dwc_eqos.c revision 1.21 1 1.21 msaitoh /* $NetBSD: dwc_eqos.c,v 1.21 2023/10/20 13:29:51 msaitoh Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2022 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill /*
30 1.1 jmcneill * DesignWare Ethernet Quality-of-Service controller
31 1.20 msaitoh *
32 1.20 msaitoh * TODO:
33 1.20 msaitoh * Multiqueue support.
34 1.20 msaitoh * Add watchdog timer.
35 1.20 msaitoh * Add detach function.
36 1.1 jmcneill */
37 1.1 jmcneill
38 1.1 jmcneill #include "opt_net_mpsafe.h"
39 1.1 jmcneill
40 1.1 jmcneill #include <sys/cdefs.h>
41 1.21 msaitoh __KERNEL_RCSID(0, "$NetBSD: dwc_eqos.c,v 1.21 2023/10/20 13:29:51 msaitoh Exp $");
42 1.1 jmcneill
43 1.1 jmcneill #include <sys/param.h>
44 1.1 jmcneill #include <sys/bus.h>
45 1.1 jmcneill #include <sys/device.h>
46 1.1 jmcneill #include <sys/intr.h>
47 1.1 jmcneill #include <sys/systm.h>
48 1.1 jmcneill #include <sys/kernel.h>
49 1.1 jmcneill #include <sys/mutex.h>
50 1.1 jmcneill #include <sys/callout.h>
51 1.1 jmcneill #include <sys/cprng.h>
52 1.2 mrg #include <sys/evcnt.h>
53 1.1 jmcneill
54 1.1 jmcneill #include <sys/rndsource.h>
55 1.1 jmcneill
56 1.1 jmcneill #include <net/if.h>
57 1.1 jmcneill #include <net/if_dl.h>
58 1.1 jmcneill #include <net/if_ether.h>
59 1.1 jmcneill #include <net/if_media.h>
60 1.1 jmcneill #include <net/bpf.h>
61 1.1 jmcneill
62 1.1 jmcneill #include <dev/mii/miivar.h>
63 1.1 jmcneill
64 1.1 jmcneill #include <dev/ic/dwc_eqos_reg.h>
65 1.1 jmcneill #include <dev/ic/dwc_eqos_var.h>
66 1.1 jmcneill
67 1.13 ryo #define EQOS_MAX_MTU 9000 /* up to 16364? but not tested */
68 1.13 ryo #define EQOS_TXDMA_SIZE (EQOS_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN)
69 1.13 ryo #define EQOS_RXDMA_SIZE 2048 /* Fixed value by hardware */
70 1.13 ryo CTASSERT(MCLBYTES >= EQOS_RXDMA_SIZE);
71 1.8 martin
72 1.1 jmcneill #ifdef EQOS_DEBUG
73 1.8 martin unsigned int eqos_debug;
74 1.8 martin #define DPRINTF(FLAG, FORMAT, ...) \
75 1.8 martin if (eqos_debug & FLAG) \
76 1.8 martin device_printf(sc->sc_dev, "%s: " FORMAT, \
77 1.8 martin __func__, ##__VA_ARGS__)
78 1.1 jmcneill #else
79 1.8 martin #define DPRINTF(FLAG, FORMAT, ...) ((void)0)
80 1.1 jmcneill #endif
81 1.8 martin #define EDEB_NOTE 1U<<0
82 1.8 martin #define EDEB_INTR 1U<<1
83 1.8 martin #define EDEB_RXRING 1U<<2
84 1.8 martin #define EDEB_TXRING 1U<<3
85 1.1 jmcneill
86 1.1 jmcneill #ifdef NET_MPSAFE
87 1.1 jmcneill #define EQOS_MPSAFE 1
88 1.1 jmcneill #define CALLOUT_FLAGS CALLOUT_MPSAFE
89 1.1 jmcneill #else
90 1.1 jmcneill #define CALLOUT_FLAGS 0
91 1.1 jmcneill #endif
92 1.1 jmcneill
93 1.21 msaitoh #define DESC_BOUNDARY ((sizeof(bus_size_t) > 4) ? (1ULL << 32) : 0)
94 1.1 jmcneill #define DESC_ALIGN sizeof(struct eqos_dma_desc)
95 1.1 jmcneill #define TX_DESC_COUNT EQOS_DMA_DESC_COUNT
96 1.1 jmcneill #define TX_DESC_SIZE (TX_DESC_COUNT * DESC_ALIGN)
97 1.1 jmcneill #define RX_DESC_COUNT EQOS_DMA_DESC_COUNT
98 1.1 jmcneill #define RX_DESC_SIZE (RX_DESC_COUNT * DESC_ALIGN)
99 1.1 jmcneill #define MII_BUSY_RETRY 1000
100 1.1 jmcneill
101 1.1 jmcneill #define DESC_OFF(n) ((n) * sizeof(struct eqos_dma_desc))
102 1.1 jmcneill #define TX_SKIP(n, o) (((n) + (o)) % TX_DESC_COUNT)
103 1.1 jmcneill #define TX_NEXT(n) TX_SKIP(n, 1)
104 1.1 jmcneill #define RX_NEXT(n) (((n) + 1) % RX_DESC_COUNT)
105 1.1 jmcneill
106 1.1 jmcneill #define TX_MAX_SEGS 128
107 1.1 jmcneill
108 1.1 jmcneill #define EQOS_LOCK(sc) mutex_enter(&(sc)->sc_lock)
109 1.1 jmcneill #define EQOS_UNLOCK(sc) mutex_exit(&(sc)->sc_lock)
110 1.1 jmcneill #define EQOS_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_lock))
111 1.1 jmcneill
112 1.1 jmcneill #define EQOS_TXLOCK(sc) mutex_enter(&(sc)->sc_txlock)
113 1.1 jmcneill #define EQOS_TXUNLOCK(sc) mutex_exit(&(sc)->sc_txlock)
114 1.1 jmcneill #define EQOS_ASSERT_TXLOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_txlock))
115 1.1 jmcneill
116 1.1 jmcneill #define EQOS_HW_FEATURE_ADDR64_32BIT(sc) \
117 1.1 jmcneill (((sc)->sc_hw_feature[1] & GMAC_MAC_HW_FEATURE1_ADDR64_MASK) == \
118 1.1 jmcneill GMAC_MAC_HW_FEATURE1_ADDR64_32BIT)
119 1.1 jmcneill
120 1.1 jmcneill
121 1.1 jmcneill #define RD4(sc, reg) \
122 1.1 jmcneill bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
123 1.1 jmcneill #define WR4(sc, reg, val) \
124 1.1 jmcneill bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
125 1.1 jmcneill
126 1.1 jmcneill static int
127 1.1 jmcneill eqos_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
128 1.1 jmcneill {
129 1.15 skrll struct eqos_softc * const sc = device_private(dev);
130 1.1 jmcneill uint32_t addr;
131 1.1 jmcneill int retry;
132 1.1 jmcneill
133 1.1 jmcneill addr = sc->sc_clock_range |
134 1.1 jmcneill (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) |
135 1.1 jmcneill (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) |
136 1.1 jmcneill GMAC_MAC_MDIO_ADDRESS_GOC_READ |
137 1.1 jmcneill GMAC_MAC_MDIO_ADDRESS_GB;
138 1.1 jmcneill WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr);
139 1.1 jmcneill
140 1.1 jmcneill delay(10000);
141 1.1 jmcneill
142 1.1 jmcneill for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
143 1.1 jmcneill addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS);
144 1.1 jmcneill if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) {
145 1.1 jmcneill *val = RD4(sc, GMAC_MAC_MDIO_DATA) & 0xFFFF;
146 1.1 jmcneill break;
147 1.1 jmcneill }
148 1.1 jmcneill delay(10);
149 1.1 jmcneill }
150 1.1 jmcneill if (retry == 0) {
151 1.1 jmcneill device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
152 1.1 jmcneill phy, reg);
153 1.1 jmcneill return ETIMEDOUT;
154 1.1 jmcneill }
155 1.1 jmcneill
156 1.1 jmcneill return 0;
157 1.1 jmcneill }
158 1.1 jmcneill
159 1.1 jmcneill static int
160 1.1 jmcneill eqos_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
161 1.1 jmcneill {
162 1.15 skrll struct eqos_softc * const sc = device_private(dev);
163 1.1 jmcneill uint32_t addr;
164 1.1 jmcneill int retry;
165 1.1 jmcneill
166 1.1 jmcneill WR4(sc, GMAC_MAC_MDIO_DATA, val);
167 1.1 jmcneill
168 1.1 jmcneill addr = sc->sc_clock_range |
169 1.1 jmcneill (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) |
170 1.1 jmcneill (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) |
171 1.1 jmcneill GMAC_MAC_MDIO_ADDRESS_GOC_WRITE |
172 1.1 jmcneill GMAC_MAC_MDIO_ADDRESS_GB;
173 1.1 jmcneill WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr);
174 1.1 jmcneill
175 1.1 jmcneill delay(10000);
176 1.1 jmcneill
177 1.1 jmcneill for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
178 1.1 jmcneill addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS);
179 1.1 jmcneill if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) {
180 1.1 jmcneill break;
181 1.1 jmcneill }
182 1.1 jmcneill delay(10);
183 1.1 jmcneill }
184 1.1 jmcneill if (retry == 0) {
185 1.1 jmcneill device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
186 1.1 jmcneill phy, reg);
187 1.1 jmcneill return ETIMEDOUT;
188 1.1 jmcneill }
189 1.1 jmcneill
190 1.1 jmcneill return 0;
191 1.1 jmcneill }
192 1.1 jmcneill
193 1.1 jmcneill static void
194 1.1 jmcneill eqos_update_link(struct eqos_softc *sc)
195 1.1 jmcneill {
196 1.15 skrll struct mii_data * const mii = &sc->sc_mii;
197 1.1 jmcneill uint64_t baudrate;
198 1.1 jmcneill uint32_t conf;
199 1.1 jmcneill
200 1.1 jmcneill baudrate = ifmedia_baudrate(mii->mii_media_active);
201 1.1 jmcneill
202 1.1 jmcneill conf = RD4(sc, GMAC_MAC_CONFIGURATION);
203 1.1 jmcneill switch (baudrate) {
204 1.1 jmcneill case IF_Mbps(10):
205 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_PS;
206 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_FES;
207 1.1 jmcneill break;
208 1.1 jmcneill case IF_Mbps(100):
209 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_PS;
210 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_FES;
211 1.1 jmcneill break;
212 1.1 jmcneill case IF_Gbps(1):
213 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_PS;
214 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_FES;
215 1.1 jmcneill break;
216 1.1 jmcneill case IF_Mbps(2500ULL):
217 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_PS;
218 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_FES;
219 1.1 jmcneill break;
220 1.1 jmcneill }
221 1.1 jmcneill
222 1.1 jmcneill if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
223 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_DM;
224 1.1 jmcneill } else {
225 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_DM;
