325 * again.
326 */
327 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
328 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
329 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
330 dmamap->dm_nsegs == SONIC_NTXFRAGS)) {
331 if (error == 0)
332 bus_dmamap_unload(sc->sc_dmat, dmamap);
333 MGETHDR(m, M_DONTWAIT, MT_DATA);
334 if (m == NULL) {
335 printf("%s: unable to allocate Tx mbuf\n",
336 device_xname(sc->sc_dev));
337 break;
338 }
339 if (m0->m_pkthdr.len > MHLEN) {
340 MCLGET(m, M_DONTWAIT);
341 if ((m->m_flags & M_EXT) == 0) {
342 printf("%s: unable to allocate Tx "
343 "cluster\n",
344 device_xname(sc->sc_dev));
345 m_freem(m);
346 break;
347 }
348 }
349 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
350 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
351 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
352 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
353 if (error) {
354 printf("%s: unable to load Tx buffer, "
355 "error = %d\n", device_xname(sc->sc_dev),
356 error);
357 m_freem(m);
358 break;
359 }
360 }
361 IFQ_DEQUEUE(&ifp->if_snd, m0);
362 if (m != NULL) {
363 m_freem(m0);
364 m0 = m;
365 }
366
367 /*
368 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
369 */
370
371 /* Sync the DMA map. */
372 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
373 BUS_DMASYNC_PREWRITE);
374
375 /*
376 * Store a pointer to the packet so we can free it later.
377 */
378 ds->ds_mbuf = m0;
379
380 /*
381 * Initialize the transmit descriptor.
382 */
383 totlen = 0;
384 if (sc->sc_32bit) {
385 tda32 = &sc->sc_tda32[nexttx];
386 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
387 tda32->tda_frags[seg].frag_ptr1 =
388 htosonic32(sc,
389 (dmamap->dm_segs[seg].ds_addr >> 16) &
390 0xffff);
391 tda32->tda_frags[seg].frag_ptr0 =
392 htosonic32(sc,
393 dmamap->dm_segs[seg].ds_addr & 0xffff);
394 tda32->tda_frags[seg].frag_size =
395 htosonic32(sc, dmamap->dm_segs[seg].ds_len);
396 totlen += dmamap->dm_segs[seg].ds_len;
397 }
398 if (totlen < ETHER_PAD_LEN) {
399 tda32->tda_frags[seg].frag_ptr1 =
400 htosonic32(sc,
401 (sc->sc_nulldma >> 16) & 0xffff);
402 tda32->tda_frags[seg].frag_ptr0 =
403 htosonic32(sc, sc->sc_nulldma & 0xffff);
404 tda32->tda_frags[seg].frag_size =
405 htosonic32(sc, ETHER_PAD_LEN - totlen);
406 totlen = ETHER_PAD_LEN;
407 seg++;
408 }
409
410 tda32->tda_status = 0;
411 tda32->tda_pktconfig = 0;
412 tda32->tda_pktsize = htosonic32(sc, totlen);
413 tda32->tda_fragcnt = htosonic32(sc, seg);
414
415 /* Link it up. */
416 tda32->tda_frags[seg].frag_ptr0 =
417 htosonic32(sc, SONIC_CDTXADDR32(sc,
418 SONIC_NEXTTX(nexttx)) & 0xffff);
419
420 /* Sync the Tx descriptor. */
421 SONIC_CDTXSYNC32(sc, nexttx,
422 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
423 } else {
424 tda16 = &sc->sc_tda16[nexttx];
425 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
426 tda16->tda_frags[seg].frag_ptr1 =
427 htosonic16(sc,
428 (dmamap->dm_segs[seg].ds_addr >> 16) &
429 0xffff);
430 tda16->tda_frags[seg].frag_ptr0 =
431 htosonic16(sc,
432 dmamap->dm_segs[seg].ds_addr & 0xffff);
433 tda16->tda_frags[seg].frag_size =
434 htosonic16(sc, dmamap->dm_segs[seg].ds_len);
