dwc_eqos.c revision 1.7 1 1.7 martin /* $NetBSD: dwc_eqos.c,v 1.7 2022/07/20 18:48:41 martin Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2022 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill /*
30 1.1 jmcneill * DesignWare Ethernet Quality-of-Service controller
31 1.1 jmcneill */
32 1.1 jmcneill
33 1.1 jmcneill #include "opt_net_mpsafe.h"
34 1.1 jmcneill
35 1.1 jmcneill #include <sys/cdefs.h>
36 1.7 martin __KERNEL_RCSID(0, "$NetBSD: dwc_eqos.c,v 1.7 2022/07/20 18:48:41 martin Exp $");
37 1.1 jmcneill
38 1.1 jmcneill #include <sys/param.h>
39 1.1 jmcneill #include <sys/bus.h>
40 1.1 jmcneill #include <sys/device.h>
41 1.1 jmcneill #include <sys/intr.h>
42 1.1 jmcneill #include <sys/systm.h>
43 1.1 jmcneill #include <sys/kernel.h>
44 1.1 jmcneill #include <sys/mutex.h>
45 1.1 jmcneill #include <sys/callout.h>
46 1.1 jmcneill #include <sys/cprng.h>
47 1.2 mrg #include <sys/evcnt.h>
48 1.1 jmcneill
49 1.1 jmcneill #include <sys/rndsource.h>
50 1.1 jmcneill
51 1.1 jmcneill #include <net/if.h>
52 1.1 jmcneill #include <net/if_dl.h>
53 1.1 jmcneill #include <net/if_ether.h>
54 1.1 jmcneill #include <net/if_media.h>
55 1.1 jmcneill #include <net/bpf.h>
56 1.1 jmcneill
57 1.1 jmcneill #include <dev/mii/miivar.h>
58 1.1 jmcneill
59 1.1 jmcneill #include <dev/ic/dwc_eqos_reg.h>
60 1.1 jmcneill #include <dev/ic/dwc_eqos_var.h>
61 1.1 jmcneill
62 1.1 jmcneill CTASSERT(MCLBYTES == 2048);
63 1.1 jmcneill #ifdef EQOS_DEBUG
64 1.1 jmcneill #define DPRINTF(...) printf(##__VA_ARGS__)
65 1.1 jmcneill #else
66 1.1 jmcneill #define DPRINTF(...) ((void)0)
67 1.1 jmcneill #endif
68 1.1 jmcneill
69 1.1 jmcneill #ifdef NET_MPSAFE
70 1.1 jmcneill #define EQOS_MPSAFE 1
71 1.1 jmcneill #define CALLOUT_FLAGS CALLOUT_MPSAFE
72 1.1 jmcneill #else
73 1.1 jmcneill #define CALLOUT_FLAGS 0
74 1.1 jmcneill #endif
75 1.1 jmcneill
76 1.1 jmcneill #define DESC_BOUNDARY (1ULL << 32)
77 1.1 jmcneill #define DESC_ALIGN sizeof(struct eqos_dma_desc)
78 1.1 jmcneill #define TX_DESC_COUNT EQOS_DMA_DESC_COUNT
79 1.1 jmcneill #define TX_DESC_SIZE (TX_DESC_COUNT * DESC_ALIGN)
80 1.1 jmcneill #define RX_DESC_COUNT EQOS_DMA_DESC_COUNT
81 1.1 jmcneill #define RX_DESC_SIZE (RX_DESC_COUNT * DESC_ALIGN)
82 1.1 jmcneill #define MII_BUSY_RETRY 1000
83 1.1 jmcneill
84 1.1 jmcneill #define DESC_OFF(n) ((n) * sizeof(struct eqos_dma_desc))
85 1.1 jmcneill #define TX_SKIP(n, o) (((n) + (o)) % TX_DESC_COUNT)
86 1.1 jmcneill #define TX_NEXT(n) TX_SKIP(n, 1)
87 1.1 jmcneill #define RX_NEXT(n) (((n) + 1) % RX_DESC_COUNT)
88 1.1 jmcneill
89 1.1 jmcneill #define TX_MAX_SEGS 128
90 1.1 jmcneill
91 1.1 jmcneill #define EQOS_LOCK(sc) mutex_enter(&(sc)->sc_lock)
92 1.1 jmcneill #define EQOS_UNLOCK(sc) mutex_exit(&(sc)->sc_lock)
93 1.1 jmcneill #define EQOS_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_lock))
94 1.1 jmcneill
95 1.1 jmcneill #define EQOS_TXLOCK(sc) mutex_enter(&(sc)->sc_txlock)
96 1.1 jmcneill #define EQOS_TXUNLOCK(sc) mutex_exit(&(sc)->sc_txlock)
97 1.1 jmcneill #define EQOS_ASSERT_TXLOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_txlock))
98 1.1 jmcneill
99 1.1 jmcneill #define EQOS_HW_FEATURE_ADDR64_32BIT(sc) \
100 1.1 jmcneill (((sc)->sc_hw_feature[1] & GMAC_MAC_HW_FEATURE1_ADDR64_MASK) == \
101 1.1 jmcneill GMAC_MAC_HW_FEATURE1_ADDR64_32BIT)
102 1.1 jmcneill
103 1.1 jmcneill
104 1.1 jmcneill #define RD4(sc, reg) \
105 1.1 jmcneill bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
106 1.1 jmcneill #define WR4(sc, reg, val) \
107 1.1 jmcneill bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
108 1.1 jmcneill
109 1.1 jmcneill #define STUB(...) \
110 1.1 jmcneill printf("%s: TODO\n", __func__); \
111 1.1 jmcneill
112 1.1 jmcneill static int
113 1.1 jmcneill eqos_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
114 1.1 jmcneill {
115 1.1 jmcneill struct eqos_softc *sc = device_private(dev);
116 1.1 jmcneill uint32_t addr;
117 1.1 jmcneill int retry;
118 1.1 jmcneill
119 1.1 jmcneill addr = sc->sc_clock_range |
120 1.1 jmcneill (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) |
121 1.1 jmcneill (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) |
122 1.1 jmcneill GMAC_MAC_MDIO_ADDRESS_GOC_READ |
123 1.1 jmcneill GMAC_MAC_MDIO_ADDRESS_GB;
124 1.1 jmcneill WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr);
125 1.1 jmcneill
126 1.1 jmcneill delay(10000);
127 1.1 jmcneill
128 1.1 jmcneill for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
129 1.1 jmcneill addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS);
130 1.1 jmcneill if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) {
131 1.1 jmcneill *val = RD4(sc, GMAC_MAC_MDIO_DATA) & 0xFFFF;
132 1.1 jmcneill break;
133 1.1 jmcneill }
134 1.1 jmcneill delay(10);
135 1.1 jmcneill }
136 1.1 jmcneill if (retry == 0) {
137 1.1 jmcneill device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
138 1.1 jmcneill phy, reg);
139 1.1 jmcneill return ETIMEDOUT;
140 1.1 jmcneill }
141 1.1 jmcneill
142 1.1 jmcneill return 0;
143 1.1 jmcneill }
144 1.1 jmcneill
145 1.1 jmcneill static int
146 1.1 jmcneill eqos_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
147 1.1 jmcneill {
148 1.1 jmcneill struct eqos_softc *sc = device_private(dev);
149 1.1 jmcneill uint32_t addr;
150 1.1 jmcneill int retry;
151 1.1 jmcneill
152 1.1 jmcneill WR4(sc, GMAC_MAC_MDIO_DATA, val);
153 1.1 jmcneill
154 1.1 jmcneill addr = sc->sc_clock_range |
155 1.1 jmcneill (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) |
156 1.1 jmcneill (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) |
157 1.1 jmcneill GMAC_MAC_MDIO_ADDRESS_GOC_WRITE |
158 1.1 jmcneill GMAC_MAC_MDIO_ADDRESS_GB;
159 1.1 jmcneill WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr);
160 1.1 jmcneill
161 1.1 jmcneill delay(10000);
162 1.1 jmcneill
163 1.1 jmcneill for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
164 1.1 jmcneill addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS);
165 1.1 jmcneill if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) {
166 1.1 jmcneill break;
167 1.1 jmcneill }
168 1.1 jmcneill delay(10);
169 1.1 jmcneill }
170 1.1 jmcneill if (retry == 0) {
171 1.1 jmcneill device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
172 1.1 jmcneill phy, reg);
173 1.1 jmcneill return ETIMEDOUT;
174 1.1 jmcneill }
175 1.1 jmcneill
176 1.1 jmcneill return 0;
177 1.1 jmcneill }
178 1.1 jmcneill
179 1.1 jmcneill static void
180 1.1 jmcneill eqos_update_link(struct eqos_softc *sc)
181 1.1 jmcneill {
182 1.1 jmcneill struct mii_data *mii = &sc->sc_mii;
183 1.1 jmcneill uint64_t baudrate;
184 1.1 jmcneill uint32_t conf;
185 1.1 jmcneill
186 1.1 jmcneill baudrate = ifmedia_baudrate(mii->mii_media_active);
187 1.1 jmcneill
188 1.1 jmcneill conf = RD4(sc, GMAC_MAC_CONFIGURATION);
