dp83932.c revision 1.46 1 /* $NetBSD: dp83932.c,v 1.46 2020/03/15 22:19:00 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Device driver for the National Semiconductor DP83932
34 * Systems-Oriented Network Interface Controller (SONIC).
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: dp83932.c,v 1.46 2020/03/15 22:19:00 thorpej Exp $");
39
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/mbuf.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/socket.h>
47 #include <sys/ioctl.h>
48 #include <sys/errno.h>
49 #include <sys/device.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54
55 #include <net/bpf.h>
56
57 #include <sys/bus.h>
58 #include <sys/intr.h>
59
60 #include <dev/ic/dp83932reg.h>
61 #include <dev/ic/dp83932var.h>
62
63 static void sonic_start(struct ifnet *);
64 static void sonic_watchdog(struct ifnet *);
65 static int sonic_ioctl(struct ifnet *, u_long, void *);
66 static int sonic_init(struct ifnet *);
67 static void sonic_stop(struct ifnet *, int);
68
69 static bool sonic_shutdown(device_t, int);
70
71 static void sonic_reset(struct sonic_softc *);
72 static void sonic_rxdrain(struct sonic_softc *);
73 static int sonic_add_rxbuf(struct sonic_softc *, int);
74 static void sonic_set_filter(struct sonic_softc *);
75
76 static uint16_t sonic_txintr(struct sonic_softc *);
77 static void sonic_rxintr(struct sonic_softc *);
78
79 int sonic_copy_small = 0;
80
81 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
82
83 /*
84 * sonic_attach:
85 *
86 * Attach a SONIC interface to the system.
87 */
88 void
89 sonic_attach(struct sonic_softc *sc, const uint8_t *enaddr)
90 {
91 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
92 int i, rseg, error;
93 bus_dma_segment_t seg;
94 size_t cdatasize;
95 uint8_t *nullbuf;
96
97 /*
98 * Allocate the control data structures, and create and load the
99 * DMA map for it.
100 */
101 if (sc->sc_32bit)
102 cdatasize = sizeof(struct sonic_control_data32);
103 else
104 cdatasize = sizeof(struct sonic_control_data16);
105
106 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdatasize + ETHER_PAD_LEN,
107 PAGE_SIZE, (64 * 1024), &seg, 1, &rseg,
108 BUS_DMA_NOWAIT)) != 0) {
109 aprint_error_dev(sc->sc_dev,
110 "unable to allocate control data, error = %d\n", error);
111 goto fail_0;
112 }
113
114 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
115 cdatasize + ETHER_PAD_LEN, (void **) &sc->sc_cdata16,
116 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
117 aprint_error_dev(sc->sc_dev,
118 "unable to map control data, error = %d\n", error);
119 goto fail_1;
120 }
121 nullbuf = (uint8_t *)sc->sc_cdata16 + cdatasize;
122 memset(nullbuf, 0, ETHER_PAD_LEN);
123
124 if ((error = bus_dmamap_create(sc->sc_dmat,
125 cdatasize, 1, cdatasize, 0, BUS_DMA_NOWAIT,
126 &sc->sc_cddmamap)) != 0) {
127 aprint_error_dev(sc->sc_dev,
128 "unable to create control data DMA map, error = %d\n",
129 error);
130 goto fail_2;
131 }
132
133 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
134 sc->sc_cdata16, cdatasize, NULL, BUS_DMA_NOWAIT)) != 0) {
135 aprint_error_dev(sc->sc_dev,
136 "unable to load control data DMA map, error = %d\n", error);
137 goto fail_3;
138 }
139
140 /*
141 * Create the transmit buffer DMA maps.
142 */
143 for (i = 0; i < SONIC_NTXDESC; i++) {
144 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
145 SONIC_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
146 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
147 aprint_error_dev(sc->sc_dev,
148 "unable to create tx DMA map %d, error = %d\n",
149 i, error);
150 goto fail_4;
151 }
152 }
153
154 /*
155 * Create the receive buffer DMA maps.
156 */
157 for (i = 0; i < SONIC_NRXDESC; i++) {
158 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
159 MCLBYTES, 0, BUS_DMA_NOWAIT,
160 &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
161 aprint_error_dev(sc->sc_dev,
162 "unable to create rx DMA map %d, error = %d\n",
163 i, error);
164 goto fail_5;
165 }
166 sc->sc_rxsoft[i].ds_mbuf = NULL;
167 }
168
169 /*
170 * create and map the pad buffer
171 */
172 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
173 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT, &sc->sc_nulldmamap)) != 0) {
174 aprint_error_dev(sc->sc_dev,
175 "unable to create pad buffer DMA map, error = %d\n", error);
176 goto fail_5;
177 }
178
179 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
180 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
181 aprint_error_dev(sc->sc_dev,
182 "unable to load pad buffer DMA map, error = %d\n", error);
183 goto fail_6;
184 }
185 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
186 BUS_DMASYNC_PREWRITE);
187
188 /*
189 * Reset the chip to a known state.
190 */
191 sonic_reset(sc);
192
193 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
194 ether_sprintf(enaddr));
195
196 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
197 ifp->if_softc = sc;
198 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
199 ifp->if_ioctl = sonic_ioctl;
200 ifp->if_start = sonic_start;
201 ifp->if_watchdog = sonic_watchdog;
202 ifp->if_init = sonic_init;
203 ifp->if_stop = sonic_stop;
204 IFQ_SET_READY(&ifp->if_snd);
205
206 /*
207 * We can support 802.1Q VLAN-sized frames.
