dwc_eqos.c revision 1.24 1 1.24 msaitoh /* $NetBSD: dwc_eqos.c,v 1.24 2023/10/23 15:11:47 msaitoh Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2022 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill /*
30 1.1 jmcneill * DesignWare Ethernet Quality-of-Service controller
31 1.20 msaitoh *
32 1.20 msaitoh * TODO:
33 1.20 msaitoh * Multiqueue support.
34 1.20 msaitoh * Add watchdog timer.
35 1.20 msaitoh * Add detach function.
36 1.1 jmcneill */
37 1.1 jmcneill
38 1.1 jmcneill #include "opt_net_mpsafe.h"
39 1.1 jmcneill
40 1.1 jmcneill #include <sys/cdefs.h>
41 1.24 msaitoh __KERNEL_RCSID(0, "$NetBSD: dwc_eqos.c,v 1.24 2023/10/23 15:11:47 msaitoh Exp $");
42 1.1 jmcneill
43 1.1 jmcneill #include <sys/param.h>
44 1.1 jmcneill #include <sys/bus.h>
45 1.1 jmcneill #include <sys/device.h>
46 1.1 jmcneill #include <sys/intr.h>
47 1.1 jmcneill #include <sys/systm.h>
48 1.1 jmcneill #include <sys/kernel.h>
49 1.1 jmcneill #include <sys/mutex.h>
50 1.1 jmcneill #include <sys/callout.h>
51 1.1 jmcneill #include <sys/cprng.h>
52 1.2 mrg #include <sys/evcnt.h>
53 1.1 jmcneill
54 1.1 jmcneill #include <sys/rndsource.h>
55 1.1 jmcneill
56 1.1 jmcneill #include <net/if.h>
57 1.1 jmcneill #include <net/if_dl.h>
58 1.1 jmcneill #include <net/if_ether.h>
59 1.1 jmcneill #include <net/if_media.h>
60 1.1 jmcneill #include <net/bpf.h>
61 1.1 jmcneill
62 1.1 jmcneill #include <dev/mii/miivar.h>
63 1.1 jmcneill
64 1.1 jmcneill #include <dev/ic/dwc_eqos_reg.h>
65 1.1 jmcneill #include <dev/ic/dwc_eqos_var.h>
66 1.1 jmcneill
67 1.13 ryo #define EQOS_MAX_MTU 9000 /* up to 16364? but not tested */
68 1.13 ryo #define EQOS_TXDMA_SIZE (EQOS_MAX_MTU + ETHER_HDR_LEN + ETHER_CRC_LEN)
69 1.13 ryo #define EQOS_RXDMA_SIZE 2048 /* Fixed value by hardware */
70 1.13 ryo CTASSERT(MCLBYTES >= EQOS_RXDMA_SIZE);
71 1.8 martin
72 1.1 jmcneill #ifdef EQOS_DEBUG
73 1.8 martin unsigned int eqos_debug;
74 1.8 martin #define DPRINTF(FLAG, FORMAT, ...) \
75 1.23 msaitoh if (eqos_debug & FLAG) \
76 1.8 martin device_printf(sc->sc_dev, "%s: " FORMAT, \
77 1.8 martin __func__, ##__VA_ARGS__)
78 1.1 jmcneill #else
79 1.8 martin #define DPRINTF(FLAG, FORMAT, ...) ((void)0)
80 1.1 jmcneill #endif
81 1.8 martin #define EDEB_NOTE 1U<<0
82 1.8 martin #define EDEB_INTR 1U<<1
83 1.8 martin #define EDEB_RXRING 1U<<2
84 1.8 martin #define EDEB_TXRING 1U<<3
85 1.1 jmcneill
86 1.1 jmcneill #ifdef NET_MPSAFE
87 1.1 jmcneill #define EQOS_MPSAFE 1
88 1.1 jmcneill #define CALLOUT_FLAGS CALLOUT_MPSAFE
89 1.1 jmcneill #else
90 1.1 jmcneill #define CALLOUT_FLAGS 0
91 1.1 jmcneill #endif
92 1.1 jmcneill
93 1.21 msaitoh #define DESC_BOUNDARY ((sizeof(bus_size_t) > 4) ? (1ULL << 32) : 0)
94 1.1 jmcneill #define DESC_ALIGN sizeof(struct eqos_dma_desc)
95 1.1 jmcneill #define TX_DESC_COUNT EQOS_DMA_DESC_COUNT
96 1.1 jmcneill #define TX_DESC_SIZE (TX_DESC_COUNT * DESC_ALIGN)
97 1.1 jmcneill #define RX_DESC_COUNT EQOS_DMA_DESC_COUNT
98 1.1 jmcneill #define RX_DESC_SIZE (RX_DESC_COUNT * DESC_ALIGN)
99 1.1 jmcneill #define MII_BUSY_RETRY 1000
100 1.1 jmcneill
101 1.1 jmcneill #define DESC_OFF(n) ((n) * sizeof(struct eqos_dma_desc))
102 1.1 jmcneill #define TX_SKIP(n, o) (((n) + (o)) % TX_DESC_COUNT)
103 1.1 jmcneill #define TX_NEXT(n) TX_SKIP(n, 1)
104 1.1 jmcneill #define RX_NEXT(n) (((n) + 1) % RX_DESC_COUNT)
105 1.1 jmcneill
106 1.1 jmcneill #define TX_MAX_SEGS 128
107 1.1 jmcneill
108 1.1 jmcneill #define EQOS_LOCK(sc) mutex_enter(&(sc)->sc_lock)
109 1.1 jmcneill #define EQOS_UNLOCK(sc) mutex_exit(&(sc)->sc_lock)
110 1.1 jmcneill #define EQOS_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_lock))
111 1.1 jmcneill
112 1.1 jmcneill #define EQOS_TXLOCK(sc) mutex_enter(&(sc)->sc_txlock)
113 1.1 jmcneill #define EQOS_TXUNLOCK(sc) mutex_exit(&(sc)->sc_txlock)
114 1.1 jmcneill #define EQOS_ASSERT_TXLOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_txlock))
115 1.1 jmcneill
116 1.1 jmcneill #define EQOS_HW_FEATURE_ADDR64_32BIT(sc) \
117 1.1 jmcneill (((sc)->sc_hw_feature[1] & GMAC_MAC_HW_FEATURE1_ADDR64_MASK) == \
118 1.1 jmcneill GMAC_MAC_HW_FEATURE1_ADDR64_32BIT)
119 1.1 jmcneill
120 1.1 jmcneill
121 1.1 jmcneill #define RD4(sc, reg) \
122 1.1 jmcneill bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
123 1.1 jmcneill #define WR4(sc, reg, val) \
124 1.1 jmcneill bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
125 1.1 jmcneill
126 1.1 jmcneill static int
127 1.1 jmcneill eqos_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
128 1.1 jmcneill {
129 1.15 skrll struct eqos_softc * const sc = device_private(dev);
130 1.1 jmcneill uint32_t addr;
131 1.1 jmcneill int retry;
132 1.1 jmcneill
133 1.1 jmcneill addr = sc->sc_clock_range |
134 1.1 jmcneill (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) |
135 1.1 jmcneill (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) |
136 1.23 msaitoh GMAC_MAC_MDIO_ADDRESS_GOC_READ | GMAC_MAC_MDIO_ADDRESS_GB;
137 1.1 jmcneill WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr);
138 1.1 jmcneill
139 1.1 jmcneill delay(10000);
140 1.1 jmcneill
141 1.1 jmcneill for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
142 1.1 jmcneill addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS);
143 1.1 jmcneill if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) {
144 1.1 jmcneill *val = RD4(sc, GMAC_MAC_MDIO_DATA) & 0xFFFF;
145 1.1 jmcneill break;
146 1.1 jmcneill }
147 1.1 jmcneill delay(10);
148 1.1 jmcneill }
149 1.1 jmcneill if (retry == 0) {
150 1.1 jmcneill device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
151 1.1 jmcneill phy, reg);
152 1.1 jmcneill return ETIMEDOUT;
153 1.1 jmcneill }
154 1.1 jmcneill
155 1.1 jmcneill return 0;
156 1.1 jmcneill }
157 1.1 jmcneill
158 1.1 jmcneill static int
159 1.1 jmcneill eqos_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
160 1.1 jmcneill {
161 1.15 skrll struct eqos_softc * const sc = device_private(dev);
162 1.1 jmcneill uint32_t addr;
163 1.1 jmcneill int retry;
164 1.1 jmcneill
165 1.1 jmcneill WR4(sc, GMAC_MAC_MDIO_DATA, val);
166 1.1 jmcneill
167 1.1 jmcneill addr = sc->sc_clock_range |
168 1.1 jmcneill (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) |
169 1.1 jmcneill (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) |
170 1.23 msaitoh GMAC_MAC_MDIO_ADDRESS_GOC_WRITE | GMAC_MAC_MDIO_ADDRESS_GB;
171 1.1 jmcneill WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr);
172 1.1 jmcneill
173 1.1 jmcneill delay(10000);
174 1.1 jmcneill
175 1.1 jmcneill for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
176 1.1 jmcneill addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS);
177 1.1 jmcneill if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) {
178 1.1 jmcneill break;
179 1.1 jmcneill }
180 1.1 jmcneill delay(10);
181 1.1 jmcneill }
182 1.1 jmcneill if (retry == 0) {
183 1.1 jmcneill device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
184 1.1 jmcneill phy, reg);
185 1.1 jmcneill return ETIMEDOUT;
186 1.1 jmcneill }
187 1.1 jmcneill
188 1.1 jmcneill return 0;
189 1.1 jmcneill }
190 1.1 jmcneill
191 1.1 jmcneill static void
192 1.1 jmcneill eqos_update_link(struct eqos_softc *sc)
193 1.1 jmcneill {
194 1.15 skrll struct mii_data * const mii = &sc->sc_mii;
195 1.1 jmcneill uint64_t baudrate;
196 1.1 jmcneill uint32_t conf;
197 1.1 jmcneill
198 1.1 jmcneill baudrate = ifmedia_baudrate(mii->mii_media_active);
199 1.1 jmcneill
200 1.1 jmcneill conf = RD4(sc, GMAC_MAC_CONFIGURATION);
201 1.1 jmcneill switch (baudrate) {
202 1.1 jmcneill case IF_Mbps(10):
203 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_PS;
204 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_FES;
205 1.1 jmcneill break;
206 1.1 jmcneill case IF_Mbps(100):
207 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_PS;
208 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_FES;
209 1.1 jmcneill break;
210 1.1 jmcneill case IF_Gbps(1):
211 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_PS;
212 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_FES;
213 1.1 jmcneill break;
214 1.1 jmcneill case IF_Mbps(2500ULL):
215 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_PS;
216 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_FES;
217 1.1 jmcneill break;
218 1.1 jmcneill }
219 1.1 jmcneill
220 1.1 jmcneill if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
221 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_DM;
222 1.1 jmcneill } else {
223 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_DM;
224 1.1 jmcneill }
225 1.1 jmcneill
226 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, conf);
227 1.1 jmcneill }
228 1.1 jmcneill