226 1.1 jmcneill }
227 1.1 jmcneill
228 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, conf);
229 1.1 jmcneill }
230 1.1 jmcneill
231 1.1 jmcneill static void
232 1.1 jmcneill eqos_mii_statchg(struct ifnet *ifp)
233 1.1 jmcneill {
234 1.1 jmcneill struct eqos_softc * const sc = ifp->if_softc;
235 1.1 jmcneill
236 1.1 jmcneill eqos_update_link(sc);
237 1.1 jmcneill }
238 1.1 jmcneill
239 1.1 jmcneill static void
240 1.1 jmcneill eqos_dma_sync(struct eqos_softc *sc, bus_dmamap_t map,
241 1.1 jmcneill u_int start, u_int end, u_int total, int flags)
242 1.1 jmcneill {
243 1.1 jmcneill if (end > start) {
244 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start),
245 1.1 jmcneill DESC_OFF(end) - DESC_OFF(start), flags);
246 1.1 jmcneill } else {
247 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start),
248 1.1 jmcneill DESC_OFF(total) - DESC_OFF(start), flags);
249 1.8 martin if (end > 0) {
250 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(0),
251 1.1 jmcneill DESC_OFF(end) - DESC_OFF(0), flags);
252 1.1 jmcneill }
253 1.1 jmcneill }
254 1.1 jmcneill }
255 1.1 jmcneill
256 1.1 jmcneill static void
257 1.1 jmcneill eqos_setup_txdesc(struct eqos_softc *sc, int index, int flags,
258 1.1 jmcneill bus_addr_t paddr, u_int len, u_int total_len)
259 1.1 jmcneill {
260 1.1 jmcneill uint32_t tdes2, tdes3;
261 1.1 jmcneill
262 1.1 jmcneill if (paddr == 0 || len == 0) {
263 1.8 martin DPRINTF(EDEB_TXRING,
264 1.8 martin "tx for desc %u done!\n", index);
265 1.1 jmcneill KASSERT(flags == 0);
266 1.1 jmcneill tdes2 = 0;
267 1.1 jmcneill tdes3 = 0;
268 1.1 jmcneill --sc->sc_tx.queued;
269 1.1 jmcneill } else {
270 1.12 ryo tdes2 = (flags & EQOS_TDES3_TX_LD) ? EQOS_TDES2_TX_IOC : 0;
271 1.1 jmcneill tdes3 = flags;
272 1.1 jmcneill ++sc->sc_tx.queued;
273 1.1 jmcneill }
274 1.1 jmcneill
275 1.21 msaitoh KASSERT(!EQOS_HW_FEATURE_ADDR64_32BIT(sc) ||
276 1.21 msaitoh ((uint64_t)paddr >> 32) == 0);
277 1.1 jmcneill
278 1.1 jmcneill sc->sc_tx.desc_ring[index].tdes0 = htole32((uint32_t)paddr);
279 1.21 msaitoh sc->sc_tx.desc_ring[index].tdes1
280 1.21 msaitoh = htole32((uint32_t)((uint64_t)paddr >> 32));
281 1.1 jmcneill sc->sc_tx.desc_ring[index].tdes2 = htole32(tdes2 | len);
282 1.1 jmcneill sc->sc_tx.desc_ring[index].tdes3 = htole32(tdes3 | total_len);
283 1.8 martin DPRINTF(EDEB_TXRING, "preparing desc %u\n", index);
284 1.1 jmcneill }
285 1.1 jmcneill
286 1.1 jmcneill static int
287 1.1 jmcneill eqos_setup_txbuf(struct eqos_softc *sc, int index, struct mbuf *m)
288 1.1 jmcneill {
289 1.1 jmcneill bus_dma_segment_t *segs;
290 1.1 jmcneill int error, nsegs, cur, i;
291 1.1 jmcneill uint32_t flags;
292 1.1 jmcneill bool nospace;
293 1.1 jmcneill
294 1.1 jmcneill /* at least one descriptor free ? */
295 1.1 jmcneill if (sc->sc_tx.queued >= TX_DESC_COUNT - 1)
296 1.1 jmcneill return -1;
297 1.1 jmcneill
298 1.1 jmcneill error = bus_dmamap_load_mbuf(sc->sc_dmat,
299 1.1 jmcneill sc->sc_tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
300 1.1 jmcneill if (error == EFBIG) {
301 1.1 jmcneill device_printf(sc->sc_dev,
302 1.1 jmcneill "TX packet needs too many DMA segments, dropping...\n");
303 1.1 jmcneill return -2;
304 1.1 jmcneill }
305 1.1 jmcneill if (error != 0) {
306 1.1 jmcneill device_printf(sc->sc_dev,
307 1.1 jmcneill "TX packet cannot be mapped, retried...\n");
308 1.1 jmcneill return 0;
309 1.1 jmcneill }
310 1.1 jmcneill
311 1.1 jmcneill segs = sc->sc_tx.buf_map[index].map->dm_segs;
312 1.1 jmcneill nsegs = sc->sc_tx.buf_map[index].map->dm_nsegs;
313 1.1 jmcneill
314 1.1 jmcneill nospace = sc->sc_tx.queued >= TX_DESC_COUNT - nsegs;
315 1.1 jmcneill if (nospace) {
316 1.1 jmcneill bus_dmamap_unload(sc->sc_dmat,
317 1.1 jmcneill sc->sc_tx.buf_map[index].map);
318 1.1 jmcneill /* XXX coalesce and retry ? */
319 1.1 jmcneill return -1;
320 1.1 jmcneill }
321 1.1 jmcneill
322 1.2 mrg bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.buf_map[index].map,
323 1.5 riastrad 0, sc->sc_tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
324 1.1 jmcneill
325 1.1 jmcneill /* stored in same index as loaded map */
326 1.1 jmcneill sc->sc_tx.buf_map[index].mbuf = m;
327 1.1 jmcneill
328 1.12 ryo flags = EQOS_TDES3_TX_FD;
329 1.1 jmcneill
330 1.1 jmcneill for (cur = index, i = 0; i < nsegs; i++) {
331 1.1 jmcneill if (i == nsegs - 1)
332 1.12 ryo flags |= EQOS_TDES3_TX_LD;
333 1.1 jmcneill
334 1.1 jmcneill eqos_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
335 1.1 jmcneill segs[i].ds_len, m->m_pkthdr.len);
336 1.12 ryo flags &= ~EQOS_TDES3_TX_FD;
337 1.1 jmcneill cur = TX_NEXT(cur);
338 1.1 jmcneill
339 1.12 ryo flags |= EQOS_TDES3_TX_OWN;
340 1.1 jmcneill }
341 1.1 jmcneill
342 1.1 jmcneill /*
343 1.1 jmcneill * Defer setting OWN bit on the first descriptor until all
344 1.4 riastrad * descriptors have been updated. The hardware will not try to
345 1.4 riastrad * process any descriptors past the first one still owned by
346 1.4 riastrad * software (i.e., with the OWN bit clear).
347 1.1 jmcneill */
348 1.4 riastrad bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map,
349 1.4 riastrad DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3),
350 1.4 riastrad BUS_DMASYNC_PREWRITE);
351 1.8 martin DPRINTF(EDEB_TXRING, "passing tx desc %u to hardware, cur: %u, "
352 1.8 martin "next: %u, queued: %u\n",
353 1.8 martin index, sc->sc_tx.cur, sc->sc_tx.next, sc->sc_tx.queued);
354 1.12 ryo sc->sc_tx.desc_ring[index].tdes3 |= htole32(EQOS_TDES3_TX_OWN);
355 1.1 jmcneill
356 1.1 jmcneill return nsegs;
357 1.1 jmcneill }
358 1.1 jmcneill
359 1.1 jmcneill static void
360 1.1 jmcneill eqos_setup_rxdesc(struct eqos_softc *sc, int index, bus_addr_t paddr)
361 1.1 jmcneill {
362 1.4 riastrad
363 1.1 jmcneill sc->sc_rx.desc_ring[index].tdes0 = htole32((uint32_t)paddr);
364 1.21 msaitoh sc->sc_rx.desc_ring[index].tdes1 =
365 1.21 msaitoh htole32((uint32_t)((uint64_t)paddr >> 32));
366 1.1 jmcneill sc->sc_rx.desc_ring[index].tdes2 = htole32(0);
367 1.4 riastrad bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map,
368 1.4 riastrad DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3),
369 1.4 riastrad BUS_DMASYNC_PREWRITE);
370 1.12 ryo sc->sc_rx.desc_ring[index].tdes3 = htole32(EQOS_TDES3_RX_OWN |
371 1.12 ryo EQOS_TDES3_RX_IOC | EQOS_TDES3_RX_BUF1V);
372 1.1 jmcneill }
373 1.1 jmcneill
374 1.1 jmcneill static int
375 1.1 jmcneill eqos_setup_rxbuf(struct eqos_softc *sc, int index, struct mbuf *m)
376 1.1 jmcneill {
377 1.1 jmcneill int error;
378 1.1 jmcneill
379 1.13 ryo #if MCLBYTES >= (EQOS_RXDMA_SIZE + ETHER_ALIGN)
380 1.13 ryo m_adj(m, ETHER_ALIGN);
381 1.13 ryo #endif
382 1.13 ryo
383 1.1 jmcneill error = bus_dmamap_load_mbuf(sc->sc_dmat,
384 1.1 jmcneill sc->sc_rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT);
385 1.1 jmcneill if (error != 0)
386 1.1 jmcneill return error;
387 1.1 jmcneill
388 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map,
389 1.1 jmcneill 0, sc->sc_rx.buf_map[index].map->dm_mapsize,
390 1.1 jmcneill BUS_DMASYNC_PREREAD);
391 1.1 jmcneill
392 1.1 jmcneill sc->sc_rx.buf_map[index].mbuf = m;
393 1.1 jmcneill
394 1.1 jmcneill return 0;
395 1.1 jmcneill }
396 1.1 jmcneill
397 1.1 jmcneill static struct mbuf *
398 1.1 jmcneill eqos_alloc_mbufcl(struct eqos_softc *sc)
399 1.1 jmcneill {
400 1.1 jmcneill struct mbuf *m;
401 1.1 jmcneill
402 1.1 jmcneill m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
403 1.1 jmcneill if (m != NULL)
404 1.1 jmcneill m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
405 1.1 jmcneill
406 1.1 jmcneill return m;
407 1.1 jmcneill }
408 1.1 jmcneill
409 1.1 jmcneill static void
410 1.1 jmcneill eqos_enable_intr(struct eqos_softc *sc)
411 1.1 jmcneill {
412 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE,
413 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_NIE |
414 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_AIE |
415 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_FBE |
416 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_RIE |
417 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_TIE);
418 1.1 jmcneill }
419 1.1 jmcneill
420 1.1 jmcneill static void
421 1.1 jmcneill eqos_disable_intr(struct eqos_softc *sc)
422 1.1 jmcneill {
423 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE, 0);
424 1.1 jmcneill }
425 1.1 jmcneill
426 1.1 jmcneill static void
427 1.1 jmcneill eqos_tick(void *softc)
428 1.1 jmcneill {
429 1.15 skrll struct eqos_softc * const sc = softc;
430 1.15 skrll struct mii_data * const mii = &sc->sc_mii;