435 totlen += dmamap->dm_segs[seg].ds_len;
436 }
437 if (totlen < ETHER_PAD_LEN) {
438 tda16->tda_frags[seg].frag_ptr1 =
439 htosonic16(sc,
440 (sc->sc_nulldma >> 16) & 0xffff);
441 tda16->tda_frags[seg].frag_ptr0 =
442 htosonic16(sc, sc->sc_nulldma & 0xffff);
443 tda16->tda_frags[seg].frag_size =
444 htosonic16(sc, ETHER_PAD_LEN - totlen);
445 totlen = ETHER_PAD_LEN;
446 seg++;
447 }
448
449 tda16->tda_status = 0;
450 tda16->tda_pktconfig = 0;
451 tda16->tda_pktsize = htosonic16(sc, totlen);
452 tda16->tda_fragcnt = htosonic16(sc, seg);
453
454 /* Link it up. */
455 tda16->tda_frags[seg].frag_ptr0 =
456 htosonic16(sc, SONIC_CDTXADDR16(sc,
457 SONIC_NEXTTX(nexttx)) & 0xffff);
458
459 /* Sync the Tx descriptor. */
460 SONIC_CDTXSYNC16(sc, nexttx,
461 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
462 }
463
464 /* Advance the Tx pointer. */
465 sc->sc_txpending++;
466 sc->sc_txlast = nexttx;
467
468 /*
469 * Pass the packet to any BPF listeners.
470 */
471 bpf_mtap(ifp, m0);
472 }
473
474 if (sc->sc_txpending == (SONIC_NTXDESC - 1)) {
475 /* No more slots left; notify upper layer. */
476 ifp->if_flags |= IFF_OACTIVE;
477 }
478
479 if (sc->sc_txpending != opending) {
480 /*
481 * We enqueued packets. If the transmitter was idle,
482 * reset the txdirty pointer.
483 */
484 if (opending == 0)
485 sc->sc_txdirty = SONIC_NEXTTX(olasttx);
486
487 /*
488 * Stop the SONIC on the last packet we've set up,
489 * and clear end-of-list on the descriptor previous
490 * to our new chain.
491 *
492 * NOTE: our `seg' variable should still be valid!
493 */
494 if (sc->sc_32bit) {
495 olseg =
496 sonic32toh(sc, sc->sc_tda32[olasttx].tda_fragcnt);
497 sc->sc_tda32[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
498 htosonic32(sc, TDA_LINK_EOL);
499 SONIC_CDTXSYNC32(sc, sc->sc_txlast,
500 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
501 sc->sc_tda32[olasttx].tda_frags[olseg].frag_ptr0 &=
502 htosonic32(sc, ~TDA_LINK_EOL);
503 SONIC_CDTXSYNC32(sc, olasttx,
504 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
505 } else {
506 olseg =
507 sonic16toh(sc, sc->sc_tda16[olasttx].tda_fragcnt);
508 sc->sc_tda16[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
509 htosonic16(sc, TDA_LINK_EOL);
510 SONIC_CDTXSYNC16(sc, sc->sc_txlast,
511 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
512 sc->sc_tda16[olasttx].tda_frags[olseg].frag_ptr0 &=
513 htosonic16(sc, ~TDA_LINK_EOL);
514 SONIC_CDTXSYNC16(sc, olasttx,
515 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
516 }
517
518 /* Start the transmitter. */
519 CSR_WRITE(sc, SONIC_CR, CR_TXP);
520
521 /* Set a watchdog timer in case the chip flakes out. */
522 ifp->if_timer = 5;
523 }
524 }
525
526 /*
527 * sonic_watchdog: [ifnet interface function]
528 *
529 * Watchdog timer handler.
530 */
531 void
532 sonic_watchdog(struct ifnet *ifp)
533 {
534 struct sonic_softc *sc = ifp->if_softc;
535
536 printf("%s: device timeout\n", device_xname(sc->sc_dev));
537 ifp->if_oerrors++;
538
539 (void)sonic_init(ifp);
540 }
541
542 /*
543 * sonic_ioctl: [ifnet interface function]
544 *
545 * Handle control requests from the operator.