229 1.1 jmcneill static void
230 1.1 jmcneill eqos_mii_statchg(struct ifnet *ifp)
231 1.1 jmcneill {
232 1.1 jmcneill struct eqos_softc * const sc = ifp->if_softc;
233 1.1 jmcneill
234 1.1 jmcneill eqos_update_link(sc);
235 1.1 jmcneill }
236 1.1 jmcneill
237 1.1 jmcneill static void
238 1.1 jmcneill eqos_dma_sync(struct eqos_softc *sc, bus_dmamap_t map,
239 1.1 jmcneill u_int start, u_int end, u_int total, int flags)
240 1.1 jmcneill {
241 1.1 jmcneill if (end > start) {
242 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start),
243 1.1 jmcneill DESC_OFF(end) - DESC_OFF(start), flags);
244 1.1 jmcneill } else {
245 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start),
246 1.1 jmcneill DESC_OFF(total) - DESC_OFF(start), flags);
247 1.8 martin if (end > 0) {
248 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(0),
249 1.1 jmcneill DESC_OFF(end) - DESC_OFF(0), flags);
250 1.1 jmcneill }
251 1.1 jmcneill }
252 1.1 jmcneill }
253 1.1 jmcneill
254 1.1 jmcneill static void
255 1.1 jmcneill eqos_setup_txdesc(struct eqos_softc *sc, int index, int flags,
256 1.1 jmcneill bus_addr_t paddr, u_int len, u_int total_len)
257 1.1 jmcneill {
258 1.1 jmcneill uint32_t tdes2, tdes3;
259 1.1 jmcneill
260 1.24 msaitoh DPRINTF(EDEB_TXRING, "preparing desc %u\n", index);
261 1.24 msaitoh
262 1.1 jmcneill if (paddr == 0 || len == 0) {
263 1.8 martin DPRINTF(EDEB_TXRING,
264 1.8 martin "tx for desc %u done!\n", index);
265 1.1 jmcneill KASSERT(flags == 0);
266 1.1 jmcneill tdes2 = 0;
267 1.1 jmcneill tdes3 = 0;
268 1.1 jmcneill --sc->sc_tx.queued;
269 1.1 jmcneill } else {
270 1.12 ryo tdes2 = (flags & EQOS_TDES3_TX_LD) ? EQOS_TDES2_TX_IOC : 0;
271 1.1 jmcneill tdes3 = flags;
272 1.1 jmcneill ++sc->sc_tx.queued;
273 1.1 jmcneill }
274 1.1 jmcneill
275 1.21 msaitoh KASSERT(!EQOS_HW_FEATURE_ADDR64_32BIT(sc) ||
276 1.21 msaitoh ((uint64_t)paddr >> 32) == 0);
277 1.1 jmcneill
278 1.1 jmcneill sc->sc_tx.desc_ring[index].tdes0 = htole32((uint32_t)paddr);
279 1.21 msaitoh sc->sc_tx.desc_ring[index].tdes1
280 1.21 msaitoh = htole32((uint32_t)((uint64_t)paddr >> 32));
281 1.1 jmcneill sc->sc_tx.desc_ring[index].tdes2 = htole32(tdes2 | len);
282 1.1 jmcneill sc->sc_tx.desc_ring[index].tdes3 = htole32(tdes3 | total_len);
283 1.1 jmcneill }
284 1.1 jmcneill
285 1.1 jmcneill static int
286 1.1 jmcneill eqos_setup_txbuf(struct eqos_softc *sc, int index, struct mbuf *m)
287 1.1 jmcneill {
288 1.1 jmcneill bus_dma_segment_t *segs;
289 1.1 jmcneill int error, nsegs, cur, i;
290 1.1 jmcneill uint32_t flags;
291 1.1 jmcneill bool nospace;
292 1.1 jmcneill
293 1.24 msaitoh DPRINTF(EDEB_TXRING, "preparing desc %u\n", index);
294 1.24 msaitoh
295 1.1 jmcneill /* at least one descriptor free ? */
296 1.1 jmcneill if (sc->sc_tx.queued >= TX_DESC_COUNT - 1)
297 1.1 jmcneill return -1;
298 1.1 jmcneill
299 1.1 jmcneill error = bus_dmamap_load_mbuf(sc->sc_dmat,
300 1.1 jmcneill sc->sc_tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
301 1.1 jmcneill if (error == EFBIG) {
302 1.1 jmcneill device_printf(sc->sc_dev,
303 1.1 jmcneill "TX packet needs too many DMA segments, dropping...\n");
304 1.1 jmcneill return -2;
305 1.1 jmcneill }
306 1.1 jmcneill if (error != 0) {
307 1.1 jmcneill device_printf(sc->sc_dev,
308 1.1 jmcneill "TX packet cannot be mapped, retried...\n");
309 1.1 jmcneill return 0;
310 1.1 jmcneill }
311 1.1 jmcneill
312 1.1 jmcneill segs = sc->sc_tx.buf_map[index].map->dm_segs;
313 1.1 jmcneill nsegs = sc->sc_tx.buf_map[index].map->dm_nsegs;
314 1.1 jmcneill
315 1.1 jmcneill nospace = sc->sc_tx.queued >= TX_DESC_COUNT - nsegs;
316 1.1 jmcneill if (nospace) {
317 1.1 jmcneill bus_dmamap_unload(sc->sc_dmat,
318 1.1 jmcneill sc->sc_tx.buf_map[index].map);
319 1.1 jmcneill /* XXX coalesce and retry ? */
320 1.1 jmcneill return -1;
321 1.1 jmcneill }
322 1.1 jmcneill
323 1.2 mrg bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.buf_map[index].map,
324 1.5 riastrad 0, sc->sc_tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
325 1.1 jmcneill
326 1.1 jmcneill /* stored in same index as loaded map */
327 1.1 jmcneill sc->sc_tx.buf_map[index].mbuf = m;
328 1.1 jmcneill
329 1.12 ryo flags = EQOS_TDES3_TX_FD;
330 1.1 jmcneill
331 1.1 jmcneill for (cur = index, i = 0; i < nsegs; i++) {
332 1.1 jmcneill if (i == nsegs - 1)
333 1.12 ryo flags |= EQOS_TDES3_TX_LD;
334 1.1 jmcneill
335 1.1 jmcneill eqos_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
336 1.1 jmcneill segs[i].ds_len, m->m_pkthdr.len);
337 1.12 ryo flags &= ~EQOS_TDES3_TX_FD;
338 1.1 jmcneill cur = TX_NEXT(cur);
339 1.1 jmcneill
340 1.12 ryo flags |= EQOS_TDES3_TX_OWN;
341 1.1 jmcneill }
342 1.1 jmcneill
343 1.1 jmcneill /*
344 1.1 jmcneill * Defer setting OWN bit on the first descriptor until all
345 1.4 riastrad * descriptors have been updated. The hardware will not try to
346 1.4 riastrad * process any descriptors past the first one still owned by
347 1.4 riastrad * software (i.e., with the OWN bit clear).
348 1.1 jmcneill */
349 1.4 riastrad bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map,
350 1.4 riastrad DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3),
351 1.4 riastrad BUS_DMASYNC_PREWRITE);
352 1.8 martin DPRINTF(EDEB_TXRING, "passing tx desc %u to hardware, cur: %u, "
353 1.8 martin "next: %u, queued: %u\n",
354 1.8 martin index, sc->sc_tx.cur, sc->sc_tx.next, sc->sc_tx.queued);
355 1.12 ryo sc->sc_tx.desc_ring[index].tdes3 |= htole32(EQOS_TDES3_TX_OWN);
356 1.1 jmcneill
357 1.1 jmcneill return nsegs;
358 1.1 jmcneill }
359 1.1 jmcneill
360 1.1 jmcneill static void
361 1.1 jmcneill eqos_setup_rxdesc(struct eqos_softc *sc, int index, bus_addr_t paddr)
362 1.1 jmcneill {
363 1.4 riastrad
364 1.24 msaitoh DPRINTF(EDEB_RXRING, "preparing desc %u\n", index);
365 1.24 msaitoh
366 1.1 jmcneill sc->sc_rx.desc_ring[index].tdes0 = htole32((uint32_t)paddr);
367 1.21 msaitoh sc->sc_rx.desc_ring[index].tdes1 =
368 1.21 msaitoh htole32((uint32_t)((uint64_t)paddr >> 32));
369 1.1 jmcneill sc->sc_rx.desc_ring[index].tdes2 = htole32(0);
370 1.4 riastrad bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map,
371 1.4 riastrad DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3),
372 1.4 riastrad BUS_DMASYNC_PREWRITE);
373 1.12 ryo sc->sc_rx.desc_ring[index].tdes3 = htole32(EQOS_TDES3_RX_OWN |
374 1.12 ryo EQOS_TDES3_RX_IOC | EQOS_TDES3_RX_BUF1V);
375 1.1 jmcneill }
376 1.1 jmcneill
377 1.1 jmcneill static int
378 1.1 jmcneill eqos_setup_rxbuf(struct eqos_softc *sc, int index, struct mbuf *m)
379 1.1 jmcneill {
380 1.1 jmcneill int error;
381 1.1 jmcneill
382 1.24 msaitoh DPRINTF(EDEB_RXRING, "preparing desc %u\n", index);
383 1.24 msaitoh
384 1.13 ryo #if MCLBYTES >= (EQOS_RXDMA_SIZE + ETHER_ALIGN)
385 1.13 ryo m_adj(m, ETHER_ALIGN);
386 1.13 ryo #endif
387 1.13 ryo
388 1.1 jmcneill error = bus_dmamap_load_mbuf(sc->sc_dmat,
389 1.1 jmcneill sc->sc_rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT);
390 1.1 jmcneill if (error != 0)
391 1.1 jmcneill return error;
392 1.1 jmcneill
393 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map,
394 1.1 jmcneill 0, sc->sc_rx.buf_map[index].map->dm_mapsize,
395 1.1 jmcneill BUS_DMASYNC_PREREAD);
396 1.1 jmcneill
397 1.1 jmcneill sc->sc_rx.buf_map[index].mbuf = m;
398 1.1 jmcneill
399 1.1 jmcneill return 0;
400 1.1 jmcneill }
401 1.1 jmcneill
402 1.1 jmcneill static struct mbuf *
403 1.1 jmcneill eqos_alloc_mbufcl(struct eqos_softc *sc)
404 1.1 jmcneill {
405 1.1 jmcneill struct mbuf *m;
406 1.1 jmcneill
407 1.1 jmcneill m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
408 1.1 jmcneill if (m != NULL)
409 1.1 jmcneill m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
410 1.1 jmcneill
411 1.1 jmcneill return m;
412 1.1 jmcneill }
413 1.1 jmcneill
414 1.1 jmcneill static void
415 1.1 jmcneill eqos_enable_intr(struct eqos_softc *sc)
416 1.1 jmcneill {
417 1.23 msaitoh
418 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE,
419 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_NIE |
420 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_AIE |
421 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_FBE |
422 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_RIE |
423 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_TIE);
424 1.1 jmcneill }
425 1.1 jmcneill
426 1.1 jmcneill static void
427 1.1 jmcneill eqos_disable_intr(struct eqos_softc *sc)
428 1.1 jmcneill {
429 1.23 msaitoh
430 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE, 0);
431 1.1 jmcneill }
432 1.1 jmcneill
433 1.1 jmcneill static void
434 1.1 jmcneill eqos_tick(void *softc)
435 1.1 jmcneill {
436 1.15 skrll struct eqos_softc * const sc = softc;
