dp83932.c revision 1.7 1 /* $NetBSD: dp83932.c,v 1.7 2003/01/18 13:12:55 tsutsui Exp $ */
2
3 /*-
4 * Copyright (c) 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Device driver for the National Semiconductor DP83932
41 * Systems-Oriented Network Interface Controller (SONIC).
42 */
43
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: dp83932.c,v 1.7 2003/01/18 13:12:55 tsutsui Exp $");
46
47 #include "bpfilter.h"
48
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/mbuf.h>
52 #include <sys/malloc.h>
53 #include <sys/kernel.h>
54 #include <sys/socket.h>
55 #include <sys/ioctl.h>
56 #include <sys/errno.h>
57 #include <sys/device.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_ether.h>
64
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #endif
68
69 #include <machine/bus.h>
70 #include <machine/intr.h>
71
72 #include <dev/ic/dp83932reg.h>
73 #include <dev/ic/dp83932var.h>
74
75 void sonic_start(struct ifnet *);
76 void sonic_watchdog(struct ifnet *);
77 int sonic_ioctl(struct ifnet *, u_long, caddr_t);
78 int sonic_init(struct ifnet *);
79 void sonic_stop(struct ifnet *, int);
80
81 void sonic_shutdown(void *);
82
83 void sonic_reset(struct sonic_softc *);
84 void sonic_rxdrain(struct sonic_softc *);
85 int sonic_add_rxbuf(struct sonic_softc *, int);
86 void sonic_set_filter(struct sonic_softc *);
87
88 uint16_t sonic_txintr(struct sonic_softc *);
89 void sonic_rxintr(struct sonic_softc *);
90
91 int sonic_copy_small = 0;
92
93 #define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
94
95 /*
96 * sonic_attach:
97 *
98 * Attach a SONIC interface to the system.
99 */
100 void
101 sonic_attach(struct sonic_softc *sc, const uint8_t *enaddr)
102 {
103 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
104 int i, rseg, error;
105 bus_dma_segment_t seg;
106 size_t cdatasize;
107 char *nullbuf;
108
109 /*
110 * Allocate the control data structures, and create and load the
111 * DMA map for it.
112 */
113 if (sc->sc_32bit)
114 cdatasize = sizeof(struct sonic_control_data32);
115 else
116 cdatasize = sizeof(struct sonic_control_data16);
117
118 if ((error = bus_dmamem_alloc(sc->sc_dmat, cdatasize + ETHER_PAD_LEN,
119 PAGE_SIZE, (64 * 1024), &seg, 1, &rseg,
120 BUS_DMA_NOWAIT)) != 0) {
121 printf("%s: unable to allocate control data, error = %d\n",
122 sc->sc_dev.dv_xname, error);
123 goto fail_0;
124 }
125
126 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
127 cdatasize + ETHER_PAD_LEN, (caddr_t *) &sc->sc_cdata16,
128 BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
129 printf("%s: unable to map control data, error = %d\n",
130 sc->sc_dev.dv_xname, error);
131 goto fail_1;
132 }
133 nullbuf = (char *)sc->sc_cdata16 + cdatasize;
134 memset(nullbuf, 0, ETHER_PAD_LEN);
135
136 if ((error = bus_dmamap_create(sc->sc_dmat,
137 cdatasize, 1, cdatasize, 0, BUS_DMA_NOWAIT,
138 &sc->sc_cddmamap)) != 0) {
139 printf("%s: unable to create control data DMA map, "
140 "error = %d\n", sc->sc_dev.dv_xname, error);
141 goto fail_2;
142 }
143
144 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
145 sc->sc_cdata16, cdatasize, NULL, BUS_DMA_NOWAIT)) != 0) {
146 printf("%s: unable to load control data DMA map, error = %d\n",
147 sc->sc_dev.dv_xname, error);
148 goto fail_3;
149 }
150
151 /*
152 * Create the transmit buffer DMA maps.
153 */
154 for (i = 0; i < SONIC_NTXDESC; i++) {
155 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
156 SONIC_NTXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
157 &sc->sc_txsoft[i].ds_dmamap)) != 0) {
158 printf("%s: unable to create tx DMA map %d, "
159 "error = %d\n", sc->sc_dev.dv_xname, i, error);
160 goto fail_4;
161 }
162 }
163
164 /*
165 * Create the receive buffer DMA maps.
166 */
167 for (i = 0; i < SONIC_NRXDESC; i++) {
168 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
169 MCLBYTES, 0, BUS_DMA_NOWAIT,
170 &sc->sc_rxsoft[i].ds_dmamap)) != 0) {
171 printf("%s: unable to create rx DMA map %d, "
172 "error = %d\n", sc->sc_dev.dv_xname, i, error);
173 goto fail_5;
174 }
175 sc->sc_rxsoft[i].ds_mbuf = NULL;
176 }
177
178 /*
179 * create and map the pad buffer
180 */
181 if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_PAD_LEN, 1,
182 ETHER_PAD_LEN, 0, BUS_DMA_NOWAIT,&sc->sc_nulldmamap)) != 0) {
183 printf("%s: unable to create pad buffer DMA map, "
184 "error = %d\n", sc->sc_dev.dv_xname, error);
185 goto fail_5;
186 }
187
188 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_nulldmamap,
189 nullbuf, ETHER_PAD_LEN, NULL, BUS_DMA_NOWAIT)) != 0) {
190 printf("%s: unable to load pad buffer DMA map, "
191 "error = %d\n", sc->sc_dev.dv_xname, error);
192 goto fail_6;
193 }
194 bus_dmamap_sync(sc->sc_dmat, sc->sc_nulldmamap, 0, ETHER_PAD_LEN,
195 BUS_DMASYNC_PREWRITE);
196
197 /*
198 * Reset the chip to a known state.