431 1.1 jmcneill #ifndef EQOS_MPSAFE
432 1.1 jmcneill int s = splnet();
433 1.1 jmcneill #endif
434 1.1 jmcneill
435 1.1 jmcneill EQOS_LOCK(sc);
436 1.1 jmcneill mii_tick(mii);
437 1.1 jmcneill callout_schedule(&sc->sc_stat_ch, hz);
438 1.1 jmcneill EQOS_UNLOCK(sc);
439 1.1 jmcneill
440 1.1 jmcneill #ifndef EQOS_MPSAFE
441 1.1 jmcneill splx(s);
442 1.1 jmcneill #endif
443 1.1 jmcneill }
444 1.1 jmcneill
445 1.1 jmcneill static uint32_t
446 1.1 jmcneill eqos_bitrev32(uint32_t x)
447 1.1 jmcneill {
448 1.1 jmcneill x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
449 1.1 jmcneill x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
450 1.1 jmcneill x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
451 1.1 jmcneill x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
452 1.1 jmcneill
453 1.1 jmcneill return (x >> 16) | (x << 16);
454 1.1 jmcneill }
455 1.1 jmcneill
456 1.1 jmcneill static void
457 1.1 jmcneill eqos_setup_rxfilter(struct eqos_softc *sc)
458 1.1 jmcneill {
459 1.1 jmcneill struct ethercom *ec = &sc->sc_ec;
460 1.1 jmcneill struct ifnet *ifp = &ec->ec_if;
461 1.1 jmcneill uint32_t pfil, crc, hashreg, hashbit, hash[2];
462 1.1 jmcneill struct ether_multi *enm;
463 1.1 jmcneill struct ether_multistep step;
464 1.1 jmcneill const uint8_t *eaddr;
465 1.1 jmcneill uint32_t val;
466 1.1 jmcneill
467 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
468 1.1 jmcneill
469 1.1 jmcneill pfil = RD4(sc, GMAC_MAC_PACKET_FILTER);
470 1.1 jmcneill pfil &= ~(GMAC_MAC_PACKET_FILTER_PR |
471 1.1 jmcneill GMAC_MAC_PACKET_FILTER_PM |
472 1.1 jmcneill GMAC_MAC_PACKET_FILTER_HMC |
473 1.1 jmcneill GMAC_MAC_PACKET_FILTER_PCF_MASK);
474 1.1 jmcneill hash[0] = hash[1] = ~0U;
475 1.1 jmcneill
476 1.1 jmcneill if ((ifp->if_flags & IFF_PROMISC) != 0) {
477 1.1 jmcneill pfil |= GMAC_MAC_PACKET_FILTER_PR |
478 1.1 jmcneill GMAC_MAC_PACKET_FILTER_PCF_ALL;
479 1.1 jmcneill } else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
480 1.1 jmcneill pfil |= GMAC_MAC_PACKET_FILTER_PM;
481 1.1 jmcneill } else {
482 1.1 jmcneill hash[0] = hash[1] = 0;
483 1.1 jmcneill pfil |= GMAC_MAC_PACKET_FILTER_HMC;
484 1.1 jmcneill ETHER_LOCK(ec);
485 1.1 jmcneill ETHER_FIRST_MULTI(step, ec, enm);
486 1.1 jmcneill while (enm != NULL) {
487 1.1 jmcneill crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
488 1.1 jmcneill crc &= 0x7f;
489 1.1 jmcneill crc = eqos_bitrev32(~crc) >> 26;
490 1.1 jmcneill hashreg = (crc >> 5);
491 1.1 jmcneill hashbit = (crc & 0x1f);
492 1.1 jmcneill hash[hashreg] |= (1 << hashbit);
493 1.1 jmcneill ETHER_NEXT_MULTI(step, enm);
494 1.1 jmcneill }
495 1.1 jmcneill ETHER_UNLOCK(ec);
496 1.1 jmcneill }
497 1.1 jmcneill
498 1.1 jmcneill /* Write our unicast address */
499 1.1 jmcneill eaddr = CLLADDR(ifp->if_sadl);
500 1.1 jmcneill val = eaddr[4] | (eaddr[5] << 8);
501 1.1 jmcneill WR4(sc, GMAC_MAC_ADDRESS0_HIGH, val);
502 1.1 jmcneill val = eaddr[0] | (eaddr[1] << 8) | (eaddr[2] << 16) |
503 1.1 jmcneill (eaddr[3] << 24);
504 1.1 jmcneill WR4(sc, GMAC_MAC_ADDRESS0_LOW, val);
505 1.1 jmcneill
506 1.1 jmcneill /* Multicast hash filters */
507 1.9 martin WR4(sc, GMAC_MAC_HASH_TABLE_REG0, hash[0]);
508 1.9 martin WR4(sc, GMAC_MAC_HASH_TABLE_REG1, hash[1]);
509 1.1 jmcneill
510 1.8 martin DPRINTF(EDEB_NOTE, "writing new packet filter config "
511 1.8 martin "%08x, hash[1]=%08x, hash[0]=%08x\n", pfil, hash[1], hash[0]);
512 1.1 jmcneill /* Packet filter config */
513 1.1 jmcneill WR4(sc, GMAC_MAC_PACKET_FILTER, pfil);
514 1.1 jmcneill }
515 1.1 jmcneill
516 1.1 jmcneill static int
517 1.1 jmcneill eqos_reset(struct eqos_softc *sc)
518 1.1 jmcneill {
519 1.1 jmcneill uint32_t val;
520 1.1 jmcneill int retry;
521 1.1 jmcneill
522 1.1 jmcneill WR4(sc, GMAC_DMA_MODE, GMAC_DMA_MODE_SWR);
523 1.1 jmcneill for (retry = 2000; retry > 0; retry--) {
524 1.1 jmcneill delay(1000);
525 1.1 jmcneill val = RD4(sc, GMAC_DMA_MODE);
526 1.1 jmcneill if ((val & GMAC_DMA_MODE_SWR) == 0) {
527 1.1 jmcneill return 0;
528 1.1 jmcneill }
529 1.1 jmcneill }
530 1.1 jmcneill
531 1.1 jmcneill device_printf(sc->sc_dev, "reset timeout!\n");
532 1.1 jmcneill return ETIMEDOUT;
533 1.1 jmcneill }
534 1.1 jmcneill
535 1.1 jmcneill static void
536 1.1 jmcneill eqos_init_rings(struct eqos_softc *sc, int qid)
537 1.1 jmcneill {
538 1.7 martin sc->sc_tx.cur = sc->sc_tx.next = sc->sc_tx.queued = 0;
539 1.1 jmcneill
540 1.13 ryo sc->sc_rx_discarding = false;
541 1.13 ryo if (sc->sc_rx_receiving_m != NULL)
542 1.13 ryo m_freem(sc->sc_rx_receiving_m);
543 1.13 ryo sc->sc_rx_receiving_m = NULL;
544 1.13 ryo sc->sc_rx_receiving_m_last = NULL;
545 1.13 ryo
546 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR_HI,
547 1.21 msaitoh (uint32_t)((uint64_t)sc->sc_tx.desc_ring_paddr >> 32));
548 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR,
549 1.1 jmcneill (uint32_t)sc->sc_tx.desc_ring_paddr);
550 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_RING_LEN, TX_DESC_COUNT - 1);
551 1.17 andvar DPRINTF(EDEB_TXRING, "tx ring paddr %lx with %u descriptors\n",
552 1.8 martin sc->sc_tx.desc_ring_paddr, TX_DESC_COUNT);
553 1.1 jmcneill
554 1.8 martin sc->sc_rx.cur = sc->sc_rx.next = sc->sc_rx.queued = 0;
555 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR_HI,
556 1.21 msaitoh (uint32_t)((uint64_t)sc->sc_rx.desc_ring_paddr >> 32));
557 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR,
558 1.1 jmcneill (uint32_t)sc->sc_rx.desc_ring_paddr);
559 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_RING_LEN, RX_DESC_COUNT - 1);
560 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR,
561 1.1 jmcneill (uint32_t)sc->sc_rx.desc_ring_paddr +
562 1.1 jmcneill DESC_OFF((sc->sc_rx.cur - 1) % RX_DESC_COUNT));
563 1.17 andvar DPRINTF(EDEB_RXRING, "rx ring paddr %lx with %u descriptors\n",
564 1.8 martin sc->sc_rx.desc_ring_paddr, RX_DESC_COUNT);
565 1.1 jmcneill }
566 1.1 jmcneill
567 1.1 jmcneill static int
568 1.1 jmcneill eqos_init_locked(struct eqos_softc *sc)
569 1.1 jmcneill {
570 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
571 1.15 skrll struct mii_data * const mii = &sc->sc_mii;
572 1.10 ryo uint32_t val, tqs, rqs;
573 1.1 jmcneill
574 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
575 1.1 jmcneill EQOS_ASSERT_TXLOCKED(sc);
576 1.1 jmcneill
577 1.1 jmcneill if ((ifp->if_flags & IFF_RUNNING) != 0)
578 1.1 jmcneill return 0;
579 1.1 jmcneill
580 1.1 jmcneill /* Setup TX/RX rings */
581 1.1 jmcneill eqos_init_rings(sc, 0);
582 1.1 jmcneill
583 1.1 jmcneill /* Setup RX filter */
584 1.1 jmcneill eqos_setup_rxfilter(sc);
585 1.1 jmcneill
586 1.1 jmcneill WR4(sc, GMAC_MAC_1US_TIC_COUNTER, (sc->sc_csr_clock / 1000000) - 1);
587 1.1 jmcneill
588 1.1 jmcneill /* Enable transmit and receive DMA */
589 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_CONTROL);
590 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_CONTROL_DSL_MASK;
591 1.1 jmcneill val |= ((DESC_ALIGN - 16) / 8) << GMAC_DMA_CHAN0_CONTROL_DSL_SHIFT;
592 1.1 jmcneill val |= GMAC_DMA_CHAN0_CONTROL_PBLX8;
593 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_CONTROL, val);
594 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL);
595 1.1 jmcneill val |= GMAC_DMA_CHAN0_TX_CONTROL_OSP;
596 1.1 jmcneill val |= GMAC_DMA_CHAN0_TX_CONTROL_START;
597 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val);
598 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL);
599 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_MASK;
600 1.1 jmcneill val |= (MCLBYTES << GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_SHIFT);
601 1.1 jmcneill val |= GMAC_DMA_CHAN0_RX_CONTROL_START;
602 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val);
603 1.1 jmcneill
604 1.6 jmcneill /* Disable counters */
605 1.6 jmcneill WR4(sc, GMAC_MMC_CONTROL,
606 1.6 jmcneill GMAC_MMC_CONTROL_CNTFREEZ |
607 1.6 jmcneill GMAC_MMC_CONTROL_CNTPRST |
608 1.6 jmcneill GMAC_MMC_CONTROL_CNTPRSTLVL);
609 1.6 jmcneill
610 1.1 jmcneill /* Configure operation modes */
611 1.1 jmcneill WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE,
612 1.1 jmcneill GMAC_MTL_TXQ0_OPERATION_MODE_TSF |
613 1.1 jmcneill GMAC_MTL_TXQ0_OPERATION_MODE_TXQEN_EN);
614 1.1 jmcneill WR4(sc, GMAC_MTL_RXQ0_OPERATION_MODE,
615 1.1 jmcneill GMAC_MTL_RXQ0_OPERATION_MODE_RSF |
616 1.1 jmcneill GMAC_MTL_RXQ0_OPERATION_MODE_FEP |
617 1.1 jmcneill GMAC_MTL_RXQ0_OPERATION_MODE_FUP);
618 1.1 jmcneill
619 1.10 ryo /*
620 1.10 ryo * TX/RX fifo size in hw_feature[1] are log2(n/128), and
621 1.10 ryo * TQS/RQS in TXQ0/RXQ0_OPERATION_MODE are n/256-1.