208 */
209 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
210
211 /*
212 * Attach the interface.
213 */
214 if_attach(ifp);
215 if_deferred_start_init(ifp, NULL);
216 ether_ifattach(ifp, enaddr);
217
218 /*
219 * Make sure the interface is shutdown during reboot.
220 */
221 if (pmf_device_register1(sc->sc_dev, NULL, NULL, sonic_shutdown))
222 pmf_class_network_register(sc->sc_dev, ifp);
223 else
224 aprint_error_dev(sc->sc_dev,
225 "couldn't establish power handler\n");
226
227 return;
228
229 /*
230 * Free any resources we've allocated during the failed attach
231 * attempt. Do this in reverse order and fall through.
232 */
233 fail_6:
234 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
235 fail_5:
236 for (i = 0; i < SONIC_NRXDESC; i++) {
237 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
238 bus_dmamap_destroy(sc->sc_dmat,
239 sc->sc_rxsoft[i].ds_dmamap);
240 }
241 fail_4:
242 for (i = 0; i < SONIC_NTXDESC; i++) {
243 if (sc->sc_txsoft[i].ds_dmamap != NULL)
244 bus_dmamap_destroy(sc->sc_dmat,
245 sc->sc_txsoft[i].ds_dmamap);
246 }
247 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
248 fail_3:
249 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
250 fail_2:
251 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_cdata16, cdatasize);
252 fail_1:
253 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
254 fail_0:
255 return;
256 }
257
258 /*
259 * sonic_shutdown:
260 *
261 * Make sure the interface is stopped at reboot.
262 */
263 bool
264 sonic_shutdown(device_t self, int howto)
265 {
266 struct sonic_softc *sc = device_private(self);
267
268 sonic_stop(&sc->sc_ethercom.ec_if, 1);
269
270 return true;
271 }
272
273 /*
274 * sonic_start: [ifnet interface function]
275 *
276 * Start packet transmission on the interface.
277 */
278 void
279 sonic_start(struct ifnet *ifp)
280 {
281 struct sonic_softc *sc = ifp->if_softc;
282 struct mbuf *m0, *m;
283 struct sonic_tda16 *tda16;
284 struct sonic_tda32 *tda32;
285 struct sonic_descsoft *ds;
286 bus_dmamap_t dmamap;
287 int error, olasttx, nexttx, opending, totlen, olseg;
288 int seg = 0; /* XXX: gcc */
289
290 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
291 return;
292
293 /*
294 * Remember the previous txpending and the current "last txdesc
295 * used" index.
296 */
297 opending = sc->sc_txpending;
298 olasttx = sc->sc_txlast;
299
300 /*
301 * Loop through the send queue, setting up transmit descriptors
302 * until we drain the queue, or use up all available transmit
303 * descriptors. Leave one at the end for sanity's sake.
304 */
305 while (sc->sc_txpending < (SONIC_NTXDESC - 1)) {
306 /*
307 * Grab a packet off the queue.
308 */
309 IFQ_POLL(&ifp->if_snd, m0);
310 if (m0 == NULL)
311 break;
312 m = NULL;
313
314 /*
315 * Get the next available transmit descriptor.
316 */
317 nexttx = SONIC_NEXTTX(sc->sc_txlast);
318 ds = &sc->sc_txsoft[nexttx];
319 dmamap = ds->ds_dmamap;
320
321 /*
322 * Load the DMA map. If this fails, the packet either
323 * didn't fit in the allotted number of frags, or we were
324 * short on resources. In this case, we'll copy and try
325 * again.
326 */
327 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
328 BUS_DMA_WRITE | BUS_DMA_NOWAIT)) != 0 ||
329 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
330 dmamap->dm_nsegs == SONIC_NTXFRAGS)) {
331 if (error == 0)
332 bus_dmamap_unload(sc->sc_dmat, dmamap);
333 MGETHDR(m, M_DONTWAIT, MT_DATA);
334 if (m == NULL) {
335 printf("%s: unable to allocate Tx mbuf\n",
336 device_xname(sc->sc_dev));
337 break;
338 }
339 if (m0->m_pkthdr.len > MHLEN) {
340 MCLGET(m, M_DONTWAIT);
341 if ((m->m_flags & M_EXT) == 0) {
342 printf("%s: unable to allocate Tx "
343 "cluster\n",
344 device_xname(sc->sc_dev));
345 m_freem(m);
346 break;
347 }
348 }
349 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
350 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
351 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
352 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
353 if (error) {
354 printf("%s: unable to load Tx buffer, "
355 "error = %d\n", device_xname(sc->sc_dev),
356 error);
357 m_freem(m);
358 break;
359 }
360 }
361 IFQ_DEQUEUE(&ifp->if_snd, m0);
362 if (m != NULL) {
363 m_freem(m0);
364 m0 = m;
365 }
366
367 /*
368 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
369 */
370
371 /* Sync the DMA map. */
372 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
373 BUS_DMASYNC_PREWRITE);
374
375 /*
376 * Store a pointer to the packet so we can free it later.
377 */
378 ds->ds_mbuf = m0;
379
380 /*
381 * Initialize the transmit descriptor.