189 1.1 jmcneill switch (baudrate) {
190 1.1 jmcneill case IF_Mbps(10):
191 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_PS;
192 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_FES;
193 1.1 jmcneill break;
194 1.1 jmcneill case IF_Mbps(100):
195 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_PS;
196 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_FES;
197 1.1 jmcneill break;
198 1.1 jmcneill case IF_Gbps(1):
199 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_PS;
200 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_FES;
201 1.1 jmcneill break;
202 1.1 jmcneill case IF_Mbps(2500ULL):
203 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_PS;
204 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_FES;
205 1.1 jmcneill break;
206 1.1 jmcneill }
207 1.1 jmcneill
208 1.1 jmcneill if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
209 1.1 jmcneill conf |= GMAC_MAC_CONFIGURATION_DM;
210 1.1 jmcneill } else {
211 1.1 jmcneill conf &= ~GMAC_MAC_CONFIGURATION_DM;
212 1.1 jmcneill }
213 1.1 jmcneill
214 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, conf);
215 1.1 jmcneill }
216 1.1 jmcneill
217 1.1 jmcneill static void
218 1.1 jmcneill eqos_mii_statchg(struct ifnet *ifp)
219 1.1 jmcneill {
220 1.1 jmcneill struct eqos_softc * const sc = ifp->if_softc;
221 1.1 jmcneill
222 1.1 jmcneill eqos_update_link(sc);
223 1.1 jmcneill }
224 1.1 jmcneill
225 1.1 jmcneill static void
226 1.1 jmcneill eqos_dma_sync(struct eqos_softc *sc, bus_dmamap_t map,
227 1.1 jmcneill u_int start, u_int end, u_int total, int flags)
228 1.1 jmcneill {
229 1.1 jmcneill if (end > start) {
230 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start),
231 1.1 jmcneill DESC_OFF(end) - DESC_OFF(start), flags);
232 1.1 jmcneill } else {
233 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start),
234 1.1 jmcneill DESC_OFF(total) - DESC_OFF(start), flags);
235 1.1 jmcneill if (DESC_OFF(end) - DESC_OFF(0) > 0) {
236 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(0),
237 1.1 jmcneill DESC_OFF(end) - DESC_OFF(0), flags);
238 1.1 jmcneill }
239 1.1 jmcneill }
240 1.1 jmcneill }
241 1.1 jmcneill
242 1.1 jmcneill static void
243 1.1 jmcneill eqos_setup_txdesc(struct eqos_softc *sc, int index, int flags,
244 1.1 jmcneill bus_addr_t paddr, u_int len, u_int total_len)
245 1.1 jmcneill {
246 1.1 jmcneill uint32_t tdes2, tdes3;
247 1.1 jmcneill
248 1.1 jmcneill if (paddr == 0 || len == 0) {
249 1.1 jmcneill KASSERT(flags == 0);
250 1.1 jmcneill tdes2 = 0;
251 1.1 jmcneill tdes3 = 0;
252 1.1 jmcneill --sc->sc_tx.queued;
253 1.1 jmcneill } else {
254 1.1 jmcneill tdes2 = (flags & EQOS_TDES3_LD) ? EQOS_TDES2_IOC : 0;
255 1.1 jmcneill tdes3 = flags;
256 1.1 jmcneill ++sc->sc_tx.queued;
257 1.1 jmcneill }
258 1.1 jmcneill
259 1.1 jmcneill KASSERT(!EQOS_HW_FEATURE_ADDR64_32BIT(sc) || (paddr >> 32) == 0);
260 1.1 jmcneill
261 1.1 jmcneill sc->sc_tx.desc_ring[index].tdes0 = htole32((uint32_t)paddr);
262 1.1 jmcneill sc->sc_tx.desc_ring[index].tdes1 = htole32((uint32_t)(paddr >> 32));
263 1.1 jmcneill sc->sc_tx.desc_ring[index].tdes2 = htole32(tdes2 | len);
264 1.1 jmcneill sc->sc_tx.desc_ring[index].tdes3 = htole32(tdes3 | total_len);
265 1.1 jmcneill }
266 1.1 jmcneill
267 1.1 jmcneill static int
268 1.1 jmcneill eqos_setup_txbuf(struct eqos_softc *sc, int index, struct mbuf *m)
269 1.1 jmcneill {
270 1.1 jmcneill bus_dma_segment_t *segs;
271 1.1 jmcneill int error, nsegs, cur, i;
272 1.1 jmcneill uint32_t flags;
273 1.1 jmcneill bool nospace;
274 1.1 jmcneill
275 1.1 jmcneill /* at least one descriptor free ? */
276 1.1 jmcneill if (sc->sc_tx.queued >= TX_DESC_COUNT - 1)
277 1.1 jmcneill return -1;
278 1.1 jmcneill
279 1.1 jmcneill error = bus_dmamap_load_mbuf(sc->sc_dmat,
280 1.1 jmcneill sc->sc_tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
281 1.1 jmcneill if (error == EFBIG) {
282 1.1 jmcneill device_printf(sc->sc_dev,
283 1.1 jmcneill "TX packet needs too many DMA segments, dropping...\n");
284 1.1 jmcneill return -2;
285 1.1 jmcneill }
286 1.1 jmcneill if (error != 0) {
287 1.1 jmcneill device_printf(sc->sc_dev,
288 1.1 jmcneill "TX packet cannot be mapped, retried...\n");
289 1.1 jmcneill return 0;
290 1.1 jmcneill }
291 1.1 jmcneill
292 1.1 jmcneill segs = sc->sc_tx.buf_map[index].map->dm_segs;
293 1.1 jmcneill nsegs = sc->sc_tx.buf_map[index].map->dm_nsegs;
294 1.1 jmcneill
295 1.1 jmcneill nospace = sc->sc_tx.queued >= TX_DESC_COUNT - nsegs;
296 1.1 jmcneill if (nospace) {
297 1.1 jmcneill bus_dmamap_unload(sc->sc_dmat,
298 1.1 jmcneill sc->sc_tx.buf_map[index].map);
299 1.1 jmcneill /* XXX coalesce and retry ? */
300 1.1 jmcneill return -1;
301 1.1 jmcneill }
302 1.1 jmcneill
303 1.2 mrg bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.buf_map[index].map,
304 1.5 riastrad 0, sc->sc_tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
305 1.1 jmcneill
306 1.1 jmcneill /* stored in same index as loaded map */
307 1.1 jmcneill sc->sc_tx.buf_map[index].mbuf = m;
308 1.1 jmcneill
309 1.1 jmcneill flags = EQOS_TDES3_FD;
310 1.1 jmcneill
311 1.1 jmcneill for (cur = index, i = 0; i < nsegs; i++) {
312 1.1 jmcneill if (i == nsegs - 1)
313 1.1 jmcneill flags |= EQOS_TDES3_LD;
314 1.1 jmcneill
315 1.1 jmcneill eqos_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
316 1.1 jmcneill segs[i].ds_len, m->m_pkthdr.len);
317 1.1 jmcneill flags &= ~EQOS_TDES3_FD;
318 1.1 jmcneill cur = TX_NEXT(cur);
319 1.1 jmcneill
320 1.1 jmcneill flags |= EQOS_TDES3_OWN;
321 1.1 jmcneill }
322 1.1 jmcneill
323 1.1 jmcneill /*
324 1.1 jmcneill * Defer setting OWN bit on the first descriptor until all
325 1.4 riastrad * descriptors have been updated. The hardware will not try to
326 1.4 riastrad * process any descriptors past the first one still owned by
327 1.4 riastrad * software (i.e., with the OWN bit clear).
328 1.1 jmcneill */
329 1.4 riastrad bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map,
330 1.4 riastrad DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3),
331 1.4 riastrad BUS_DMASYNC_PREWRITE);
332 1.1 jmcneill sc->sc_tx.desc_ring[index].tdes3 |= htole32(EQOS_TDES3_OWN);
333 1.1 jmcneill
334 1.1 jmcneill return nsegs;
335 1.1 jmcneill }
336 1.1 jmcneill
337 1.1 jmcneill static void
338 1.1 jmcneill eqos_setup_rxdesc(struct eqos_softc *sc, int index, bus_addr_t paddr)
339 1.1 jmcneill {
340 1.4 riastrad
341 1.1 jmcneill sc->sc_rx.desc_ring[index].tdes0 = htole32((uint32_t)paddr);
342 1.1 jmcneill sc->sc_rx.desc_ring[index].tdes1 = htole32((uint32_t)(paddr >> 32));
343 1.1 jmcneill sc->sc_rx.desc_ring[index].tdes2 = htole32(0);
344 1.4 riastrad bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map,
345 1.4 riastrad DESC_OFF(index), offsetof(struct eqos_dma_desc, tdes3),