622 1.10 ryo */
623 1.10 ryo tqs = (128 << __SHIFTOUT(sc->sc_hw_feature[1],
624 1.10 ryo GMAC_MAC_HW_FEATURE1_TXFIFOSIZE) / 256) - 1;
625 1.10 ryo val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
626 1.10 ryo val &= ~GMAC_MTL_TXQ0_OPERATION_MODE_TQS;
627 1.10 ryo val |= __SHIFTIN(tqs, GMAC_MTL_TXQ0_OPERATION_MODE_TQS);
628 1.10 ryo WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, val);
629 1.10 ryo
630 1.10 ryo rqs = (128 << __SHIFTOUT(sc->sc_hw_feature[1],
631 1.10 ryo GMAC_MAC_HW_FEATURE1_RXFIFOSIZE) / 256) - 1;
632 1.10 ryo val = RD4(sc, GMAC_MTL_RXQ0_OPERATION_MODE);
633 1.10 ryo val &= ~GMAC_MTL_RXQ0_OPERATION_MODE_RQS;
634 1.10 ryo val |= __SHIFTIN(rqs, GMAC_MTL_RXQ0_OPERATION_MODE_RQS);
635 1.10 ryo WR4(sc, GMAC_MTL_RXQ0_OPERATION_MODE, val);
636 1.10 ryo
637 1.1 jmcneill /* Enable flow control */
638 1.1 jmcneill val = RD4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL);
639 1.1 jmcneill val |= 0xFFFFU << GMAC_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT;
640 1.1 jmcneill val |= GMAC_MAC_Q0_TX_FLOW_CTRL_TFE;
641 1.1 jmcneill WR4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL, val);
642 1.1 jmcneill val = RD4(sc, GMAC_MAC_RX_FLOW_CTRL);
643 1.1 jmcneill val |= GMAC_MAC_RX_FLOW_CTRL_RFE;
644 1.1 jmcneill WR4(sc, GMAC_MAC_RX_FLOW_CTRL, val);
645 1.1 jmcneill
646 1.10 ryo /* set RX queue mode. must be in DCB mode. */
647 1.10 ryo val = __SHIFTIN(GMAC_RXQ_CTRL0_EN_DCB, GMAC_RXQ_CTRL0_EN_MASK);
648 1.10 ryo WR4(sc, GMAC_RXQ_CTRL0, val);
649 1.10 ryo
650 1.1 jmcneill /* Enable transmitter and receiver */
651 1.1 jmcneill val = RD4(sc, GMAC_MAC_CONFIGURATION);
652 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_BE;
653 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_JD;
654 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_JE;
655 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_DCRS;
656 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_TE;
657 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_RE;
658 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, val);
659 1.1 jmcneill
660 1.1 jmcneill /* Enable interrupts */
661 1.1 jmcneill eqos_enable_intr(sc);
662 1.1 jmcneill
663 1.1 jmcneill ifp->if_flags |= IFF_RUNNING;
664 1.1 jmcneill
665 1.1 jmcneill mii_mediachg(mii);
666 1.1 jmcneill callout_schedule(&sc->sc_stat_ch, hz);
667 1.1 jmcneill
668 1.1 jmcneill return 0;
669 1.1 jmcneill }
670 1.1 jmcneill
671 1.1 jmcneill static int
672 1.1 jmcneill eqos_init(struct ifnet *ifp)
673 1.1 jmcneill {
674 1.15 skrll struct eqos_softc * const sc = ifp->if_softc;
675 1.1 jmcneill int error;
676 1.1 jmcneill
677 1.1 jmcneill EQOS_LOCK(sc);
678 1.1 jmcneill EQOS_TXLOCK(sc);
679 1.1 jmcneill error = eqos_init_locked(sc);
680 1.1 jmcneill EQOS_TXUNLOCK(sc);
681 1.1 jmcneill EQOS_UNLOCK(sc);
682 1.1 jmcneill
683 1.1 jmcneill return error;
684 1.1 jmcneill }
685 1.1 jmcneill
686 1.1 jmcneill static void
687 1.1 jmcneill eqos_stop_locked(struct eqos_softc *sc, int disable)
688 1.1 jmcneill {
689 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
690 1.1 jmcneill uint32_t val;
691 1.1 jmcneill int retry;
692 1.1 jmcneill
693 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
694 1.1 jmcneill
695 1.1 jmcneill callout_stop(&sc->sc_stat_ch);
696 1.1 jmcneill
697 1.1 jmcneill mii_down(&sc->sc_mii);
698 1.1 jmcneill
699 1.1 jmcneill /* Disable receiver */
700 1.1 jmcneill val = RD4(sc, GMAC_MAC_CONFIGURATION);
701 1.1 jmcneill val &= ~GMAC_MAC_CONFIGURATION_RE;
702 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, val);
703 1.1 jmcneill
704 1.1 jmcneill /* Stop receive DMA */
705 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL);
706 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_RX_CONTROL_START;
707 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val);
708 1.1 jmcneill
709 1.1 jmcneill /* Stop transmit DMA */
710 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL);
711 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_TX_CONTROL_START;
712 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val);
713 1.1 jmcneill
714 1.1 jmcneill if (disable) {
715 1.1 jmcneill /* Flush data in the TX FIFO */
716 1.1 jmcneill val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
717 1.1 jmcneill val |= GMAC_MTL_TXQ0_OPERATION_MODE_FTQ;
718 1.1 jmcneill WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, val);
719 1.1 jmcneill /* Wait for flush to complete */
720 1.1 jmcneill for (retry = 10000; retry > 0; retry--) {
721 1.1 jmcneill val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
722 1.1 jmcneill if ((val & GMAC_MTL_TXQ0_OPERATION_MODE_FTQ) == 0) {
723 1.1 jmcneill break;
724 1.1 jmcneill }
725 1.1 jmcneill delay(1);
726 1.1 jmcneill }
727 1.1 jmcneill if (retry == 0) {
728 1.1 jmcneill device_printf(sc->sc_dev,
729 1.1 jmcneill "timeout flushing TX queue\n");
730 1.1 jmcneill }
731 1.1 jmcneill }
732 1.1 jmcneill
733 1.1 jmcneill /* Disable transmitter */
734 1.1 jmcneill val = RD4(sc, GMAC_MAC_CONFIGURATION);
735 1.1 jmcneill val &= ~GMAC_MAC_CONFIGURATION_TE;
736 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, val);
737 1.1 jmcneill
738 1.1 jmcneill /* Disable interrupts */
739 1.1 jmcneill eqos_disable_intr(sc);
740 1.1 jmcneill
741 1.16 thorpej ifp->if_flags &= ~IFF_RUNNING;
742 1.1 jmcneill }
743 1.1 jmcneill
744 1.1 jmcneill static void
745 1.1 jmcneill eqos_stop(struct ifnet *ifp, int disable)
746 1.1 jmcneill {
747 1.1 jmcneill struct eqos_softc * const sc = ifp->if_softc;
748 1.1 jmcneill
749 1.1 jmcneill EQOS_LOCK(sc);
750 1.1 jmcneill eqos_stop_locked(sc, disable);
751 1.1 jmcneill EQOS_UNLOCK(sc);
752 1.1 jmcneill }
753 1.1 jmcneill
754 1.1 jmcneill static void
755 1.1 jmcneill eqos_rxintr(struct eqos_softc *sc, int qid)
756 1.1 jmcneill {
757 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
758 1.13 ryo int error, index, pkts = 0;
759 1.13 ryo struct mbuf *m, *m0, *new_m, *mprev;
760 1.1 jmcneill uint32_t tdes3;
761 1.13 ryo bool discarding;
762 1.13 ryo
763 1.13 ryo /* restore jumboframe context */
764 1.13 ryo discarding = sc->sc_rx_discarding;
765 1.13 ryo m0 = sc->sc_rx_receiving_m;
766 1.13 ryo mprev = sc->sc_rx_receiving_m_last;
767 1.1 jmcneill
768 1.1 jmcneill for (index = sc->sc_rx.cur; ; index = RX_NEXT(index)) {
769 1.1 jmcneill eqos_dma_sync(sc, sc->sc_rx.desc_map,
770 1.1 jmcneill index, index + 1, RX_DESC_COUNT,
771 1.1 jmcneill BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
772 1.1 jmcneill
773 1.1 jmcneill tdes3 = le32toh(sc->sc_rx.desc_ring[index].tdes3);
774 1.12 ryo if ((tdes3 & EQOS_TDES3_RX_OWN) != 0) {
775 1.1 jmcneill break;
776 1.1 jmcneill }
777 1.1 jmcneill
778 1.13 ryo /* now discarding untill the last packet */
779 1.13 ryo if (discarding)
780 1.13 ryo goto rx_next;
781 1.13 ryo
782 1.13 ryo if ((tdes3 & EQOS_TDES3_RX_CTXT) != 0)
783 1.13 ryo goto rx_next; /* ignore receive context descriptor */
784 1.13 ryo
785 1.13 ryo /* error packet? */
786 1.13 ryo if ((tdes3 & (EQOS_TDES3_RX_CE | EQOS_TDES3_RX_RWT |
787 1.13 ryo EQOS_TDES3_RX_OE | EQOS_TDES3_RX_RE |
788 1.13 ryo EQOS_TDES3_RX_DE)) != 0) {
789 1.13 ryo #ifdef EQOS_DEBUG
790 1.13 ryo char buf[128];
791 1.13 ryo snprintb(buf, sizeof(buf),
792 1.13 ryo "\177\020"
793 1.13 ryo "b\x1e" "CTXT\0" /* 30 */
794 1.13 ryo "b\x18" "CE\0" /* 24 */
795 1.13 ryo "b\x17" "GP\0" /* 23 */
796 1.13 ryo "b\x16" "WDT\0" /* 22 */
797 1.13 ryo "b\x15" "OE\0" /* 21 */
798 1.13 ryo "b\x14" "RE\0" /* 20 */
799 1.13 ryo "b\x13" "DE\0" /* 19 */
800 1.13 ryo "b\x0f" "ES\0" /* 15 */
801 1.13 ryo "\0", tdes3);
802 1.13 ryo DPRINTF(EDEB_NOTE, "rxdesc[%d].tdes3=%s\n", index, buf);
803 1.13 ryo #endif
804 1.13 ryo if_statinc(ifp, if_ierrors);
805 1.13 ryo if (m0 != NULL) {
806 1.13 ryo m_freem(m0);
807 1.13 ryo m0 = mprev = NULL;
808 1.13 ryo }
809 1.13 ryo discarding = true;
810 1.13 ryo goto rx_next;
811 1.13 ryo }
812 1.13 ryo
813 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map,
814 1.1 jmcneill 0, sc->sc_rx.buf_map[index].map->dm_mapsize,
815 1.1 jmcneill BUS_DMASYNC_POSTREAD);
816 1.13 ryo m = sc->sc_rx.buf_map[index].mbuf;
817 1.13 ryo new_m = eqos_alloc_mbufcl(sc);
818 1.13 ryo if (new_m == NULL) {
819 1.13 ryo /*
820 1.13 ryo * cannot allocate new mbuf. discard this received
821 1.13 ryo * packet, and reuse the mbuf for next.