382 */
383 totlen = 0;
384 if (sc->sc_32bit) {
385 tda32 = &sc->sc_tda32[nexttx];
386 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
387 tda32->tda_frags[seg].frag_ptr1 =
388 htosonic32(sc,
389 (dmamap->dm_segs[seg].ds_addr >> 16) &
390 0xffff);
391 tda32->tda_frags[seg].frag_ptr0 =
392 htosonic32(sc,
393 dmamap->dm_segs[seg].ds_addr & 0xffff);
394 tda32->tda_frags[seg].frag_size =
395 htosonic32(sc, dmamap->dm_segs[seg].ds_len);
396 totlen += dmamap->dm_segs[seg].ds_len;
397 }
398 if (totlen < ETHER_PAD_LEN) {
399 tda32->tda_frags[seg].frag_ptr1 =
400 htosonic32(sc,
401 (sc->sc_nulldma >> 16) & 0xffff);
402 tda32->tda_frags[seg].frag_ptr0 =
403 htosonic32(sc, sc->sc_nulldma & 0xffff);
404 tda32->tda_frags[seg].frag_size =
405 htosonic32(sc, ETHER_PAD_LEN - totlen);
406 totlen = ETHER_PAD_LEN;
407 seg++;
408 }
409
410 tda32->tda_status = 0;
411 tda32->tda_pktconfig = 0;
412 tda32->tda_pktsize = htosonic32(sc, totlen);
413 tda32->tda_fragcnt = htosonic32(sc, seg);
414
415 /* Link it up. */
416 tda32->tda_frags[seg].frag_ptr0 =
417 htosonic32(sc, SONIC_CDTXADDR32(sc,
418 SONIC_NEXTTX(nexttx)) & 0xffff);
419
420 /* Sync the Tx descriptor. */
421 SONIC_CDTXSYNC32(sc, nexttx,
422 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
423 } else {
424 tda16 = &sc->sc_tda16[nexttx];
425 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
426 tda16->tda_frags[seg].frag_ptr1 =
427 htosonic16(sc,
428 (dmamap->dm_segs[seg].ds_addr >> 16) &
429 0xffff);
430 tda16->tda_frags[seg].frag_ptr0 =
431 htosonic16(sc,
432 dmamap->dm_segs[seg].ds_addr & 0xffff);
433 tda16->tda_frags[seg].frag_size =
434 htosonic16(sc, dmamap->dm_segs[seg].ds_len);
435 totlen += dmamap->dm_segs[seg].ds_len;
436 }
437 if (totlen < ETHER_PAD_LEN) {
438 tda16->tda_frags[seg].frag_ptr1 =
439 htosonic16(sc,
440 (sc->sc_nulldma >> 16) & 0xffff);
441 tda16->tda_frags[seg].frag_ptr0 =
442 htosonic16(sc, sc->sc_nulldma & 0xffff);
443 tda16->tda_frags[seg].frag_size =
444 htosonic16(sc, ETHER_PAD_LEN - totlen);
445 totlen = ETHER_PAD_LEN;
446 seg++;
447 }
448
449 tda16->tda_status = 0;
450 tda16->tda_pktconfig = 0;
451 tda16->tda_pktsize = htosonic16(sc, totlen);
452 tda16->tda_fragcnt = htosonic16(sc, seg);
453
454 /* Link it up. */
455 tda16->tda_frags[seg].frag_ptr0 =
456 htosonic16(sc, SONIC_CDTXADDR16(sc,
457 SONIC_NEXTTX(nexttx)) & 0xffff);
458
459 /* Sync the Tx descriptor. */
460 SONIC_CDTXSYNC16(sc, nexttx,
461 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
462 }
463
464 /* Advance the Tx pointer. */
465 sc->sc_txpending++;
466 sc->sc_txlast = nexttx;
467
468 /*
469 * Pass the packet to any BPF listeners.
470 */
471 bpf_mtap(ifp, m0, BPF_D_OUT);
472 }
473
474 if (sc->sc_txpending != opending) {
475 /*
476 * We enqueued packets. If the transmitter was idle,
477 * reset the txdirty pointer.
478 */
479 if (opending == 0)
480 sc->sc_txdirty = SONIC_NEXTTX(olasttx);
481
482 /*
483 * Stop the SONIC on the last packet we've set up,
484 * and clear end-of-list on the descriptor previous
485 * to our new chain.
486 *
487 * NOTE: our `seg' variable should still be valid!
488 */
489 if (sc->sc_32bit) {
490 olseg =
491 sonic32toh(sc, sc->sc_tda32[olasttx].tda_fragcnt);
492 sc->sc_tda32[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
493 htosonic32(sc, TDA_LINK_EOL);
494 SONIC_CDTXSYNC32(sc, sc->sc_txlast,
495 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
496 sc->sc_tda32[olasttx].tda_frags[olseg].frag_ptr0 &=
497 htosonic32(sc, ~TDA_LINK_EOL);
498 SONIC_CDTXSYNC32(sc, olasttx,
499 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
500 } else {
501 olseg =
502 sonic16toh(sc, sc->sc_tda16[olasttx].tda_fragcnt);
503 sc->sc_tda16[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
504 htosonic16(sc, TDA_LINK_EOL);
505 SONIC_CDTXSYNC16(sc, sc->sc_txlast,
506 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
507 sc->sc_tda16[olasttx].tda_frags[olseg].frag_ptr0 &=
508 htosonic16(sc, ~TDA_LINK_EOL);
509 SONIC_CDTXSYNC16(sc, olasttx,
510 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
511 }
512
513 /* Start the transmitter. */
514 CSR_WRITE(sc, SONIC_CR, CR_TXP);
515
516 /* Set a watchdog timer in case the chip flakes out. */
517 ifp->if_timer = 5;
518 }
519 }
520
521 /*
522 * sonic_watchdog: [ifnet interface function]
523 *
524 * Watchdog timer handler.