346 1.4 riastrad BUS_DMASYNC_PREWRITE);
347 1.1 jmcneill sc->sc_rx.desc_ring[index].tdes3 =
348 1.1 jmcneill htole32(EQOS_TDES3_OWN | EQOS_TDES3_IOC | EQOS_TDES3_BUF1V);
349 1.1 jmcneill }
350 1.1 jmcneill
351 1.1 jmcneill static int
352 1.1 jmcneill eqos_setup_rxbuf(struct eqos_softc *sc, int index, struct mbuf *m)
353 1.1 jmcneill {
354 1.1 jmcneill int error;
355 1.1 jmcneill
356 1.1 jmcneill m_adj(m, ETHER_ALIGN);
357 1.1 jmcneill
358 1.1 jmcneill error = bus_dmamap_load_mbuf(sc->sc_dmat,
359 1.1 jmcneill sc->sc_rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT);
360 1.1 jmcneill if (error != 0)
361 1.1 jmcneill return error;
362 1.1 jmcneill
363 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map,
364 1.1 jmcneill 0, sc->sc_rx.buf_map[index].map->dm_mapsize,
365 1.1 jmcneill BUS_DMASYNC_PREREAD);
366 1.1 jmcneill
367 1.1 jmcneill sc->sc_rx.buf_map[index].mbuf = m;
368 1.1 jmcneill eqos_setup_rxdesc(sc, index,
369 1.1 jmcneill sc->sc_rx.buf_map[index].map->dm_segs[0].ds_addr);
370 1.1 jmcneill
371 1.1 jmcneill return 0;
372 1.1 jmcneill }
373 1.1 jmcneill
374 1.1 jmcneill static struct mbuf *
375 1.1 jmcneill eqos_alloc_mbufcl(struct eqos_softc *sc)
376 1.1 jmcneill {
377 1.1 jmcneill struct mbuf *m;
378 1.1 jmcneill
379 1.1 jmcneill m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
380 1.1 jmcneill if (m != NULL)
381 1.1 jmcneill m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
382 1.1 jmcneill
383 1.1 jmcneill return m;
384 1.1 jmcneill }
385 1.1 jmcneill
386 1.1 jmcneill static void
387 1.1 jmcneill eqos_enable_intr(struct eqos_softc *sc)
388 1.1 jmcneill {
389 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE,
390 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_NIE |
391 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_AIE |
392 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_FBE |
393 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_RIE |
394 1.1 jmcneill GMAC_DMA_CHAN0_INTR_ENABLE_TIE);
395 1.1 jmcneill }
396 1.1 jmcneill
397 1.1 jmcneill static void
398 1.1 jmcneill eqos_disable_intr(struct eqos_softc *sc)
399 1.1 jmcneill {
400 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE, 0);
401 1.1 jmcneill }
402 1.1 jmcneill
403 1.1 jmcneill static void
404 1.1 jmcneill eqos_tick(void *softc)
405 1.1 jmcneill {
406 1.1 jmcneill struct eqos_softc *sc = softc;
407 1.1 jmcneill struct mii_data *mii = &sc->sc_mii;
408 1.1 jmcneill #ifndef EQOS_MPSAFE
409 1.1 jmcneill int s = splnet();
410 1.1 jmcneill #endif
411 1.1 jmcneill
412 1.1 jmcneill EQOS_LOCK(sc);
413 1.1 jmcneill mii_tick(mii);
414 1.1 jmcneill callout_schedule(&sc->sc_stat_ch, hz);
415 1.1 jmcneill EQOS_UNLOCK(sc);
416 1.1 jmcneill
417 1.1 jmcneill #ifndef EQOS_MPSAFE
418 1.1 jmcneill splx(s);
419 1.1 jmcneill #endif
420 1.1 jmcneill }
421 1.1 jmcneill
422 1.1 jmcneill static uint32_t
423 1.1 jmcneill eqos_bitrev32(uint32_t x)
424 1.1 jmcneill {
425 1.1 jmcneill x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
426 1.1 jmcneill x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
427 1.1 jmcneill x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
428 1.1 jmcneill x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
429 1.1 jmcneill
430 1.1 jmcneill return (x >> 16) | (x << 16);
431 1.1 jmcneill }
432 1.1 jmcneill
433 1.1 jmcneill static void
434 1.1 jmcneill eqos_setup_rxfilter(struct eqos_softc *sc)
435 1.1 jmcneill {
436 1.1 jmcneill struct ethercom *ec = &sc->sc_ec;
437 1.1 jmcneill struct ifnet *ifp = &ec->ec_if;
438 1.1 jmcneill uint32_t pfil, crc, hashreg, hashbit, hash[2];
439 1.1 jmcneill struct ether_multi *enm;
440 1.1 jmcneill struct ether_multistep step;
441 1.1 jmcneill const uint8_t *eaddr;
442 1.1 jmcneill uint32_t val;
443 1.1 jmcneill
444 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
445 1.1 jmcneill
446 1.1 jmcneill pfil = RD4(sc, GMAC_MAC_PACKET_FILTER);
447 1.1 jmcneill pfil &= ~(GMAC_MAC_PACKET_FILTER_PR |
448 1.1 jmcneill GMAC_MAC_PACKET_FILTER_PM |
449 1.1 jmcneill GMAC_MAC_PACKET_FILTER_HMC |
450 1.1 jmcneill GMAC_MAC_PACKET_FILTER_PCF_MASK);
451 1.1 jmcneill hash[0] = hash[1] = ~0U;
452 1.1 jmcneill
453 1.1 jmcneill if ((ifp->if_flags & IFF_PROMISC) != 0) {
454 1.1 jmcneill pfil |= GMAC_MAC_PACKET_FILTER_PR |
455 1.1 jmcneill GMAC_MAC_PACKET_FILTER_PCF_ALL;
456 1.1 jmcneill } else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
457 1.1 jmcneill pfil |= GMAC_MAC_PACKET_FILTER_PM;
458 1.1 jmcneill } else {
459 1.1 jmcneill hash[0] = hash[1] = 0;
460 1.1 jmcneill pfil |= GMAC_MAC_PACKET_FILTER_HMC;
461 1.1 jmcneill ETHER_LOCK(ec);
462 1.1 jmcneill ETHER_FIRST_MULTI(step, ec, enm);
463 1.1 jmcneill while (enm != NULL) {
464 1.1 jmcneill crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
465 1.1 jmcneill crc &= 0x7f;
466 1.1 jmcneill crc = eqos_bitrev32(~crc) >> 26;
467 1.1 jmcneill hashreg = (crc >> 5);
468 1.1 jmcneill hashbit = (crc & 0x1f);
469 1.1 jmcneill hash[hashreg] |= (1 << hashbit);
470 1.1 jmcneill ETHER_NEXT_MULTI(step, enm);
471 1.1 jmcneill }
472 1.1 jmcneill ETHER_UNLOCK(ec);
473 1.1 jmcneill }
474 1.1 jmcneill
475 1.1 jmcneill /* Write our unicast address */
476 1.1 jmcneill eaddr = CLLADDR(ifp->if_sadl);
477 1.1 jmcneill val = eaddr[4] | (eaddr[5] << 8);
478 1.1 jmcneill WR4(sc, GMAC_MAC_ADDRESS0_HIGH, val);
479 1.1 jmcneill val = eaddr[0] | (eaddr[1] << 8) | (eaddr[2] << 16) |
480 1.1 jmcneill (eaddr[3] << 24);
481 1.1 jmcneill WR4(sc, GMAC_MAC_ADDRESS0_LOW, val);
482 1.1 jmcneill
483 1.1 jmcneill /* Multicast hash filters */
484 1.1 jmcneill WR4(sc, GMAC_MAC_HASH_TABLE_REG0, hash[1]);
485 1.1 jmcneill WR4(sc, GMAC_MAC_HASH_TABLE_REG1, hash[0]);
486 1.1 jmcneill
487 1.1 jmcneill /* Packet filter config */
488 1.1 jmcneill WR4(sc, GMAC_MAC_PACKET_FILTER, pfil);
489 1.1 jmcneill }
490 1.1 jmcneill
491 1.1 jmcneill static int
492 1.1 jmcneill eqos_reset(struct eqos_softc *sc)
493 1.1 jmcneill {
494 1.1 jmcneill uint32_t val;
495 1.1 jmcneill int retry;
496 1.1 jmcneill
497 1.1 jmcneill WR4(sc, GMAC_DMA_MODE, GMAC_DMA_MODE_SWR);
498 1.1 jmcneill for (retry = 2000; retry > 0; retry--) {
499 1.1 jmcneill delay(1000);
500 1.1 jmcneill val = RD4(sc, GMAC_DMA_MODE);
501 1.1 jmcneill if ((val & GMAC_DMA_MODE_SWR) == 0) {
502 1.1 jmcneill return 0;
503 1.1 jmcneill }
504 1.1 jmcneill }
505 1.1 jmcneill
506 1.1 jmcneill device_printf(sc->sc_dev, "reset timeout!\n");
507 1.1 jmcneill return ETIMEDOUT;
508 1.1 jmcneill }
509 1.1 jmcneill
510 1.1 jmcneill static void
511 1.1 jmcneill eqos_init_rings(struct eqos_softc *sc, int qid)
512 1.1 jmcneill {
513 1.7 martin /*
514 1.7 martin * We reset the rings paddr, this implicitly resets
515 1.7 martin * the hardwares current descriptor pointer.
516 1.7 martin * Adjust our internal state accordingly.