437 1.15 skrll struct mii_data * const mii = &sc->sc_mii;
438 1.1 jmcneill #ifndef EQOS_MPSAFE
439 1.1 jmcneill int s = splnet();
440 1.1 jmcneill #endif
441 1.1 jmcneill
442 1.1 jmcneill EQOS_LOCK(sc);
443 1.1 jmcneill mii_tick(mii);
444 1.1 jmcneill callout_schedule(&sc->sc_stat_ch, hz);
445 1.1 jmcneill EQOS_UNLOCK(sc);
446 1.1 jmcneill
447 1.1 jmcneill #ifndef EQOS_MPSAFE
448 1.1 jmcneill splx(s);
449 1.1 jmcneill #endif
450 1.1 jmcneill }
451 1.1 jmcneill
452 1.1 jmcneill static uint32_t
453 1.1 jmcneill eqos_bitrev32(uint32_t x)
454 1.1 jmcneill {
455 1.23 msaitoh
456 1.1 jmcneill x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
457 1.1 jmcneill x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
458 1.1 jmcneill x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
459 1.1 jmcneill x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
460 1.1 jmcneill
461 1.1 jmcneill return (x >> 16) | (x << 16);
462 1.1 jmcneill }
463 1.1 jmcneill
464 1.1 jmcneill static void
465 1.1 jmcneill eqos_setup_rxfilter(struct eqos_softc *sc)
466 1.1 jmcneill {
467 1.1 jmcneill struct ethercom *ec = &sc->sc_ec;
468 1.1 jmcneill struct ifnet *ifp = &ec->ec_if;
469 1.1 jmcneill uint32_t pfil, crc, hashreg, hashbit, hash[2];
470 1.1 jmcneill struct ether_multi *enm;
471 1.1 jmcneill struct ether_multistep step;
472 1.1 jmcneill const uint8_t *eaddr;
473 1.1 jmcneill uint32_t val;
474 1.1 jmcneill
475 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
476 1.1 jmcneill
477 1.1 jmcneill pfil = RD4(sc, GMAC_MAC_PACKET_FILTER);
478 1.1 jmcneill pfil &= ~(GMAC_MAC_PACKET_FILTER_PR |
479 1.1 jmcneill GMAC_MAC_PACKET_FILTER_PM |
480 1.1 jmcneill GMAC_MAC_PACKET_FILTER_HMC |
481 1.1 jmcneill GMAC_MAC_PACKET_FILTER_PCF_MASK);
482 1.1 jmcneill hash[0] = hash[1] = ~0U;
483 1.1 jmcneill
484 1.1 jmcneill if ((ifp->if_flags & IFF_PROMISC) != 0) {
485 1.1 jmcneill pfil |= GMAC_MAC_PACKET_FILTER_PR |
486 1.1 jmcneill GMAC_MAC_PACKET_FILTER_PCF_ALL;
487 1.1 jmcneill } else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
488 1.1 jmcneill pfil |= GMAC_MAC_PACKET_FILTER_PM;
489 1.1 jmcneill } else {
490 1.1 jmcneill hash[0] = hash[1] = 0;
491 1.1 jmcneill pfil |= GMAC_MAC_PACKET_FILTER_HMC;
492 1.1 jmcneill ETHER_LOCK(ec);
493 1.1 jmcneill ETHER_FIRST_MULTI(step, ec, enm);
494 1.1 jmcneill while (enm != NULL) {
495 1.1 jmcneill crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
496 1.1 jmcneill crc &= 0x7f;
497 1.1 jmcneill crc = eqos_bitrev32(~crc) >> 26;
498 1.1 jmcneill hashreg = (crc >> 5);
499 1.1 jmcneill hashbit = (crc & 0x1f);
500 1.1 jmcneill hash[hashreg] |= (1 << hashbit);
501 1.1 jmcneill ETHER_NEXT_MULTI(step, enm);
502 1.1 jmcneill }
503 1.1 jmcneill ETHER_UNLOCK(ec);
504 1.1 jmcneill }
505 1.1 jmcneill
506 1.1 jmcneill /* Write our unicast address */
507 1.1 jmcneill eaddr = CLLADDR(ifp->if_sadl);
508 1.1 jmcneill val = eaddr[4] | (eaddr[5] << 8);
509 1.1 jmcneill WR4(sc, GMAC_MAC_ADDRESS0_HIGH, val);
510 1.1 jmcneill val = eaddr[0] | (eaddr[1] << 8) | (eaddr[2] << 16) |
511 1.1 jmcneill (eaddr[3] << 24);
512 1.1 jmcneill WR4(sc, GMAC_MAC_ADDRESS0_LOW, val);
513 1.1 jmcneill
514 1.1 jmcneill /* Multicast hash filters */
515 1.9 martin WR4(sc, GMAC_MAC_HASH_TABLE_REG0, hash[0]);
516 1.9 martin WR4(sc, GMAC_MAC_HASH_TABLE_REG1, hash[1]);
517 1.1 jmcneill
518 1.8 martin DPRINTF(EDEB_NOTE, "writing new packet filter config "
519 1.8 martin "%08x, hash[1]=%08x, hash[0]=%08x\n", pfil, hash[1], hash[0]);
520 1.1 jmcneill /* Packet filter config */
521 1.1 jmcneill WR4(sc, GMAC_MAC_PACKET_FILTER, pfil);
522 1.1 jmcneill }
523 1.1 jmcneill
524 1.1 jmcneill static int
525 1.1 jmcneill eqos_reset(struct eqos_softc *sc)
526 1.1 jmcneill {
527 1.1 jmcneill uint32_t val;
528 1.1 jmcneill int retry;
529 1.1 jmcneill
530 1.1 jmcneill WR4(sc, GMAC_DMA_MODE, GMAC_DMA_MODE_SWR);
531 1.1 jmcneill for (retry = 2000; retry > 0; retry--) {
532 1.1 jmcneill delay(1000);
533 1.1 jmcneill val = RD4(sc, GMAC_DMA_MODE);
534 1.1 jmcneill if ((val & GMAC_DMA_MODE_SWR) == 0) {
535 1.1 jmcneill return 0;
536 1.1 jmcneill }
537 1.1 jmcneill }
538 1.1 jmcneill
539 1.1 jmcneill device_printf(sc->sc_dev, "reset timeout!\n");
540 1.1 jmcneill return ETIMEDOUT;
541 1.1 jmcneill }
542 1.1 jmcneill
543 1.1 jmcneill static void
544 1.1 jmcneill eqos_init_rings(struct eqos_softc *sc, int qid)
545 1.1 jmcneill {
546 1.7 martin sc->sc_tx.cur = sc->sc_tx.next = sc->sc_tx.queued = 0;
547 1.1 jmcneill
548 1.13 ryo sc->sc_rx_discarding = false;
549 1.13 ryo if (sc->sc_rx_receiving_m != NULL)
550 1.13 ryo m_freem(sc->sc_rx_receiving_m);
551 1.13 ryo sc->sc_rx_receiving_m = NULL;
552 1.13 ryo sc->sc_rx_receiving_m_last = NULL;
553 1.13 ryo
554 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR_HI,
555 1.21 msaitoh (uint32_t)((uint64_t)sc->sc_tx.desc_ring_paddr >> 32));
556 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR,
557 1.1 jmcneill (uint32_t)sc->sc_tx.desc_ring_paddr);
558 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_RING_LEN, TX_DESC_COUNT - 1);
559 1.17 andvar DPRINTF(EDEB_TXRING, "tx ring paddr %lx with %u descriptors\n",
560 1.8 martin sc->sc_tx.desc_ring_paddr, TX_DESC_COUNT);
561 1.1 jmcneill
562 1.8 martin sc->sc_rx.cur = sc->sc_rx.next = sc->sc_rx.queued = 0;
563 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR_HI,
564 1.21 msaitoh (uint32_t)((uint64_t)sc->sc_rx.desc_ring_paddr >> 32));
565 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR,
566 1.1 jmcneill (uint32_t)sc->sc_rx.desc_ring_paddr);
567 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_RING_LEN, RX_DESC_COUNT - 1);
568 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR,
569 1.1 jmcneill (uint32_t)sc->sc_rx.desc_ring_paddr +
570 1.1 jmcneill DESC_OFF((sc->sc_rx.cur - 1) % RX_DESC_COUNT));
571 1.17 andvar DPRINTF(EDEB_RXRING, "rx ring paddr %lx with %u descriptors\n",
572 1.8 martin sc->sc_rx.desc_ring_paddr, RX_DESC_COUNT);
573 1.1 jmcneill }
574 1.1 jmcneill
575 1.1 jmcneill static int
576 1.1 jmcneill eqos_init_locked(struct eqos_softc *sc)
577 1.1 jmcneill {
578 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
579 1.15 skrll struct mii_data * const mii = &sc->sc_mii;
580 1.10 ryo uint32_t val, tqs, rqs;
581 1.1 jmcneill
582 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
583 1.1 jmcneill EQOS_ASSERT_TXLOCKED(sc);
584 1.1 jmcneill
585 1.1 jmcneill if ((ifp->if_flags & IFF_RUNNING) != 0)
586 1.1 jmcneill return 0;
587 1.1 jmcneill
588 1.1 jmcneill /* Setup TX/RX rings */
589 1.1 jmcneill eqos_init_rings(sc, 0);
590 1.1 jmcneill
591 1.1 jmcneill /* Setup RX filter */
592 1.1 jmcneill eqos_setup_rxfilter(sc);
593 1.1 jmcneill
594 1.1 jmcneill WR4(sc, GMAC_MAC_1US_TIC_COUNTER, (sc->sc_csr_clock / 1000000) - 1);
595 1.1 jmcneill
596 1.1 jmcneill /* Enable transmit and receive DMA */
597 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_CONTROL);
598 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_CONTROL_DSL_MASK;
599 1.1 jmcneill val |= ((DESC_ALIGN - 16) / 8) << GMAC_DMA_CHAN0_CONTROL_DSL_SHIFT;
600 1.1 jmcneill val |= GMAC_DMA_CHAN0_CONTROL_PBLX8;
601 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_CONTROL, val);
602 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL);
603 1.1 jmcneill val |= GMAC_DMA_CHAN0_TX_CONTROL_OSP;
604 1.1 jmcneill val |= GMAC_DMA_CHAN0_TX_CONTROL_START;
605 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val);
606 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL);
607 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_MASK;
608 1.1 jmcneill val |= (MCLBYTES << GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_SHIFT);
609 1.1 jmcneill val |= GMAC_DMA_CHAN0_RX_CONTROL_START;
610 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val);
611 1.1 jmcneill
612 1.6 jmcneill /* Disable counters */
613 1.6 jmcneill WR4(sc, GMAC_MMC_CONTROL,
614 1.6 jmcneill GMAC_MMC_CONTROL_CNTFREEZ |
615 1.6 jmcneill GMAC_MMC_CONTROL_CNTPRST |
616 1.6 jmcneill GMAC_MMC_CONTROL_CNTPRSTLVL);
617 1.6 jmcneill
618 1.1 jmcneill /* Configure operation modes */
619 1.1 jmcneill WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE,
620 1.1 jmcneill GMAC_MTL_TXQ0_OPERATION_MODE_TSF |
621 1.1 jmcneill GMAC_MTL_TXQ0_OPERATION_MODE_TXQEN_EN);
622 1.1 jmcneill WR4(sc, GMAC_MTL_RXQ0_OPERATION_MODE,
623 1.1 jmcneill GMAC_MTL_RXQ0_OPERATION_MODE_RSF |
624 1.1 jmcneill GMAC_MTL_RXQ0_OPERATION_MODE_FEP |
625 1.1 jmcneill GMAC_MTL_RXQ0_OPERATION_MODE_FUP);
626 1.1 jmcneill
627 1.10 ryo /*
628 1.10 ryo * TX/RX fifo size in hw_feature[1] are log2(n/128), and
629 1.10 ryo * TQS/RQS in TXQ0/RXQ0_OPERATION_MODE are n/256-1.