525 */
526 void
527 sonic_watchdog(struct ifnet *ifp)
528 {
529 struct sonic_softc *sc = ifp->if_softc;
530
531 printf("%s: device timeout\n", device_xname(sc->sc_dev));
532 if_statinc(ifp, if_oerrors);
533
534 (void)sonic_init(ifp);
535 }
536
537 /*
538 * sonic_ioctl: [ifnet interface function]
539 *
540 * Handle control requests from the operator.
541 */
542 int
543 sonic_ioctl(struct ifnet *ifp, u_long cmd, void *data)
544 {
545 int s, error;
546
547 s = splnet();
548
549 error = ether_ioctl(ifp, cmd, data);
550 if (error == ENETRESET) {
551 /*
552 * Multicast list has changed; set the hardware
553 * filter accordingly.
554 */
555 if (ifp->if_flags & IFF_RUNNING)
556 (void)sonic_init(ifp);
557 error = 0;
558 }
559
560 splx(s);
561 return error;
562 }
563
564 /*
565 * sonic_intr:
566 *
567 * Interrupt service routine.
568 */
569 int
570 sonic_intr(void *arg)
571 {
572 struct sonic_softc *sc = arg;
573 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
574 uint16_t isr;
575 int handled = 0, wantinit;
576
577 for (wantinit = 0; wantinit == 0;) {
578 isr = CSR_READ(sc, SONIC_ISR) & sc->sc_imr;
579 if (isr == 0)
580 break;
581 CSR_WRITE(sc, SONIC_ISR, isr); /* ACK */
582
583 handled = 1;
584
585 if (isr & IMR_PRX)
586 sonic_rxintr(sc);
587
588 if (isr & (IMR_PTX | IMR_TXER)) {
589 if (sonic_txintr(sc) & TCR_FU) {
590 printf("%s: transmit FIFO underrun\n",
591 device_xname(sc->sc_dev));
592 wantinit = 1;
593 }
594 }
595
596 if (isr & (IMR_RFO | IMR_RBA | IMR_RBE | IMR_RDE)) {
597 #define PRINTERR(bit, str) \
598 if (isr & (bit)) \
599 printf("%s: %s\n",device_xname(sc->sc_dev), str)
600 PRINTERR(IMR_RFO, "receive FIFO overrun");
601 PRINTERR(IMR_RBA, "receive buffer exceeded");
602 PRINTERR(IMR_RBE, "receive buffers exhausted");
603 PRINTERR(IMR_RDE, "receive descriptors exhausted");
604 wantinit = 1;
605 }
606 }
607
608 if (handled) {
609 if (wantinit)
610 (void)sonic_init(ifp);
611 if_schedule_deferred_start(ifp);
612 }
613
614 return handled;
615 }
616
617 /*
618 * sonic_txintr:
619 *
620 * Helper; handle transmit complete interrupts.
621 */
622 uint16_t
623 sonic_txintr(struct sonic_softc *sc)
624 {
625 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
626 struct sonic_descsoft *ds;
627 struct sonic_tda32 *tda32;
628 struct sonic_tda16 *tda16;
629 uint16_t status, totstat = 0;
630 int i;
631
632 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
633 i = SONIC_NEXTTX(i), sc->sc_txpending--) {
634 ds = &sc->sc_txsoft[i];
635
636 if (sc->sc_32bit) {
637 SONIC_CDTXSYNC32(sc, i,
638 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
639 tda32 = &sc->sc_tda32[i];
640 status = sonic32toh(sc, tda32->tda_status);
641 SONIC_CDTXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
642 } else {
643 SONIC_CDTXSYNC16(sc, i,
644 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
645 tda16 = &sc->sc_tda16[i];
646 status = sonic16toh(sc, tda16->tda_status);
647 SONIC_CDTXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
648 }
649
650 if ((status & ~(TCR_EXDIS |TCR_CRCI |TCR_POWC |TCR_PINT)) == 0)
651 break;
652
653 totstat |= status;
654
655 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
656 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
657 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
658 m_freem(ds->ds_mbuf);
659 ds->ds_mbuf = NULL;
660
661 /*
662 * Check for errors and collisions.
663 */
664 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
665 if (status & TCR_PTX)
666 if_statinc_ref(nsr, if_opackets);
667 else
668 if_statinc_ref(nsr, if_oerrors);
669 if (TDA_STATUS_NCOL(status))
670 if_statadd_ref(nsr, if_collisions,
671 TDA_STATUS_NCOL(status));
672 IF_STAT_PUTREF(ifp);
673 }
674
675 /* Update the dirty transmit buffer pointer. */
676 sc->sc_txdirty = i;
677
678 /*
679 * Cancel the watchdog timer if there are no pending
680 * transmissions.
