dwc_eqos.c revision 1.2 1 /* $NetBSD: dwc_eqos.c,v 1.2 2022/01/08 22:24:53 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 2022 Jared McNeill <jmcneill (at) invisible.ca>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * DesignWare Ethernet Quality-of-Service controller
31 */
32
33 #include "opt_net_mpsafe.h"
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: dwc_eqos.c,v 1.2 2022/01/08 22:24:53 mrg Exp $");
37
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/device.h>
41 #include <sys/intr.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/mutex.h>
45 #include <sys/callout.h>
46 #include <sys/cprng.h>
47 #include <sys/evcnt.h>
48
49 #include <sys/rndsource.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/bpf.h>
56
57 #include <dev/mii/miivar.h>
58
59 #include <dev/ic/dwc_eqos_reg.h>
60 #include <dev/ic/dwc_eqos_var.h>
61
62 CTASSERT(MCLBYTES == 2048);
63 #ifdef EQOS_DEBUG
64 #define DPRINTF(...) printf(##__VA_ARGS__)
65 #else
66 #define DPRINTF(...) ((void)0)
67 #endif
68
69 #ifdef NET_MPSAFE
70 #define EQOS_MPSAFE 1
71 #define CALLOUT_FLAGS CALLOUT_MPSAFE
72 #else
73 #define CALLOUT_FLAGS 0
74 #endif
75
76 #define DESC_BOUNDARY (1ULL << 32)
77 #define DESC_ALIGN sizeof(struct eqos_dma_desc)
78 #define TX_DESC_COUNT EQOS_DMA_DESC_COUNT
79 #define TX_DESC_SIZE (TX_DESC_COUNT * DESC_ALIGN)
80 #define RX_DESC_COUNT EQOS_DMA_DESC_COUNT
81 #define RX_DESC_SIZE (RX_DESC_COUNT * DESC_ALIGN)
82 #define MII_BUSY_RETRY 1000
83
84 #define DESC_OFF(n) ((n) * sizeof(struct eqos_dma_desc))
85 #define TX_SKIP(n, o) (((n) + (o)) % TX_DESC_COUNT)
86 #define TX_NEXT(n) TX_SKIP(n, 1)
87 #define RX_NEXT(n) (((n) + 1) % RX_DESC_COUNT)
88
89 #define TX_MAX_SEGS 128
90
91 #define EQOS_LOCK(sc) mutex_enter(&(sc)->sc_lock)
92 #define EQOS_UNLOCK(sc) mutex_exit(&(sc)->sc_lock)
93 #define EQOS_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_lock))
94
95 #define EQOS_TXLOCK(sc) mutex_enter(&(sc)->sc_txlock)
96 #define EQOS_TXUNLOCK(sc) mutex_exit(&(sc)->sc_txlock)
97 #define EQOS_ASSERT_TXLOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_txlock))
98
99 #define EQOS_HW_FEATURE_ADDR64_32BIT(sc) \
100 (((sc)->sc_hw_feature[1] & GMAC_MAC_HW_FEATURE1_ADDR64_MASK) == \
101 GMAC_MAC_HW_FEATURE1_ADDR64_32BIT)
102
103
104 #define RD4(sc, reg) \
105 bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
106 #define WR4(sc, reg, val) \
107 bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
108
109 #define STUB(...) \
110 printf("%s: TODO\n", __func__); \
111
112 static int
113 eqos_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
114 {
115 struct eqos_softc *sc = device_private(dev);
116 uint32_t addr;
117 int retry;
118
119 addr = sc->sc_clock_range |
120 (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) |
121 (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) |
122 GMAC_MAC_MDIO_ADDRESS_GOC_READ |
123 GMAC_MAC_MDIO_ADDRESS_GB;
124 WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr);
125
126 delay(10000);
127
128 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
129 addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS);
130 if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) {
131 *val = RD4(sc, GMAC_MAC_MDIO_DATA) & 0xFFFF;
132 break;
133 }
134 delay(10);
135 }