546 */
547 int
548 sonic_ioctl(struct ifnet *ifp, u_long cmd, void *data)
549 {
550 int s, error;
551
552 s = splnet();
553
554 error = ether_ioctl(ifp, cmd, data);
555 if (error == ENETRESET) {
556 /*
557 * Multicast list has changed; set the hardware
558 * filter accordingly.
559 */
560 if (ifp->if_flags & IFF_RUNNING)
561 (void)sonic_init(ifp);
562 error = 0;
563 }
564
565 splx(s);
566 return error;
567 }
568
569 /*
570 * sonic_intr:
571 *
572 * Interrupt service routine.
573 */
574 int
575 sonic_intr(void *arg)
576 {
577 struct sonic_softc *sc = arg;
578 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
579 uint16_t isr;
580 int handled = 0, wantinit;
581
582 for (wantinit = 0; wantinit == 0;) {
583 isr = CSR_READ(sc, SONIC_ISR) & sc->sc_imr;
584 if (isr == 0)
585 break;
586 CSR_WRITE(sc, SONIC_ISR, isr); /* ACK */
587
588 handled = 1;
589
590 if (isr & IMR_PRX)
591 sonic_rxintr(sc);
592
593 if (isr & (IMR_PTX|IMR_TXER)) {
594 if (sonic_txintr(sc) & TCR_FU) {
595 printf("%s: transmit FIFO underrun\n",
596 device_xname(sc->sc_dev));
597 wantinit = 1;
598 }
599 }
600
601 if (isr & (IMR_RFO|IMR_RBA|IMR_RBE|IMR_RDE)) {
602 #define PRINTERR(bit, str) \
603 if (isr & (bit)) \
604 printf("%s: %s\n",device_xname(sc->sc_dev), str)
605 PRINTERR(IMR_RFO, "receive FIFO overrun");
606 PRINTERR(IMR_RBA, "receive buffer exceeded");
607 PRINTERR(IMR_RBE, "receive buffers exhausted");
608 PRINTERR(IMR_RDE, "receive descriptors exhausted");
609 wantinit = 1;
610 }
611 }
612
613 if (handled) {
614 if (wantinit)
615 (void)sonic_init(ifp);
616 if_schedule_deferred_start(ifp);
617 }
618
619 return handled;
620 }
621
622 /*
623 * sonic_txintr:
624 *
625 * Helper; handle transmit complete interrupts.
626 */
627 uint16_t
628 sonic_txintr(struct sonic_softc *sc)
629 {
630 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
631 struct sonic_descsoft *ds;
632 struct sonic_tda32 *tda32;
633 struct sonic_tda16 *tda16;
634 uint16_t status, totstat = 0;
635 int i;
636
637 ifp->if_flags &= ~IFF_OACTIVE;
638
639 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
640 i = SONIC_NEXTTX(i), sc->sc_txpending--) {
641 ds = &sc->sc_txsoft[i];
642
643 if (sc->sc_32bit) {
644 SONIC_CDTXSYNC32(sc, i,
645 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
646 tda32 = &sc->sc_tda32[i];
647 status = sonic32toh(sc, tda32->tda_status);
648 SONIC_CDTXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
649 } else {
650 SONIC_CDTXSYNC16(sc, i,
651 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
652 tda16 = &sc->sc_tda16[i];
653 status = sonic16toh(sc, tda16->tda_status);
654 SONIC_CDTXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
655 }
656
657 if ((status & ~(TCR_EXDIS|TCR_CRCI|TCR_POWC|TCR_PINT)) == 0)
658 break;
659
660 totstat |= status;
661
662 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
663 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
664 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
665 m_freem(ds->ds_mbuf);
666 ds->ds_mbuf = NULL;
667
668 /*
669 * Check for errors and collisions.
670 */
671 if (status & TCR_PTX)
672 ifp->if_opackets++;
673 else
674 ifp->if_oerrors++;
675 ifp->if_collisions += TDA_STATUS_NCOL(status);
676 }
677
678 /* Update the dirty transmit buffer pointer. */
679 sc->sc_txdirty = i;
680
681 /*
682 * Cancel the watchdog timer if there are no pending
683 * transmissions.
684 */
685 if (sc->sc_txpending == 0)
686 ifp->if_timer = 0;
687
688 return totstat;
689 }
690
691 /*
692 * sonic_rxintr:
693 *
694 * Helper; handle receive interrupts.