681 */
682 if (sc->sc_txpending == 0)
683 ifp->if_timer = 0;
684
685 return totstat;
686 }
687
688 /*
689 * sonic_rxintr:
690 *
691 * Helper; handle receive interrupts.
692 */
693 void
694 sonic_rxintr(struct sonic_softc *sc)
695 {
696 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
697 struct sonic_descsoft *ds;
698 struct sonic_rda32 *rda32;
699 struct sonic_rda16 *rda16;
700 struct mbuf *m;
701 int i, len;
702 uint16_t status, bytecount /*, ptr0, ptr1, seqno */;
703
704 for (i = sc->sc_rxptr;; i = SONIC_NEXTRX(i)) {
705 ds = &sc->sc_rxsoft[i];
706
707 if (sc->sc_32bit) {
708 SONIC_CDRXSYNC32(sc, i,
709 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
710 rda32 = &sc->sc_rda32[i];
711 SONIC_CDRXSYNC32(sc, i, BUS_DMASYNC_PREREAD);
712 if (rda32->rda_inuse != 0)
713 break;
714 status = sonic32toh(sc, rda32->rda_status);
715 bytecount = sonic32toh(sc, rda32->rda_bytecount);
716 /* ptr0 = sonic32toh(sc, rda32->rda_pkt_ptr0); */
717 /* ptr1 = sonic32toh(sc, rda32->rda_pkt_ptr1); */
718 /* seqno = sonic32toh(sc, rda32->rda_seqno); */
719 } else {
720 SONIC_CDRXSYNC16(sc, i,
721 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
722 rda16 = &sc->sc_rda16[i];
723 SONIC_CDRXSYNC16(sc, i, BUS_DMASYNC_PREREAD);
724 if (rda16->rda_inuse != 0)
725 break;
726 status = sonic16toh(sc, rda16->rda_status);
727 bytecount = sonic16toh(sc, rda16->rda_bytecount);
728 /* ptr0 = sonic16toh(sc, rda16->rda_pkt_ptr0); */
729 /* ptr1 = sonic16toh(sc, rda16->rda_pkt_ptr1); */
730 /* seqno = sonic16toh(sc, rda16->rda_seqno); */
731 }
732
733 /*
734 * Make absolutely sure this is the only packet
735 * in this receive buffer. Our entire Rx buffer
736 * management scheme depends on this, and if the
737 * SONIC didn't follow our rule, it means we've
738 * misconfigured it.
739 */
740 KASSERT(status & RCR_LPKT);
741
742 /*
743 * Make sure the packet arrived OK. If an error occurred,
744 * update stats and reset the descriptor. The buffer will
745 * be reused the next time the descriptor comes up in the
746 * ring.
747 */
748 if ((status & RCR_PRX) == 0) {
749 if (status & RCR_FAER)
750 printf("%s: Rx frame alignment error\n",
751 device_xname(sc->sc_dev));
752 else if (status & RCR_CRCR)
753 printf("%s: Rx CRC error\n",
754 device_xname(sc->sc_dev));
755 if_statinc(ifp, if_ierrors);
756 SONIC_INIT_RXDESC(sc, i);
757 continue;
758 }
759
760 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
761 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
762
763 /*
764 * The SONIC includes the CRC with every packet.
765 */
766 len = bytecount - ETHER_CRC_LEN;
767
768 /*
769 * Ok, if the chip is in 32-bit mode, then receive
770 * buffers must be aligned to 32-bit boundaries,
771 * which means the payload is misaligned. In this
772 * case, we must allocate a new mbuf, and copy the
773 * packet into it, scooted forward 2 bytes to ensure
774 * proper alignment.
775 *
776 * Note, in 16-bit mode, we can configure the SONIC
777 * to do what we want, and we have.
778 */
779 #ifndef __NO_STRICT_ALIGNMENT
780 if (sc->sc_32bit) {
781 MGETHDR(m, M_DONTWAIT, MT_DATA);
782 if (m == NULL)
783 goto dropit;
784 if (len > (MHLEN - 2)) {
785 MCLGET(m, M_DONTWAIT);
786 if ((m->m_flags & M_EXT) == 0) {
787 m_freem(m);
788 goto dropit;
789 }
790 }
791 m->m_data += 2;
792 /*
793 * Note that we use a cluster for incoming frames,
794 * so the buffer is virtually contiguous.
795 */
796 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
797 len);
798 SONIC_INIT_RXDESC(sc, i);
799 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
800 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
801 } else
802 #endif /* ! __NO_STRICT_ALIGNMENT */
803 /*
804 * If the packet is small enough to fit in a single
805 * header mbuf, allocate one and copy the data into
806 * it. This greatly reduces memory consumption when
807 * we receive lots of small packets.
808 */
809 if (sonic_copy_small != 0 && len <= (MHLEN - 2)) {
810 MGETHDR(m, M_DONTWAIT, MT_DATA);
811 if (m == NULL)
812 goto dropit;
813 m->m_data += 2;
814 /*
815 * Note that we use a cluster for incoming frames,
816 * so the buffer is virtually contiguous.