630 1.10 ryo */
631 1.10 ryo tqs = (128 << __SHIFTOUT(sc->sc_hw_feature[1],
632 1.10 ryo GMAC_MAC_HW_FEATURE1_TXFIFOSIZE) / 256) - 1;
633 1.10 ryo val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
634 1.10 ryo val &= ~GMAC_MTL_TXQ0_OPERATION_MODE_TQS;
635 1.10 ryo val |= __SHIFTIN(tqs, GMAC_MTL_TXQ0_OPERATION_MODE_TQS);
636 1.10 ryo WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, val);
637 1.10 ryo
638 1.10 ryo rqs = (128 << __SHIFTOUT(sc->sc_hw_feature[1],
639 1.10 ryo GMAC_MAC_HW_FEATURE1_RXFIFOSIZE) / 256) - 1;
640 1.10 ryo val = RD4(sc, GMAC_MTL_RXQ0_OPERATION_MODE);
641 1.10 ryo val &= ~GMAC_MTL_RXQ0_OPERATION_MODE_RQS;
642 1.10 ryo val |= __SHIFTIN(rqs, GMAC_MTL_RXQ0_OPERATION_MODE_RQS);
643 1.10 ryo WR4(sc, GMAC_MTL_RXQ0_OPERATION_MODE, val);
644 1.10 ryo
645 1.1 jmcneill /* Enable flow control */
646 1.1 jmcneill val = RD4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL);
647 1.1 jmcneill val |= 0xFFFFU << GMAC_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT;
648 1.1 jmcneill val |= GMAC_MAC_Q0_TX_FLOW_CTRL_TFE;
649 1.1 jmcneill WR4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL, val);
650 1.1 jmcneill val = RD4(sc, GMAC_MAC_RX_FLOW_CTRL);
651 1.1 jmcneill val |= GMAC_MAC_RX_FLOW_CTRL_RFE;
652 1.1 jmcneill WR4(sc, GMAC_MAC_RX_FLOW_CTRL, val);
653 1.1 jmcneill
654 1.10 ryo /* set RX queue mode. must be in DCB mode. */
655 1.10 ryo val = __SHIFTIN(GMAC_RXQ_CTRL0_EN_DCB, GMAC_RXQ_CTRL0_EN_MASK);
656 1.10 ryo WR4(sc, GMAC_RXQ_CTRL0, val);
657 1.10 ryo
658 1.1 jmcneill /* Enable transmitter and receiver */
659 1.1 jmcneill val = RD4(sc, GMAC_MAC_CONFIGURATION);
660 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_BE;
661 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_JD;
662 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_JE;
663 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_DCRS;
664 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_TE;
665 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_RE;
666 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, val);
667 1.1 jmcneill
668 1.1 jmcneill /* Enable interrupts */
669 1.1 jmcneill eqos_enable_intr(sc);
670 1.1 jmcneill
671 1.1 jmcneill ifp->if_flags |= IFF_RUNNING;
672 1.1 jmcneill
673 1.1 jmcneill mii_mediachg(mii);
674 1.1 jmcneill callout_schedule(&sc->sc_stat_ch, hz);
675 1.1 jmcneill
676 1.1 jmcneill return 0;
677 1.1 jmcneill }
678 1.1 jmcneill
679 1.1 jmcneill static int
680 1.1 jmcneill eqos_init(struct ifnet *ifp)
681 1.1 jmcneill {
682 1.15 skrll struct eqos_softc * const sc = ifp->if_softc;
683 1.1 jmcneill int error;
684 1.1 jmcneill
685 1.1 jmcneill EQOS_LOCK(sc);
686 1.1 jmcneill EQOS_TXLOCK(sc);
687 1.1 jmcneill error = eqos_init_locked(sc);
688 1.1 jmcneill EQOS_TXUNLOCK(sc);
689 1.1 jmcneill EQOS_UNLOCK(sc);
690 1.1 jmcneill
691 1.1 jmcneill return error;
692 1.1 jmcneill }
693 1.1 jmcneill
694 1.1 jmcneill static void
695 1.1 jmcneill eqos_stop_locked(struct eqos_softc *sc, int disable)
696 1.1 jmcneill {
697 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
698 1.1 jmcneill uint32_t val;
699 1.1 jmcneill int retry;
700 1.1 jmcneill
701 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
702 1.1 jmcneill
703 1.1 jmcneill callout_stop(&sc->sc_stat_ch);
704 1.1 jmcneill
705 1.1 jmcneill mii_down(&sc->sc_mii);
706 1.1 jmcneill
707 1.1 jmcneill /* Disable receiver */
708 1.1 jmcneill val = RD4(sc, GMAC_MAC_CONFIGURATION);
709 1.1 jmcneill val &= ~GMAC_MAC_CONFIGURATION_RE;
710 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, val);
711 1.1 jmcneill
712 1.1 jmcneill /* Stop receive DMA */
713 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL);
714 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_RX_CONTROL_START;
715 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val);
716 1.1 jmcneill
717 1.1 jmcneill /* Stop transmit DMA */
718 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL);
719 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_TX_CONTROL_START;
720 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val);
721 1.1 jmcneill
722 1.1 jmcneill if (disable) {
723 1.1 jmcneill /* Flush data in the TX FIFO */
724 1.1 jmcneill val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
725 1.1 jmcneill val |= GMAC_MTL_TXQ0_OPERATION_MODE_FTQ;
726 1.1 jmcneill WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, val);
727 1.1 jmcneill /* Wait for flush to complete */
728 1.1 jmcneill for (retry = 10000; retry > 0; retry--) {
729 1.1 jmcneill val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
730 1.1 jmcneill if ((val & GMAC_MTL_TXQ0_OPERATION_MODE_FTQ) == 0) {
731 1.1 jmcneill break;
732 1.1 jmcneill }
733 1.1 jmcneill delay(1);
734 1.1 jmcneill }
735 1.1 jmcneill if (retry == 0) {
736 1.1 jmcneill device_printf(sc->sc_dev,
737 1.1 jmcneill "timeout flushing TX queue\n");
738 1.1 jmcneill }
739 1.1 jmcneill }
740 1.1 jmcneill
741 1.1 jmcneill /* Disable transmitter */
742 1.1 jmcneill val = RD4(sc, GMAC_MAC_CONFIGURATION);
743 1.1 jmcneill val &= ~GMAC_MAC_CONFIGURATION_TE;
744 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, val);
745 1.1 jmcneill
746 1.1 jmcneill /* Disable interrupts */
747 1.1 jmcneill eqos_disable_intr(sc);
748 1.1 jmcneill
749 1.16 thorpej ifp->if_flags &= ~IFF_RUNNING;
750 1.1 jmcneill }
751 1.1 jmcneill
752 1.1 jmcneill static void
753 1.1 jmcneill eqos_stop(struct ifnet *ifp, int disable)
754 1.1 jmcneill {
755 1.1 jmcneill struct eqos_softc * const sc = ifp->if_softc;
756 1.1 jmcneill
757 1.1 jmcneill EQOS_LOCK(sc);
758 1.1 jmcneill eqos_stop_locked(sc, disable);
759 1.1 jmcneill EQOS_UNLOCK(sc);
760 1.1 jmcneill }
761 1.1 jmcneill
762 1.1 jmcneill static void
763 1.1 jmcneill eqos_rxintr(struct eqos_softc *sc, int qid)
764 1.1 jmcneill {
765 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
766 1.13 ryo int error, index, pkts = 0;
767 1.13 ryo struct mbuf *m, *m0, *new_m, *mprev;
768 1.1 jmcneill uint32_t tdes3;
769 1.13 ryo bool discarding;
770 1.13 ryo
771 1.13 ryo /* restore jumboframe context */
772 1.13 ryo discarding = sc->sc_rx_discarding;
773 1.13 ryo m0 = sc->sc_rx_receiving_m;
774 1.13 ryo mprev = sc->sc_rx_receiving_m_last;
775 1.1 jmcneill
776 1.1 jmcneill for (index = sc->sc_rx.cur; ; index = RX_NEXT(index)) {
777 1.1 jmcneill eqos_dma_sync(sc, sc->sc_rx.desc_map,
778 1.1 jmcneill index, index + 1, RX_DESC_COUNT,
779 1.1 jmcneill BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
780 1.1 jmcneill
781 1.1 jmcneill tdes3 = le32toh(sc->sc_rx.desc_ring[index].tdes3);
782 1.12 ryo if ((tdes3 & EQOS_TDES3_RX_OWN) != 0) {
783 1.1 jmcneill break;
784 1.1 jmcneill }
785 1.1 jmcneill
786 1.13 ryo /* now discarding untill the last packet */
787 1.13 ryo if (discarding)
788 1.13 ryo goto rx_next;
789 1.13 ryo
790 1.13 ryo if ((tdes3 & EQOS_TDES3_RX_CTXT) != 0)
791 1.13 ryo goto rx_next; /* ignore receive context descriptor */
792 1.13 ryo
793 1.13 ryo /* error packet? */
794 1.13 ryo if ((tdes3 & (EQOS_TDES3_RX_CE | EQOS_TDES3_RX_RWT |
795 1.13 ryo EQOS_TDES3_RX_OE | EQOS_TDES3_RX_RE |
796 1.13 ryo EQOS_TDES3_RX_DE)) != 0) {
797 1.13 ryo #ifdef EQOS_DEBUG
798 1.13 ryo char buf[128];
799 1.13 ryo snprintb(buf, sizeof(buf),
800 1.13 ryo "\177\020"
801 1.13 ryo "b\x1e" "CTXT\0" /* 30 */
802 1.13 ryo "b\x18" "CE\0" /* 24 */
803 1.13 ryo "b\x17" "GP\0" /* 23 */
804 1.13 ryo "b\x16" "WDT\0" /* 22 */
805 1.13 ryo "b\x15" "OE\0" /* 21 */
806 1.13 ryo "b\x14" "RE\0" /* 20 */
807 1.13 ryo "b\x13" "DE\0" /* 19 */
808 1.13 ryo "b\x0f" "ES\0" /* 15 */
809 1.13 ryo "\0", tdes3);
810 1.23 msaitoh DPRINTF(EDEB_NOTE,
811 1.23 msaitoh "rxdesc[%d].tdes3=%s\n", index, buf);
812 1.13 ryo #endif
813 1.13 ryo if_statinc(ifp, if_ierrors);
814 1.13 ryo if (m0 != NULL) {
815 1.13 ryo m_freem(m0);
816 1.13 ryo m0 = mprev = NULL;
817 1.13 ryo }
818 1.13 ryo discarding = true;
819 1.13 ryo goto rx_next;
820 1.13 ryo }
821 1.13 ryo
822 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map,
823 1.1 jmcneill 0, sc->sc_rx.buf_map[index].map->dm_mapsize,
824 1.1 jmcneill BUS_DMASYNC_POSTREAD);
825 1.13 ryo m = sc->sc_rx.buf_map[index].mbuf;
826 1.13 ryo new_m = eqos_alloc_mbufcl(sc);
827 1.13 ryo if (new_m == NULL) {
828 1.13 ryo /*
829 1.13 ryo * cannot allocate new mbuf. discard this received
830 1.13 ryo * packet, and reuse the mbuf for next.