517 1.7 martin */
518 1.7 martin sc->sc_tx.cur = sc->sc_tx.next = sc->sc_tx.queued = 0;
519 1.7 martin sc->sc_rx.cur = sc->sc_rx.next = sc->sc_rx.queued = 0;
520 1.1 jmcneill
521 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR_HI,
522 1.1 jmcneill (uint32_t)(sc->sc_tx.desc_ring_paddr >> 32));
523 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR,
524 1.1 jmcneill (uint32_t)sc->sc_tx.desc_ring_paddr);
525 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_RING_LEN, TX_DESC_COUNT - 1);
526 1.1 jmcneill
527 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR_HI,
528 1.1 jmcneill (uint32_t)(sc->sc_rx.desc_ring_paddr >> 32));
529 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR,
530 1.1 jmcneill (uint32_t)sc->sc_rx.desc_ring_paddr);
531 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_RING_LEN, RX_DESC_COUNT - 1);
532 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR,
533 1.1 jmcneill (uint32_t)sc->sc_rx.desc_ring_paddr +
534 1.1 jmcneill DESC_OFF((sc->sc_rx.cur - 1) % RX_DESC_COUNT));
535 1.1 jmcneill }
536 1.1 jmcneill
537 1.1 jmcneill static int
538 1.1 jmcneill eqos_init_locked(struct eqos_softc *sc)
539 1.1 jmcneill {
540 1.1 jmcneill struct ifnet *ifp = &sc->sc_ec.ec_if;
541 1.1 jmcneill struct mii_data *mii = &sc->sc_mii;
542 1.1 jmcneill uint32_t val;
543 1.1 jmcneill
544 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
545 1.1 jmcneill EQOS_ASSERT_TXLOCKED(sc);
546 1.1 jmcneill
547 1.1 jmcneill if ((ifp->if_flags & IFF_RUNNING) != 0)
548 1.1 jmcneill return 0;
549 1.1 jmcneill
550 1.1 jmcneill /* Setup TX/RX rings */
551 1.1 jmcneill eqos_init_rings(sc, 0);
552 1.1 jmcneill
553 1.1 jmcneill /* Setup RX filter */
554 1.1 jmcneill eqos_setup_rxfilter(sc);
555 1.1 jmcneill
556 1.1 jmcneill WR4(sc, GMAC_MAC_1US_TIC_COUNTER, (sc->sc_csr_clock / 1000000) - 1);
557 1.1 jmcneill
558 1.1 jmcneill /* Enable transmit and receive DMA */
559 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_CONTROL);
560 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_CONTROL_DSL_MASK;
561 1.1 jmcneill val |= ((DESC_ALIGN - 16) / 8) << GMAC_DMA_CHAN0_CONTROL_DSL_SHIFT;
562 1.1 jmcneill val |= GMAC_DMA_CHAN0_CONTROL_PBLX8;
563 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_CONTROL, val);
564 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL);
565 1.1 jmcneill val |= GMAC_DMA_CHAN0_TX_CONTROL_OSP;
566 1.1 jmcneill val |= GMAC_DMA_CHAN0_TX_CONTROL_START;
567 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val);
568 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL);
569 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_MASK;
570 1.1 jmcneill val |= (MCLBYTES << GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_SHIFT);
571 1.1 jmcneill val |= GMAC_DMA_CHAN0_RX_CONTROL_START;
572 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val);
573 1.1 jmcneill
574 1.6 jmcneill /* Disable counters */
575 1.6 jmcneill WR4(sc, GMAC_MMC_CONTROL,
576 1.6 jmcneill GMAC_MMC_CONTROL_CNTFREEZ |
577 1.6 jmcneill GMAC_MMC_CONTROL_CNTPRST |
578 1.6 jmcneill GMAC_MMC_CONTROL_CNTPRSTLVL);
579 1.6 jmcneill
580 1.1 jmcneill /* Configure operation modes */
581 1.1 jmcneill WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE,
582 1.1 jmcneill GMAC_MTL_TXQ0_OPERATION_MODE_TSF |
583 1.1 jmcneill GMAC_MTL_TXQ0_OPERATION_MODE_TXQEN_EN);
584 1.1 jmcneill WR4(sc, GMAC_MTL_RXQ0_OPERATION_MODE,
585 1.1 jmcneill GMAC_MTL_RXQ0_OPERATION_MODE_RSF |
586 1.1 jmcneill GMAC_MTL_RXQ0_OPERATION_MODE_FEP |
587 1.1 jmcneill GMAC_MTL_RXQ0_OPERATION_MODE_FUP);
588 1.1 jmcneill
589 1.1 jmcneill /* Enable flow control */
590 1.1 jmcneill val = RD4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL);
591 1.1 jmcneill val |= 0xFFFFU << GMAC_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT;
592 1.1 jmcneill val |= GMAC_MAC_Q0_TX_FLOW_CTRL_TFE;
593 1.1 jmcneill WR4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL, val);
594 1.1 jmcneill val = RD4(sc, GMAC_MAC_RX_FLOW_CTRL);
595 1.1 jmcneill val |= GMAC_MAC_RX_FLOW_CTRL_RFE;
596 1.1 jmcneill WR4(sc, GMAC_MAC_RX_FLOW_CTRL, val);
597 1.1 jmcneill
598 1.1 jmcneill /* Enable transmitter and receiver */
599 1.1 jmcneill val = RD4(sc, GMAC_MAC_CONFIGURATION);
600 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_BE;
601 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_JD;
602 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_JE;
603 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_DCRS;
604 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_TE;
605 1.1 jmcneill val |= GMAC_MAC_CONFIGURATION_RE;
606 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, val);
607 1.1 jmcneill
608 1.1 jmcneill /* Enable interrupts */
609 1.1 jmcneill eqos_enable_intr(sc);
610 1.1 jmcneill
611 1.1 jmcneill ifp->if_flags |= IFF_RUNNING;
612 1.1 jmcneill ifp->if_flags &= ~IFF_OACTIVE;
613 1.1 jmcneill
614 1.1 jmcneill mii_mediachg(mii);
615 1.1 jmcneill callout_schedule(&sc->sc_stat_ch, hz);
616 1.1 jmcneill
617 1.1 jmcneill return 0;
618 1.1 jmcneill }
619 1.1 jmcneill
620 1.1 jmcneill static int
621 1.1 jmcneill eqos_init(struct ifnet *ifp)
622 1.1 jmcneill {
623 1.1 jmcneill struct eqos_softc *sc = ifp->if_softc;
624 1.1 jmcneill int error;
625 1.1 jmcneill
626 1.1 jmcneill EQOS_LOCK(sc);
627 1.1 jmcneill EQOS_TXLOCK(sc);
628 1.1 jmcneill error = eqos_init_locked(sc);
629 1.1 jmcneill EQOS_TXUNLOCK(sc);
630 1.1 jmcneill EQOS_UNLOCK(sc);
631 1.1 jmcneill
632 1.1 jmcneill return error;
633 1.1 jmcneill }
634 1.1 jmcneill
635 1.1 jmcneill static void
636 1.1 jmcneill eqos_stop_locked(struct eqos_softc *sc, int disable)
637 1.1 jmcneill {
638 1.1 jmcneill struct ifnet *ifp = &sc->sc_ec.ec_if;
639 1.1 jmcneill uint32_t val;
640 1.1 jmcneill int retry;
641 1.1 jmcneill
642 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
643 1.1 jmcneill
644 1.1 jmcneill callout_stop(&sc->sc_stat_ch);
645 1.1 jmcneill
646 1.1 jmcneill mii_down(&sc->sc_mii);
647 1.1 jmcneill
648 1.1 jmcneill /* Disable receiver */
649 1.1 jmcneill val = RD4(sc, GMAC_MAC_CONFIGURATION);
650 1.1 jmcneill val &= ~GMAC_MAC_CONFIGURATION_RE;
651 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, val);
652 1.1 jmcneill
653 1.1 jmcneill /* Stop receive DMA */
654 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL);
655 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_RX_CONTROL_START;
656 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val);
657 1.1 jmcneill
658 1.1 jmcneill /* Stop transmit DMA */
659 1.1 jmcneill val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL);
660 1.1 jmcneill val &= ~GMAC_DMA_CHAN0_TX_CONTROL_START;
661 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val);
662 1.1 jmcneill
663 1.1 jmcneill if (disable) {
664 1.1 jmcneill /* Flush data in the TX FIFO */
665 1.1 jmcneill val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
666 1.1 jmcneill val |= GMAC_MTL_TXQ0_OPERATION_MODE_FTQ;
667 1.1 jmcneill WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, val);
668 1.1 jmcneill /* Wait for flush to complete */
669 1.1 jmcneill for (retry = 10000; retry > 0; retry--) {
670 1.1 jmcneill val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
671 1.1 jmcneill if ((val & GMAC_MTL_TXQ0_OPERATION_MODE_FTQ) == 0) {
672 1.1 jmcneill break;
673 1.1 jmcneill }
674 1.1 jmcneill delay(1);
675 1.1 jmcneill }
676 1.1 jmcneill if (retry == 0) {
677 1.1 jmcneill device_printf(sc->sc_dev,
678 1.1 jmcneill "timeout flushing TX queue\n");
679 1.1 jmcneill }
680 1.1 jmcneill }
681 1.1 jmcneill
682 1.1 jmcneill /* Disable transmitter */
683 1.1 jmcneill val = RD4(sc, GMAC_MAC_CONFIGURATION);
684 1.1 jmcneill val &= ~GMAC_MAC_CONFIGURATION_TE;
685 1.1 jmcneill WR4(sc, GMAC_MAC_CONFIGURATION, val);
686 1.1 jmcneill
687 1.1 jmcneill /* Disable interrupts */