199 */
200 sonic_reset(sc);
201
202 printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
203 ether_sprintf(enaddr));
204
205 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
206 ifp->if_softc = sc;
207 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
208 ifp->if_ioctl = sonic_ioctl;
209 ifp->if_start = sonic_start;
210 ifp->if_watchdog = sonic_watchdog;
211 ifp->if_init = sonic_init;
212 ifp->if_stop = sonic_stop;
213 IFQ_SET_READY(&ifp->if_snd);
214
215 /*
216 * Attach the interface.
217 */
218 if_attach(ifp);
219 ether_ifattach(ifp, enaddr);
220
221 /*
222 * Make sure the interface is shutdown during reboot.
223 */
224 sc->sc_sdhook = shutdownhook_establish(sonic_shutdown, sc);
225 if (sc->sc_sdhook == NULL)
226 printf("%s: WARNING: unable to establish shutdown hook\n",
227 sc->sc_dev.dv_xname);
228 return;
229
230 /*
231 * Free any resources we've allocated during the failed attach
232 * attempt. Do this in reverse order and fall through.
233 */
234 fail_6:
235 bus_dmamap_destroy(sc->sc_dmat, sc->sc_nulldmamap);
236 fail_5:
237 for (i = 0; i < SONIC_NRXDESC; i++) {
238 if (sc->sc_rxsoft[i].ds_dmamap != NULL)
239 bus_dmamap_destroy(sc->sc_dmat,
240 sc->sc_rxsoft[i].ds_dmamap);
241 }
242 fail_4:
243 for (i = 0; i < SONIC_NTXDESC; i++) {
244 if (sc->sc_txsoft[i].ds_dmamap != NULL)
245 bus_dmamap_destroy(sc->sc_dmat,
246 sc->sc_txsoft[i].ds_dmamap);
247 }
248 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
249 fail_3:
250 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
251 fail_2:
252 bus_dmamem_unmap(sc->sc_dmat, (caddr_t) sc->sc_cdata16, cdatasize);
253 fail_1:
254 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
255 fail_0:
256 return;
257 }
258
259 /*
260 * sonic_shutdown:
261 *
262 * Make sure the interface is stopped at reboot.
263 */
264 void
265 sonic_shutdown(void *arg)
266 {
267 struct sonic_softc *sc = arg;
268
269 sonic_stop(&sc->sc_ethercom.ec_if, 1);
270 }
271
272 /*
273 * sonic_start: [ifnet interface function]
274 *
275 * Start packet transmission on the interface.
276 */
277 void
278 sonic_start(struct ifnet *ifp)
279 {
280 struct sonic_softc *sc = ifp->if_softc;
281 struct mbuf *m0, *m;
282 struct sonic_tda16 *tda16;
283 struct sonic_tda32 *tda32;
284 struct sonic_descsoft *ds;
285 bus_dmamap_t dmamap;
286 int error, olasttx, nexttx, opending, seg, totlen, olseg;
287
288 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
289 return;
290
291 /*
292 * Remember the previous txpending and the current "last txdesc
293 * used" index.
294 */
295 opending = sc->sc_txpending;
296 olasttx = sc->sc_txlast;
297
298 /*
299 * Loop through the send queue, setting up transmit descriptors
300 * until we drain the queue, or use up all available transmit
301 * descriptors. Leave one at the end for sanity's sake.
302 */
303 while (sc->sc_txpending < (SONIC_NTXDESC - 1)) {
304 /*
305 * Grab a packet off the queue.
306 */
307 IFQ_POLL(&ifp->if_snd, m0);
308 if (m0 == NULL)
309 break;
310 m = NULL;
311
312 /*
313 * Get the next available transmit descriptor.
314 */
315 nexttx = SONIC_NEXTTX(sc->sc_txlast);
316 ds = &sc->sc_txsoft[nexttx];
317 dmamap = ds->ds_dmamap;
318
319 /*
320 * Load the DMA map. If this fails, the packet either
321 * didn't fit in the allotted number of frags, or we were
322 * short on resources. In this case, we'll copy and try
323 * again.
324 */
325 if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
326 BUS_DMA_WRITE|BUS_DMA_NOWAIT)) != 0 ||
327 (m0->m_pkthdr.len < ETHER_PAD_LEN &&
328 dmamap->dm_nsegs == SONIC_NTXFRAGS)) {
329 if (error == 0)
330 bus_dmamap_unload(sc->sc_dmat, dmamap);
331 MGETHDR(m, M_DONTWAIT, MT_DATA);
332 if (m == NULL) {
333 printf("%s: unable to allocate Tx mbuf\n",
334 sc->sc_dev.dv_xname);
335 break;
336 }
337 if (m0->m_pkthdr.len > MHLEN) {
338 MCLGET(m, M_DONTWAIT);
339 if ((m->m_flags & M_EXT) == 0) {
340 printf("%s: unable to allocate Tx "
341 "cluster\n", sc->sc_dev.dv_xname);
342 m_freem(m);
343 break;
344 }
345 }
346 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
347 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
348 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
349 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
350 if (error) {
351 printf("%s: unable to load Tx buffer, "
352 "error = %d\n", sc->sc_dev.dv_xname, error);
353 m_freem(m);
354 break;
355 }
356 }
357 IFQ_DEQUEUE(&ifp->if_snd, m0);
358 if (m != NULL) {
359 m_freem(m0);
360 m0 = m;
361 }
362
363 /*
364 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
365 */
366
367 /* Sync the DMA map. */
368 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
369 BUS_DMASYNC_PREWRITE);
370
371 /*
372 * Store a pointer to the packet so we can free it later.