695 */
696 void
697 sonic_rxintr(struct sonic_softc *sc)
698 {
699 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
700 struct sonic_descsoft *ds;
701 struct sonic_rda32 *rda32;
702 struct sonic_rda16 *rda16;
703 struct mbuf *m;
704 int i, len;
705 uint16_t status, bytecount /*, ptr0, ptr1, seqno */;
706
707 for (i = sc->sc_rxptr;; i = SONIC_NEXTRX(i)) {
708 ds = &sc->sc_rxsoft[i];
709
710 if (sc->sc_32bit) {
711 SONIC_CDRXSYNC32(sc, i,
712 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
713 rda32 = &sc->sc_rda32[i];
714 SONIC_CDRXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
715 if (rda32->rda_inuse != 0)
716 break;
717 status = sonic32toh(sc, rda32->rda_status);
718 bytecount = sonic32toh(sc, rda32->rda_bytecount);
719 /* ptr0 = sonic32toh(sc, rda32->rda_pkt_ptr0); */
720 /* ptr1 = sonic32toh(sc, rda32->rda_pkt_ptr1); */
721 /* seqno = sonic32toh(sc, rda32->rda_seqno); */
722 } else {
723 SONIC_CDRXSYNC16(sc, i,
724 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
725 rda16 = &sc->sc_rda16[i];
726 SONIC_CDRXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
727 if (rda16->rda_inuse != 0)
728 break;
729 status = sonic16toh(sc, rda16->rda_status);
730 bytecount = sonic16toh(sc, rda16->rda_bytecount);
731 /* ptr0 = sonic16toh(sc, rda16->rda_pkt_ptr0); */
732 /* ptr1 = sonic16toh(sc, rda16->rda_pkt_ptr1); */
733 /* seqno = sonic16toh(sc, rda16->rda_seqno); */
734 }
735
736 /*
737 * Make absolutely sure this is the only packet
738 * in this receive buffer. Our entire Rx buffer
739 * management scheme depends on this, and if the
740 * SONIC didn't follow our rule, it means we've
741 * misconfigured it.
742 */
743 KASSERT(status & RCR_LPKT);
744
745 /*
746 * Make sure the packet arrived OK. If an error occurred,
747 * update stats and reset the descriptor. The buffer will
748 * be reused the next time the descriptor comes up in the
749 * ring.
750 */
751 if ((status & RCR_PRX) == 0) {
752 if (status & RCR_FAER)
753 printf("%s: Rx frame alignment error\n",
754 device_xname(sc->sc_dev));
755 else if (status & RCR_CRCR)
756 printf("%s: Rx CRC error\n",
757 device_xname(sc->sc_dev));
758 ifp->if_ierrors++;
759 SONIC_INIT_RXDESC(sc, i);
760 continue;
761 }
762
763 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
764 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
765
766 /*
767 * The SONIC includes the CRC with every packet.
768 */
769 len = bytecount - ETHER_CRC_LEN;
770
771 /*
772 * Ok, if the chip is in 32-bit mode, then receive
773 * buffers must be aligned to 32-bit boundaries,
774 * which means the payload is misaligned. In this
775 * case, we must allocate a new mbuf, and copy the
776 * packet into it, scooted forward 2 bytes to ensure
777 * proper alignment.
778 *
779 * Note, in 16-bit mode, we can configure the SONIC
780 * to do what we want, and we have.
781 */
782 #ifndef __NO_STRICT_ALIGNMENT
783 if (sc->sc_32bit) {
784 MGETHDR(m, M_DONTWAIT, MT_DATA);
785 if (m == NULL)
786 goto dropit;
787 if (len > (MHLEN - 2)) {
788 MCLGET(m, M_DONTWAIT);
789 if ((m->m_flags & M_EXT) == 0)
790 goto dropit;
791 }
792 m->m_data += 2;
793 /*
794 * Note that we use a cluster for incoming frames,
795 * so the buffer is virtually contiguous.