688 1.1 jmcneill eqos_disable_intr(sc);
689 1.1 jmcneill
690 1.1 jmcneill ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
691 1.1 jmcneill }
692 1.1 jmcneill
693 1.1 jmcneill static void
694 1.1 jmcneill eqos_stop(struct ifnet *ifp, int disable)
695 1.1 jmcneill {
696 1.1 jmcneill struct eqos_softc * const sc = ifp->if_softc;
697 1.1 jmcneill
698 1.1 jmcneill EQOS_LOCK(sc);
699 1.1 jmcneill eqos_stop_locked(sc, disable);
700 1.1 jmcneill EQOS_UNLOCK(sc);
701 1.1 jmcneill }
702 1.1 jmcneill
703 1.1 jmcneill static void
704 1.1 jmcneill eqos_rxintr(struct eqos_softc *sc, int qid)
705 1.1 jmcneill {
706 1.1 jmcneill struct ifnet *ifp = &sc->sc_ec.ec_if;
707 1.1 jmcneill int error, index, len, pkts = 0;
708 1.1 jmcneill struct mbuf *m, *m0;
709 1.1 jmcneill uint32_t tdes3;
710 1.1 jmcneill
711 1.1 jmcneill for (index = sc->sc_rx.cur; ; index = RX_NEXT(index)) {
712 1.1 jmcneill eqos_dma_sync(sc, sc->sc_rx.desc_map,
713 1.1 jmcneill index, index + 1, RX_DESC_COUNT,
714 1.1 jmcneill BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
715 1.1 jmcneill
716 1.1 jmcneill tdes3 = le32toh(sc->sc_rx.desc_ring[index].tdes3);
717 1.1 jmcneill if ((tdes3 & EQOS_TDES3_OWN) != 0) {
718 1.1 jmcneill break;
719 1.1 jmcneill }
720 1.1 jmcneill
721 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map,
722 1.1 jmcneill 0, sc->sc_rx.buf_map[index].map->dm_mapsize,
723 1.1 jmcneill BUS_DMASYNC_POSTREAD);
724 1.1 jmcneill bus_dmamap_unload(sc->sc_dmat,
725 1.1 jmcneill sc->sc_rx.buf_map[index].map);
726 1.1 jmcneill
727 1.1 jmcneill len = tdes3 & EQOS_TDES3_LENGTH_MASK;
728 1.1 jmcneill if (len != 0) {
729 1.1 jmcneill m = sc->sc_rx.buf_map[index].mbuf;
730 1.1 jmcneill m_set_rcvif(m, ifp);
731 1.1 jmcneill m->m_flags |= M_HASFCS;
732 1.1 jmcneill m->m_pkthdr.len = len;
733 1.1 jmcneill m->m_len = len;
734 1.1 jmcneill m->m_nextpkt = NULL;
735 1.1 jmcneill
736 1.1 jmcneill if_percpuq_enqueue(ifp->if_percpuq, m);
737 1.1 jmcneill ++pkts;
738 1.1 jmcneill }
739 1.1 jmcneill
740 1.1 jmcneill if ((m0 = eqos_alloc_mbufcl(sc)) != NULL) {
741 1.1 jmcneill error = eqos_setup_rxbuf(sc, index, m0);
742 1.1 jmcneill if (error != 0) {
743 1.1 jmcneill /* XXX hole in RX ring */
744 1.1 jmcneill }
745 1.1 jmcneill } else {
746 1.1 jmcneill if_statinc(ifp, if_ierrors);
747 1.1 jmcneill }
748 1.1 jmcneill eqos_dma_sync(sc, sc->sc_rx.desc_map,
749 1.1 jmcneill index, index + 1, RX_DESC_COUNT,
750 1.1 jmcneill BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
751 1.1 jmcneill
752 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR,
753 1.1 jmcneill (uint32_t)sc->sc_rx.desc_ring_paddr +
754 1.1 jmcneill DESC_OFF(sc->sc_rx.cur));
755 1.1 jmcneill }
756 1.1 jmcneill
757 1.1 jmcneill sc->sc_rx.cur = index;
758 1.1 jmcneill
759 1.1 jmcneill if (pkts != 0) {
760 1.1 jmcneill rnd_add_uint32(&sc->sc_rndsource, pkts);
761 1.1 jmcneill }
762 1.1 jmcneill }
763 1.1 jmcneill
764 1.1 jmcneill static void
765 1.1 jmcneill eqos_txintr(struct eqos_softc *sc, int qid)
766 1.1 jmcneill {
767 1.1 jmcneill struct ifnet *ifp = &sc->sc_ec.ec_if;
768 1.1 jmcneill struct eqos_bufmap *bmap;
769 1.1 jmcneill struct eqos_dma_desc *desc;
770 1.1 jmcneill uint32_t tdes3;
771 1.1 jmcneill int i, pkts = 0;
772 1.1 jmcneill
773 1.1 jmcneill EQOS_ASSERT_LOCKED(sc);
774 1.1 jmcneill
775 1.1 jmcneill for (i = sc->sc_tx.next; sc->sc_tx.queued > 0; i = TX_NEXT(i)) {
776 1.1 jmcneill KASSERT(sc->sc_tx.queued > 0);
777 1.1 jmcneill KASSERT(sc->sc_tx.queued <= TX_DESC_COUNT);
778 1.1 jmcneill eqos_dma_sync(sc, sc->sc_tx.desc_map,
779 1.1 jmcneill i, i + 1, TX_DESC_COUNT,
780 1.1 jmcneill BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
781 1.1 jmcneill desc = &sc->sc_tx.desc_ring[i];
782 1.1 jmcneill tdes3 = le32toh(desc->tdes3);
783 1.1 jmcneill if ((tdes3 & EQOS_TDES3_OWN) != 0) {
784 1.1 jmcneill break;
785 1.1 jmcneill }
786 1.1 jmcneill bmap = &sc->sc_tx.buf_map[i];
787 1.1 jmcneill if (bmap->mbuf != NULL) {
788 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, bmap->map,
789 1.1 jmcneill 0, bmap->map->dm_mapsize,
790 1.1 jmcneill BUS_DMASYNC_POSTWRITE);
791 1.1 jmcneill bus_dmamap_unload(sc->sc_dmat, bmap->map);
792 1.1 jmcneill m_freem(bmap->mbuf);
793 1.1 jmcneill bmap->mbuf = NULL;
794 1.1 jmcneill ++pkts;
795 1.1 jmcneill }
796 1.1 jmcneill
797 1.1 jmcneill eqos_setup_txdesc(sc, i, 0, 0, 0, 0);
798 1.1 jmcneill eqos_dma_sync(sc, sc->sc_tx.desc_map,
799 1.1 jmcneill i, i + 1, TX_DESC_COUNT,
800 1.1 jmcneill BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
801 1.1 jmcneill
802 1.1 jmcneill ifp->if_flags &= ~IFF_OACTIVE;
803 1.1 jmcneill
804 1.1 jmcneill /* Last descriptor in a packet contains DMA status */
805 1.1 jmcneill if ((tdes3 & EQOS_TDES3_LD) != 0) {
806 1.1 jmcneill if ((tdes3 & EQOS_TDES3_DE) != 0) {
807 1.1 jmcneill device_printf(sc->sc_dev,
808 1.1 jmcneill "TX [%u] desc error: 0x%08x\n",
809 1.1 jmcneill i, tdes3);
810 1.1 jmcneill if_statinc(ifp, if_oerrors);
811 1.1 jmcneill } else if ((tdes3 & EQOS_TDES3_ES) != 0) {
812 1.1 jmcneill device_printf(sc->sc_dev,
813 1.1 jmcneill "TX [%u] tx error: 0x%08x\n",
814 1.1 jmcneill i, tdes3);
815 1.1 jmcneill if_statinc(ifp, if_oerrors);
816 1.1 jmcneill } else {
817 1.1 jmcneill if_statinc(ifp, if_opackets);
818 1.1 jmcneill }
819 1.1 jmcneill }
820 1.1 jmcneill
821 1.1 jmcneill }
822 1.1 jmcneill
823 1.1 jmcneill sc->sc_tx.next = i;
824 1.1 jmcneill
825 1.1 jmcneill if (pkts != 0) {
826 1.1 jmcneill rnd_add_uint32(&sc->sc_rndsource, pkts);
827 1.1 jmcneill }
828 1.1 jmcneill }
829 1.1 jmcneill
830 1.1 jmcneill static void
831 1.1 jmcneill eqos_start_locked(struct eqos_softc *sc)
832 1.1 jmcneill {
833 1.1 jmcneill struct ifnet *ifp = &sc->sc_ec.ec_if;
834 1.1 jmcneill struct mbuf *m;
835 1.1 jmcneill int cnt, nsegs, start;
836 1.1 jmcneill
837 1.1 jmcneill EQOS_ASSERT_TXLOCKED(sc);
838 1.1 jmcneill
839 1.1 jmcneill if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
840 1.1 jmcneill return;
841 1.1 jmcneill
842 1.1 jmcneill for (cnt = 0, start = sc->sc_tx.cur; ; cnt++) {
843 1.1 jmcneill if (sc->sc_tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
844 1.1 jmcneill ifp->if_flags |= IFF_OACTIVE;
845 1.1 jmcneill break;
846 1.1 jmcneill }
847 1.1 jmcneill
848 1.1 jmcneill IFQ_POLL(&ifp->if_snd, m);
849 1.1 jmcneill if (m == NULL) {
850 1.1 jmcneill break;
851 1.1 jmcneill }
852 1.1 jmcneill
853 1.1 jmcneill nsegs = eqos_setup_txbuf(sc, sc->sc_tx.cur, m);
854 1.1 jmcneill if (nsegs <= 0) {
855 1.1 jmcneill if (nsegs == -1) {
856 1.1 jmcneill ifp->if_flags |= IFF_OACTIVE;
857 1.1 jmcneill } else if (nsegs == -2) {
858 1.1 jmcneill IFQ_DEQUEUE(&ifp->if_snd, m);
859 1.1 jmcneill m_freem(m);
860 1.1 jmcneill }
861 1.1 jmcneill break;
862 1.1 jmcneill }
863 1.1 jmcneill
864 1.1 jmcneill IFQ_DEQUEUE(&ifp->if_snd, m);
865 1.1 jmcneill bpf_mtap(ifp, m, BPF_D_OUT);
866 1.1 jmcneill
867 1.1 jmcneill sc->sc_tx.cur = TX_SKIP(sc->sc_tx.cur, nsegs);
868 1.1 jmcneill }
869 1.1 jmcneill
870 1.1 jmcneill if (cnt != 0) {
871 1.1 jmcneill eqos_dma_sync(sc, sc->sc_tx.desc_map,
872 1.1 jmcneill start, sc->sc_tx.cur, TX_DESC_COUNT,
873 1.1 jmcneill BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
874 1.1 jmcneill
875 1.1 jmcneill /* Start and run TX DMA */
876 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_TX_END_ADDR,
877 1.1 jmcneill (uint32_t)sc->sc_tx.desc_ring_paddr +
878 1.1 jmcneill DESC_OFF(sc->sc_tx.cur));
879 1.1 jmcneill }
880 1.1 jmcneill }
881 1.1 jmcneill
882 1.1 jmcneill static void
883 1.1 jmcneill eqos_start(struct ifnet *ifp)
884 1.1 jmcneill {
885 1.1 jmcneill struct eqos_softc *sc = ifp->if_softc;
886 1.1 jmcneill
887 1.1 jmcneill EQOS_TXLOCK(sc);
888 1.1 jmcneill eqos_start_locked(sc);
889 1.1 jmcneill EQOS_TXUNLOCK(sc);
890 1.1 jmcneill }