817 */
818 memcpy(mtod(m, void *), mtod(ds->ds_mbuf, void *),
819 len);
820 SONIC_INIT_RXDESC(sc, i);
821 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
822 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
823 } else {
824 m = ds->ds_mbuf;
825 if (sonic_add_rxbuf(sc, i) != 0) {
826 dropit:
827 if_statinc(ifp, if_ierrors);
828 SONIC_INIT_RXDESC(sc, i);
829 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
830 ds->ds_dmamap->dm_mapsize,
831 BUS_DMASYNC_PREREAD);
832 continue;
833 }
834 }
835
836 m_set_rcvif(m, ifp);
837 m->m_pkthdr.len = m->m_len = len;
838
839 /* Pass it on. */
840 if_percpuq_enqueue(ifp->if_percpuq, m);
841 }
842
843 /* Update the receive pointer. */
844 sc->sc_rxptr = i;
845 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_PREVRX(i)));
846 }
847
848 /*
849 * sonic_reset:
850 *
851 * Perform a soft reset on the SONIC.
852 */
853 void
854 sonic_reset(struct sonic_softc *sc)
855 {
856
857 /* stop TX, RX and timer, and ensure RST is clear */
858 CSR_WRITE(sc, SONIC_CR, CR_STP | CR_RXDIS | CR_HTX);
859 delay(1000);
860
861 CSR_WRITE(sc, SONIC_CR, CR_RST);
862 delay(1000);
863
864 /* clear all interrupts */
865 CSR_WRITE(sc, SONIC_IMR, 0);
866 CSR_WRITE(sc, SONIC_ISR, IMR_ALL);
867
868 CSR_WRITE(sc, SONIC_CR, 0);
869 delay(1000);
870 }
871
872 /*
873 * sonic_init: [ifnet interface function]
874 *
875 * Initialize the interface. Must be called at splnet().
876 */
877 int
878 sonic_init(struct ifnet *ifp)
879 {
880 struct sonic_softc *sc = ifp->if_softc;
881 struct sonic_descsoft *ds;
882 int i, error = 0;
883 uint16_t reg;
884
885 /*
886 * Cancel any pending I/O.
887 */
888 sonic_stop(ifp, 0);
889
890 /*
891 * Reset the SONIC to a known state.
892 */
893 sonic_reset(sc);
894
895 /*
896 * Bring the SONIC into reset state, and program the DCR.
897 *
898 * Note: We don't bother optimizing the transmit and receive
899 * thresholds, here. TFT/RFT values should be set in MD attachments.
900 */
901 reg = sc->sc_dcr;
902 if (sc->sc_32bit)
903 reg |= DCR_DW;
904 CSR_WRITE(sc, SONIC_CR, CR_RST);
905 CSR_WRITE(sc, SONIC_DCR, reg);
906 CSR_WRITE(sc, SONIC_DCR2, sc->sc_dcr2);
907 CSR_WRITE(sc, SONIC_CR, 0);
908
909 /*
910 * Initialize the transmit descriptors.
911 */
912 if (sc->sc_32bit) {
913 for (i = 0; i < SONIC_NTXDESC; i++) {
914 memset(&sc->sc_tda32[i], 0, sizeof(struct sonic_tda32));
915 SONIC_CDTXSYNC32(sc, i,
916 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
917 }
918 } else {
919 for (i = 0; i < SONIC_NTXDESC; i++) {
920 memset(&sc->sc_tda16[i], 0, sizeof(struct sonic_tda16));
921 SONIC_CDTXSYNC16(sc, i,
922 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
923 }
924 }
925 sc->sc_txpending = 0;
926 sc->sc_txdirty = 0;
927 sc->sc_txlast = SONIC_NTXDESC - 1;
928
929 /*
930 * Initialize the receive descriptor ring.
931 */
932 for (i = 0; i < SONIC_NRXDESC; i++) {
933 ds = &sc->sc_rxsoft[i];
934 if (ds->ds_mbuf == NULL) {
935 if ((error = sonic_add_rxbuf(sc, i)) != 0) {
936 printf("%s: unable to allocate or map Rx "
937 "buffer %d, error = %d\n",
938 device_xname(sc->sc_dev), i, error);
939 /*
940 * XXX Should attempt to run with fewer receive
941 * XXX buffers instead of just failing.
942 */
943 sonic_rxdrain(sc);
944 goto out;
945 }
946 } else
947 SONIC_INIT_RXDESC(sc, i);
948 }
949 sc->sc_rxptr = 0;
950
951 /* Give the transmit ring to the SONIC. */
952 CSR_WRITE(sc, SONIC_UTDAR, (SONIC_CDTXADDR(sc, 0) >> 16) & 0xffff);
953 CSR_WRITE(sc, SONIC_CTDAR, SONIC_CDTXADDR(sc, 0) & 0xffff);
954
955 /* Give the receive descriptor ring to the SONIC. */
956 CSR_WRITE(sc, SONIC_URDAR, (SONIC_CDRXADDR(sc, 0) >> 16) & 0xffff);
957 CSR_WRITE(sc, SONIC_CRDAR, SONIC_CDRXADDR(sc, 0) & 0xffff);
958
959 /* Give the receive buffer ring to the SONIC. */
960 CSR_WRITE(sc, SONIC_URRAR, (SONIC_CDRRADDR(sc, 0) >> 16) & 0xffff);
961 CSR_WRITE(sc, SONIC_RSAR, SONIC_CDRRADDR(sc, 0) & 0xffff);
962 if (sc->sc_32bit)
963 CSR_WRITE(sc, SONIC_REAR,
964 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
965 sizeof(struct sonic_rra32)) & 0xffff);
966 else
967 CSR_WRITE(sc, SONIC_REAR,
968 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
969 sizeof(struct sonic_rra16)) & 0xffff);
970 CSR_WRITE(sc, SONIC_RRR, SONIC_CDRRADDR(sc, 0) & 0xffff);
971 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1));
972
973 /*
974 * Set the End-Of-Buffer counter such that only one packet
975 * will be placed into each buffer we provide. Note we are
976 * following the recommendation of section 3.4.4 of the manual
977 * here, and have "lengthened" the receive buffers accordingly.