136 if (retry == 0) {
137 device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
138 phy, reg);
139 return ETIMEDOUT;
140 }
141
142 return 0;
143 }
144
145 static int
146 eqos_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
147 {
148 struct eqos_softc *sc = device_private(dev);
149 uint32_t addr;
150 int retry;
151
152 WR4(sc, GMAC_MAC_MDIO_DATA, val);
153
154 addr = sc->sc_clock_range |
155 (phy << GMAC_MAC_MDIO_ADDRESS_PA_SHIFT) |
156 (reg << GMAC_MAC_MDIO_ADDRESS_RDA_SHIFT) |
157 GMAC_MAC_MDIO_ADDRESS_GOC_WRITE |
158 GMAC_MAC_MDIO_ADDRESS_GB;
159 WR4(sc, GMAC_MAC_MDIO_ADDRESS, addr);
160
161 delay(10000);
162
163 for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
164 addr = RD4(sc, GMAC_MAC_MDIO_ADDRESS);
165 if ((addr & GMAC_MAC_MDIO_ADDRESS_GB) == 0) {
166 break;
167 }
168 delay(10);
169 }
170 if (retry == 0) {
171 device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
172 phy, reg);
173 return ETIMEDOUT;
174 }
175
176 return 0;
177 }
178
179 static void
180 eqos_update_link(struct eqos_softc *sc)
181 {
182 struct mii_data *mii = &sc->sc_mii;
183 uint64_t baudrate;
184 uint32_t conf;
185
186 baudrate = ifmedia_baudrate(mii->mii_media_active);
187
188 conf = RD4(sc, GMAC_MAC_CONFIGURATION);
189 switch (baudrate) {
190 case IF_Mbps(10):
191 conf |= GMAC_MAC_CONFIGURATION_PS;
192 conf &= ~GMAC_MAC_CONFIGURATION_FES;
193 break;
194 case IF_Mbps(100):
195 conf |= GMAC_MAC_CONFIGURATION_PS;
196 conf |= GMAC_MAC_CONFIGURATION_FES;
197 break;
198 case IF_Gbps(1):
199 conf &= ~GMAC_MAC_CONFIGURATION_PS;
200 conf &= ~GMAC_MAC_CONFIGURATION_FES;
201 break;
202 case IF_Mbps(2500ULL):
203 conf &= ~GMAC_MAC_CONFIGURATION_PS;
204 conf |= GMAC_MAC_CONFIGURATION_FES;
205 break;
206 }
207
208 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
209 conf |= GMAC_MAC_CONFIGURATION_DM;
210 } else {
211 conf &= ~GMAC_MAC_CONFIGURATION_DM;
212 }
213
214 WR4(sc, GMAC_MAC_CONFIGURATION, conf);
215 }
216
217 static void
218 eqos_mii_statchg(struct ifnet *ifp)
219 {
220 struct eqos_softc * const sc = ifp->if_softc;
221
222 eqos_update_link(sc);
223 }
224
225 static void
226 eqos_dma_sync(struct eqos_softc *sc, bus_dmamap_t map,
227 u_int start, u_int end, u_int total, int flags)
228 {
229 if (end > start) {
230 bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start),
231 DESC_OFF(end) - DESC_OFF(start), flags);
232 } else {
233 bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(start),
234 DESC_OFF(total) - DESC_OFF(start), flags);
235 if (DESC_OFF(end) - DESC_OFF(0) > 0) {
236 bus_dmamap_sync(sc->sc_dmat, map, DESC_OFF(0),
237 DESC_OFF(end) - DESC_OFF(0), flags);
238 }
239 }
240 }
241
242 static void
243 eqos_setup_txdesc(struct eqos_softc *sc, int index, int flags,
244 bus_addr_t paddr, u_int len, u_int total_len)
245 {
246 uint32_t tdes2, tdes3;
247
248 if (paddr == 0 || len == 0) {
249 KASSERT(flags == 0);
250 tdes2 = 0;
251 tdes3 = 0;
252 --sc->sc_tx.queued;
253 } else {
254 tdes2 = (flags & EQOS_TDES3_LD) ? EQOS_TDES2_IOC : 0;
255 tdes3 = flags;
256 ++sc->sc_tx.queued;
257 }
258
259 KASSERT(!EQOS_HW_FEATURE_ADDR64_32BIT(sc) || (paddr >> 32) == 0);
260
261 sc->sc_tx.desc_ring[index].tdes0 = htole32((uint32_t)paddr);
262 sc->sc_tx.desc_ring[index].tdes1 = htole32((uint32_t)(paddr >> 32));