831 1.13 ryo */
832 1.13 ryo if_statinc(ifp, if_ierrors);
833 1.13 ryo if (m0 != NULL) {
834 1.13 ryo /* also discard the halfway jumbo packet */
835 1.13 ryo m_freem(m0);
836 1.13 ryo m0 = mprev = NULL;
837 1.13 ryo }
838 1.13 ryo discarding = true;
839 1.13 ryo goto rx_next;
840 1.13 ryo }
841 1.14 ryo bus_dmamap_unload(sc->sc_dmat,
842 1.14 ryo sc->sc_rx.buf_map[index].map);
843 1.13 ryo error = eqos_setup_rxbuf(sc, index, new_m);
844 1.13 ryo if (error)
845 1.13 ryo panic("%s: %s: unable to load RX mbuf. error=%d",
846 1.13 ryo device_xname(sc->sc_dev), __func__, error);
847 1.1 jmcneill
848 1.13 ryo if (m0 == NULL) {
849 1.13 ryo m0 = m;
850 1.13 ryo } else {
851 1.13 ryo if (m->m_flags & M_PKTHDR)
852 1.13 ryo m_remove_pkthdr(m);
853 1.13 ryo mprev->m_next = m;
854 1.13 ryo }
855 1.13 ryo mprev = m;
856 1.13 ryo
857 1.13 ryo if ((tdes3 & EQOS_TDES3_RX_LD) == 0) {
858 1.13 ryo /* to be continued in the next segment */
859 1.13 ryo m->m_len = EQOS_RXDMA_SIZE;
860 1.13 ryo } else {
861 1.13 ryo /* last segment */
862 1.13 ryo uint32_t totallen = tdes3 & EQOS_TDES3_RX_LENGTH_MASK;
863 1.13 ryo uint32_t mlen = totallen % EQOS_RXDMA_SIZE;
864 1.13 ryo if (mlen == 0)
865 1.13 ryo mlen = EQOS_RXDMA_SIZE;
866 1.13 ryo m->m_len = mlen;
867 1.13 ryo m0->m_pkthdr.len = totallen;
868 1.13 ryo m_set_rcvif(m0, ifp);
869 1.13 ryo m0->m_flags |= M_HASFCS;
870 1.13 ryo m0->m_nextpkt = NULL;
871 1.13 ryo if_percpuq_enqueue(ifp->if_percpuq, m0);
872 1.13 ryo m0 = mprev = NULL;
873 1.1 jmcneill
874 1.1 jmcneill ++pkts;
875 1.1 jmcneill }
876 1.1 jmcneill
877 1.13 ryo rx_next:
878 1.13 ryo if (discarding && (tdes3 & EQOS_TDES3_RX_LD) != 0)
879 1.13 ryo discarding = false;
880 1.13 ryo
881 1.13 ryo eqos_setup_rxdesc(sc, index,
882 1.13 ryo sc->sc_rx.buf_map[index].map->dm_segs[0].ds_addr);
883 1.1 jmcneill eqos_dma_sync(sc, sc->sc_rx.desc_map,
884 1.1 jmcneill index, index + 1, RX_DESC_COUNT,
885 1.1 jmcneill BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
886 1.1 jmcneill
887 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR,
888 1.1 jmcneill (uint32_t)sc->sc_rx.desc_ring_paddr +
889 1.1 jmcneill DESC_OFF(sc->sc_rx.cur));
890 1.1 jmcneill }
891 1.13 ryo /* save jumboframe context */
892 1.13 ryo sc->sc_rx_discarding = discarding;
893 1.13 ryo sc->sc_rx_receiving_m = m0;
894 1.13 ryo sc->sc_rx_receiving_m_last = mprev;
895 1.1 jmcneill
896 1.24 msaitoh DPRINTF(EDEB_RXRING, "sc_rx.cur %u -> %u\n",
897 1.24 msaitoh sc->sc_rx.cur, index);
898 1.1 jmcneill sc->sc_rx.cur = index;
899 1.1 jmcneill
900 1.1 jmcneill if (pkts != 0) {
901 1.1 jmcneill rnd_add_uint32(&sc->sc_rndsource, pkts);
902 1.1 jmcneill }
903 1.1 jmcneill }
904 1.1 jmcneill
905 1.1 jmcneill static void
906 1.1 jmcneill eqos_txintr(struct eqos_softc *sc, int qid)
907 1.1 jmcneill {
908 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
909 1.1 jmcneill struct eqos_bufmap *bmap;
910 1.1 jmcneill struct eqos_dma_desc *desc;
911 1.1 jmcneill uint32_t tdes3;
912 1.1 jmcneill int i, pkts = 0;
913 1.1 jmcneill
914 1.8 martin DPRINTF(EDEB_INTR, "qid: %u\n", qid);
915 1.8 martin
916 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
917 1.1 jmcneill
918 1.1 jmcneill for (i = sc->sc_tx.next; sc->sc_tx.queued > 0; i = TX_NEXT(i)) {
919 1.1 jmcneill KASSERT(sc->sc_tx.queued > 0);
920 1.1 jmcneill KASSERT(sc->sc_tx.queued <= TX_DESC_COUNT);
921 1.1 jmcneill eqos_dma_sync(sc, sc->sc_tx.desc_map,
922 1.1 jmcneill i, i + 1, TX_DESC_COUNT,
923 1.1 jmcneill BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
924 1.1 jmcneill desc = &sc->sc_tx.desc_ring[i];
925 1.1 jmcneill tdes3 = le32toh(desc->tdes3);
926 1.12 ryo if ((tdes3 & EQOS_TDES3_TX_OWN) != 0) {
927 1.1 jmcneill break;
928 1.1 jmcneill }
929 1.1 jmcneill bmap = &sc->sc_tx.buf_map[i];
930 1.1 jmcneill if (bmap->mbuf != NULL) {
931 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, bmap->map,
932 1.1 jmcneill 0, bmap->map->dm_mapsize,
933 1.1 jmcneill BUS_DMASYNC_POSTWRITE);
934 1.1 jmcneill bus_dmamap_unload(sc->sc_dmat, bmap->map);
935 1.1 jmcneill m_freem(bmap->mbuf);
936 1.1 jmcneill bmap->mbuf = NULL;
937 1.1 jmcneill ++pkts;
938 1.1 jmcneill }
939 1.1 jmcneill
940 1.1 jmcneill eqos_setup_txdesc(sc, i, 0, 0, 0, 0);
941 1.1 jmcneill eqos_dma_sync(sc, sc->sc_tx.desc_map,
942 1.1 jmcneill i, i + 1, TX_DESC_COUNT,
943 1.1 jmcneill BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
944 1.1 jmcneill
945 1.1 jmcneill /* Last descriptor in a packet contains DMA status */
946 1.12 ryo if ((tdes3 & EQOS_TDES3_TX_LD) != 0) {
947 1.12 ryo if ((tdes3 & EQOS_TDES3_TX_DE) != 0) {
948 1.1 jmcneill device_printf(sc->sc_dev,
949 1.1 jmcneill "TX [%u] desc error: 0x%08x\n",
950 1.1 jmcneill i, tdes3);
951 1.1 jmcneill if_statinc(ifp, if_oerrors);
952 1.12 ryo } else if ((tdes3 & EQOS_TDES3_TX_ES) != 0) {
953 1.1 jmcneill device_printf(sc->sc_dev,
954 1.1 jmcneill "TX [%u] tx error: 0x%08x\n",
955 1.1 jmcneill i, tdes3);
956 1.1 jmcneill if_statinc(ifp, if_oerrors);
957 1.1 jmcneill } else {
958 1.1 jmcneill if_statinc(ifp, if_opackets);
959 1.1 jmcneill }
960 1.1 jmcneill }
961 1.1 jmcneill
962 1.1 jmcneill }
963 1.1 jmcneill
964 1.1 jmcneill sc->sc_tx.next = i;
965 1.1 jmcneill
966 1.1 jmcneill if (pkts != 0) {
967 1.1 jmcneill rnd_add_uint32(&sc->sc_rndsource, pkts);
968 1.1 jmcneill }
969 1.1 jmcneill }
970 1.1 jmcneill
971 1.1 jmcneill static void
972 1.1 jmcneill eqos_start_locked(struct eqos_softc *sc)
973 1.1 jmcneill {
974 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
975 1.1 jmcneill struct mbuf *m;
976 1.1 jmcneill int cnt, nsegs, start;
977 1.1 jmcneill
978 1.1 jmcneill EQOS_ASSERT_TXLOCKED(sc);
979 1.1 jmcneill
980 1.16 thorpej if ((ifp->if_flags & IFF_RUNNING) == 0)
981 1.1 jmcneill return;
982 1.1 jmcneill
983 1.1 jmcneill for (cnt = 0, start = sc->sc_tx.cur; ; cnt++) {
984 1.1 jmcneill if (sc->sc_tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
985 1.8 martin DPRINTF(EDEB_TXRING, "%u sc_tx.queued, ring full\n",
986 1.8 martin sc->sc_tx.queued);
987 1.1 jmcneill break;
988 1.1 jmcneill }
989 1.1 jmcneill
990 1.1 jmcneill IFQ_POLL(&ifp->if_snd, m);
991 1.8 martin if (m == NULL)
992 1.1 jmcneill break;
993 1.1 jmcneill
994 1.1 jmcneill nsegs = eqos_setup_txbuf(sc, sc->sc_tx.cur, m);
995 1.1 jmcneill if (nsegs <= 0) {
996 1.8 martin DPRINTF(EDEB_TXRING, "eqos_setup_txbuf failed "
997 1.8 martin "with %d\n", nsegs);
998 1.16 thorpej if (nsegs == -2) {
999 1.1 jmcneill IFQ_DEQUEUE(&ifp->if_snd, m);
1000 1.1 jmcneill m_freem(m);
1001 1.16 thorpej continue;
1002 1.1 jmcneill }
1003 1.1 jmcneill break;
1004 1.1 jmcneill }
1005 1.1 jmcneill
1006 1.1 jmcneill IFQ_DEQUEUE(&ifp->if_snd, m);
1007 1.1 jmcneill bpf_mtap(ifp, m, BPF_D_OUT);
1008 1.1 jmcneill
1009 1.1 jmcneill sc->sc_tx.cur = TX_SKIP(sc->sc_tx.cur, nsegs);
1010 1.1 jmcneill }
1011 1.1 jmcneill
1012 1.8 martin DPRINTF(EDEB_TXRING, "tx loop -> cnt = %u, cur: %u, next: %u, "
1013 1.8 martin "queued: %u\n", cnt, sc->sc_tx.cur, sc->sc_tx.next,
1014 1.8 martin sc->sc_tx.queued);
1015 1.8 martin
1016 1.1 jmcneill if (cnt != 0) {
1017 1.1 jmcneill eqos_dma_sync(sc, sc->sc_tx.desc_map,
1018 1.1 jmcneill start, sc->sc_tx.cur, TX_DESC_COUNT,
1019 1.1 jmcneill BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1020 1.1 jmcneill
1021 1.1 jmcneill /* Start and run TX DMA */
1022 1.8 martin DPRINTF(EDEB_TXRING, "sending desc %u at %lx upto "
1023 1.8 martin "%u-1 at %lx cur tx desc: %x cur tx buf: %x\n", start,
1024 1.8 martin (uint32_t)sc->sc_tx.desc_ring_paddr + DESC_OFF(start),
1025 1.8 martin sc->sc_tx.cur,
1026 1.8 martin (uint32_t)sc->sc_tx.desc_ring_paddr +
1027 1.8 martin DESC_OFF(sc->sc_tx.cur),
1028 1.8 martin RD4(sc, GMAC_DMA_CHAN0_CUR_TX_DESC),
1029 1.8 martin RD4(sc, GMAC_DMA_CHAN0_CUR_TX_BUF_ADDR));
1030 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_END_ADDR,
1031 1.1 jmcneill (uint32_t)sc->sc_tx.desc_ring_paddr +
1032 1.1 jmcneill DESC_OFF(sc->sc_tx.cur));
1033 1.1 jmcneill }
1034 1.1 jmcneill }
1035 1.1 jmcneill
1036 1.1 jmcneill static void
1037 1.1 jmcneill eqos_start(struct ifnet *ifp)
1038 1.1 jmcneill {
1039 1.15 skrll struct eqos_softc * const sc = ifp->if_softc;