822 1.13 ryo */
823 1.13 ryo if_statinc(ifp, if_ierrors);
824 1.13 ryo if (m0 != NULL) {
825 1.13 ryo /* also discard the halfway jumbo packet */
826 1.13 ryo m_freem(m0);
827 1.13 ryo m0 = mprev = NULL;
828 1.13 ryo }
829 1.13 ryo discarding = true;
830 1.13 ryo goto rx_next;
831 1.13 ryo }
832 1.14 ryo bus_dmamap_unload(sc->sc_dmat,
833 1.14 ryo sc->sc_rx.buf_map[index].map);
834 1.13 ryo error = eqos_setup_rxbuf(sc, index, new_m);
835 1.13 ryo if (error)
836 1.13 ryo panic("%s: %s: unable to load RX mbuf. error=%d",
837 1.13 ryo device_xname(sc->sc_dev), __func__, error);
838 1.1 jmcneill
839 1.13 ryo if (m0 == NULL) {
840 1.13 ryo m0 = m;
841 1.13 ryo } else {
842 1.13 ryo if (m->m_flags & M_PKTHDR)
843 1.13 ryo m_remove_pkthdr(m);
844 1.13 ryo mprev->m_next = m;
845 1.13 ryo }
846 1.13 ryo mprev = m;
847 1.13 ryo
848 1.13 ryo if ((tdes3 & EQOS_TDES3_RX_LD) == 0) {
849 1.13 ryo /* to be continued in the next segment */
850 1.13 ryo m->m_len = EQOS_RXDMA_SIZE;
851 1.13 ryo } else {
852 1.13 ryo /* last segment */
853 1.13 ryo uint32_t totallen = tdes3 & EQOS_TDES3_RX_LENGTH_MASK;
854 1.13 ryo uint32_t mlen = totallen % EQOS_RXDMA_SIZE;
855 1.13 ryo if (mlen == 0)
856 1.13 ryo mlen = EQOS_RXDMA_SIZE;
857 1.13 ryo m->m_len = mlen;
858 1.13 ryo m0->m_pkthdr.len = totallen;
859 1.13 ryo m_set_rcvif(m0, ifp);
860 1.13 ryo m0->m_flags |= M_HASFCS;
861 1.13 ryo m0->m_nextpkt = NULL;
862 1.13 ryo if_percpuq_enqueue(ifp->if_percpuq, m0);
863 1.13 ryo m0 = mprev = NULL;
864 1.1 jmcneill
865 1.1 jmcneill ++pkts;
866 1.1 jmcneill }
867 1.1 jmcneill
868 1.13 ryo rx_next:
869 1.13 ryo if (discarding && (tdes3 & EQOS_TDES3_RX_LD) != 0)
870 1.13 ryo discarding = false;
871 1.13 ryo
872 1.13 ryo eqos_setup_rxdesc(sc, index,
873 1.13 ryo sc->sc_rx.buf_map[index].map->dm_segs[0].ds_addr);
874 1.1 jmcneill eqos_dma_sync(sc, sc->sc_rx.desc_map,
875 1.1 jmcneill index, index + 1, RX_DESC_COUNT,
876 1.1 jmcneill BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
877 1.1 jmcneill
878 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR,
879 1.1 jmcneill (uint32_t)sc->sc_rx.desc_ring_paddr +
880 1.1 jmcneill DESC_OFF(sc->sc_rx.cur));
881 1.1 jmcneill }
882 1.13 ryo /* save jumboframe context */
883 1.13 ryo sc->sc_rx_discarding = discarding;
884 1.13 ryo sc->sc_rx_receiving_m = m0;
885 1.13 ryo sc->sc_rx_receiving_m_last = mprev;
886 1.1 jmcneill
887 1.1 jmcneill sc->sc_rx.cur = index;
888 1.1 jmcneill
889 1.1 jmcneill if (pkts != 0) {
890 1.1 jmcneill rnd_add_uint32(&sc->sc_rndsource, pkts);
891 1.1 jmcneill }
892 1.1 jmcneill }
893 1.1 jmcneill
894 1.1 jmcneill static void
895 1.1 jmcneill eqos_txintr(struct eqos_softc *sc, int qid)
896 1.1 jmcneill {
897 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
898 1.1 jmcneill struct eqos_bufmap *bmap;
899 1.1 jmcneill struct eqos_dma_desc *desc;
900 1.1 jmcneill uint32_t tdes3;
901 1.1 jmcneill int i, pkts = 0;
902 1.1 jmcneill
903 1.8 martin DPRINTF(EDEB_INTR, "qid: %u\n", qid);
904 1.8 martin
905 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
906 1.1 jmcneill
907 1.1 jmcneill for (i = sc->sc_tx.next; sc->sc_tx.queued > 0; i = TX_NEXT(i)) {
908 1.1 jmcneill KASSERT(sc->sc_tx.queued > 0);
909 1.1 jmcneill KASSERT(sc->sc_tx.queued <= TX_DESC_COUNT);
910 1.1 jmcneill eqos_dma_sync(sc, sc->sc_tx.desc_map,
911 1.1 jmcneill i, i + 1, TX_DESC_COUNT,
912 1.1 jmcneill BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
913 1.1 jmcneill desc = &sc->sc_tx.desc_ring[i];
914 1.1 jmcneill tdes3 = le32toh(desc->tdes3);
915 1.12 ryo if ((tdes3 & EQOS_TDES3_TX_OWN) != 0) {
916 1.1 jmcneill break;
917 1.1 jmcneill }
918 1.1 jmcneill bmap = &sc->sc_tx.buf_map[i];
919 1.1 jmcneill if (bmap->mbuf != NULL) {
920 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, bmap->map,
921 1.1 jmcneill 0, bmap->map->dm_mapsize,
922 1.1 jmcneill BUS_DMASYNC_POSTWRITE);
923 1.1 jmcneill bus_dmamap_unload(sc->sc_dmat, bmap->map);
924 1.1 jmcneill m_freem(bmap->mbuf);
925 1.1 jmcneill bmap->mbuf = NULL;
926 1.1 jmcneill ++pkts;
927 1.1 jmcneill }
928 1.1 jmcneill
929 1.1 jmcneill eqos_setup_txdesc(sc, i, 0, 0, 0, 0);
930 1.1 jmcneill eqos_dma_sync(sc, sc->sc_tx.desc_map,
931 1.1 jmcneill i, i + 1, TX_DESC_COUNT,
932 1.1 jmcneill BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
933 1.1 jmcneill
934 1.1 jmcneill /* Last descriptor in a packet contains DMA status */
935 1.12 ryo if ((tdes3 & EQOS_TDES3_TX_LD) != 0) {
936 1.12 ryo if ((tdes3 & EQOS_TDES3_TX_DE) != 0) {
937 1.1 jmcneill device_printf(sc->sc_dev,
938 1.1 jmcneill "TX [%u] desc error: 0x%08x\n",
939 1.1 jmcneill i, tdes3);
940 1.1 jmcneill if_statinc(ifp, if_oerrors);
941 1.12 ryo } else if ((tdes3 & EQOS_TDES3_TX_ES) != 0) {
942 1.1 jmcneill device_printf(sc->sc_dev,
943 1.1 jmcneill "TX [%u] tx error: 0x%08x\n",
944 1.1 jmcneill i, tdes3);
945 1.1 jmcneill if_statinc(ifp, if_oerrors);
946 1.1 jmcneill } else {
947 1.1 jmcneill if_statinc(ifp, if_opackets);
948 1.1 jmcneill }
949 1.1 jmcneill }
950 1.1 jmcneill
951 1.1 jmcneill }
952 1.1 jmcneill
953 1.1 jmcneill sc->sc_tx.next = i;
954 1.1 jmcneill
955 1.1 jmcneill if (pkts != 0) {
956 1.1 jmcneill rnd_add_uint32(&sc->sc_rndsource, pkts);
957 1.1 jmcneill }
958 1.1 jmcneill }
959 1.1 jmcneill
960 1.1 jmcneill static void
961 1.1 jmcneill eqos_start_locked(struct eqos_softc *sc)
962 1.1 jmcneill {
963 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
964 1.1 jmcneill struct mbuf *m;
965 1.1 jmcneill int cnt, nsegs, start;
966 1.1 jmcneill
967 1.1 jmcneill EQOS_ASSERT_TXLOCKED(sc);
968 1.1 jmcneill
969 1.16 thorpej if ((ifp->if_flags & IFF_RUNNING) == 0)
970 1.1 jmcneill return;
971 1.1 jmcneill
972 1.1 jmcneill for (cnt = 0, start = sc->sc_tx.cur; ; cnt++) {
973 1.1 jmcneill if (sc->sc_tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
974 1.8 martin DPRINTF(EDEB_TXRING, "%u sc_tx.queued, ring full\n",
975 1.8 martin sc->sc_tx.queued);
976 1.1 jmcneill break;
977 1.1 jmcneill }
978 1.1 jmcneill
979 1.1 jmcneill IFQ_POLL(&ifp->if_snd, m);
980 1.8 martin if (m == NULL)
981 1.1 jmcneill break;
982 1.1 jmcneill
983 1.1 jmcneill nsegs = eqos_setup_txbuf(sc, sc->sc_tx.cur, m);
984 1.1 jmcneill if (nsegs <= 0) {
985 1.8 martin DPRINTF(EDEB_TXRING, "eqos_setup_txbuf failed "
986 1.8 martin "with %d\n", nsegs);
987 1.16 thorpej if (nsegs == -2) {
988 1.1 jmcneill IFQ_DEQUEUE(&ifp->if_snd, m);
989 1.1 jmcneill m_freem(m);
990 1.16 thorpej continue;
991 1.1 jmcneill }
992 1.1 jmcneill break;
993 1.1 jmcneill }
994 1.1 jmcneill
995 1.1 jmcneill IFQ_DEQUEUE(&ifp->if_snd, m);
996 1.1 jmcneill bpf_mtap(ifp, m, BPF_D_OUT);
997 1.1 jmcneill
998 1.1 jmcneill sc->sc_tx.cur = TX_SKIP(sc->sc_tx.cur, nsegs);
999 1.1 jmcneill }
1000 1.1 jmcneill
1001 1.8 martin DPRINTF(EDEB_TXRING, "tx loop -> cnt = %u, cur: %u, next: %u, "
1002 1.8 martin "queued: %u\n", cnt, sc->sc_tx.cur, sc->sc_tx.next,
1003 1.8 martin sc->sc_tx.queued);
1004 1.8 martin
1005 1.1 jmcneill if (cnt != 0) {
1006 1.1 jmcneill eqos_dma_sync(sc, sc->sc_tx.desc_map,
1007 1.1 jmcneill start, sc->sc_tx.cur, TX_DESC_COUNT,
1008 1.1 jmcneill BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1009 1.1 jmcneill
1010 1.1 jmcneill /* Start and run TX DMA */
1011 1.8 martin DPRINTF(EDEB_TXRING, "sending desc %u at %lx upto "
1012 1.8 martin "%u-1 at %lx cur tx desc: %x cur tx buf: %x\n", start,
1013 1.8 martin (uint32_t)sc->sc_tx.desc_ring_paddr + DESC_OFF(start),
1014 1.8 martin sc->sc_tx.cur,
1015 1.8 martin (uint32_t)sc->sc_tx.desc_ring_paddr +
1016 1.8 martin DESC_OFF(sc->sc_tx.cur),
1017 1.8 martin RD4(sc, GMAC_DMA_CHAN0_CUR_TX_DESC),
1018 1.8 martin RD4(sc, GMAC_DMA_CHAN0_CUR_TX_BUF_ADDR));
1019 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_END_ADDR,
1020 1.1 jmcneill (uint32_t)sc->sc_tx.desc_ring_paddr +
1021 1.1 jmcneill DESC_OFF(sc->sc_tx.cur));
1022 1.1 jmcneill }
1023 1.1 jmcneill }
1024 1.1 jmcneill
1025 1.1 jmcneill static void
1026 1.1 jmcneill eqos_start(struct ifnet *ifp)
1027 1.1 jmcneill {
1028 1.15 skrll struct eqos_softc * const sc = ifp->if_softc;
1029 1.1 jmcneill
1030 1.1 jmcneill EQOS_TXLOCK(sc);