891 1.1 jmcneill
892 1.3 mrg static void
893 1.3 mrg eqos_intr_mtl(struct eqos_softc *sc, uint32_t mtl_status)
894 1.3 mrg {
895 1.3 mrg uint32_t debug_data __unused = 0, ictrl = 0;
896 1.3 mrg
897 1.3 mrg if (mtl_status == 0)
898 1.3 mrg return;
899 1.3 mrg
900 1.3 mrg /* Drain the errors reported by MTL_INTERRUPT_STATUS */
901 1.3 mrg sc->sc_ev_mtl.ev_count++;
902 1.3 mrg
903 1.3 mrg if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_DBGIS) != 0) {
904 1.3 mrg debug_data = RD4(sc, GMAC_MTL_FIFO_DEBUG_DATA);
905 1.3 mrg sc->sc_ev_mtl_debugdata.ev_count++;
906 1.3 mrg }
907 1.3 mrg if ((mtl_status & GMAC_MTL_INTERRUPT_STATUS_Q0IS) != 0) {
908 1.3 mrg uint32_t new_status = 0;
909 1.3 mrg
910 1.3 mrg ictrl = RD4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS);
911 1.3 mrg if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS) != 0) {
912 1.3 mrg new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOVFIS;
913 1.3 mrg sc->sc_ev_mtl_rxovfis.ev_count++;
914 1.3 mrg }
915 1.3 mrg if ((ictrl & GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS) != 0) {
916 1.3 mrg new_status |= GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUNFIS;
917 1.3 mrg sc->sc_ev_mtl_txovfis.ev_count++;
918 1.3 mrg }
919 1.3 mrg if (new_status) {
920 1.3 mrg new_status |= (ictrl &
921 1.3 mrg (GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_RXOIE|
922 1.3 mrg GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS_TXUIE));
923 1.3 mrg WR4(sc, GMAC_MTL_Q0_INTERRUPT_CTRL_STATUS, new_status);
924 1.3 mrg }
925 1.3 mrg }
926 1.3 mrg #ifdef DEBUG_LOUD
927 1.3 mrg device_printf(sc->sc_dev,
928 1.3 mrg "GMAC_MTL_INTERRUPT_STATUS = 0x%08X, "
929 1.3 mrg "GMAC_MTL_FIFO_DEBUG_DATA = 0x%08X, "
930 1.3 mrg "GMAC_MTL_INTERRUPT_STATUS_Q0IS = 0x%08X\n",
931 1.3 mrg mtl_status, debug_data, ictrl);
932 1.3 mrg #endif
933 1.3 mrg }
934 1.3 mrg
935 1.1 jmcneill int
936 1.1 jmcneill eqos_intr(void *arg)
937 1.1 jmcneill {
938 1.1 jmcneill struct eqos_softc *sc = arg;
939 1.1 jmcneill struct ifnet *ifp = &sc->sc_ec.ec_if;
940 1.1 jmcneill uint32_t mac_status, mtl_status, dma_status, rx_tx_status;
941 1.1 jmcneill
942 1.2 mrg sc->sc_ev_intr.ev_count++;
943 1.2 mrg
944 1.1 jmcneill mac_status = RD4(sc, GMAC_MAC_INTERRUPT_STATUS);
945 1.1 jmcneill mac_status &= RD4(sc, GMAC_MAC_INTERRUPT_ENABLE);
946 1.1 jmcneill
947 1.1 jmcneill if (mac_status) {
948 1.2 mrg sc->sc_ev_mac.ev_count++;
949 1.2 mrg #ifdef DEBUG_LOUD
950 1.1 jmcneill device_printf(sc->sc_dev,
951 1.1 jmcneill "GMAC_MAC_INTERRUPT_STATUS = 0x%08X\n", mac_status);
952 1.2 mrg #endif
953 1.1 jmcneill }
954 1.1 jmcneill
955 1.1 jmcneill mtl_status = RD4(sc, GMAC_MTL_INTERRUPT_STATUS);
956 1.3 mrg eqos_intr_mtl(sc, mtl_status);
957 1.1 jmcneill
958 1.1 jmcneill dma_status = RD4(sc, GMAC_DMA_CHAN0_STATUS);
959 1.1 jmcneill dma_status &= RD4(sc, GMAC_DMA_CHAN0_INTR_ENABLE);
960 1.1 jmcneill if (dma_status) {
961 1.1 jmcneill WR4(sc, GMAC_DMA_CHAN0_STATUS, dma_status);
962 1.1 jmcneill }
963 1.1 jmcneill
964 1.1 jmcneill EQOS_LOCK(sc);
965 1.1 jmcneill if ((dma_status & GMAC_DMA_CHAN0_STATUS_RI) != 0) {
966 1.1 jmcneill eqos_rxintr(sc, 0);
967 1.2 mrg sc->sc_ev_rxintr.ev_count++;
968 1.1 jmcneill }
969 1.1 jmcneill
970 1.1 jmcneill if ((dma_status & GMAC_DMA_CHAN0_STATUS_TI) != 0) {
971 1.1 jmcneill eqos_txintr(sc, 0);
972 1.1 jmcneill if_schedule_deferred_start(ifp);
973 1.2 mrg sc->sc_ev_txintr.ev_count++;
974 1.1 jmcneill }
975 1.1 jmcneill EQOS_UNLOCK(sc);
976 1.1 jmcneill
977 1.2 mrg #ifdef DEBUG_LOUD
978 1.1 jmcneill if ((mac_status | mtl_status | dma_status) == 0) {
979 1.1 jmcneill device_printf(sc->sc_dev, "spurious interrupt?!\n");
980 1.1 jmcneill }
981 1.2 mrg #endif
982 1.1 jmcneill
983 1.1 jmcneill rx_tx_status = RD4(sc, GMAC_MAC_RX_TX_STATUS);
984 1.1 jmcneill if (rx_tx_status) {
985 1.2 mrg sc->sc_ev_status.ev_count++;
986 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_RWT) != 0)
987 1.2 mrg sc->sc_ev_rwt.ev_count++;
988 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXCOL) != 0)
989 1.2 mrg sc->sc_ev_excol.ev_count++;
990 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCOL) != 0)
991 1.2 mrg sc->sc_ev_lcol.ev_count++;
992 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXDEF) != 0)
993 1.2 mrg sc->sc_ev_exdef.ev_count++;
994 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCARR) != 0)
995 1.2 mrg sc->sc_ev_lcarr.ev_count++;
996 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_NCARR) != 0)
997 1.2 mrg sc->sc_ev_ncarr.ev_count++;
998 1.2 mrg if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_TJT) != 0)
999 1.2 mrg sc->sc_ev_tjt.ev_count++;
1000 1.2 mrg #ifdef DEBUG_LOUD
1001 1.1 jmcneill device_printf(sc->sc_dev, "GMAC_MAC_RX_TX_STATUS = 0x%08x\n",
1002 1.1 jmcneill rx_tx_status);
1003 1.2 mrg #endif
1004 1.1 jmcneill }
1005 1.1 jmcneill
1006 1.1 jmcneill return 1;
1007 1.1 jmcneill }
1008 1.1 jmcneill
1009 1.1 jmcneill static int
1010 1.1 jmcneill eqos_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1011 1.1 jmcneill {
1012 1.1 jmcneill struct eqos_softc *sc = ifp->if_softc;
1013 1.1 jmcneill int error, s;
1014 1.1 jmcneill
1015 1.1 jmcneill #ifndef EQOS_MPSAFE
1016 1.1 jmcneill s = splnet();
1017 1.1 jmcneill #endif
1018 1.1 jmcneill
1019 1.1 jmcneill switch (cmd) {
1020 1.1 jmcneill default:
1021 1.1 jmcneill #ifdef EQOS_MPSAFE
1022 1.1 jmcneill s = splnet();
1023 1.1 jmcneill #endif
1024 1.1 jmcneill error = ether_ioctl(ifp, cmd, data);
1025 1.1 jmcneill #ifdef EQOS_MPSAFE
1026 1.1 jmcneill splx(s);
1027 1.1 jmcneill #endif
1028 1.1 jmcneill if (error != ENETRESET)
1029 1.1 jmcneill break;
1030 1.1 jmcneill
1031 1.1 jmcneill error = 0;
1032 1.1 jmcneill
1033 1.1 jmcneill if (cmd == SIOCSIFCAP)
1034 1.1 jmcneill error = (*ifp->if_init)(ifp);
1035 1.1 jmcneill else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1036 1.1 jmcneill ;
1037 1.1 jmcneill else if ((ifp->if_flags & IFF_RUNNING) != 0) {
1038 1.1 jmcneill EQOS_LOCK(sc);
1039 1.1 jmcneill eqos_setup_rxfilter(sc);
1040 1.1 jmcneill EQOS_UNLOCK(sc);
1041 1.1 jmcneill }
1042 1.1 jmcneill break;
1043 1.1 jmcneill }
1044 1.1 jmcneill
1045 1.1 jmcneill #ifndef EQOS_MPSAFE
1046 1.1 jmcneill splx(s);
1047 1.1 jmcneill #endif
1048 1.1 jmcneill
1049 1.1 jmcneill return error;
1050 1.1 jmcneill }
1051 1.1 jmcneill
1052 1.1 jmcneill static void
1053 1.1 jmcneill eqos_get_eaddr(struct eqos_softc *sc, uint8_t *eaddr)
1054 1.1 jmcneill {
1055 1.1 jmcneill prop_dictionary_t prop = device_properties(sc->sc_dev);
1056 1.1 jmcneill uint32_t maclo, machi;
1057 1.1 jmcneill prop_data_t eaprop;
1058 1.1 jmcneill
1059 1.1 jmcneill eaprop = prop_dictionary_get(prop, "mac-address");
1060 1.1 jmcneill if (eaprop != NULL) {
1061 1.1 jmcneill KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
1062 1.1 jmcneill KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
1063 1.1 jmcneill memcpy(eaddr, prop_data_value(eaprop),
1064 1.1 jmcneill ETHER_ADDR_LEN);
1065 1.1 jmcneill return;
1066 1.1 jmcneill }
1067 1.1 jmcneill
1068 1.1 jmcneill maclo = htobe32(RD4(sc, GMAC_MAC_ADDRESS0_LOW));
1069 1.1 jmcneill machi = htobe16(RD4(sc, GMAC_MAC_ADDRESS0_HIGH) & 0xFFFF);
1070 1.1 jmcneill
1071 1.1 jmcneill if (maclo == 0xFFFFFFFF && machi == 0xFFFF) {
1072 1.1 jmcneill /* Create one */
1073 1.1 jmcneill maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1074 1.1 jmcneill machi = cprng_strong32() & 0xffff;
1075 1.1 jmcneill }
1076 1.1 jmcneill
1077 1.1 jmcneill eaddr[0] = maclo & 0xff;
1078 1.1 jmcneill eaddr[1] = (maclo >> 8) & 0xff;
1079 1.1 jmcneill eaddr[2] = (maclo >> 16) & 0xff;
1080 1.1 jmcneill eaddr[3] = (maclo >> 24) & 0xff;
1081 1.1 jmcneill eaddr[4] = machi & 0xff;
1082 1.1 jmcneill eaddr[5] = (machi >> 8) & 0xff;
1083 1.1 jmcneill }
1084 1.1 jmcneill