373 */
374 ds->ds_mbuf = m0;
375
376 /*
377 * Initialize the transmit descriptor.
378 */
379 totlen = 0;
380 if (sc->sc_32bit) {
381 tda32 = &sc->sc_tda32[nexttx];
382 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
383 tda32->tda_frags[seg].frag_ptr1 =
384 htosonic32(sc,
385 (dmamap->dm_segs[seg].ds_addr >> 16) &
386 0xffff);
387 tda32->tda_frags[seg].frag_ptr0 =
388 htosonic32(sc,
389 dmamap->dm_segs[seg].ds_addr & 0xffff);
390 tda32->tda_frags[seg].frag_size =
391 htosonic32(sc, dmamap->dm_segs[seg].ds_len);
392 totlen += dmamap->dm_segs[seg].ds_len;
393 }
394 if (totlen < ETHER_PAD_LEN) {
395 tda32->tda_frags[seg].frag_ptr1 =
396 htosonic32(sc,
397 (sc->sc_nulldma >> 16) & 0xffff);
398 tda32->tda_frags[seg].frag_ptr0 =
399 htosonic32(sc,
400 sc->sc_nulldma & 0xffff);
401 tda32->tda_frags[seg].frag_size =
402 htosonic32(sc, ETHER_PAD_LEN - totlen);
403 totlen = ETHER_PAD_LEN;
404 }
405
406 tda32->tda_status = 0;
407 tda32->tda_pktconfig = 0;
408 tda32->tda_pktsize = htosonic32(sc, totlen);
409 tda32->tda_fragcnt = htosonic32(sc, seg);
410
411 /* Link it up. */
412 tda32->tda_frags[seg].frag_ptr0 =
413 htosonic32(sc, SONIC_CDTXADDR32(sc,
414 SONIC_NEXTTX(nexttx)) & 0xffff);
415
416 /* Sync the Tx descriptor. */
417 SONIC_CDTXSYNC32(sc, nexttx,
418 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
419 } else {
420 tda16 = &sc->sc_tda16[nexttx];
421 for (seg = 0; seg < dmamap->dm_nsegs; seg++) {
422 tda16->tda_frags[seg].frag_ptr1 =
423 htosonic16(sc,
424 (dmamap->dm_segs[seg].ds_addr >> 16) &
425 0xffff);
426 tda16->tda_frags[seg].frag_ptr0 =
427 htosonic16(sc,
428 dmamap->dm_segs[seg].ds_addr & 0xffff);
429 tda16->tda_frags[seg].frag_size =
430 htosonic16(sc, dmamap->dm_segs[seg].ds_len);
431 totlen += dmamap->dm_segs[seg].ds_len;
432 }
433 if (totlen < ETHER_PAD_LEN) {
434 tda16->tda_frags[seg].frag_ptr1 =
435 htosonic16(sc,
436 (sc->sc_nulldma >> 16) & 0xffff);
437 tda16->tda_frags[seg].frag_ptr0 =
438 htosonic16(sc,
439 sc->sc_nulldma & 0xffff);
440 tda16->tda_frags[seg].frag_size =
441 htosonic16(sc, ETHER_PAD_LEN - totlen);
442 totlen = ETHER_PAD_LEN;
443 }
444
445 tda16->tda_status = 0;
446 tda16->tda_pktconfig = 0;
447 tda16->tda_pktsize = htosonic16(sc, totlen);
448 tda16->tda_fragcnt = htosonic16(sc, seg);
449
450 /* Link it up. */
451 tda16->tda_frags[seg].frag_ptr0 =
452 htosonic16(sc, SONIC_CDTXADDR16(sc,
453 SONIC_NEXTTX(nexttx)) & 0xffff);
454
455 /* Sync the Tx descriptor. */
456 SONIC_CDTXSYNC16(sc, nexttx,
457 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
458 }
459
460 /* Advance the Tx pointer. */
461 sc->sc_txpending++;
462 sc->sc_txlast = nexttx;
463
464 #if NBPFILTER > 0
465 /*
466 * Pass the packet to any BPF listeners.
467 */
468 if (ifp->if_bpf)
469 bpf_mtap(ifp->if_bpf, m0);
470 #endif
471 }
472
473 if (sc->sc_txpending == (SONIC_NTXDESC - 1)) {
474 /* No more slots left; notify upper layer. */
475 ifp->if_flags |= IFF_OACTIVE;
476 }
477
478 if (sc->sc_txpending != opending) {
479 /*
480 * We enqueued packets. If the transmitter was idle,
481 * reset the txdirty pointer.
482 */
483 if (opending == 0)
484 sc->sc_txdirty = SONIC_NEXTTX(olasttx);
485
486 /*
487 * Stop the SONIC on the last packet we've set up,
488 * and clear end-of-list on the descriptor previous
489 * to our new chain.