1031 1.1 jmcneill eqos_start_locked(sc);
1032 1.1 jmcneill EQOS_TXUNLOCK(sc);
1033 1.1 jmcneill }
1034 1.1 jmcneill
1035 1.3 mrg static void
1036 1.3 mrg eqos_intr_mtl(struct eqos_softc *sc, uint32_t mtl_status)
1037 1.3 mrg {
1038 1.3 mrg uint32_t debug_data __unused = 0, ictrl = 0;
1039 1.3 mrg
1040 1.3 mrg if (mtl_status == 0)
1041 1.3 mrg return;
1042 1.3 mrg
1043 1.3 mrg /* Drain the errors reported by MTL_INTERRUPT_STATUS */
1044 1.3 mrg sc->sc_ev_mtl.ev_count++;
1045 1.3 mrg
1046 1.3 mrg if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_DBGIS) != 0) {
1047 1.3 mrg debug_data = RD4(sc, GMAC_MTL_FIFO_DEBUG_DATA);
1048 1.3 mrg sc->sc_ev_mtl_debugdata.ev_count++;
1049 1.3 mrg }
1050 1.3 mrg if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_Q0IS) != 0) {
1051 1.3 mrg uint32_t new_status = 0;
1052 1.3 mrg
1053 1.3 mrg ictrl = RD4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS);
1054 1.3 mrg if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS) != 0) {
1055 1.3 mrg new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS;
1056 1.3 mrg sc->sc_ev_mtl_rxovfis.ev_count++;
1057 1.3 mrg }
1058 1.3 mrg if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS) != 0) {
1059 1.3 mrg new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS;
1060 1.3 mrg sc->sc_ev_mtl_txovfis.ev_count++;
1061 1.3 mrg }
1062 1.3 mrg if (new_status) {
1063 1.3 mrg new_status |= (ictrl &
1064 1.3 mrg (GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOIE|
1065 1.3 mrg GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUIE));
1066 1.3 mrg WR4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS, new_status);
1067 1.3 mrg }
1068 1.3 mrg }
1069 1.8 martin DPRINTF(EDEB_INTR,
1070 1.3 mrg "GMAC_MTL_INTERRUPT_STATUS = 0x%08X, "
1071 1.3 mrg "GMAC_MTL_FIFO_DEBUG_DATA = 0x%08X, "
1072 1.3 mrg "GMAC_MTL_INTERRUPT_STATUS_Q0IS = 0x%08X\n",
1073 1.3 mrg mtl_status, debug_data, ictrl);
1074 1.3 mrg }
1075 1.3 mrg
1076 1.1 jmcneill int
1077 1.1 jmcneill eqos_intr(void *arg)
1078 1.1 jmcneill {
1079 1.15 skrll struct eqos_softc * const sc = arg;
1080 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
1081 1.1 jmcneill uint32_t mac_status, mtl_status, dma_status, rx_tx_status;
1082 1.1 jmcneill
1083 1.2 mrg sc->sc_ev_intr.ev_count++;
1084 1.2 mrg
1085 1.1 jmcneill mac_status = RD4(sc, GMAC_MAC_INTERRUPT_STATUS);
1086 1.1 jmcneill mac_status &= RD4(sc, GMAC_MAC_INTERRUPT_ENABLE);
1087 1.1 jmcneill
1088 1.1 jmcneill if (mac_status) {
1089 1.2 mrg sc->sc_ev_mac.ev_count++;
1090 1.8 martin DPRINTF(EDEB_INTR,
1091 1.1 jmcneill "GMAC_MAC_INTERRUPT_STATUS = 0x%08X\n", mac_status);
1092 1.1 jmcneill }
1093 1.1 jmcneill
1094 1.1 jmcneill mtl_status = RD4(sc, GMAC_MTL_INTERRUPT_STATUS);
1095 1.3 mrg eqos_intr_mtl(sc, mtl_status);
1096 1.1 jmcneill
1097 1.1 jmcneill dma_status = RD4(sc, GMAC_DMA_CHAN0_STATUS);
1098 1.1 jmcneill dma_status &= RD4(sc, GMAC_DMA_CHAN0_INTR_ENABLE);
1099 1.1 jmcneill if (dma_status) {
1100 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_STATUS, dma_status);
1101 1.1 jmcneill }
1102 1.1 jmcneill
1103 1.1 jmcneill EQOS_LOCK(sc);
1104 1.1 jmcneill if ((dma_status & GMAC_DMA_CHAN0_STATUS_RI) != 0) {
1105 1.1 jmcneill eqos_rxintr(sc, 0);
1106 1.2 mrg sc->sc_ev_rxintr.ev_count++;
1107 1.1 jmcneill }
1108 1.1 jmcneill
1109 1.1 jmcneill if ((dma_status & GMAC_DMA_CHAN0_STATUS_TI) != 0) {
1110 1.1 jmcneill eqos_txintr(sc, 0);
1111 1.1 jmcneill if_schedule_deferred_start(ifp);
1112 1.2 mrg sc->sc_ev_txintr.ev_count++;
1113 1.1 jmcneill }
1114 1.1 jmcneill EQOS_UNLOCK(sc);
1115 1.1 jmcneill
1116 1.1 jmcneill if ((mac_status | mtl_status | dma_status) == 0) {
1117 1.8 martin DPRINTF(EDEB_NOTE, "spurious interrupt?!\n");
1118 1.1 jmcneill }
1119 1.1 jmcneill
1120 1.1 jmcneill rx_tx_status = RD4(sc, GMAC_MAC_RX_TX_STATUS);
1121 1.1 jmcneill if (rx_tx_status) {
1122 1.2 mrg sc->sc_ev_status.ev_count++;
1123 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_RWT) != 0)
1124 1.2 mrg sc->sc_ev_rwt.ev_count++;
1125 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXCOL) != 0)
1126 1.2 mrg sc->sc_ev_excol.ev_count++;
1127 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCOL) != 0)
1128 1.2 mrg sc->sc_ev_lcol.ev_count++;
1129 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXDEF) != 0)
1130 1.2 mrg sc->sc_ev_exdef.ev_count++;
1131 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCARR) != 0)
1132 1.2 mrg sc->sc_ev_lcarr.ev_count++;
1133 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_NCARR) != 0)
1134 1.2 mrg sc->sc_ev_ncarr.ev_count++;
1135 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_TJT) != 0)
1136 1.2 mrg sc->sc_ev_tjt.ev_count++;
1137 1.8 martin
1138 1.8 martin DPRINTF(EDEB_INTR, "GMAC_MAC_RX_TX_STATUS = 0x%08x\n",
1139 1.1 jmcneill rx_tx_status);
1140 1.1 jmcneill }
1141 1.1 jmcneill
1142 1.1 jmcneill return 1;
1143 1.1 jmcneill }
1144 1.1 jmcneill
1145 1.1 jmcneill static int
1146 1.1 jmcneill eqos_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1147 1.1 jmcneill {
1148 1.15 skrll struct eqos_softc * const sc = ifp->if_softc;
1149 1.15 skrll struct ifreq * const ifr = (struct ifreq *)data;
1150 1.1 jmcneill int error, s;
1151 1.1 jmcneill
1152 1.1 jmcneill #ifndef EQOS_MPSAFE
1153 1.1 jmcneill s = splnet();
1154 1.1 jmcneill #endif
1155 1.1 jmcneill
1156 1.1 jmcneill switch (cmd) {
1157 1.13 ryo case SIOCSIFMTU:
1158 1.13 ryo if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > EQOS_MAX_MTU) {
1159 1.13 ryo error = EINVAL;
1160 1.13 ryo } else {
1161 1.13 ryo ifp->if_mtu = ifr->ifr_mtu;
1162 1.13 ryo error = 0; /* no need ENETRESET */
1163 1.13 ryo }
1164 1.13 ryo break;
1165 1.1 jmcneill default:
1166 1.1 jmcneill #ifdef EQOS_MPSAFE
1167 1.1 jmcneill s = splnet();
1168 1.1 jmcneill #endif
1169 1.1 jmcneill error = ether_ioctl(ifp, cmd, data);
1170 1.1 jmcneill #ifdef EQOS_MPSAFE
1171 1.1 jmcneill splx(s);
1172 1.1 jmcneill #endif
1173 1.1 jmcneill if (error != ENETRESET)
1174 1.1 jmcneill break;
1175 1.1 jmcneill
1176 1.1 jmcneill error = 0;
1177 1.1 jmcneill
1178 1.1 jmcneill if (cmd == SIOCSIFCAP)
1179 1.1 jmcneill error = (*ifp->if_init)(ifp);
1180 1.1 jmcneill else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1181 1.1 jmcneill ;
1182 1.1 jmcneill else if ((ifp->if_flags & IFF_RUNNING) != 0) {
1183 1.1 jmcneill EQOS_LOCK(sc);
1184 1.1 jmcneill eqos_setup_rxfilter(sc);
1185 1.1 jmcneill EQOS_UNLOCK(sc);
1186 1.1 jmcneill }
1187 1.1 jmcneill break;
1188 1.1 jmcneill }
1189 1.1 jmcneill
1190 1.1 jmcneill #ifndef EQOS_MPSAFE
1191 1.1 jmcneill splx(s);
1192 1.1 jmcneill #endif
1193 1.1 jmcneill
1194 1.1 jmcneill return error;
1195 1.1 jmcneill }
1196 1.1 jmcneill
1197 1.1 jmcneill static void
1198 1.1 jmcneill eqos_get_eaddr(struct eqos_softc *sc, uint8_t *eaddr)
1199 1.1 jmcneill {
1200 1.1 jmcneill prop_dictionary_t prop = device_properties(sc->sc_dev);
1201 1.1 jmcneill uint32_t maclo, machi;
1202 1.1 jmcneill prop_data_t eaprop;
1203 1.1 jmcneill
1204 1.1 jmcneill eaprop = prop_dictionary_get(prop, "mac-address");
1205 1.1 jmcneill if (eaprop != NULL) {
1206 1.1 jmcneill KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
1207 1.1 jmcneill KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
1208 1.1 jmcneill memcpy(eaddr, prop_data_value(eaprop),
1209 1.1 jmcneill ETHER_ADDR_LEN);
1210 1.1 jmcneill return;
1211 1.1 jmcneill }
1212 1.1 jmcneill
1213 1.18 msaitoh maclo = RD4(sc, GMAC_MAC_ADDRESS0_LOW);
1214 1.18 msaitoh machi = RD4(sc, GMAC_MAC_ADDRESS0_HIGH) & 0xFFFF;
1215 1.18 msaitoh if ((maclo & 0x00000001) != 0) {
1216 1.18 msaitoh aprint_error_dev(sc->sc_dev,
1217 1.18 msaitoh "Wrong MAC address. Clear the multicast bit.\n");
1218 1.18 msaitoh maclo &= ~0x00000001;
1219 1.18 msaitoh }
1220 1.1 jmcneill
1221 1.1 jmcneill if (maclo == 0xFFFFFFFF && machi == 0xFFFF) {
1222 1.1 jmcneill /* Create one */
1223 1.1 jmcneill maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1224 1.1 jmcneill machi = cprng_strong32() & 0xffff;
1225 1.1 jmcneill }
1226 1.1 jmcneill
1227 1.1 jmcneill eaddr[0] = maclo & 0xff;
1228 1.1 jmcneill eaddr[1] = (maclo >> 8) & 0xff;