796 */
797 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
798 len);
799 SONIC_INIT_RXDESC(sc, i);
800 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
801 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
802 } else
803 #endif /* ! __NO_STRICT_ALIGNMENT */
804 /*
805 * If the packet is small enough to fit in a single
806 * header mbuf, allocate one and copy the data into
807 * it. This greatly reduces memory consumption when
808 * we receive lots of small packets.
809 */
810 if (sonic_copy_small != 0 && len <= (MHLEN - 2)) {
811 MGETHDR(m, M_DONTWAIT, MT_DATA);
812 if (m == NULL)
813 goto dropit;
814 m->m_data += 2;
815 /*
816 * Note that we use a cluster for incoming frames,
817 * so the buffer is virtually contiguous.
818 */
819 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
820 len);
821 SONIC_INIT_RXDESC(sc, i);
822 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
823 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
824 } else {
825 m = ds->ds_mbuf;
826 if (sonic_add_rxbuf(sc, i) != 0) {
827 dropit:
828 ifp->if_ierrors++;
829 SONIC_INIT_RXDESC(sc, i);
830 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
831 ds->ds_dmamap->dm_mapsize,
832 BUS_DMASYNC_PREREAD);
833 continue;
834 }
835 }
836
837 m_set_rcvif(m, ifp);
838 m->m_pkthdr.len = m->m_len = len;
839
840 /* Pass it on. */
841 if_percpuq_enqueue(ifp->if_percpuq, m);
842 }
843
844 /* Update the receive pointer. */
845 sc->sc_rxptr = i;
846 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_PREVRX(i)));
847 }
848
849 /*
850 * sonic_reset:
851 *
852 * Perform a soft reset on the SONIC.
853 */
854 void
855 sonic_reset(struct sonic_softc *sc)
856 {
857
858 /* stop TX, RX and timer, and ensure RST is clear */
859 CSR_WRITE(sc, SONIC_CR, CR_STP | CR_RXDIS | CR_HTX);
860 delay(1000);
861
862 CSR_WRITE(sc, SONIC_CR, CR_RST);
863 delay(1000);
864
865 /* clear all interrupts */
866 CSR_WRITE(sc, SONIC_IMR, 0);
867 CSR_WRITE(sc, SONIC_ISR, IMR_ALL);
868
869 CSR_WRITE(sc, SONIC_CR, 0);
870 delay(1000);
871 }
872
873 /*
874 * sonic_init: [ifnet interface function]
875 *
876 * Initialize the interface. Must be called at splnet().
877 */
878 int
879 sonic_init(struct ifnet *ifp)
880 {
881 struct sonic_softc *sc = ifp->if_softc;
882 struct sonic_descsoft *ds;
883 int i, error = 0;
884 uint16_t reg;
885
886 /*
887 * Cancel any pending I/O.
888 */
889 sonic_stop(ifp, 0);
890
891 /*
892 * Reset the SONIC to a known state.
893 */
894 sonic_reset(sc);
895
896 /*
897 * Bring the SONIC into reset state, and program the DCR.
898 *
899 * Note: We don't bother optimizing the transmit and receive
900 * thresholds, here. TFT/RFT values should be set in MD attachments.
901 */
902 reg = sc->sc_dcr;
903 if (sc->sc_32bit)
904 reg |= DCR_DW;
905 CSR_WRITE(sc, SONIC_CR, CR_RST);
906 CSR_WRITE(sc, SONIC_DCR, reg);
907 CSR_WRITE(sc, SONIC_DCR2, sc->sc_dcr2);
908 CSR_WRITE(sc, SONIC_CR, 0);
909
910 /*
911 * Initialize the transmit descriptors.
912 */
913 if (sc->sc_32bit) {
914 for (i = 0; i < SONIC_NTXDESC; i++) {
915 memset(&sc->sc_tda32[i], 0, sizeof(struct sonic_tda32));
916 SONIC_CDTXSYNC32(sc, i,
917 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
918 }
919 } else {
920 for (i = 0; i < SONIC_NTXDESC; i++) {
921 memset(&sc->sc_tda16[i], 0, sizeof(struct sonic_tda16));
922 SONIC_CDTXSYNC16(sc, i,
923 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
924 }
925 }
926 sc->sc_txpending = 0;
927 sc->sc_txdirty = 0;
928 sc->sc_txlast = SONIC_NTXDESC - 1;
929
930 /*
931 * Initialize the receive descriptor ring.