490 *
491 * NOTE: our `seg' variable should still be valid!
492 */
493 if (sc->sc_32bit) {
494 olseg =
495 sonic32toh(sc, sc->sc_tda32[olasttx].tda_fragcnt);
496 sc->sc_tda32[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
497 htosonic32(sc, TDA_LINK_EOL);
498 SONIC_CDTXSYNC32(sc, sc->sc_txlast,
499 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
500 sc->sc_tda32[olasttx].tda_frags[olseg].frag_ptr0 &=
501 htosonic32(sc, ~TDA_LINK_EOL);
502 SONIC_CDTXSYNC32(sc, olasttx,
503 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
504 } else {
505 olseg =
506 sonic16toh(sc, sc->sc_tda16[olasttx].tda_fragcnt);
507 sc->sc_tda16[sc->sc_txlast].tda_frags[seg].frag_ptr0 |=
508 htosonic16(sc, TDA_LINK_EOL);
509 SONIC_CDTXSYNC16(sc, sc->sc_txlast,
510 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
511 sc->sc_tda16[olasttx].tda_frags[olseg].frag_ptr0 &=
512 htosonic16(sc, ~TDA_LINK_EOL);
513 SONIC_CDTXSYNC16(sc, olasttx,
514 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
515 }
516
517 /* Start the transmitter. */
518 CSR_WRITE(sc, SONIC_CR, CR_TXP);
519
520 /* Set a watchdog timer in case the chip flakes out. */
521 ifp->if_timer = 5;
522 }
523 }
524
525 /*
526 * sonic_watchdog: [ifnet interface function]
527 *
528 * Watchdog timer handler.
529 */
530 void
531 sonic_watchdog(struct ifnet *ifp)
532 {
533 struct sonic_softc *sc = ifp->if_softc;
534
535 printf("%s: device timeout\n", sc->sc_dev.dv_xname);
536 ifp->if_oerrors++;
537
538 (void) sonic_init(ifp);
539 }
540
541 /*
542 * sonic_ioctl: [ifnet interface function]
543 *
544 * Handle control requests from the operator.
545 */
546 int
547 sonic_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
548 {
549 int s, error;
550
551 s = splnet();
552
553 switch (cmd) {
554 default:
555 error = ether_ioctl(ifp, cmd, data);
556 if (error == ENETRESET) {
557 /*
558 * Multicast list has changed; set the hardware
559 * filter accordingly.
560 */
561 (void) sonic_init(ifp);
562 error = 0;
563 }
564 break;
565 }
566
567 splx(s);
568 return (error);
569 }
570
571 /*
572 * sonic_intr:
573 *
574 * Interrupt service routine.
575 */
576 int
577 sonic_intr(void *arg)
578 {
579 struct sonic_softc *sc = arg;
580 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
581 uint16_t isr;
582 int handled = 0, wantinit;
583
584 for (wantinit = 0; wantinit == 0;) {
585 isr = CSR_READ(sc, SONIC_ISR) & sc->sc_imr;
586 if (isr == 0)
587 break;
588 CSR_WRITE(sc, SONIC_ISR, isr); /* ACK */
589
590 handled = 1;
591
592 if (isr & IMR_PRX)
593 sonic_rxintr(sc);
594
595 if (isr & (IMR_PTX|IMR_TXER)) {
596 if (sonic_txintr(sc) & TCR_FU) {
597 printf("%s: transmit FIFO underrun\n",
598 sc->sc_dev.dv_xname);
599 wantinit = 1;
600 }
601 }
602
603 if (isr & (IMR_RFO|IMR_RBA|IMR_RBE|IMR_RDE)) {
604 #define PRINTERR(bit, str) \
605 if (isr & (bit)) \
606 printf("%s: %s\n", sc->sc_dev.dv_xname, str)
607 PRINTERR(IMR_RFO, "receive FIFO overrun");
608 PRINTERR(IMR_RBA, "receive buffer exceeded");
609 PRINTERR(IMR_RBE, "receive buffers exhausted");
610 PRINTERR(IMR_RDE, "receive descriptors exhausted");
611 wantinit = 1;
612 }
613 }
614
615 if (handled) {
616 if (wantinit)
617 (void) sonic_init(ifp);
618 sonic_start(ifp);
619 }
620
621 return (handled);
622 }
623
624 /*
625 * sonic_txintr:
626 *
627 * Helper; handle transmit complete interrupts.
628 */
629 uint16_t
630 sonic_txintr(struct sonic_softc *sc)
631 {
632 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
633 struct sonic_descsoft *ds;
634 struct sonic_tda32 *tda32;
635 struct sonic_tda16 *tda16;
636 uint16_t status, totstat = 0;
637 int i;
638
639 ifp->if_flags &= ~IFF_OACTIVE;
640
641 for (i = sc->sc_txdirty; sc->sc_txpending != 0;
642 i = SONIC_NEXTTX(i), sc->sc_txpending--) {
643 ds = &sc->sc_txsoft[i];
644
645 if (sc->sc_32bit) {
646 SONIC_CDTXSYNC32(sc, i,
647 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
648 tda32 = &sc->sc_tda32[i];
649 status = sonic32toh(sc, tda32->tda_status);
650 } else {
651 SONIC_CDTXSYNC16(sc, i,
652 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
653 tda16 = &sc->sc_tda16[i];
654 status = sonic16toh(sc, tda16->tda_status);
655 }
656
657 if ((status & ~(TCR_EXDIS|TCR_CRCI|TCR_POWC|TCR_PINT)) == 0)
658 break;
659
660 totstat |= status;
661
662 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
663 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
664 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
665 m_freem(ds->ds_mbuf);
666 ds->ds_mbuf = NULL;
667
668 /*
669 * Check for errors and collisions.