1229 1.1 jmcneill eaddr[2] = (maclo >> 16) & 0xff;
1230 1.1 jmcneill eaddr[3] = (maclo >> 24) & 0xff;
1231 1.1 jmcneill eaddr[4] = machi & 0xff;
1232 1.1 jmcneill eaddr[5] = (machi >> 8) & 0xff;
1233 1.1 jmcneill }
1234 1.1 jmcneill
1235 1.1 jmcneill static void
1236 1.1 jmcneill eqos_axi_configure(struct eqos_softc *sc)
1237 1.1 jmcneill {
1238 1.1 jmcneill prop_dictionary_t prop = device_properties(sc->sc_dev);
1239 1.1 jmcneill uint32_t val;
1240 1.1 jmcneill u_int uival;
1241 1.1 jmcneill bool bval;
1242 1.1 jmcneill
1243 1.1 jmcneill val = RD4(sc, GMAC_DMA_SYSBUS_MODE);
1244 1.1 jmcneill if (prop_dictionary_get_bool(prop, "snps,mixed-burst", &bval) && bval) {
1245 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_MB;
1246 1.1 jmcneill }
1247 1.1 jmcneill if (prop_dictionary_get_bool(prop, "snps,fixed-burst", &bval) && bval) {
1248 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_FB;
1249 1.1 jmcneill }
1250 1.1 jmcneill if (prop_dictionary_get_uint(prop, "snps,wr_osr_lmt", &uival)) {
1251 1.1 jmcneill val &= ~GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_MASK;
1252 1.1 jmcneill val |= uival << GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_SHIFT;
1253 1.1 jmcneill }
1254 1.1 jmcneill if (prop_dictionary_get_uint(prop, "snps,rd_osr_lmt", &uival)) {
1255 1.1 jmcneill val &= ~GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_MASK;
1256 1.1 jmcneill val |= uival << GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT;
1257 1.1 jmcneill }
1258 1.1 jmcneill
1259 1.1 jmcneill if (!EQOS_HW_FEATURE_ADDR64_32BIT(sc)) {
1260 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_EAME;
1261 1.1 jmcneill }
1262 1.1 jmcneill
1263 1.1 jmcneill /* XXX */
1264 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_BLEN16;
1265 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_BLEN8;
1266 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_BLEN4;
1267 1.1 jmcneill
1268 1.1 jmcneill WR4(sc, GMAC_DMA_SYSBUS_MODE, val);
1269 1.1 jmcneill }
1270 1.1 jmcneill
1271 1.1 jmcneill static int
1272 1.1 jmcneill eqos_setup_dma(struct eqos_softc *sc, int qid)
1273 1.1 jmcneill {
1274 1.1 jmcneill struct mbuf *m;
1275 1.1 jmcneill int error, nsegs, i;
1276 1.1 jmcneill
1277 1.1 jmcneill /* Setup TX ring */
1278 1.1 jmcneill error = bus_dmamap_create(sc->sc_dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE,
1279 1.1 jmcneill DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_tx.desc_map);
1280 1.1 jmcneill if (error) {
1281 1.1 jmcneill return error;
1282 1.1 jmcneill }
1283 1.1 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, TX_DESC_SIZE, DESC_ALIGN,
1284 1.1 jmcneill DESC_BOUNDARY, &sc->sc_tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1285 1.1 jmcneill if (error) {
1286 1.1 jmcneill return error;
1287 1.1 jmcneill }
1288 1.1 jmcneill error = bus_dmamem_map(sc->sc_dmat, &sc->sc_tx.desc_dmaseg, nsegs,
1289 1.1 jmcneill TX_DESC_SIZE, (void *)&sc->sc_tx.desc_ring, BUS_DMA_WAITOK);
1290 1.1 jmcneill if (error) {
1291 1.1 jmcneill return error;
1292 1.1 jmcneill }
1293 1.1 jmcneill error = bus_dmamap_load(sc->sc_dmat, sc->sc_tx.desc_map,
1294 1.1 jmcneill sc->sc_tx.desc_ring, TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1295 1.1 jmcneill if (error) {
1296 1.1 jmcneill return error;
1297 1.1 jmcneill }
1298 1.1 jmcneill sc->sc_tx.desc_ring_paddr = sc->sc_tx.desc_map->dm_segs[0].ds_addr;
1299 1.1 jmcneill
1300 1.1 jmcneill memset(sc->sc_tx.desc_ring, 0, TX_DESC_SIZE);
1301 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map, 0, TX_DESC_SIZE,
1302 1.1 jmcneill BUS_DMASYNC_PREWRITE);
1303 1.1 jmcneill
1304 1.1 jmcneill sc->sc_tx.queued = TX_DESC_COUNT;
1305 1.1 jmcneill for (i = 0; i < TX_DESC_COUNT; i++) {
1306 1.13 ryo error = bus_dmamap_create(sc->sc_dmat, EQOS_TXDMA_SIZE,
1307 1.1 jmcneill TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1308 1.1 jmcneill &sc->sc_tx.buf_map[i].map);
1309 1.1 jmcneill if (error != 0) {
1310 1.1 jmcneill device_printf(sc->sc_dev,
1311 1.1 jmcneill "cannot create TX buffer map\n");
1312 1.1 jmcneill return error;
1313 1.1 jmcneill }
1314 1.1 jmcneill eqos_setup_txdesc(sc, i, 0, 0, 0, 0);
1315 1.1 jmcneill }
1316 1.1 jmcneill
1317 1.1 jmcneill /* Setup RX ring */
1318 1.1 jmcneill error = bus_dmamap_create(sc->sc_dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE,
1319 1.1 jmcneill DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_rx.desc_map);
1320 1.1 jmcneill if (error) {
1321 1.1 jmcneill return error;
1322 1.1 jmcneill }
1323 1.1 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, RX_DESC_SIZE, DESC_ALIGN,
1324 1.1 jmcneill DESC_BOUNDARY, &sc->sc_rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1325 1.1 jmcneill if (error) {
1326 1.1 jmcneill return error;
1327 1.1 jmcneill }
1328 1.1 jmcneill error = bus_dmamem_map(sc->sc_dmat, &sc->sc_rx.desc_dmaseg, nsegs,
1329 1.1 jmcneill RX_DESC_SIZE, (void *)&sc->sc_rx.desc_ring, BUS_DMA_WAITOK);
1330 1.1 jmcneill if (error) {
1331 1.1 jmcneill return error;
1332 1.1 jmcneill }
1333 1.1 jmcneill error = bus_dmamap_load(sc->sc_dmat, sc->sc_rx.desc_map,
1334 1.1 jmcneill sc->sc_rx.desc_ring, RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1335 1.1 jmcneill if (error) {
1336 1.1 jmcneill return error;
1337 1.1 jmcneill }
1338 1.1 jmcneill sc->sc_rx.desc_ring_paddr = sc->sc_rx.desc_map->dm_segs[0].ds_addr;
1339 1.1 jmcneill
1340 1.1 jmcneill memset(sc->sc_rx.desc_ring, 0, RX_DESC_SIZE);
1341 1.1 jmcneill
1342 1.1 jmcneill for (i = 0; i < RX_DESC_COUNT; i++) {
1343 1.1 jmcneill error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1344 1.1 jmcneill RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1345 1.1 jmcneill &sc->sc_rx.buf_map[i].map);
1346 1.1 jmcneill if (error != 0) {
1347 1.1 jmcneill device_printf(sc->sc_dev,
1348 1.1 jmcneill "cannot create RX buffer map\n");
1349 1.1 jmcneill return error;
1350 1.1 jmcneill }
1351 1.1 jmcneill if ((m = eqos_alloc_mbufcl(sc)) == NULL) {
1352 1.1 jmcneill device_printf(sc->sc_dev, "cannot allocate RX mbuf\n");
1353 1.1 jmcneill return ENOMEM;
1354 1.1 jmcneill }
1355 1.1 jmcneill error = eqos_setup_rxbuf(sc, i, m);
1356 1.1 jmcneill if (error != 0) {
1357 1.1 jmcneill device_printf(sc->sc_dev, "cannot create RX buffer\n");
1358 1.1 jmcneill return error;
1359 1.1 jmcneill }
1360 1.13 ryo eqos_setup_rxdesc(sc, i,
1361 1.13 ryo sc->sc_rx.buf_map[i].map->dm_segs[0].ds_addr);
1362 1.1 jmcneill }
1363 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map,
1364 1.1 jmcneill 0, sc->sc_rx.desc_map->dm_mapsize,
1365 1.1 jmcneill BUS_DMASYNC_PREWRITE);
1366 1.1 jmcneill
1367 1.1 jmcneill aprint_debug_dev(sc->sc_dev, "TX ring @ 0x%lX, RX ring @ 0x%lX\n",
1368 1.1 jmcneill sc->sc_tx.desc_ring_paddr, sc->sc_rx.desc_ring_paddr);
1369 1.1 jmcneill
1370 1.1 jmcneill return 0;
1371 1.1 jmcneill }
1372 1.1 jmcneill
1373 1.1 jmcneill int
1374 1.1 jmcneill eqos_attach(struct eqos_softc *sc)
1375 1.1 jmcneill {
1376 1.15 skrll struct mii_data * const mii = &sc->sc_mii;
1377 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
1378 1.1 jmcneill uint8_t eaddr[ETHER_ADDR_LEN];
1379 1.1 jmcneill u_int userver, snpsver;
1380 1.1 jmcneill int mii_flags = 0;
1381 1.1 jmcneill int error;
1382 1.1 jmcneill int n;
1383 1.1 jmcneill
1384 1.1 jmcneill const uint32_t ver = RD4(sc, GMAC_MAC_VERSION);
1385 1.1 jmcneill userver = (ver & GMAC_MAC_VERSION_USERVER_MASK) >>
1386 1.1 jmcneill GMAC_MAC_VERSION_USERVER_SHIFT;
1387 1.1 jmcneill snpsver = ver & GMAC_MAC_VERSION_SNPSVER_MASK;
1388 1.1 jmcneill
1389 1.20 msaitoh if ((snpsver < 0x51) || (snpsver > 0x52)) {
1390 1.20 msaitoh aprint_error(": EQOS version 0x%02xx not supported\n",
1391 1.20 msaitoh snpsver);
1392 1.20 msaitoh return ENXIO;
1393 1.20 msaitoh }
1394 1.1 jmcneill
1395 1.1 jmcneill if (sc->sc_csr_clock < 20000000) {
1396 1.1 jmcneill aprint_error(": CSR clock too low\n");
1397 1.1 jmcneill return EINVAL;
1398 1.1 jmcneill } else if (sc->sc_csr_clock < 35000000) {
1399 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_20_35;