978 */
979 if (sc->sc_32bit)
980 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN + 2) / 2);
981 else
982 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN / 2));
983
984 /* Reset the receive sequence counter. */
985 CSR_WRITE(sc, SONIC_RSC, 0);
986
987 /* Clear the tally registers. */
988 CSR_WRITE(sc, SONIC_CRCETC, 0xffff);
989 CSR_WRITE(sc, SONIC_FAET, 0xffff);
990 CSR_WRITE(sc, SONIC_MPT, 0xffff);
991
992 /* Set the receive filter. */
993 sonic_set_filter(sc);
994
995 /*
996 * Set the interrupt mask register.
997 */
998 sc->sc_imr = IMR_RFO | IMR_RBA | IMR_RBE | IMR_RDE |
999 IMR_TXER | IMR_PTX | IMR_PRX;
1000 CSR_WRITE(sc, SONIC_IMR, sc->sc_imr);
1001
1002 /*
1003 * Start the receive process in motion. Note, we don't
1004 * start the transmit process until we actually try to
1005 * transmit packets.
1006 */
1007 CSR_WRITE(sc, SONIC_CR, CR_RXEN | CR_RRRA);
1008
1009 /*
1010 * ...all done!
1011 */
1012 ifp->if_flags |= IFF_RUNNING;
1013
1014 out:
1015 if (error)
1016 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1017 return error;
1018 }
1019
1020 /*
1021 * sonic_rxdrain:
1022 *
1023 * Drain the receive queue.
1024 */
1025 void
1026 sonic_rxdrain(struct sonic_softc *sc)
1027 {
1028 struct sonic_descsoft *ds;
1029 int i;
1030
1031 for (i = 0; i < SONIC_NRXDESC; i++) {
1032 ds = &sc->sc_rxsoft[i];
1033 if (ds->ds_mbuf != NULL) {
1034 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1035 m_freem(ds->ds_mbuf);
1036 ds->ds_mbuf = NULL;
1037 }
1038 }
1039 }
1040
1041 /*
1042 * sonic_stop: [ifnet interface function]
1043 *
1044 * Stop transmission on the interface.
1045 */
1046 void
1047 sonic_stop(struct ifnet *ifp, int disable)
1048 {
1049 struct sonic_softc *sc = ifp->if_softc;
1050 struct sonic_descsoft *ds;
1051 int i;
1052
1053 /*
1054 * Disable interrupts.
1055 */
1056 CSR_WRITE(sc, SONIC_IMR, 0);
1057
1058 /*
1059 * Stop the transmitter, receiver, and timer.
1060 */
1061 CSR_WRITE(sc, SONIC_CR, CR_HTX | CR_RXDIS | CR_STP);
1062 for (i = 0; i < 1000; i++) {
1063 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP | CR_RXEN | CR_ST)) == 0)
1064 break;
1065 delay(2);
1066 }
1067 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP | CR_RXEN | CR_ST)) != 0)
1068 printf("%s: SONIC failed to stop\n", device_xname(sc->sc_dev));
1069
1070 /*
1071 * Release any queued transmit buffers.
1072 */
1073 for (i = 0; i < SONIC_NTXDESC; i++) {
1074 ds = &sc->sc_txsoft[i];
1075 if (ds->ds_mbuf != NULL) {
1076 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1077 m_freem(ds->ds_mbuf);
1078 ds->ds_mbuf = NULL;
1079 }
1080 }
1081
1082 /*
1083 * Mark the interface down and cancel the watchdog timer.
1084 */
1085 ifp->if_flags &= ~IFF_RUNNING;
1086 ifp->if_timer = 0;
1087
1088 if (disable)
1089 sonic_rxdrain(sc);
1090 }
1091
1092 /*
1093 * sonic_add_rxbuf:
1094 *
1095 * Add a receive buffer to the indicated descriptor.