1040 1.1 jmcneill
1041 1.1 jmcneill EQOS_TXLOCK(sc);
1042 1.1 jmcneill eqos_start_locked(sc);
1043 1.1 jmcneill EQOS_TXUNLOCK(sc);
1044 1.1 jmcneill }
1045 1.1 jmcneill
1046 1.3 mrg static void
1047 1.3 mrg eqos_intr_mtl(struct eqos_softc *sc, uint32_t mtl_status)
1048 1.3 mrg {
1049 1.3 mrg uint32_t debug_data __unused = 0, ictrl = 0;
1050 1.3 mrg
1051 1.3 mrg if (mtl_status == 0)
1052 1.3 mrg return;
1053 1.3 mrg
1054 1.3 mrg /* Drain the errors reported by MTL_INTERRUPT_STATUS */
1055 1.3 mrg sc->sc_ev_mtl.ev_count++;
1056 1.3 mrg
1057 1.3 mrg if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_DBGIS) != 0) {
1058 1.3 mrg debug_data = RD4(sc, GMAC_MTL_FIFO_DEBUG_DATA);
1059 1.3 mrg sc->sc_ev_mtl_debugdata.ev_count++;
1060 1.3 mrg }
1061 1.3 mrg if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_Q0IS) != 0) {
1062 1.3 mrg uint32_t new_status = 0;
1063 1.3 mrg
1064 1.3 mrg ictrl = RD4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS);
1065 1.3 mrg if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS) != 0) {
1066 1.3 mrg new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS;
1067 1.3 mrg sc->sc_ev_mtl_rxovfis.ev_count++;
1068 1.3 mrg }
1069 1.3 mrg if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS) != 0) {
1070 1.3 mrg new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS;
1071 1.3 mrg sc->sc_ev_mtl_txovfis.ev_count++;
1072 1.3 mrg }
1073 1.3 mrg if (new_status) {
1074 1.3 mrg new_status |= (ictrl &
1075 1.23 msaitoh (GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOIE |
1076 1.3 mrg GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUIE));
1077 1.3 mrg WR4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS, new_status);
1078 1.3 mrg }
1079 1.3 mrg }
1080 1.8 martin DPRINTF(EDEB_INTR,
1081 1.3 mrg "GMAC_MTL_INTERRUPT_STATUS = 0x%08X, "
1082 1.3 mrg "GMAC_MTL_FIFO_DEBUG_DATA = 0x%08X, "
1083 1.3 mrg "GMAC_MTL_INTERRUPT_STATUS_Q0IS = 0x%08X\n",
1084 1.3 mrg mtl_status, debug_data, ictrl);
1085 1.3 mrg }
1086 1.3 mrg
1087 1.1 jmcneill int
1088 1.1 jmcneill eqos_intr(void *arg)
1089 1.1 jmcneill {
1090 1.15 skrll struct eqos_softc * const sc = arg;
1091 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
1092 1.1 jmcneill uint32_t mac_status, mtl_status, dma_status, rx_tx_status;
1093 1.1 jmcneill
1094 1.2 mrg sc->sc_ev_intr.ev_count++;
1095 1.2 mrg
1096 1.1 jmcneill mac_status = RD4(sc, GMAC_MAC_INTERRUPT_STATUS);
1097 1.1 jmcneill mac_status &= RD4(sc, GMAC_MAC_INTERRUPT_ENABLE);
1098 1.1 jmcneill
1099 1.1 jmcneill if (mac_status) {
1100 1.2 mrg sc->sc_ev_mac.ev_count++;
1101 1.8 martin DPRINTF(EDEB_INTR,
1102 1.1 jmcneill "GMAC_MAC_INTERRUPT_STATUS = 0x%08X\n", mac_status);
1103 1.1 jmcneill }
1104 1.1 jmcneill
1105 1.1 jmcneill mtl_status = RD4(sc, GMAC_MTL_INTERRUPT_STATUS);
1106 1.3 mrg eqos_intr_mtl(sc, mtl_status);
1107 1.1 jmcneill
1108 1.1 jmcneill dma_status = RD4(sc, GMAC_DMA_CHAN0_STATUS);
1109 1.1 jmcneill dma_status &= RD4(sc, GMAC_DMA_CHAN0_INTR_ENABLE);
1110 1.1 jmcneill if (dma_status) {
1111 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_STATUS, dma_status);
1112 1.1 jmcneill }
1113 1.1 jmcneill
1114 1.1 jmcneill EQOS_LOCK(sc);
1115 1.1 jmcneill if ((dma_status & GMAC_DMA_CHAN0_STATUS_RI) != 0) {
1116 1.1 jmcneill eqos_rxintr(sc, 0);
1117 1.2 mrg sc->sc_ev_rxintr.ev_count++;
1118 1.1 jmcneill }
1119 1.1 jmcneill
1120 1.1 jmcneill if ((dma_status & GMAC_DMA_CHAN0_STATUS_TI) != 0) {
1121 1.1 jmcneill eqos_txintr(sc, 0);
1122 1.1 jmcneill if_schedule_deferred_start(ifp);
1123 1.2 mrg sc->sc_ev_txintr.ev_count++;
1124 1.1 jmcneill }
1125 1.1 jmcneill EQOS_UNLOCK(sc);
1126 1.1 jmcneill
1127 1.1 jmcneill if ((mac_status | mtl_status | dma_status) == 0) {
1128 1.8 martin DPRINTF(EDEB_NOTE, "spurious interrupt?!\n");
1129 1.1 jmcneill }
1130 1.1 jmcneill
1131 1.1 jmcneill rx_tx_status = RD4(sc, GMAC_MAC_RX_TX_STATUS);
1132 1.1 jmcneill if (rx_tx_status) {
1133 1.2 mrg sc->sc_ev_status.ev_count++;
1134 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_RWT) != 0)
1135 1.2 mrg sc->sc_ev_rwt.ev_count++;
1136 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXCOL) != 0)
1137 1.2 mrg sc->sc_ev_excol.ev_count++;
1138 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCOL) != 0)
1139 1.2 mrg sc->sc_ev_lcol.ev_count++;
1140 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXDEF) != 0)
1141 1.2 mrg sc->sc_ev_exdef.ev_count++;
1142 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCARR) != 0)
1143 1.2 mrg sc->sc_ev_lcarr.ev_count++;
1144 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_NCARR) != 0)
1145 1.2 mrg sc->sc_ev_ncarr.ev_count++;
1146 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_TJT) != 0)
1147 1.2 mrg sc->sc_ev_tjt.ev_count++;
1148 1.8 martin
1149 1.8 martin DPRINTF(EDEB_INTR, "GMAC_MAC_RX_TX_STATUS = 0x%08x\n",
1150 1.1 jmcneill rx_tx_status);
1151 1.1 jmcneill }
1152 1.1 jmcneill
1153 1.1 jmcneill return 1;
1154 1.1 jmcneill }
1155 1.1 jmcneill
1156 1.1 jmcneill static int
1157 1.1 jmcneill eqos_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1158 1.1 jmcneill {
1159 1.15 skrll struct eqos_softc * const sc = ifp->if_softc;
1160 1.15 skrll struct ifreq * const ifr = (struct ifreq *)data;
1161 1.1 jmcneill int error, s;
1162 1.1 jmcneill
1163 1.1 jmcneill #ifndef EQOS_MPSAFE
1164 1.1 jmcneill s = splnet();
1165 1.1 jmcneill #endif
1166 1.1 jmcneill
1167 1.1 jmcneill switch (cmd) {
1168 1.13 ryo case SIOCSIFMTU:
1169 1.13 ryo if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > EQOS_MAX_MTU) {
1170 1.13 ryo error = EINVAL;
1171 1.13 ryo } else {
1172 1.13 ryo ifp->if_mtu = ifr->ifr_mtu;
1173 1.13 ryo error = 0; /* no need ENETRESET */
1174 1.13 ryo }
1175 1.13 ryo break;
1176 1.1 jmcneill default:
1177 1.1 jmcneill #ifdef EQOS_MPSAFE
1178 1.1 jmcneill s = splnet();
1179 1.1 jmcneill #endif
1180 1.1 jmcneill error = ether_ioctl(ifp, cmd, data);
1181 1.1 jmcneill #ifdef EQOS_MPSAFE
1182 1.1 jmcneill splx(s);
1183 1.1 jmcneill #endif
1184 1.1 jmcneill if (error != ENETRESET)
1185 1.1 jmcneill break;
1186 1.1 jmcneill
1187 1.1 jmcneill error = 0;
1188 1.1 jmcneill
1189 1.1 jmcneill if (cmd == SIOCSIFCAP)
1190 1.1 jmcneill error = (*ifp->if_init)(ifp);
1191 1.1 jmcneill else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1192 1.1 jmcneill ;
1193 1.1 jmcneill else if ((ifp->if_flags & IFF_RUNNING) != 0) {
1194 1.1 jmcneill EQOS_LOCK(sc);
1195 1.1 jmcneill eqos_setup_rxfilter(sc);
1196 1.1 jmcneill EQOS_UNLOCK(sc);
1197 1.1 jmcneill }
1198 1.1 jmcneill break;
1199 1.1 jmcneill }
1200 1.1 jmcneill
1201 1.1 jmcneill #ifndef EQOS_MPSAFE
1202 1.1 jmcneill splx(s);
1203 1.1 jmcneill #endif
1204 1.1 jmcneill
1205 1.1 jmcneill return error;
1206 1.1 jmcneill }
1207 1.1 jmcneill
1208 1.1 jmcneill static void
1209 1.1 jmcneill eqos_get_eaddr(struct eqos_softc *sc, uint8_t *eaddr)
1210 1.1 jmcneill {
1211 1.1 jmcneill prop_dictionary_t prop = device_properties(sc->sc_dev);
1212 1.1 jmcneill uint32_t maclo, machi;
1213 1.1 jmcneill prop_data_t eaprop;
1214 1.1 jmcneill
1215 1.1 jmcneill eaprop = prop_dictionary_get(prop, "mac-address");
1216 1.1 jmcneill if (eaprop != NULL) {
1217 1.1 jmcneill KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
1218 1.1 jmcneill KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
1219 1.1 jmcneill memcpy(eaddr, prop_data_value(eaprop),
1220 1.1 jmcneill ETHER_ADDR_LEN);
1221 1.1 jmcneill return;
1222 1.1 jmcneill }
1223 1.1 jmcneill
1224 1.18 msaitoh maclo = RD4(sc, GMAC_MAC_ADDRESS0_LOW);
1225 1.18 msaitoh machi = RD4(sc, GMAC_MAC_ADDRESS0_HIGH) & 0xFFFF;
1226 1.18 msaitoh if ((maclo & 0x00000001) != 0) {
1227 1.18 msaitoh aprint_error_dev(sc->sc_dev,
1228 1.18 msaitoh "Wrong MAC address. Clear the multicast bit.\n");
1229 1.18 msaitoh maclo &= ~0x00000001;
1230 1.18 msaitoh }
1231 1.1 jmcneill
1232 1.1 jmcneill if (maclo == 0xFFFFFFFF && machi == 0xFFFF) {
1233 1.1 jmcneill /* Create one */
1234 1.1 jmcneill maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1235 1.1 jmcneill machi = cprng_strong32() & 0xffff;
1236 1.1 jmcneill }
1237 1.1 jmcneill
1238 1.1 jmcneill eaddr[0] = maclo & 0xff;