1085 1.1 jmcneill static void
1086 1.1 jmcneill eqos_axi_configure(struct eqos_softc *sc)
1087 1.1 jmcneill {
1088 1.1 jmcneill prop_dictionary_t prop = device_properties(sc->sc_dev);
1089 1.1 jmcneill uint32_t val;
1090 1.1 jmcneill u_int uival;
1091 1.1 jmcneill bool bval;
1092 1.1 jmcneill
1093 1.1 jmcneill val = RD4(sc, GMAC_DMA_SYSBUS_MODE);
1094 1.1 jmcneill if (prop_dictionary_get_bool(prop, "snps,mixed-burst", &bval) && bval) {
1095 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_MB;
1096 1.1 jmcneill }
1097 1.1 jmcneill if (prop_dictionary_get_bool(prop, "snps,fixed-burst", &bval) && bval) {
1098 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_FB;
1099 1.1 jmcneill }
1100 1.1 jmcneill if (prop_dictionary_get_uint(prop, "snps,wr_osr_lmt", &uival)) {
1101 1.1 jmcneill val &= ~GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_MASK;
1102 1.1 jmcneill val |= uival << GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_SHIFT;
1103 1.1 jmcneill }
1104 1.1 jmcneill if (prop_dictionary_get_uint(prop, "snps,rd_osr_lmt", &uival)) {
1105 1.1 jmcneill val &= ~GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_MASK;
1106 1.1 jmcneill val |= uival << GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT;
1107 1.1 jmcneill }
1108 1.1 jmcneill
1109 1.1 jmcneill if (!EQOS_HW_FEATURE_ADDR64_32BIT(sc)) {
1110 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_EAME;
1111 1.1 jmcneill }
1112 1.1 jmcneill
1113 1.1 jmcneill /* XXX */
1114 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_BLEN16;
1115 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_BLEN8;
1116 1.1 jmcneill val |= GMAC_DMA_SYSBUS_MODE_BLEN4;
1117 1.1 jmcneill
1118 1.1 jmcneill WR4(sc, GMAC_DMA_SYSBUS_MODE, val);
1119 1.1 jmcneill }
1120 1.1 jmcneill
1121 1.1 jmcneill static int
1122 1.1 jmcneill eqos_setup_dma(struct eqos_softc *sc, int qid)
1123 1.1 jmcneill {
1124 1.1 jmcneill struct mbuf *m;
1125 1.1 jmcneill int error, nsegs, i;
1126 1.1 jmcneill
1127 1.1 jmcneill /* Setup TX ring */
1128 1.1 jmcneill error = bus_dmamap_create(sc->sc_dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE,
1129 1.1 jmcneill DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_tx.desc_map);
1130 1.1 jmcneill if (error) {
1131 1.1 jmcneill return error;
1132 1.1 jmcneill }
1133 1.1 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, TX_DESC_SIZE, DESC_ALIGN,
1134 1.1 jmcneill DESC_BOUNDARY, &sc->sc_tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1135 1.1 jmcneill if (error) {
1136 1.1 jmcneill return error;
1137 1.1 jmcneill }
1138 1.1 jmcneill error = bus_dmamem_map(sc->sc_dmat, &sc->sc_tx.desc_dmaseg, nsegs,
1139 1.1 jmcneill TX_DESC_SIZE, (void *)&sc->sc_tx.desc_ring, BUS_DMA_WAITOK);
1140 1.1 jmcneill if (error) {
1141 1.1 jmcneill return error;
1142 1.1 jmcneill }
1143 1.1 jmcneill error = bus_dmamap_load(sc->sc_dmat, sc->sc_tx.desc_map,
1144 1.1 jmcneill sc->sc_tx.desc_ring, TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1145 1.1 jmcneill if (error) {
1146 1.1 jmcneill return error;
1147 1.1 jmcneill }
1148 1.1 jmcneill sc->sc_tx.desc_ring_paddr = sc->sc_tx.desc_map->dm_segs[0].ds_addr;
1149 1.1 jmcneill
1150 1.1 jmcneill memset(sc->sc_tx.desc_ring, 0, TX_DESC_SIZE);
1151 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map, 0, TX_DESC_SIZE,
1152 1.1 jmcneill BUS_DMASYNC_PREWRITE);
1153 1.1 jmcneill
1154 1.1 jmcneill sc->sc_tx.queued = TX_DESC_COUNT;
1155 1.1 jmcneill for (i = 0; i < TX_DESC_COUNT; i++) {
1156 1.1 jmcneill error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1157 1.1 jmcneill TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1158 1.1 jmcneill &sc->sc_tx.buf_map[i].map);
1159 1.1 jmcneill if (error != 0) {
1160 1.1 jmcneill device_printf(sc->sc_dev,
1161 1.1 jmcneill "cannot create TX buffer map\n");
1162 1.1 jmcneill return error;
1163 1.1 jmcneill }
1164 1.1 jmcneill eqos_setup_txdesc(sc, i, 0, 0, 0, 0);
1165 1.1 jmcneill }
1166 1.1 jmcneill
1167 1.1 jmcneill /* Setup RX ring */
1168 1.1 jmcneill error = bus_dmamap_create(sc->sc_dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE,
1169 1.1 jmcneill DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_rx.desc_map);
1170 1.1 jmcneill if (error) {
1171 1.1 jmcneill return error;
1172 1.1 jmcneill }
1173 1.1 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, RX_DESC_SIZE, DESC_ALIGN,
1174 1.1 jmcneill DESC_BOUNDARY, &sc->sc_rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1175 1.1 jmcneill if (error) {
1176 1.1 jmcneill return error;
1177 1.1 jmcneill }
1178 1.1 jmcneill error = bus_dmamem_map(sc->sc_dmat, &sc->sc_rx.desc_dmaseg, nsegs,
1179 1.1 jmcneill RX_DESC_SIZE, (void *)&sc->sc_rx.desc_ring, BUS_DMA_WAITOK);
1180 1.1 jmcneill if (error) {
1181 1.1 jmcneill return error;
1182 1.1 jmcneill }
1183 1.1 jmcneill error = bus_dmamap_load(sc->sc_dmat, sc->sc_rx.desc_map,
1184 1.1 jmcneill sc->sc_rx.desc_ring, RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1185 1.1 jmcneill if (error) {
1186 1.1 jmcneill return error;
1187 1.1 jmcneill }
1188 1.1 jmcneill sc->sc_rx.desc_ring_paddr = sc->sc_rx.desc_map->dm_segs[0].ds_addr;
1189 1.1 jmcneill
1190 1.1 jmcneill memset(sc->sc_rx.desc_ring, 0, RX_DESC_SIZE);
1191 1.1 jmcneill
1192 1.1 jmcneill for (i = 0; i < RX_DESC_COUNT; i++) {
1193 1.1 jmcneill error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1194 1.1 jmcneill RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1195 1.1 jmcneill &sc->sc_rx.buf_map[i].map);
1196 1.1 jmcneill if (error != 0) {
1197 1.1 jmcneill device_printf(sc->sc_dev,
1198 1.1 jmcneill "cannot create RX buffer map\n");
1199 1.1 jmcneill return error;
1200 1.1 jmcneill }
1201 1.1 jmcneill if ((m = eqos_alloc_mbufcl(sc)) == NULL) {
1202 1.1 jmcneill device_printf(sc->sc_dev, "cannot allocate RX mbuf\n");
1203 1.1 jmcneill return ENOMEM;
1204 1.1 jmcneill }
1205 1.1 jmcneill error = eqos_setup_rxbuf(sc, i, m);
1206 1.1 jmcneill if (error != 0) {
1207 1.1 jmcneill device_printf(sc->sc_dev, "cannot create RX buffer\n");
1208 1.1 jmcneill return error;
1209 1.1 jmcneill }
1210 1.1 jmcneill }
1211 1.1 jmcneill bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map,
1212 1.1 jmcneill 0, sc->sc_rx.desc_map->dm_mapsize,
1213 1.1 jmcneill BUS_DMASYNC_PREWRITE);
1214 1.1 jmcneill
1215 1.1 jmcneill aprint_debug_dev(sc->sc_dev, "TX ring @ 0x%lX, RX ring @ 0x%lX\n",
1216 1.1 jmcneill sc->sc_tx.desc_ring_paddr, sc->sc_rx.desc_ring_paddr);
1217 1.1 jmcneill
1218 1.1 jmcneill return 0;
1219 1.1 jmcneill }
1220 1.1 jmcneill
1221 1.1 jmcneill int
1222 1.1 jmcneill eqos_attach(struct eqos_softc *sc)
1223 1.1 jmcneill {
1224 1.1 jmcneill struct mii_data *mii = &sc->sc_mii;
1225 1.1 jmcneill struct ifnet *ifp = &sc->sc_ec.ec_if;
1226 1.1 jmcneill uint8_t eaddr[ETHER_ADDR_LEN];
1227 1.1 jmcneill u_int userver, snpsver;
1228 1.1 jmcneill int mii_flags = 0;
1229 1.1 jmcneill int error;
1230 1.1 jmcneill int n;
1231 1.1 jmcneill
1232 1.1 jmcneill const uint32_t ver = RD4(sc, GMAC_MAC_VERSION);
1233 1.1 jmcneill userver = (ver & GMAC_MAC_VERSION_USERVER_MASK) >>
1234 1.1 jmcneill GMAC_MAC_VERSION_USERVER_SHIFT;
1235 1.1 jmcneill snpsver = ver & GMAC_MAC_VERSION_SNPSVER_MASK;
1236 1.1 jmcneill
1237 1.1 jmcneill if (snpsver != 0x51) {
1238 1.1 jmcneill aprint_error(": EQOS version 0x%02xx not supported\n",
1239 1.1 jmcneill snpsver);
1240 1.1 jmcneill return ENXIO;
1241 1.1 jmcneill }
1242 1.1 jmcneill
1243 1.1 jmcneill if (sc->sc_csr_clock < 20000000) {
1244 1.1 jmcneill aprint_error(": CSR clock too low\n");
1245 1.1 jmcneill return EINVAL;
1246 1.1 jmcneill } else if (sc->sc_csr_clock < 35000000) {
1247 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_20_35;
1248 1.1 jmcneill } else if (sc->sc_csr_clock < 60000000) {