932 */
933 for (i = 0; i < SONIC_NRXDESC; i++) {
934 ds = &sc->sc_rxsoft[i];
935 if (ds->ds_mbuf == NULL) {
936 if ((error = sonic_add_rxbuf(sc, i)) != 0) {
937 printf("%s: unable to allocate or map Rx "
938 "buffer %d, error = %d\n",
939 device_xname(sc->sc_dev), i, error);
940 /*
941 * XXX Should attempt to run with fewer receive
942 * XXX buffers instead of just failing.
943 */
944 sonic_rxdrain(sc);
945 goto out;
946 }
947 } else
948 SONIC_INIT_RXDESC(sc, i);
949 }
950 sc->sc_rxptr = 0;
951
952 /* Give the transmit ring to the SONIC. */
953 CSR_WRITE(sc, SONIC_UTDAR, (SONIC_CDTXADDR(sc, 0) >> 16) & 0xffff);
954 CSR_WRITE(sc, SONIC_CTDAR, SONIC_CDTXADDR(sc, 0) & 0xffff);
955
956 /* Give the receive descriptor ring to the SONIC. */
957 CSR_WRITE(sc, SONIC_URDAR, (SONIC_CDRXADDR(sc, 0) >> 16) & 0xffff);
958 CSR_WRITE(sc, SONIC_CRDAR, SONIC_CDRXADDR(sc, 0) & 0xffff);
959
960 /* Give the receive buffer ring to the SONIC. */
961 CSR_WRITE(sc, SONIC_URRAR, (SONIC_CDRRADDR(sc, 0) >> 16) & 0xffff);
962 CSR_WRITE(sc, SONIC_RSAR, SONIC_CDRRADDR(sc, 0) & 0xffff);
963 if (sc->sc_32bit)
964 CSR_WRITE(sc, SONIC_REAR,
965 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
966 sizeof(struct sonic_rra32)) & 0xffff);
967 else
968 CSR_WRITE(sc, SONIC_REAR,
969 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
970 sizeof(struct sonic_rra16)) & 0xffff);
971 CSR_WRITE(sc, SONIC_RRR, SONIC_CDRRADDR(sc, 0) & 0xffff);
972 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1));
973
974 /*
975 * Set the End-Of-Buffer counter such that only one packet
976 * will be placed into each buffer we provide. Note we are
977 * following the recommendation of section 3.4.4 of the manual
978 * here, and have "lengthened" the receive buffers accordingly.
979 */
980 if (sc->sc_32bit)
981 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN + 2) / 2);
982 else
983 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN / 2));
984
985 /* Reset the receive sequence counter. */
986 CSR_WRITE(sc, SONIC_RSC, 0);
987
988 /* Clear the tally registers. */
989 CSR_WRITE(sc, SONIC_CRCETC, 0xffff);
990 CSR_WRITE(sc, SONIC_FAET, 0xffff);
991 CSR_WRITE(sc, SONIC_MPT, 0xffff);
992
993 /* Set the receive filter. */
994 sonic_set_filter(sc);
995
996 /*
997 * Set the interrupt mask register.
998 */
999 sc->sc_imr = IMR_RFO | IMR_RBA | IMR_RBE | IMR_RDE |
1000 IMR_TXER | IMR_PTX | IMR_PRX;
1001 CSR_WRITE(sc, SONIC_IMR, sc->sc_imr);
1002
1003 /*
1004 * Start the receive process in motion. Note, we don't
1005 * start the transmit process until we actually try to
1006 * transmit packets.
1007 */
1008 CSR_WRITE(sc, SONIC_CR, CR_RXEN | CR_RRRA);
1009
1010 /*
1011 * ...all done!
1012 */
1013 ifp->if_flags |= IFF_RUNNING;
1014 ifp->if_flags &= ~IFF_OACTIVE;
1015
1016 out:
1017 if (error)
1018 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1019 return error;
1020 }
1021
1022 /*
1023 * sonic_rxdrain:
1024 *
1025 * Drain the receive queue.