1239 1.1 jmcneill eaddr[1] = (maclo >> 8) & 0xff;
1240 1.1 jmcneill eaddr[2] = (maclo >> 16) & 0xff;
1241 1.1 jmcneill eaddr[3] = (maclo >> 24) & 0xff;
1242 1.1 jmcneill eaddr[4] = machi & 0xff;
1243 1.1 jmcneill eaddr[5] = (machi >> 8) & 0xff;
1244 1.1 jmcneill }
1245 1.1 jmcneill
1246 1.1 jmcneill static void
1247 1.1 jmcneill eqos_axi_configure(struct eqos_softc *sc)
1248 1.1 jmcneill {
1249 1.1 jmcneill prop_dictionary_t prop = device_properties(sc->sc_dev);
1250 1.1 jmcneill uint32_t val;
1251 1.1 jmcneill u_int uival;
1252 1.1 jmcneill bool bval;
1253 1.1 jmcneill
1254 1.1 jmcneill val = RD4(sc, GMAC_DMA_SYSBUS_MODE);
1255 1.1 jmcneill if (prop_dictionary_get_bool(prop, "snps,mixed-burst", &bval) && bval) {
1256 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_MB;
1257 1.1 jmcneill }
1258 1.1 jmcneill if (prop_dictionary_get_bool(prop, "snps,fixed-burst", &bval) && bval) {
1259 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_FB;
1260 1.1 jmcneill }
1261 1.1 jmcneill if (prop_dictionary_get_uint(prop, "snps,wr_osr_lmt", &uival)) {
1262 1.1 jmcneill val &= ~GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_MASK;
1263 1.1 jmcneill val |= uival << GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_SHIFT;
1264 1.1 jmcneill }
1265 1.1 jmcneill if (prop_dictionary_get_uint(prop, "snps,rd_osr_lmt", &uival)) {
1266 1.1 jmcneill val &= ~GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_MASK;
1267 1.1 jmcneill val |= uival << GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT;
1268 1.1 jmcneill }
1269 1.1 jmcneill
1270 1.1 jmcneill if (!EQOS_HW_FEATURE_ADDR64_32BIT(sc)) {
1271 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_EAME;
1272 1.1 jmcneill }
1273 1.1 jmcneill
1274 1.1 jmcneill /* XXX */
1275 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_BLEN16;
1276 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_BLEN8;
1277 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_BLEN4;
1278 1.1 jmcneill
1279 1.1 jmcneill WR4(sc, GMAC_DMA_SYSBUS_MODE, val);
1280 1.1 jmcneill }
1281 1.1 jmcneill
1282 1.1 jmcneill static int
1283 1.1 jmcneill eqos_setup_dma(struct eqos_softc *sc, int qid)
1284 1.1 jmcneill {
1285 1.1 jmcneill struct mbuf *m;
1286 1.1 jmcneill int error, nsegs, i;
1287 1.1 jmcneill
1288 1.1 jmcneill /* Setup TX ring */
1289 1.1 jmcneill error = bus_dmamap_create(sc->sc_dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE,
1290 1.1 jmcneill DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_tx.desc_map);
1291 1.1 jmcneill if (error) {
1292 1.1 jmcneill return error;
1293 1.1 jmcneill }
1294 1.1 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, TX_DESC_SIZE, DESC_ALIGN,
1295 1.1 jmcneill DESC_BOUNDARY, &sc->sc_tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1296 1.1 jmcneill if (error) {
1297 1.1 jmcneill return error;
1298 1.1 jmcneill }
1299 1.1 jmcneill error = bus_dmamem_map(sc->sc_dmat, &sc->sc_tx.desc_dmaseg, nsegs,
1300 1.1 jmcneill TX_DESC_SIZE, (void *)&sc->sc_tx.desc_ring, BUS_DMA_WAITOK);
1301 1.1 jmcneill if (error) {
1302 1.1 jmcneill return error;
1303 1.1 jmcneill }
1304 1.1 jmcneill error = bus_dmamap_load(sc->sc_dmat, sc->sc_tx.desc_map,
1305 1.1 jmcneill sc->sc_tx.desc_ring, TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1306 1.1 jmcneill if (error) {
1307 1.1 jmcneill return error;
1308 1.1 jmcneill }
1309 1.1 jmcneill sc->sc_tx.desc_ring_paddr = sc->sc_tx.desc_map->dm_segs[0].ds_addr;
1310 1.1 jmcneill
1311 1.1 jmcneill memset(sc->sc_tx.desc_ring, 0, TX_DESC_SIZE);
1312 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map, 0, TX_DESC_SIZE,
1313 1.1 jmcneill BUS_DMASYNC_PREWRITE);
1314 1.1 jmcneill
1315 1.1 jmcneill sc->sc_tx.queued = TX_DESC_COUNT;
1316 1.1 jmcneill for (i = 0; i < TX_DESC_COUNT; i++) {
1317 1.13 ryo error = bus_dmamap_create(sc->sc_dmat, EQOS_TXDMA_SIZE,
1318 1.1 jmcneill TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1319 1.1 jmcneill &sc->sc_tx.buf_map[i].map);
1320 1.1 jmcneill if (error != 0) {
1321 1.1 jmcneill device_printf(sc->sc_dev,
1322 1.1 jmcneill "cannot create TX buffer map\n");
1323 1.1 jmcneill return error;
1324 1.1 jmcneill }
1325 1.1 jmcneill eqos_setup_txdesc(sc, i, 0, 0, 0, 0);
1326 1.1 jmcneill }
1327 1.1 jmcneill
1328 1.1 jmcneill /* Setup RX ring */
1329 1.1 jmcneill error = bus_dmamap_create(sc->sc_dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE,
1330 1.1 jmcneill DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_rx.desc_map);
1331 1.1 jmcneill if (error) {
1332 1.1 jmcneill return error;
1333 1.1 jmcneill }
1334 1.1 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, RX_DESC_SIZE, DESC_ALIGN,
1335 1.1 jmcneill DESC_BOUNDARY, &sc->sc_rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1336 1.1 jmcneill if (error) {
1337 1.1 jmcneill return error;
1338 1.1 jmcneill }
1339 1.1 jmcneill error = bus_dmamem_map(sc->sc_dmat, &sc->sc_rx.desc_dmaseg, nsegs,
1340 1.1 jmcneill RX_DESC_SIZE, (void *)&sc->sc_rx.desc_ring, BUS_DMA_WAITOK);
1341 1.1 jmcneill if (error) {
1342 1.1 jmcneill return error;
1343 1.1 jmcneill }
1344 1.1 jmcneill error = bus_dmamap_load(sc->sc_dmat, sc->sc_rx.desc_map,
1345 1.1 jmcneill sc->sc_rx.desc_ring, RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1346 1.1 jmcneill if (error) {
1347 1.1 jmcneill return error;
1348 1.1 jmcneill }
1349 1.1 jmcneill sc->sc_rx.desc_ring_paddr = sc->sc_rx.desc_map->dm_segs[0].ds_addr;
1350 1.1 jmcneill
1351 1.1 jmcneill memset(sc->sc_rx.desc_ring, 0, RX_DESC_SIZE);
1352 1.1 jmcneill
1353 1.1 jmcneill for (i = 0; i < RX_DESC_COUNT; i++) {
1354 1.1 jmcneill error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1355 1.1 jmcneill RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1356 1.1 jmcneill &sc->sc_rx.buf_map[i].map);
1357 1.1 jmcneill if (error != 0) {
1358 1.1 jmcneill device_printf(sc->sc_dev,
1359 1.1 jmcneill "cannot create RX buffer map\n");
1360 1.1 jmcneill return error;
1361 1.1 jmcneill }
1362 1.1 jmcneill if ((m = eqos_alloc_mbufcl(sc)) == NULL) {
1363 1.1 jmcneill device_printf(sc->sc_dev, "cannot allocate RX mbuf\n");
1364 1.1 jmcneill return ENOMEM;
1365 1.1 jmcneill }
1366 1.1 jmcneill error = eqos_setup_rxbuf(sc, i, m);
1367 1.1 jmcneill if (error != 0) {
1368 1.1 jmcneill device_printf(sc->sc_dev, "cannot create RX buffer\n");
1369 1.1 jmcneill return error;
1370 1.1 jmcneill }
1371 1.13 ryo eqos_setup_rxdesc(sc, i,
1372 1.13 ryo sc->sc_rx.buf_map[i].map->dm_segs[0].ds_addr);
1373 1.1 jmcneill }
1374 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map,
1375 1.1 jmcneill 0, sc->sc_rx.desc_map->dm_mapsize,
1376 1.1 jmcneill BUS_DMASYNC_PREWRITE);
1377 1.1 jmcneill
1378 1.1 jmcneill aprint_debug_dev(sc->sc_dev, "TX ring @ 0x%lX, RX ring @ 0x%lX\n",
1379 1.1 jmcneill sc->sc_tx.desc_ring_paddr, sc->sc_rx.desc_ring_paddr);
1380 1.1 jmcneill
1381 1.1 jmcneill return 0;
1382 1.1 jmcneill }
1383 1.1 jmcneill
1384 1.1 jmcneill int
1385 1.1 jmcneill eqos_attach(struct eqos_softc *sc)
1386 1.1 jmcneill {
1387 1.15 skrll struct mii_data * const mii = &sc->sc_mii;
1388 1.15 skrll struct ifnet * const ifp = &sc->sc_ec.ec_if;
1389 1.1 jmcneill uint8_t eaddr[ETHER_ADDR_LEN];
1390 1.1 jmcneill u_int userver, snpsver;
1391 1.1 jmcneill int mii_flags = 0;
1392 1.1 jmcneill int error;
1393 1.1 jmcneill int n;
1394 1.1 jmcneill
1395 1.1 jmcneill const uint32_t ver = RD4(sc, GMAC_MAC_VERSION);
1396 1.1 jmcneill userver = (ver & GMAC_MAC_VERSION_USERVER_MASK) >>
1397 1.1 jmcneill GMAC_MAC_VERSION_USERVER_SHIFT;
1398 1.1 jmcneill snpsver = ver & GMAC_MAC_VERSION_SNPSVER_MASK;
1399 1.1 jmcneill
1400 1.20 msaitoh if ((snpsver < 0x51) || (snpsver > 0x52)) {
1401 1.23 msaitoh aprint_error(": EQOS version 0x%02xx not supported\n",
1402 1.23 msaitoh snpsver);
1403 1.23 msaitoh return ENXIO;
1404 1.23 msaitoh }
1405 1.1 jmcneill
1406 1.1 jmcneill if (sc->sc_csr_clock < 20000000) {
1407 1.1 jmcneill aprint_error(": CSR clock too low\n");
1408 1.1 jmcneill return EINVAL;
1409 1.1 jmcneill } else if (sc->sc_csr_clock < 35000000) {
1410 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_20_35;