1249 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_35_60;
1250 1.1 jmcneill } else if (sc->sc_csr_clock < 100000000) {
1251 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_60_100;
1252 1.1 jmcneill } else if (sc->sc_csr_clock < 150000000) {
1253 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_100_150;
1254 1.1 jmcneill } else if (sc->sc_csr_clock < 250000000) {
1255 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_150_250;
1256 1.1 jmcneill } else if (sc->sc_csr_clock < 300000000) {
1257 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_300_500;
1258 1.1 jmcneill } else if (sc->sc_csr_clock < 800000000) {
1259 1.1 jmcneill sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_500_800;
1260 1.1 jmcneill } else {
1261 1.1 jmcneill aprint_error(": CSR clock too high\n");
1262 1.1 jmcneill return EINVAL;
1263 1.1 jmcneill }
1264 1.1 jmcneill
1265 1.1 jmcneill for (n = 0; n < 4; n++) {
1266 1.1 jmcneill sc->sc_hw_feature[n] = RD4(sc, GMAC_MAC_HW_FEATURE(n));
1267 1.1 jmcneill }
1268 1.1 jmcneill
1269 1.1 jmcneill aprint_naive("\n");
1270 1.1 jmcneill aprint_normal(": DesignWare EQOS ver 0x%02x (0x%02x)\n",
1271 1.1 jmcneill snpsver, userver);
1272 1.1 jmcneill aprint_verbose_dev(sc->sc_dev, "hw features %08x %08x %08x %08x\n",
1273 1.1 jmcneill sc->sc_hw_feature[0], sc->sc_hw_feature[1],
1274 1.1 jmcneill sc->sc_hw_feature[2], sc->sc_hw_feature[3]);
1275 1.1 jmcneill
1276 1.1 jmcneill if (EQOS_HW_FEATURE_ADDR64_32BIT(sc)) {
1277 1.1 jmcneill bus_dma_tag_t ntag;
1278 1.1 jmcneill
1279 1.1 jmcneill error = bus_dmatag_subregion(sc->sc_dmat, 0, UINT32_MAX,
1280 1.1 jmcneill &ntag, 0);
1281 1.1 jmcneill if (error) {
1282 1.1 jmcneill aprint_error_dev(sc->sc_dev,
1283 1.1 jmcneill "failed to restrict DMA: %d\n", error);
1284 1.1 jmcneill return error;
1285 1.1 jmcneill }
1286 1.1 jmcneill aprint_verbose_dev(sc->sc_dev, "using 32-bit DMA\n");
1287 1.1 jmcneill sc->sc_dmat = ntag;
1288 1.1 jmcneill }
1289 1.1 jmcneill
1290 1.1 jmcneill mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
1291 1.1 jmcneill mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_NET);
1292 1.1 jmcneill callout_init(&sc->sc_stat_ch, CALLOUT_FLAGS);
1293 1.1 jmcneill callout_setfunc(&sc->sc_stat_ch, eqos_tick, sc);
1294 1.1 jmcneill
1295 1.1 jmcneill eqos_get_eaddr(sc, eaddr);
1296 1.1 jmcneill aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", ether_sprintf(eaddr));
1297 1.1 jmcneill
1298 1.1 jmcneill /* Soft reset EMAC core */
1299 1.1 jmcneill error = eqos_reset(sc);
1300 1.1 jmcneill if (error != 0) {
1301 1.1 jmcneill return error;
1302 1.1 jmcneill }
1303 1.1 jmcneill
1304 1.1 jmcneill /* Configure AXI Bus mode parameters */
1305 1.1 jmcneill eqos_axi_configure(sc);
1306 1.1 jmcneill
1307 1.1 jmcneill /* Setup DMA descriptors */
1308 1.1 jmcneill if (eqos_setup_dma(sc, 0) != 0) {
1309 1.1 jmcneill aprint_error_dev(sc->sc_dev, "failed to setup DMA descriptors\n");
1310 1.1 jmcneill return EINVAL;
1311 1.1 jmcneill }
1312 1.1 jmcneill
1313 1.1 jmcneill /* Setup ethernet interface */
1314 1.1 jmcneill ifp->if_softc = sc;
1315 1.1 jmcneill snprintf(ifp->if_xname, IFNAMSIZ, "%s", device_xname(sc->sc_dev));
1316 1.1 jmcneill ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1317 1.1 jmcneill #ifdef EQOS_MPSAFE
1318 1.1 jmcneill ifp->if_extflags = IFEF_MPSAFE;
1319 1.1 jmcneill #endif
1320 1.1 jmcneill ifp->if_start = eqos_start;
1321 1.1 jmcneill ifp->if_ioctl = eqos_ioctl;
1322 1.1 jmcneill ifp->if_init = eqos_init;
1323 1.1 jmcneill ifp->if_stop = eqos_stop;
1324 1.1 jmcneill ifp->if_capabilities = 0;
1325 1.1 jmcneill ifp->if_capenable = ifp->if_capabilities;
1326 1.1 jmcneill IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1327 1.1 jmcneill IFQ_SET_READY(&ifp->if_snd);
1328 1.1 jmcneill
1329 1.1 jmcneill /* 802.1Q VLAN-sized frames are supported */
1330 1.1 jmcneill sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1331 1.1 jmcneill
1332 1.1 jmcneill /* Attach MII driver */
1333 1.1 jmcneill sc->sc_ec.ec_mii = mii;
1334 1.1 jmcneill ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1335 1.1 jmcneill mii->mii_ifp = ifp;
1336 1.1 jmcneill mii->mii_readreg = eqos_mii_readreg;
1337 1.1 jmcneill mii->mii_writereg = eqos_mii_writereg;
1338 1.1 jmcneill mii->mii_statchg = eqos_mii_statchg;
1339 1.1 jmcneill mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id, MII_OFFSET_ANY,
1340 1.1 jmcneill mii_flags);
1341 1.1 jmcneill
1342 1.1 jmcneill if (LIST_EMPTY(&mii->mii_phys)) {
1343 1.1 jmcneill aprint_error_dev(sc->sc_dev, "no PHY found!\n");
1344 1.1 jmcneill return ENOENT;
1345 1.1 jmcneill }
1346 1.1 jmcneill ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1347 1.1 jmcneill
1348 1.2 mrg /* Master interrupt evcnt */
1349 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
1350 1.2 mrg NULL, device_xname(sc->sc_dev), "interrupts");
1351 1.2 mrg
1352 1.2 mrg /* Per-interrupt type, using main interrupt */
1353 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1354 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "rxintr");
1355 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
1356 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "txintr");
1357 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_mac, EVCNT_TYPE_INTR,
1358 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "macstatus");
1359 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl, EVCNT_TYPE_INTR,
1360 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "intrstatus");
1361 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_status, EVCNT_TYPE_INTR,
1362 1.2 mrg &sc->sc_ev_intr, device_xname(sc->sc_dev), "rxtxstatus");
1363 1.2 mrg
1364 1.3 mrg /* MAC Status specific type, using macstatus interrupt */
1365 1.3 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl_debugdata, EVCNT_TYPE_INTR,
1366 1.3 mrg &sc->sc_ev_mtl, device_xname(sc->sc_dev), "debugdata");
1367 1.3 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl_rxovfis, EVCNT_TYPE_INTR,
1368 1.3 mrg &sc->sc_ev_mtl, device_xname(sc->sc_dev), "rxovfis");
1369 1.3 mrg evcnt_attach_dynamic(&sc->sc_ev_mtl_txovfis, EVCNT_TYPE_INTR,
1370 1.3 mrg &sc->sc_ev_mtl, device_xname(sc->sc_dev), "txovfis");
1371 1.3 mrg
1372 1.2 mrg /* RX/TX Status specific type, using rxtxstatus interrupt */
1373 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_rwt, EVCNT_TYPE_INTR,
1374 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "rwt");
1375 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_excol, EVCNT_TYPE_INTR,
1376 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "excol");
1377 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_lcol, EVCNT_TYPE_INTR,
1378 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "lcol");
1379 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_exdef, EVCNT_TYPE_INTR,
1380 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "exdef");
1381 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_lcarr, EVCNT_TYPE_INTR,
1382 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "lcarr");
1383 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_ncarr, EVCNT_TYPE_INTR,
1384 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "ncarr");
1385 1.2 mrg evcnt_attach_dynamic(&sc->sc_ev_tjt, EVCNT_TYPE_INTR,
1386 1.2 mrg &sc->sc_ev_status, device_xname(sc->sc_dev), "tjt");
1387 1.2 mrg
1388 1.1 jmcneill /* Attach interface */
1389 1.1 jmcneill if_attach(ifp);
1390 1.1 jmcneill if_deferred_start_init(ifp, NULL);
1391 1.1 jmcneill
1392 1.1 jmcneill /* Attach ethernet interface */
1393 1.1 jmcneill ether_ifattach(ifp, eaddr);
1394 1.1 jmcneill
1395 1.1 jmcneill rnd_attach_source(&sc->sc_rndsource, ifp->if_xname, RND_TYPE_NET,
1396 1.1 jmcneill RND_FLAG_DEFAULT);
1397 1.1 jmcneill
1398 1.1 jmcneill return 0;
1399 1.1 jmcneill }
1400