670 */
671 if (status & TCR_PTX)
672 ifp->if_opackets++;
673 else
674 ifp->if_oerrors++;
675 ifp->if_collisions += TDA_STATUS_NCOL(status);
676 }
677
678 /* Update the dirty transmit buffer pointer. */
679 sc->sc_txdirty = i;
680
681 /*
682 * Cancel the watchdog timer if there are no pending
683 * transmissions.
684 */
685 if (sc->sc_txpending == 0)
686 ifp->if_timer = 0;
687
688 return (totstat);
689 }
690
691 /*
692 * sonic_rxintr:
693 *
694 * Helper; handle receive interrupts.
695 */
696 void
697 sonic_rxintr(struct sonic_softc *sc)
698 {
699 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
700 struct sonic_descsoft *ds;
701 struct sonic_rda32 *rda32;
702 struct sonic_rda16 *rda16;
703 struct mbuf *m;
704 int i, len;
705 uint16_t status, bytecount, ptr0, ptr1, seqno;
706
707 for (i = sc->sc_rxptr;; i = SONIC_NEXTRX(i)) {
708 ds = &sc->sc_rxsoft[i];
709
710 if (sc->sc_32bit) {
711 SONIC_CDRXSYNC32(sc, i,
712 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
713 rda32 = &sc->sc_rda32[i];
714 if (rda32->rda_inuse != 0)
715 break;
716 status = sonic32toh(sc, rda32->rda_status);
717 bytecount = sonic32toh(sc, rda32->rda_bytecount);
718 ptr0 = sonic32toh(sc, rda32->rda_pkt_ptr0);
719 ptr1 = sonic32toh(sc, rda32->rda_pkt_ptr1);
720 seqno = sonic32toh(sc, rda32->rda_seqno);
721 } else {
722 SONIC_CDRXSYNC16(sc, i,
723 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
724 rda16 = &sc->sc_rda16[i];
725 if (rda16->rda_inuse != 0)
726 break;
727 status = sonic16toh(sc, rda16->rda_status);
728 bytecount = sonic16toh(sc, rda16->rda_bytecount);
729 ptr0 = sonic16toh(sc, rda16->rda_pkt_ptr0);
730 ptr1 = sonic16toh(sc, rda16->rda_pkt_ptr1);
731 seqno = sonic16toh(sc, rda16->rda_seqno);
732 }
733
734 /*
735 * Make absolutely sure this is the only packet
736 * in this receive buffer. Our entire Rx buffer
737 * management scheme depends on this, and if the
738 * SONIC didn't follow our rule, it means we've
739 * misconfigured it.
740 */
741 KASSERT(status & RCR_LPKT);
742
743 /*
744 * Make sure the packet arrived OK. If an error occurred,
745 * update stats and reset the descriptor. The buffer will
746 * be reused the next time the descriptor comes up in the
747 * ring.
748 */
749 if ((status & RCR_PRX) == 0) {
750 if (status & RCR_FAER)
751 printf("%s: Rx frame alignment error\n",
752 sc->sc_dev.dv_xname);
753 else if (status & RCR_CRCR)
754 printf("%s: Rx CRC error\n",
755 sc->sc_dev.dv_xname);
756 ifp->if_ierrors++;
757 SONIC_INIT_RXDESC(sc, i);
758 continue;
759 }
760
761 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
762 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
763
764 /*
765 * The SONIC includes the CRC with every packet.
766 */
767 len = bytecount;
768
769 /*
770 * Ok, if the chip is in 32-bit mode, then receive
771 * buffers must be aligned to 32-bit boundaries,
772 * which means the payload is misaligned. In this
773 * case, we must allocate a new mbuf, and copy the
774 * packet into it, scooted forward 2 bytes to ensure
775 * proper alignment.
776 *
777 * Note, in 16-bit mode, we can configure the SONIC
778 * to do what we want, and we have.
779 */
780 #ifndef __NO_STRICT_ALIGNMENT
781 if (sc->sc_32bit) {
782 MGETHDR(m, M_DONTWAIT, MT_DATA);
783 if (m == NULL)
784 goto dropit;
785 if (len > (MHLEN - 2)) {
786 MCLGET(m, M_DONTWAIT);
787 if ((m->m_flags & M_EXT) == 0)
788 goto dropit;
789 }
790 m->m_data += 2;
791 /*
792 * Note that we use a cluster for incoming frames,
793 * so the buffer is virtually contiguous.
794 */
795 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
796 len);
797 SONIC_INIT_RXDESC(sc, i);
798 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
799 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
800 } else
801 #endif /* ! __NO_STRICT_ALIGNMENT */
802 /*
803 * If the packet is small enough to fit in a single
804 * header mbuf, allocate one and copy the data into
805 * it. This greatly reduces memory consumption when
806 * we receive lots of small packets.
807 */
808 if (sonic_copy_small != 0 && len <= (MHLEN - 2)) {
809 MGETHDR(m, M_DONTWAIT, MT_DATA);
810 if (m == NULL)
811 goto dropit;
812 m->m_data += 2;
813 /*
814 * Note that we use a cluster for incoming frames,
815 * so the buffer is virtually contiguous.