1026 */
1027 void
1028 sonic_rxdrain(struct sonic_softc *sc)
1029 {
1030 struct sonic_descsoft *ds;
1031 int i;
1032
1033 for (i = 0; i < SONIC_NRXDESC; i++) {
1034 ds = &sc->sc_rxsoft[i];
1035 if (ds->ds_mbuf != NULL) {
1036 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1037 m_freem(ds->ds_mbuf);
1038 ds->ds_mbuf = NULL;
1039 }
1040 }
1041 }
1042
1043 /*
1044 * sonic_stop: [ifnet interface function]
1045 *
1046 * Stop transmission on the interface.
1047 */
1048 void
1049 sonic_stop(struct ifnet *ifp, int disable)
1050 {
1051 struct sonic_softc *sc = ifp->if_softc;
1052 struct sonic_descsoft *ds;
1053 int i;
1054
1055 /*
1056 * Disable interrupts.
1057 */
1058 CSR_WRITE(sc, SONIC_IMR, 0);
1059
1060 /*
1061 * Stop the transmitter, receiver, and timer.
1062 */
1063 CSR_WRITE(sc, SONIC_CR, CR_HTX|CR_RXDIS|CR_STP);
1064 for (i = 0; i < 1000; i++) {
1065 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) == 0)
1066 break;
1067 delay(2);
1068 }
1069 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) != 0)
1070 printf("%s: SONIC failed to stop\n", device_xname(sc->sc_dev));
1071
1072 /*
1073 * Release any queued transmit buffers.
1074 */
1075 for (i = 0; i < SONIC_NTXDESC; i++) {
1076 ds = &sc->sc_txsoft[i];
1077 if (ds->ds_mbuf != NULL) {
1078 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1079 m_freem(ds->ds_mbuf);
1080 ds->ds_mbuf = NULL;
1081 }
1082 }
1083
1084 /*
1085 * Mark the interface down and cancel the watchdog timer.
1086 */
1087 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1088 ifp->if_timer = 0;
1089
1090 if (disable)
1091 sonic_rxdrain(sc);
1092 }
1093
1094 /*
1095 * sonic_add_rxbuf:
1096 *
1097 * Add a receive buffer to the indicated descriptor.
1098 */
1099 int
1100 sonic_add_rxbuf(struct sonic_softc *sc, int idx)
1101 {
1102 struct sonic_descsoft *ds = &sc->sc_rxsoft[idx];
1103 struct mbuf *m;
1104 int error;
1105
1106 MGETHDR(m, M_DONTWAIT, MT_DATA);
1107 if (m == NULL)
1108 return ENOBUFS;
1109
1110 MCLGET(m, M_DONTWAIT);
1111 if ((m->m_flags & M_EXT) == 0) {
1112 m_freem(m);
1113 return ENOBUFS;
1114 }
1115
1116 if (ds->ds_mbuf != NULL)
1117 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1118
1119 ds->ds_mbuf = m;
1120
1121 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1122 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1123 BUS_DMA_READ|BUS_DMA_NOWAIT);
1124 if (error) {
1125 printf("%s: can't load rx DMA map %d, error = %d\n",
1126 device_xname(sc->sc_dev), idx, error);
1127 panic("sonic_add_rxbuf"); /* XXX */
1128 }
1129
1130 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1131 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1132
1133 SONIC_INIT_RXDESC(sc, idx);
1134
1135 return 0;
1136 }
1137
1138 static void
1139 sonic_set_camentry(struct sonic_softc *sc, int entry, const uint8_t *enaddr)
1140 {
1141
1142 if (sc->sc_32bit) {
1143 struct sonic_cda32 *cda = &sc->sc_cda32[entry];
1144
1145 cda->cda_entry = htosonic32(sc, entry);
1146 cda->cda_addr0 = htosonic32(sc, enaddr[0] | (enaddr[1] << 8));
1147 cda->cda_addr1 = htosonic32(sc, enaddr[2] | (enaddr[3] << 8));
1148 cda->cda_addr2 = htosonic32(sc, enaddr[4] | (enaddr[5] << 8));
1149 } else {
1150 struct sonic_cda16 *cda = &sc->sc_cda16[entry];
1151
1152 cda->cda_entry = htosonic16(sc, entry);
1153 cda->cda_addr0 = htosonic16(sc, enaddr[0] | (enaddr[1] << 8));
1154 cda->cda_addr1 = htosonic16(sc, enaddr[2] | (enaddr[3] << 8));
1155 cda->cda_addr2 = htosonic16(sc, enaddr[4] | (enaddr[5] << 8));
1156 }
1157 }
1158
1159 /*
1160 * sonic_set_filter:
1161 *
1162 * Set the SONIC receive filter.