1411 1.1 jmcneill } else if (sc->sc_csr_clock < 60000000) {
1412 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_35_60;
1413 1.1 jmcneill } else if (sc->sc_csr_clock < 100000000) {
1414 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_60_100;
1415 1.1 jmcneill } else if (sc->sc_csr_clock < 150000000) {
1416 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_100_150;
1417 1.1 jmcneill } else if (sc->sc_csr_clock < 250000000) {
1418 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_150_250;
1419 1.1 jmcneill } else if (sc->sc_csr_clock < 300000000) {
1420 1.19 msaitoh sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_250_300;
1421 1.19 msaitoh } else if (sc->sc_csr_clock < 500000000) {
1422 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_300_500;
1423 1.1 jmcneill } else if (sc->sc_csr_clock < 800000000) {
1424 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_500_800;
1425 1.1 jmcneill } else {
1426 1.1 jmcneill aprint_error(": CSR clock too high\n");
1427 1.1 jmcneill return EINVAL;
1428 1.1 jmcneill }
1429 1.1 jmcneill
1430 1.1 jmcneill for (n = 0; n < 4; n++) {
1431 1.1 jmcneill sc->sc_hw_feature[n] = RD4(sc, GMAC_MAC_HW_FEATURE(n));
1432 1.1 jmcneill }
1433 1.1 jmcneill
1434 1.1 jmcneill aprint_naive("\n");
1435 1.1 jmcneill aprint_normal(": DesignWare EQOS ver 0x%02x (0x%02x)\n",
1436 1.1 jmcneill snpsver, userver);
1437 1.1 jmcneill aprint_verbose_dev(sc->sc_dev, "hw features %08x %08x %08x %08x\n",
1438 1.1 jmcneill sc->sc_hw_feature[0], sc->sc_hw_feature[1],
1439 1.1 jmcneill sc->sc_hw_feature[2], sc->sc_hw_feature[3]);
1440 1.1 jmcneill
1441 1.1 jmcneill if (EQOS_HW_FEATURE_ADDR64_32BIT(sc)) {
1442 1.1 jmcneill bus_dma_tag_t ntag;
1443 1.1 jmcneill
1444 1.1 jmcneill error = bus_dmatag_subregion(sc->sc_dmat, 0, UINT32_MAX,
1445 1.1 jmcneill &ntag, 0);
1446 1.1 jmcneill if (error) {
1447 1.1 jmcneill aprint_error_dev(sc->sc_dev,
1448 1.1 jmcneill "failed to restrict DMA: %d\n", error);
1449 1.1 jmcneill return error;
1450 1.1 jmcneill }
1451 1.1 jmcneill aprint_verbose_dev(sc->sc_dev, "using 32-bit DMA\n");
1452 1.1 jmcneill sc->sc_dmat = ntag;
1453 1.1 jmcneill }
1454 1.1 jmcneill
1455 1.1 jmcneill mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
1456 1.1 jmcneill mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_NET);
1457 1.1 jmcneill callout_init(&sc->sc_stat_ch, CALLOUT_FLAGS);
1458 1.1 jmcneill callout_setfunc(&sc->sc_stat_ch, eqos_tick, sc);
1459 1.1 jmcneill
1460 1.1 jmcneill eqos_get_eaddr(sc, eaddr);
1461 1.23 msaitoh aprint_normal_dev(sc->sc_dev,
1462 1.23 msaitoh "Ethernet address %s\n", ether_sprintf(eaddr));
1463 1.1 jmcneill
1464 1.1 jmcneill /* Soft reset EMAC core */
1465 1.1 jmcneill error = eqos_reset(sc);
1466 1.1 jmcneill if (error != 0) {
1467 1.1 jmcneill return error;
1468 1.1 jmcneill }
1469 1.1 jmcneill
1470 1.1 jmcneill /* Configure AXI Bus mode parameters */
1471 1.1 jmcneill eqos_axi_configure(sc);
1472 1.1 jmcneill
1473 1.1 jmcneill /* Setup DMA descriptors */
1474 1.1 jmcneill if (eqos_setup_dma(sc, 0) != 0) {
1475 1.23 msaitoh aprint_error_dev(sc->sc_dev,
1476 1.23 msaitoh "failed to setup DMA descriptors\n");
1477 1.1 jmcneill return EINVAL;
1478 1.1 jmcneill }
1479 1.1 jmcneill
1480 1.1 jmcneill /* Setup ethernet interface */
1481 1.1 jmcneill ifp->if_softc = sc;
1482 1.1 jmcneill snprintf(ifp->if_xname, IFNAMSIZ, "%s", device_xname(sc->sc_dev));
1483 1.1 jmcneill ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1484 1.1 jmcneill #ifdef EQOS_MPSAFE
1485 1.1 jmcneill ifp->if_extflags = IFEF_MPSAFE;
1486 1.1 jmcneill #endif
1487 1.1 jmcneill ifp->if_start = eqos_start;
1488 1.1 jmcneill ifp->if_ioctl = eqos_ioctl;
1489 1.1 jmcneill ifp->if_init = eqos_init;
1490 1.1 jmcneill ifp->if_stop = eqos_stop;
1491 1.1 jmcneill ifp->if_capabilities = 0;
1492 1.1 jmcneill ifp->if_capenable = ifp->if_capabilities;
1493 1.1 jmcneill IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1494 1.1 jmcneill IFQ_SET_READY(&ifp->if_snd);
1495 1.1 jmcneill
1496 1.13 ryo /* 802.1Q VLAN-sized frames, and jumbo frame are supported */
1497 1.1 jmcneill sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1498 1.13 ryo sc->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1499 1.1 jmcneill
1500 1.1 jmcneill /* Attach MII driver */
1501 1.1 jmcneill sc->sc_ec.ec_mii = mii;
1502 1.1 jmcneill ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1503 1.1 jmcneill mii->mii_ifp = ifp;
1504 1.1 jmcneill mii->mii_readreg = eqos_mii_readreg;
1505 1.1 jmcneill mii->mii_writereg = eqos_mii_writereg;
1506 1.1 jmcneill mii->mii_statchg = eqos_mii_statchg;
1507 1.1 jmcneill mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id, MII_OFFSET_ANY,
1508 1.1 jmcneill mii_flags);
1509 1.1 jmcneill
1510 1.1 jmcneill if (LIST_EMPTY(&mii->mii_phys)) {
1511 1.1 jmcneill aprint_error_dev(sc->sc_dev, "no PHY found!\n");
1512 1.1 jmcneill return ENOENT;
1513 1.1 jmcneill }
1514 1.1 jmcneill ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1515 1.1 jmcneill
1516 1.2 mrg /* Master interrupt evcnt */
1517 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
1518 1.2 mrg NULL, device_xname(sc->sc_dev), "interrupts");
1519 1.2 mrg
1520 1.2 mrg /* Per-interrupt type, using main interrupt */
1521 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1522 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "rxintr");
1523 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
1524 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "txintr");
1525 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_mac, EVCNT_TYPE_INTR,
1526 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "macstatus");
1527 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl, EVCNT_TYPE_INTR,
1528 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "intrstatus");
1529 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_status, EVCNT_TYPE_INTR,
1530 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "rxtxstatus");
1531 1.2 mrg
1532 1.3 mrg /* MAC Status specific type, using macstatus interrupt */
1533 1.3 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl_debugdata, EVCNT_TYPE_INTR,
1534 1.3 mrg &sc->sc_ev_mtl, device_xname(sc->sc_dev), "debugdata");
1535 1.3 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl_rxovfis, EVCNT_TYPE_INTR,
1536 1.3 mrg &sc->sc_ev_mtl, device_xname(sc->sc_dev), "rxovfis");
1537 1.3 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl_txovfis, EVCNT_TYPE_INTR,
1538 1.3 mrg &sc->sc_ev_mtl, device_xname(sc->sc_dev), "txovfis");
1539 1.3 mrg
1540 1.2 mrg /* RX/TX Status specific type, using rxtxstatus interrupt */
1541 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_rwt, EVCNT_TYPE_INTR,
1542 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "rwt");
1543 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_excol, EVCNT_TYPE_INTR,
1544 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "excol");
1545 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_lcol, EVCNT_TYPE_INTR,
1546 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "lcol");
1547 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_exdef, EVCNT_TYPE_INTR,
1548 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "exdef");
1549 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_lcarr, EVCNT_TYPE_INTR,
1550 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "lcarr");
1551 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_ncarr, EVCNT_TYPE_INTR,
1552 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "ncarr");
1553 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_tjt, EVCNT_TYPE_INTR,
1554 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "tjt");
1555 1.2 mrg
1556 1.1 jmcneill /* Attach interface */
1557 1.1 jmcneill if_attach(ifp);
1558 1.1 jmcneill if_deferred_start_init(ifp, NULL);
1559 1.1 jmcneill
1560 1.1 jmcneill /* Attach ethernet interface */
1561 1.1 jmcneill ether_ifattach(ifp, eaddr);
1562 1.1 jmcneill
1563 1.1 jmcneill rnd_attach_source(&sc->sc_rndsource, ifp->if_xname, RND_TYPE_NET,
1564 1.1 jmcneill RND_FLAG_DEFAULT);
1565 1.1 jmcneill
1566 1.1 jmcneill return 0;
1567 1.1 jmcneill }
1568