816 */
817 memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
818 len);
819 SONIC_INIT_RXDESC(sc, i);
820 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
821 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
822 } else {
823 m = ds->ds_mbuf;
824 if (sonic_add_rxbuf(sc, i) != 0) {
825 dropit:
826 ifp->if_ierrors++;
827 SONIC_INIT_RXDESC(sc, i);
828 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
829 ds->ds_dmamap->dm_mapsize,
830 BUS_DMASYNC_PREREAD);
831 continue;
832 }
833 }
834
835 ifp->if_ipackets++;
836 m->m_flags |= M_HASFCS;
837 m->m_pkthdr.rcvif = ifp;
838 m->m_pkthdr.len = m->m_len = len;
839
840 #if NBPFILTER > 0
841 /*
842 * Pass this up to any BPF listeners.
843 */
844 if (ifp->if_bpf)
845 bpf_mtap(ifp->if_bpf, m);
846 #endif /* NBPFILTER > 0 */
847
848 /* Pass it on. */
849 (*ifp->if_input)(ifp, m);
850 }
851
852 /* Update the receive pointer. */
853 sc->sc_rxptr = i;
854 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_PREVRX(i)));
855 }
856
857 /*
858 * sonic_reset:
859 *
860 * Perform a soft reset on the SONIC.
861 */
862 void
863 sonic_reset(struct sonic_softc *sc)
864 {
865
866 CSR_WRITE(sc, SONIC_CR, 0); /* ensure RST is clear */
867 CSR_WRITE(sc, SONIC_CR, CR_RST);
868 delay(1000);
869 CSR_WRITE(sc, SONIC_CR, 0);
870 delay(1000);
871 }
872
873 /*
874 * sonic_init: [ifnet interface function]
875 *
876 * Initialize the interface. Must be called at splnet().
877 */
878 int
879 sonic_init(struct ifnet *ifp)
880 {
881 struct sonic_softc *sc = ifp->if_softc;
882 struct sonic_descsoft *ds;
883 int i, error = 0;
884 uint16_t reg;
885
886 /*
887 * Cancel any pending I/O.
888 */
889 sonic_stop(ifp, 0);
890
891 /*
892 * Reset the SONIC to a known state.
893 */
894 sonic_reset(sc);
895
896 /*
897 * Bring the SONIC into reset state, and program the DCR.
898 *
899 * Note: We don't bother optimizing the transmit and receive
900 * thresholds, here. We just use the most conservative values:
901 *
902 * - Rx: 4 bytes (RFT0,RFT0 == 0,0)
903 * - Tx: 28 bytes (TFT0,TFT1 == 1,1)
904 */
905 reg = sc->sc_dcr | DCR_TFT0 | DCR_TFT1;
906 if (sc->sc_32bit)
907 reg |= DCR_DW;
908 CSR_WRITE(sc, SONIC_CR, CR_RST);
909 CSR_WRITE(sc, SONIC_DCR, reg);
910 CSR_WRITE(sc, SONIC_DCR2, sc->sc_dcr2);
911 CSR_WRITE(sc, SONIC_CR, 0);
912
913 /*
914 * Initialize the transmit descriptors.
915 */
916 if (sc->sc_32bit) {
917 for (i = 0; i < SONIC_NTXDESC; i++) {
918 memset(&sc->sc_tda32[i], 0, sizeof(struct sonic_tda32));
919 SONIC_CDTXSYNC32(sc, i,
920 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
921 }
922 } else {
923 for (i = 0; i < SONIC_NTXDESC; i++) {
924 memset(&sc->sc_tda16[i], 0, sizeof(struct sonic_tda16));
925 SONIC_CDTXSYNC16(sc, i,
926 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
927 }
928 }
929 sc->sc_txpending = 0;
930 sc->sc_txdirty = 0;
931 sc->sc_txlast = SONIC_NTXDESC - 1;
932
933 /*
934 * Initialize the receive descriptor ring.
935 */
936 for (i = 0; i < SONIC_NRXDESC; i++) {
937 ds = &sc->sc_rxsoft[i];
938 if (ds->ds_mbuf == NULL) {
939 if ((error = sonic_add_rxbuf(sc, i)) != 0) {
940 printf("%s: unable to allocate or map Rx "
941 "buffer %d, error = %d\n",
942 sc->sc_dev.dv_xname, i, error);
943 /*
944 * XXX Should attempt to run with fewer receive
945 * XXX buffers instead of just failing.