1163 */
1164 void
1165 sonic_set_filter(struct sonic_softc *sc)
1166 {
1167 struct ethercom *ec = &sc->sc_ethercom;
1168 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1169 struct ether_multi *enm;
1170 struct ether_multistep step;
1171 int i, entry = 0;
1172 uint16_t camvalid = 0;
1173 uint16_t rcr = 0;
1174
1175 if (ifp->if_flags & IFF_BROADCAST)
1176 rcr |= RCR_BRD;
1177
1178 if (ifp->if_flags & IFF_PROMISC) {
1179 rcr |= RCR_PRO;
1180 goto allmulti;
1181 }
1182
1183 /* Put our station address in the first CAM slot. */
1184 sonic_set_camentry(sc, entry, CLLADDR(ifp->if_sadl));
1185 camvalid |= (1U << entry);
1186 entry++;
1187
1188 /* Add the multicast addresses to the CAM. */
1189 ETHER_FIRST_MULTI(step, ec, enm);
1190 while (enm != NULL) {
1191 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1192 /*
1193 * We must listen to a range of multicast addresses.
1194 * The only way to do this on the SONIC is to enable
1195 * reception of all multicast packets.
1196 */
1197 goto allmulti;
1198 }
1199
1200 if (entry == SONIC_NCAMENT) {
1201 /*
1202 * Out of CAM slots. Have to enable reception
1203 * of all multicast addresses.
1204 */
1205 goto allmulti;
1206 }
1207
1208 sonic_set_camentry(sc, entry, enm->enm_addrlo);
1209 camvalid |= (1U << entry);
1210 entry++;
1211
1212 ETHER_NEXT_MULTI(step, enm);
1213 }
1214
1215 ifp->if_flags &= ~IFF_ALLMULTI;
1216 goto setit;
1217
1218 allmulti:
1219 /* Use only the first CAM slot (station address). */
1220 camvalid = 0x0001;
1221 entry = 1;
1222 rcr |= RCR_AMC;
1223
1224 setit:
1225 /* set mask for the CAM Enable register */
1226 if (sc->sc_32bit) {
1227 if (entry == SONIC_NCAMENT)
1228 sc->sc_cdaenable32 = htosonic32(sc, camvalid);
1229 else
1230 sc->sc_cda32[entry].cda_entry =
1231 htosonic32(sc, camvalid);
1232 } else {
1233 if (entry == SONIC_NCAMENT)
1234 sc->sc_cdaenable16 = htosonic16(sc, camvalid);
1235 else
1236 sc->sc_cda16[entry].cda_entry =
1237 htosonic16(sc, camvalid);
1238 }
1239
1240 /* Load the CAM. */
1241 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_PREWRITE);
1242 CSR_WRITE(sc, SONIC_CDP, SONIC_CDCAMADDR(sc) & 0xffff);
1243 CSR_WRITE(sc, SONIC_CDC, entry);
1244 CSR_WRITE(sc, SONIC_CR, CR_LCAM);
1245 for (i = 0; i < 10000; i++) {
1246 if ((CSR_READ(sc, SONIC_CR) & CR_LCAM) == 0)
1247 break;
1248 delay(2);
1249 }
1250 if (CSR_READ(sc, SONIC_CR) & CR_LCAM)
1251 printf("%s: CAM load failed\n", device_xname(sc->sc_dev));
1252 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_POSTWRITE);
1253
1254 /* Set the receive control register. */
1255 CSR_WRITE(sc, SONIC_RCR, rcr);
1256 }
1257