1096 */
1097 int
1098 sonic_add_rxbuf(struct sonic_softc *sc, int idx)
1099 {
1100 struct sonic_descsoft *ds = &sc->sc_rxsoft[idx];
1101 struct mbuf *m;
1102 int error;
1103
1104 MGETHDR(m, M_DONTWAIT, MT_DATA);
1105 if (m == NULL)
1106 return ENOBUFS;
1107
1108 MCLGET(m, M_DONTWAIT);
1109 if ((m->m_flags & M_EXT) == 0) {
1110 m_freem(m);
1111 return ENOBUFS;
1112 }
1113
1114 if (ds->ds_mbuf != NULL)
1115 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1116
1117 ds->ds_mbuf = m;
1118
1119 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1120 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1121 BUS_DMA_READ | BUS_DMA_NOWAIT);
1122 if (error) {
1123 printf("%s: can't load rx DMA map %d, error = %d\n",
1124 device_xname(sc->sc_dev), idx, error);
1125 panic("sonic_add_rxbuf"); /* XXX */
1126 }
1127
1128 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1129 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1130
1131 SONIC_INIT_RXDESC(sc, idx);
1132
1133 return 0;
1134 }
1135
1136 static void
1137 sonic_set_camentry(struct sonic_softc *sc, int entry, const uint8_t *enaddr)
1138 {
1139
1140 if (sc->sc_32bit) {
1141 struct sonic_cda32 *cda = &sc->sc_cda32[entry];
1142
1143 cda->cda_entry = htosonic32(sc, entry);
1144 cda->cda_addr0 = htosonic32(sc, enaddr[0] | (enaddr[1] << 8));
1145 cda->cda_addr1 = htosonic32(sc, enaddr[2] | (enaddr[3] << 8));
1146 cda->cda_addr2 = htosonic32(sc, enaddr[4] | (enaddr[5] << 8));
1147 } else {
1148 struct sonic_cda16 *cda = &sc->sc_cda16[entry];
1149
1150 cda->cda_entry = htosonic16(sc, entry);
1151 cda->cda_addr0 = htosonic16(sc, enaddr[0] | (enaddr[1] << 8));
1152 cda->cda_addr1 = htosonic16(sc, enaddr[2] | (enaddr[3] << 8));
1153 cda->cda_addr2 = htosonic16(sc, enaddr[4] | (enaddr[5] << 8));
1154 }
1155 }
1156
1157 /*
1158 * sonic_set_filter:
1159 *
1160 * Set the SONIC receive filter.
1161 */
1162 void
1163 sonic_set_filter(struct sonic_softc *sc)
1164 {
1165 struct ethercom *ec = &sc->sc_ethercom;
1166 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1167 struct ether_multi *enm;
1168 struct ether_multistep step;
1169 int i, entry = 0;
1170 uint16_t camvalid = 0;
1171 uint16_t rcr = 0;
1172
1173 if (ifp->if_flags & IFF_BROADCAST)
1174 rcr |= RCR_BRD;
1175
1176 if (ifp->if_flags & IFF_PROMISC) {
1177 rcr |= RCR_PRO;
1178 goto allmulti;
1179 }
1180
1181 /* Put our station address in the first CAM slot. */
1182 sonic_set_camentry(sc, entry, CLLADDR(ifp->if_sadl));
1183 camvalid |= (1U << entry);
1184 entry++;
1185
1186 /* Add the multicast addresses to the CAM. */
1187 ETHER_LOCK(ec);
1188 ETHER_FIRST_MULTI(step, ec, enm);
1189 while (enm != NULL) {
1190 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1191 /*
1192 * We must listen to a range of multicast addresses.
1193 * The only way to do this on the SONIC is to enable
1194 * reception of all multicast packets.
1195 */
1196 ETHER_UNLOCK(ec);
1197 goto allmulti;
1198 }
1199
1200 if (entry == SONIC_NCAMENT) {
1201 /*
1202 * Out of CAM slots. Have to enable reception
1203 * of all multicast addresses.
1204 */
1205 ETHER_UNLOCK(ec);
1206 goto allmulti;
1207 }
1208
1209 sonic_set_camentry(sc, entry, enm->enm_addrlo);
1210 camvalid |= (1U << entry);
1211 entry++;
1212
1213 ETHER_NEXT_MULTI(step, enm);
1214 }
1215 ETHER_UNLOCK(ec);
1216
1217 ifp->if_flags &= ~IFF_ALLMULTI;
1218 goto setit;
1219
1220 allmulti:
1221 /* Use only the first CAM slot (station address). */
1222 camvalid = 0x0001;
1223 entry = 1;
1224 rcr |= RCR_AMC;
1225
1226 setit:
1227 /* set mask for the CAM Enable register */
1228 if (sc->sc_32bit) {
1229 if (entry == SONIC_NCAMENT)
1230 sc->sc_cdaenable32 = htosonic32(sc, camvalid);
1231 else
1232 sc->sc_cda32[entry].cda_entry =
1233 htosonic32(sc, camvalid);
1234 } else {
1235 if (entry == SONIC_NCAMENT)
1236 sc->sc_cdaenable16 = htosonic16(sc, camvalid);
1237 else
1238 sc->sc_cda16[entry].cda_entry =
1239 htosonic16(sc, camvalid);
1240 }
1241
1242 /* Load the CAM. */
1243 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_PREWRITE);
1244 CSR_WRITE(sc, SONIC_CDP, SONIC_CDCAMADDR(sc) & 0xffff);
1245 CSR_WRITE(sc, SONIC_CDC, entry);
1246 CSR_WRITE(sc, SONIC_CR, CR_LCAM);
1247 for (i = 0; i < 10000; i++) {
1248 if ((CSR_READ(sc, SONIC_CR) & CR_LCAM) == 0)
1249 break;
1250 delay(2);
1251 }
1252 if (CSR_READ(sc, SONIC_CR) & CR_LCAM)
1253 printf("%s: CAM load failed\n", device_xname(sc->sc_dev));
1254 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_POSTWRITE);
1255
1256 /* Set the receive control register. */
1257 CSR_WRITE(sc, SONIC_RCR, rcr);
1258 }
1259