263 sc->sc_tx.desc_ring[index].tdes2 = htole32(tdes2 | len);
264 sc->sc_tx.desc_ring[index].tdes3 = htole32(tdes3 | total_len);
265 }
266
267 static int
268 eqos_setup_txbuf(struct eqos_softc *sc, int index, struct mbuf *m)
269 {
270 bus_dma_segment_t *segs;
271 int error, nsegs, cur, i;
272 uint32_t flags;
273 bool nospace;
274
275 /* at least one descriptor free ? */
276 if (sc->sc_tx.queued >= TX_DESC_COUNT - 1)
277 return -1;
278
279 error = bus_dmamap_load_mbuf(sc->sc_dmat,
280 sc->sc_tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
281 if (error == EFBIG) {
282 device_printf(sc->sc_dev,
283 "TX packet needs too many DMA segments, dropping...\n");
284 return -2;
285 }
286 if (error != 0) {
287 device_printf(sc->sc_dev,
288 "TX packet cannot be mapped, retried...\n");
289 return 0;
290 }
291
292 segs = sc->sc_tx.buf_map[index].map->dm_segs;
293 nsegs = sc->sc_tx.buf_map[index].map->dm_nsegs;
294
295 nospace = sc->sc_tx.queued >= TX_DESC_COUNT - nsegs;
296 if (nospace) {
297 bus_dmamap_unload(sc->sc_dmat,
298 sc->sc_tx.buf_map[index].map);
299 /* XXX coalesce and retry ? */
300 return -1;
301 }
302
303 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.buf_map[index].map,
304 0, sc->sc_tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
305
306 /* stored in same index as loaded map */
307 sc->sc_tx.buf_map[index].mbuf = m;
308
309 flags = EQOS_TDES3_FD;
310
311 for (cur = index, i = 0; i < nsegs; i++) {
312 if (i == nsegs - 1)
313 flags |= EQOS_TDES3_LD;
314
315 eqos_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
316 segs[i].ds_len, m->m_pkthdr.len);
317 flags &= ~EQOS_TDES3_FD;
318 cur = TX_NEXT(cur);
319
320 flags |= EQOS_TDES3_OWN;
321 }
322
323 /*
324 * Defer setting OWN bit on the first descriptor until all
325 * descriptors have been updated.
326 */
327 membar_sync();
328 sc->sc_tx.desc_ring[index].tdes3 |= htole32(EQOS_TDES3_OWN);
329
330 return nsegs;
331 }
332
333 static void
334 eqos_setup_rxdesc(struct eqos_softc *sc, int index, bus_addr_t paddr)
335 {
336 sc->sc_rx.desc_ring[index].tdes0 = htole32((uint32_t)paddr);
337 sc->sc_rx.desc_ring[index].tdes1 = htole32((uint32_t)(paddr >> 32));
338 sc->sc_rx.desc_ring[index].tdes2 = htole32(0);
339 membar_sync();
340 sc->sc_rx.desc_ring[index].tdes3 =
341 htole32(EQOS_TDES3_OWN | EQOS_TDES3_IOC | EQOS_TDES3_BUF1V);
342 }
343
344 static int
345 eqos_setup_rxbuf(struct eqos_softc *sc, int index, struct mbuf *m)
346 {
347 int error;
348
349 m_adj(m, ETHER_ALIGN);
350
351 error = bus_dmamap_load_mbuf(sc->sc_dmat,
352 sc->sc_rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT);
353 if (error != 0)
354 return error;
355
356 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map,
357 0, sc->sc_rx.buf_map[index].map->dm_mapsize,
358 BUS_DMASYNC_PREREAD);
359
360 sc->sc_rx.buf_map[index].mbuf = m;
361 eqos_setup_rxdesc(sc, index,
362 sc->sc_rx.buf_map[index].map->dm_segs[0].ds_addr);
363
364 return 0;
365 }
366
367 static struct mbuf *
368 eqos_alloc_mbufcl(struct eqos_softc *sc)
369 {
370 struct mbuf *m;
371
372 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
373 if (m != NULL)
374 m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
375
376 return m;
377 }
378
379 static void
380 eqos_enable_intr(struct eqos_softc *sc)
381 {