946 */
947 sonic_rxdrain(sc);
948 goto out;
949 }
950 } else
951 SONIC_INIT_RXDESC(sc, i);
952 }
953 sc->sc_rxptr = 0;
954
955 /* Give the transmit ring to the SONIC. */
956 CSR_WRITE(sc, SONIC_UTDAR, (SONIC_CDTXADDR(sc, 0) >> 16) & 0xffff);
957 CSR_WRITE(sc, SONIC_CTDAR, SONIC_CDTXADDR(sc, 0) & 0xffff);
958
959 /* Give the receive descriptor ring to the SONIC. */
960 CSR_WRITE(sc, SONIC_URDAR, (SONIC_CDRXADDR(sc, 0) >> 16) & 0xffff);
961 CSR_WRITE(sc, SONIC_CRDAR, SONIC_CDRXADDR(sc, 0) & 0xffff);
962
963 /* Give the receive buffer ring to the SONIC. */
964 CSR_WRITE(sc, SONIC_URRAR, (SONIC_CDRRADDR(sc, 0) >> 16) & 0xffff);
965 CSR_WRITE(sc, SONIC_RSAR, SONIC_CDRRADDR(sc, 0) & 0xffff);
966 if (sc->sc_32bit)
967 CSR_WRITE(sc, SONIC_REAR,
968 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
969 sizeof(struct sonic_rra32)) & 0xffff);
970 else
971 CSR_WRITE(sc, SONIC_REAR,
972 (SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1) +
973 sizeof(struct sonic_rra16)) & 0xffff);
974 CSR_WRITE(sc, SONIC_RRR, SONIC_CDRRADDR(sc, 0) & 0xffff);
975 CSR_WRITE(sc, SONIC_RWR, SONIC_CDRRADDR(sc, SONIC_NRXDESC - 1));
976
977 /*
978 * Set the End-Of-Buffer counter such that only one packet
979 * will be placed into each buffer we provide. Note we are
980 * following the recommendation of section 3.4.4 of the manual
981 * here, and have "lengthened" the receive buffers accordingly.
982 */
983 if (sc->sc_32bit)
984 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN + 2) / 2);
985 else
986 CSR_WRITE(sc, SONIC_EOBC, (ETHER_MAX_LEN / 2));
987
988 /* Reset the receive sequence counter. */
989 CSR_WRITE(sc, SONIC_RSC, 0);
990
991 /* Clear the tally registers. */
992 CSR_WRITE(sc, SONIC_CRCETC, 0xffff);
993 CSR_WRITE(sc, SONIC_FAET, 0xffff);
994 CSR_WRITE(sc, SONIC_MPT, 0xffff);
995
996 /* Set the receive filter. */
997 sonic_set_filter(sc);
998
999 /*
1000 * Set the interrupt mask register.
1001 */
1002 sc->sc_imr = IMR_RFO | IMR_RBA | IMR_RBE | IMR_RDE |
1003 IMR_TXER | IMR_PTX | IMR_PRX;
1004 CSR_WRITE(sc, SONIC_IMR, sc->sc_imr);
1005
1006 /*
1007 * Start the receive process in motion. Note, we don't
1008 * start the transmit process until we actually try to
1009 * transmit packets.
1010 */
1011 CSR_WRITE(sc, SONIC_CR, CR_RXEN | CR_RRRA);
1012
1013 /*
1014 * ...all done!
1015 */
1016 ifp->if_flags |= IFF_RUNNING;
1017 ifp->if_flags &= ~IFF_OACTIVE;
1018
1019 out:
1020 if (error)
1021 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1022 return (error);
1023 }
1024
1025 /*
1026 * sonic_rxdrain:
1027 *
1028 * Drain the receive queue.
1029 */
1030 void
1031 sonic_rxdrain(struct sonic_softc *sc)
1032 {
1033 struct sonic_descsoft *ds;
1034 int i;
1035
1036 for (i = 0; i < SONIC_NRXDESC; i++) {
1037 ds = &sc->sc_rxsoft[i];
1038 if (ds->ds_mbuf != NULL) {
1039 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1040 m_freem(ds->ds_mbuf);
1041 ds->ds_mbuf = NULL;
1042 }
1043 }
1044 }
1045
1046 /*
1047 * sonic_stop: [ifnet interface function]
1048 *
1049 * Stop transmission on the interface.
1050 */
1051 void
1052 sonic_stop(struct ifnet *ifp, int disable)
1053 {
1054 struct sonic_softc *sc = ifp->if_softc;
1055 struct sonic_descsoft *ds;
1056 int i;
1057
1058 /*
1059 * Disable interrupts.
1060 */
1061 CSR_WRITE(sc, SONIC_IMR, 0);
1062
1063 /*
1064 * Stop the transmitter, receiver, and timer.
1065 */
1066 CSR_WRITE(sc, SONIC_CR, CR_HTX|CR_RXDIS|CR_STP);
1067 for (i = 0; i < 1000; i++) {
1068 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) == 0)
1069 break;
1070 delay(2);
1071 }
1072 if ((CSR_READ(sc, SONIC_CR) & (CR_TXP|CR_RXEN|CR_ST)) != 0)
1073 printf("%s: SONIC failed to stop\n", sc->sc_dev.dv_xname);
1074
1075 /*
1076 * Release any queued transmit buffers.
1077 */
1078 for (i = 0; i < SONIC_NTXDESC; i++) {
1079 ds = &sc->sc_txsoft[i];
1080 if (ds->ds_mbuf != NULL) {
1081 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1082 m_freem(ds->ds_mbuf);
1083 ds->ds_mbuf = NULL;
1084 }
1085 }
1086
1087 if (disable)
1088 sonic_rxdrain(sc);
1089
1090 /*
1091 * Mark the interface down and cancel the watchdog timer.
1092 */
1093 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1094 ifp->if_timer = 0;
1095 }
1096
1097 /*
1098 * sonic_add_rxbuf:
1099 *
1100 * Add a receive buffer to the indicated descriptor.