1400 1.1 jmcneill } else if (sc->sc_csr_clock < 60000000) {
1401 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_35_60;
1402 1.1 jmcneill } else if (sc->sc_csr_clock < 100000000) {
1403 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_60_100;
1404 1.1 jmcneill } else if (sc->sc_csr_clock < 150000000) {
1405 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_100_150;
1406 1.1 jmcneill } else if (sc->sc_csr_clock < 250000000) {
1407 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_150_250;
1408 1.1 jmcneill } else if (sc->sc_csr_clock < 300000000) {
1409 1.19 msaitoh sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_250_300;
1410 1.19 msaitoh } else if (sc->sc_csr_clock < 500000000) {
1411 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_300_500;
1412 1.1 jmcneill } else if (sc->sc_csr_clock < 800000000) {
1413 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_500_800;
1414 1.1 jmcneill } else {
1415 1.1 jmcneill aprint_error(": CSR clock too high\n");
1416 1.1 jmcneill return EINVAL;
1417 1.1 jmcneill }
1418 1.1 jmcneill
1419 1.1 jmcneill for (n = 0; n < 4; n++) {
1420 1.1 jmcneill sc->sc_hw_feature[n] = RD4(sc, GMAC_MAC_HW_FEATURE(n));
1421 1.1 jmcneill }
1422 1.1 jmcneill
1423 1.1 jmcneill aprint_naive("\n");
1424 1.1 jmcneill aprint_normal(": DesignWare EQOS ver 0x%02x (0x%02x)\n",
1425 1.1 jmcneill snpsver, userver);
1426 1.1 jmcneill aprint_verbose_dev(sc->sc_dev, "hw features %08x %08x %08x %08x\n",
1427 1.1 jmcneill sc->sc_hw_feature[0], sc->sc_hw_feature[1],
1428 1.1 jmcneill sc->sc_hw_feature[2], sc->sc_hw_feature[3]);
1429 1.1 jmcneill
1430 1.1 jmcneill if (EQOS_HW_FEATURE_ADDR64_32BIT(sc)) {
1431 1.1 jmcneill bus_dma_tag_t ntag;
1432 1.1 jmcneill
1433 1.1 jmcneill error = bus_dmatag_subregion(sc->sc_dmat, 0, UINT32_MAX,
1434 1.1 jmcneill &ntag, 0);
1435 1.1 jmcneill if (error) {
1436 1.1 jmcneill aprint_error_dev(sc->sc_dev,
1437 1.1 jmcneill "failed to restrict DMA: %d\n", error);
1438 1.1 jmcneill return error;
1439 1.1 jmcneill }
1440 1.1 jmcneill aprint_verbose_dev(sc->sc_dev, "using 32-bit DMA\n");
1441 1.1 jmcneill sc->sc_dmat = ntag;
1442 1.1 jmcneill }
1443 1.1 jmcneill
1444 1.1 jmcneill mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
1445 1.1 jmcneill mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_NET);
1446 1.1 jmcneill callout_init(&sc->sc_stat_ch, CALLOUT_FLAGS);
1447 1.1 jmcneill callout_setfunc(&sc->sc_stat_ch, eqos_tick, sc);
1448 1.1 jmcneill
1449 1.1 jmcneill eqos_get_eaddr(sc, eaddr);
1450 1.1 jmcneill aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", ether_sprintf(eaddr));
1451 1.1 jmcneill
1452 1.1 jmcneill /* Soft reset EMAC core */
1453 1.1 jmcneill error = eqos_reset(sc);
1454 1.1 jmcneill if (error != 0) {
1455 1.1 jmcneill return error;
1456 1.1 jmcneill }
1457 1.1 jmcneill
1458 1.1 jmcneill /* Configure AXI Bus mode parameters */
1459 1.1 jmcneill eqos_axi_configure(sc);
1460 1.1 jmcneill
1461 1.1 jmcneill /* Setup DMA descriptors */
1462 1.1 jmcneill if (eqos_setup_dma(sc, 0) != 0) {
1463 1.1 jmcneill aprint_error_dev(sc->sc_dev, "failed to setup DMA descriptors\n");
1464 1.1 jmcneill return EINVAL;
1465 1.1 jmcneill }
1466 1.1 jmcneill
1467 1.1 jmcneill /* Setup ethernet interface */
1468 1.1 jmcneill ifp->if_softc = sc;
1469 1.1 jmcneill snprintf(ifp->if_xname, IFNAMSIZ, "%s", device_xname(sc->sc_dev));
1470 1.1 jmcneill ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1471 1.1 jmcneill #ifdef EQOS_MPSAFE
1472 1.1 jmcneill ifp->if_extflags = IFEF_MPSAFE;
1473 1.1 jmcneill #endif
1474 1.1 jmcneill ifp->if_start = eqos_start;
1475 1.1 jmcneill ifp->if_ioctl = eqos_ioctl;
1476 1.1 jmcneill ifp->if_init = eqos_init;
1477 1.1 jmcneill ifp->if_stop = eqos_stop;
1478 1.1 jmcneill ifp->if_capabilities = 0;
1479 1.1 jmcneill ifp->if_capenable = ifp->if_capabilities;
1480 1.1 jmcneill IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1481 1.1 jmcneill IFQ_SET_READY(&ifp->if_snd);
1482 1.1 jmcneill
1483 1.13 ryo /* 802.1Q VLAN-sized frames, and jumbo frame are supported */
1484 1.1 jmcneill sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1485 1.13 ryo sc->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1486 1.1 jmcneill
1487 1.1 jmcneill /* Attach MII driver */
1488 1.1 jmcneill sc->sc_ec.ec_mii = mii;
1489 1.1 jmcneill ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1490 1.1 jmcneill mii->mii_ifp = ifp;
1491 1.1 jmcneill mii->mii_readreg = eqos_mii_readreg;
1492 1.1 jmcneill mii->mii_writereg = eqos_mii_writereg;
1493 1.1 jmcneill mii->mii_statchg = eqos_mii_statchg;
1494 1.1 jmcneill mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id, MII_OFFSET_ANY,
1495 1.1 jmcneill mii_flags);
1496 1.1 jmcneill
1497 1.1 jmcneill if (LIST_EMPTY(&mii->mii_phys)) {
1498 1.1 jmcneill aprint_error_dev(sc->sc_dev, "no PHY found!\n");
1499 1.1 jmcneill return ENOENT;
1500 1.1 jmcneill }
1501 1.1 jmcneill ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1502 1.1 jmcneill
1503 1.2 mrg /* Master interrupt evcnt */
1504 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
1505 1.2 mrg NULL, device_xname(sc->sc_dev), "interrupts");
1506 1.2 mrg
1507 1.2 mrg /* Per-interrupt type, using main interrupt */
1508 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1509 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "rxintr");
1510 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
1511 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "txintr");
1512 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_mac, EVCNT_TYPE_INTR,
1513 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "macstatus");
1514 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl, EVCNT_TYPE_INTR,
1515 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "intrstatus");
1516 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_status, EVCNT_TYPE_INTR,
1517 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "rxtxstatus");
1518 1.2 mrg
1519 1.3 mrg /* MAC Status specific type, using macstatus interrupt */
1520 1.3 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl_debugdata, EVCNT_TYPE_INTR,
1521 1.3 mrg &sc->sc_ev_mtl, device_xname(sc->sc_dev), "debugdata");
1522 1.3 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl_rxovfis, EVCNT_TYPE_INTR,
1523 1.3 mrg &sc->sc_ev_mtl, device_xname(sc->sc_dev), "rxovfis");
1524 1.3 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl_txovfis, EVCNT_TYPE_INTR,
1525 1.3 mrg &sc->sc_ev_mtl, device_xname(sc->sc_dev), "txovfis");
1526 1.3 mrg
1527 1.2 mrg /* RX/TX Status specific type, using rxtxstatus interrupt */
1528 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_rwt, EVCNT_TYPE_INTR,
1529 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "rwt");
1530 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_excol, EVCNT_TYPE_INTR,
1531 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "excol");
1532 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_lcol, EVCNT_TYPE_INTR,
1533 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "lcol");
1534 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_exdef, EVCNT_TYPE_INTR,
1535 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "exdef");
1536 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_lcarr, EVCNT_TYPE_INTR,
1537 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "lcarr");
1538 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_ncarr, EVCNT_TYPE_INTR,
1539 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "ncarr");
1540 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_tjt, EVCNT_TYPE_INTR,
1541 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "tjt");
1542 1.2 mrg
1543 1.1 jmcneill /* Attach interface */
1544 1.1 jmcneill if_attach(ifp);
1545 1.1 jmcneill if_deferred_start_init(ifp, NULL);
1546 1.1 jmcneill
1547 1.1 jmcneill /* Attach ethernet interface */
1548 1.1 jmcneill ether_ifattach(ifp, eaddr);
1549 1.1 jmcneill
1550 1.1 jmcneill rnd_attach_source(&sc->sc_rndsource, ifp->if_xname, RND_TYPE_NET,
1551 1.1 jmcneill RND_FLAG_DEFAULT);
1552 1.1 jmcneill
1553 1.1 jmcneill return 0;
1554 1.1 jmcneill }
1555