382 WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE,
383 GMAC_DMA_CHAN0_INTR_ENABLE_NIE |
384 GMAC_DMA_CHAN0_INTR_ENABLE_AIE |
385 GMAC_DMA_CHAN0_INTR_ENABLE_FBE |
386 GMAC_DMA_CHAN0_INTR_ENABLE_RIE |
387 GMAC_DMA_CHAN0_INTR_ENABLE_TIE);
388 }
389
390 static void
391 eqos_disable_intr(struct eqos_softc *sc)
392 {
393 WR4(sc, GMAC_DMA_CHAN0_INTR_ENABLE, 0);
394 }
395
396 static void
397 eqos_tick(void *softc)
398 {
399 struct eqos_softc *sc = softc;
400 struct mii_data *mii = &sc->sc_mii;
401 #ifndef EQOS_MPSAFE
402 int s = splnet();
403 #endif
404
405 EQOS_LOCK(sc);
406 mii_tick(mii);
407 callout_schedule(&sc->sc_stat_ch, hz);
408 EQOS_UNLOCK(sc);
409
410 #ifndef EQOS_MPSAFE
411 splx(s);
412 #endif
413 }
414
415 static uint32_t
416 eqos_bitrev32(uint32_t x)
417 {
418 x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
419 x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
420 x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
421 x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
422
423 return (x >> 16) | (x << 16);
424 }
425
426 static void
427 eqos_setup_rxfilter(struct eqos_softc *sc)
428 {
429 struct ethercom *ec = &sc->sc_ec;
430 struct ifnet *ifp = &ec->ec_if;
431 uint32_t pfil, crc, hashreg, hashbit, hash[2];
432 struct ether_multi *enm;
433 struct ether_multistep step;
434 const uint8_t *eaddr;
435 uint32_t val;
436
437 EQOS_ASSERT_LOCKED(sc);
438
439 pfil = RD4(sc, GMAC_MAC_PACKET_FILTER);
440 pfil &= ~(GMAC_MAC_PACKET_FILTER_PR |
441 GMAC_MAC_PACKET_FILTER_PM |
442 GMAC_MAC_PACKET_FILTER_HMC |
443 GMAC_MAC_PACKET_FILTER_PCF_MASK);
444 hash[0] = hash[1] = ~0U;
445
446 if ((ifp->if_flags & IFF_PROMISC) != 0) {
447 pfil |= GMAC_MAC_PACKET_FILTER_PR |
448 GMAC_MAC_PACKET_FILTER_PCF_ALL;
449 } else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
450 pfil |= GMAC_MAC_PACKET_FILTER_PM;
451 } else {
452 hash[0] = hash[1] = 0;
453 pfil |= GMAC_MAC_PACKET_FILTER_HMC;
454 ETHER_LOCK(ec);
455 ETHER_FIRST_MULTI(step, ec, enm);
456 while (enm != NULL) {
457 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
458 crc &= 0x7f;
459 crc = eqos_bitrev32(~crc) >> 26;
460 hashreg = (crc >> 5);
461 hashbit = (crc & 0x1f);
462 hash[hashreg] |= (1 << hashbit);
463 ETHER_NEXT_MULTI(step, enm);
464 }
465 ETHER_UNLOCK(ec);
466 }
467
468 /* Write our unicast address */
469 eaddr = CLLADDR(ifp->if_sadl);
470 val = eaddr[4] | (eaddr[5] << 8);
471 WR4(sc, GMAC_MAC_ADDRESS0_HIGH, val);
472 val = eaddr[0] | (eaddr[1] << 8) | (eaddr[2] << 16) |
473 (eaddr[3] << 24);
474 WR4(sc, GMAC_MAC_ADDRESS0_LOW, val);
475
476 /* Multicast hash filters */
477 WR4(sc, GMAC_MAC_HASH_TABLE_REG0, hash[1]);
478 WR4(sc, GMAC_MAC_HASH_TABLE_REG1, hash[0]);
479
480 /* Packet filter config */
481 WR4(sc, GMAC_MAC_PACKET_FILTER, pfil);
482 }
483
484 static int
485 eqos_reset(struct eqos_softc *sc)
486 {
487 uint32_t val;
488 int retry;
489
490 WR4(sc, GMAC_DMA_MODE, GMAC_DMA_MODE_SWR);
491 for (retry = 2000; retry > 0; retry--) {
492 delay(1000);
493 val = RD4(sc, GMAC_DMA_MODE);
494 if ((val & GMAC_DMA_MODE_SWR) == 0) {
495 return 0;
496 }
497 }
498
499 device_printf(sc->sc_dev, "reset timeout!\n");
500 return ETIMEDOUT;
501 }
502
503 static void
504 eqos_init_rings(struct eqos_softc *sc, int qid)
505 {
506 sc->sc_tx.queued = 0;