1101 */
1102 int
1103 sonic_add_rxbuf(struct sonic_softc *sc, int idx)
1104 {
1105 struct sonic_descsoft *ds = &sc->sc_rxsoft[idx];
1106 struct mbuf *m;
1107 int error;
1108
1109 MGETHDR(m, M_DONTWAIT, MT_DATA);
1110 if (m == NULL)
1111 return (ENOBUFS);
1112
1113 MCLGET(m, M_DONTWAIT);
1114 if ((m->m_flags & M_EXT) == 0) {
1115 m_freem(m);
1116 return (ENOBUFS);
1117 }
1118
1119 if (ds->ds_mbuf != NULL)
1120 bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap);
1121
1122 ds->ds_mbuf = m;
1123
1124 error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap,
1125 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1126 BUS_DMA_READ|BUS_DMA_NOWAIT);
1127 if (error) {
1128 printf("%s: can't load rx DMA map %d, error = %d\n",
1129 sc->sc_dev.dv_xname, idx, error);
1130 panic("sonic_add_rxbuf"); /* XXX */
1131 }
1132
1133 bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0,
1134 ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1135
1136 SONIC_INIT_RXDESC(sc, idx);
1137
1138 return (0);
1139 }
1140
1141 static void
1142 sonic_set_camentry(struct sonic_softc *sc, int entry, const uint8_t *enaddr)
1143 {
1144
1145 if (sc->sc_32bit) {
1146 struct sonic_cda32 *cda = &sc->sc_cda32[entry];
1147
1148 cda->cda_entry = htosonic32(sc, entry);
1149 cda->cda_addr0 = htosonic32(sc, enaddr[0] | (enaddr[1] << 8));
1150 cda->cda_addr1 = htosonic32(sc, enaddr[2] | (enaddr[3] << 8));
1151 cda->cda_addr2 = htosonic32(sc, enaddr[4] | (enaddr[5] << 8));
1152 } else {
1153 struct sonic_cda16 *cda = &sc->sc_cda16[entry];
1154
1155 cda->cda_entry = htosonic16(sc, entry);
1156 cda->cda_addr0 = htosonic16(sc, enaddr[0] | (enaddr[1] << 8));
1157 cda->cda_addr1 = htosonic16(sc, enaddr[2] | (enaddr[3] << 8));
1158 cda->cda_addr2 = htosonic16(sc, enaddr[4] | (enaddr[5] << 8));
1159 }
1160 }
1161
1162 /*
1163 * sonic_set_filter:
1164 *
1165 * Set the SONIC receive filter.
1166 */
1167 void
1168 sonic_set_filter(struct sonic_softc *sc)
1169 {
1170 struct ethercom *ec = &sc->sc_ethercom;
1171 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1172 struct ether_multi *enm;
1173 struct ether_multistep step;
1174 int i, entry = 0;
1175 uint16_t camvalid = 0;
1176 uint16_t rcr = 0;
1177
1178 if (ifp->if_flags & IFF_BROADCAST)
1179 rcr |= RCR_BRD;
1180
1181 if (ifp->if_flags & IFF_PROMISC) {
1182 rcr |= RCR_PRO;
1183 goto allmulti;
1184 }
1185
1186 /* Put our station address in the first CAM slot. */
1187 sonic_set_camentry(sc, entry, LLADDR(ifp->if_sadl));
1188 camvalid |= (1U << entry);
1189 entry++;
1190
1191 /* Add the multicast addresses to the CAM. */
1192 ETHER_FIRST_MULTI(step, ec, enm);
1193 while (enm != NULL) {
1194 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1195 /*
1196 * We must listen to a range of multicast addresses.
1197 * The only way to do this on the SONIC is to enable
1198 * reception of all multicast packets.
1199 */
1200 goto allmulti;
1201 }
1202
1203 if (entry == 16) {
1204 /*
1205 * Out of CAM slots. Have to enable reception
1206 * of all multicast addresses.
1207 */
1208 goto allmulti;
1209 }
1210
1211 sonic_set_camentry(sc, entry, enm->enm_addrlo);
1212 camvalid |= (1U << entry);
1213 entry++;
1214
1215 ETHER_NEXT_MULTI(step, enm);
1216 }
1217
1218 ifp->if_flags &= ~IFF_ALLMULTI;
1219 goto setit;
1220
1221 allmulti:
1222 /* Use only the first CAM slot (station address). */
1223 camvalid = 0x0001;
1224 entry = 1;
1225 rcr |= RCR_AMC;
1226
1227 setit:
1228 /* Load the CAM. */
1229 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_PREWRITE);
1230 CSR_WRITE(sc, SONIC_CDP, SONIC_CDCAMADDR(sc) & 0xffff);
1231 CSR_WRITE(sc, SONIC_CDC, entry);
1232 CSR_WRITE(sc, SONIC_CR, CR_LCAM);
1233 for (i = 0; i < 10000; i++) {
1234 if ((CSR_READ(sc, SONIC_CR) & CR_LCAM) == 0)
1235 break;
1236 delay(2);
1237 }
1238 if (CSR_READ(sc, SONIC_CR) & CR_LCAM)
1239 printf("%s: CAM load failed\n", sc->sc_dev.dv_xname);
1240 SONIC_CDCAMSYNC(sc, BUS_DMASYNC_POSTWRITE);
1241
1242 /* Set the CAM enable resgiter. */
1243 CSR_WRITE(sc, SONIC_CER, camvalid);
1244
1245 /* Set the receive control register. */
1246 CSR_WRITE(sc, SONIC_RCR, rcr);
1247 }
1248