507
508 WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR_HI,
509 (uint32_t)(sc->sc_tx.desc_ring_paddr >> 32));
510 WR4(sc, GMAC_DMA_CHAN0_TX_BASE_ADDR,
511 (uint32_t)sc->sc_tx.desc_ring_paddr);
512 WR4(sc, GMAC_DMA_CHAN0_TX_RING_LEN, TX_DESC_COUNT - 1);
513
514 WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR_HI,
515 (uint32_t)(sc->sc_rx.desc_ring_paddr >> 32));
516 WR4(sc, GMAC_DMA_CHAN0_RX_BASE_ADDR,
517 (uint32_t)sc->sc_rx.desc_ring_paddr);
518 WR4(sc, GMAC_DMA_CHAN0_RX_RING_LEN, RX_DESC_COUNT - 1);
519 WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR,
520 (uint32_t)sc->sc_rx.desc_ring_paddr +
521 DESC_OFF((sc->sc_rx.cur - 1) % RX_DESC_COUNT));
522 }
523
524 static int
525 eqos_init_locked(struct eqos_softc *sc)
526 {
527 struct ifnet *ifp = &sc->sc_ec.ec_if;
528 struct mii_data *mii = &sc->sc_mii;
529 uint32_t val;
530
531 EQOS_ASSERT_LOCKED(sc);
532 EQOS_ASSERT_TXLOCKED(sc);
533
534 if ((ifp->if_flags & IFF_RUNNING) != 0)
535 return 0;
536
537 /* Setup TX/RX rings */
538 eqos_init_rings(sc, 0);
539
540 /* Setup RX filter */
541 eqos_setup_rxfilter(sc);
542
543 WR4(sc, GMAC_MAC_1US_TIC_COUNTER, (sc->sc_csr_clock / 1000000) - 1);
544
545 /* Enable transmit and receive DMA */
546 val = RD4(sc, GMAC_DMA_CHAN0_CONTROL);
547 val &= ~GMAC_DMA_CHAN0_CONTROL_DSL_MASK;
548 val |= ((DESC_ALIGN - 16) / 8) << GMAC_DMA_CHAN0_CONTROL_DSL_SHIFT;
549 val |= GMAC_DMA_CHAN0_CONTROL_PBLX8;
550 WR4(sc, GMAC_DMA_CHAN0_CONTROL, val);
551 val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL);
552 val |= GMAC_DMA_CHAN0_TX_CONTROL_OSP;
553 val |= GMAC_DMA_CHAN0_TX_CONTROL_START;
554 WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val);
555 val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL);
556 val &= ~GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_MASK;
557 val |= (MCLBYTES << GMAC_DMA_CHAN0_RX_CONTROL_RBSZ_SHIFT);
558 val |= GMAC_DMA_CHAN0_RX_CONTROL_START;
559 WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val);
560
561 /* Configure operation modes */
562 WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE,
563 GMAC_MTL_TXQ0_OPERATION_MODE_TSF |
564 GMAC_MTL_TXQ0_OPERATION_MODE_TXQEN_EN);
565 WR4(sc, GMAC_MTL_RXQ0_OPERATION_MODE,
566 GMAC_MTL_RXQ0_OPERATION_MODE_RSF |
567 GMAC_MTL_RXQ0_OPERATION_MODE_FEP |
568 GMAC_MTL_RXQ0_OPERATION_MODE_FUP);
569
570 /* Enable flow control */
571 val = RD4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL);
572 val |= 0xFFFFU << GMAC_MAC_Q0_TX_FLOW_CTRL_PT_SHIFT;
573 val |= GMAC_MAC_Q0_TX_FLOW_CTRL_TFE;
574 WR4(sc, GMAC_MAC_Q0_TX_FLOW_CTRL, val);
575 val = RD4(sc, GMAC_MAC_RX_FLOW_CTRL);
576 val |= GMAC_MAC_RX_FLOW_CTRL_RFE;
577 WR4(sc, GMAC_MAC_RX_FLOW_CTRL, val);
578
579 /* Enable transmitter and receiver */
580 val = RD4(sc, GMAC_MAC_CONFIGURATION);
581 val |= GMAC_MAC_CONFIGURATION_BE;
582 val |= GMAC_MAC_CONFIGURATION_JD;
583 val |= GMAC_MAC_CONFIGURATION_JE;
584 val |= GMAC_MAC_CONFIGURATION_DCRS;
585 val |= GMAC_MAC_CONFIGURATION_TE;
586 val |= GMAC_MAC_CONFIGURATION_RE;
587 WR4(sc, GMAC_MAC_CONFIGURATION, val);
588
589 /* Enable interrupts */
590 eqos_enable_intr(sc);
591
592 ifp->if_flags |= IFF_RUNNING;
593 ifp->if_flags &= ~IFF_OACTIVE;
594
595 mii_mediachg(mii);
596 callout_schedule(&sc->sc_stat_ch, hz);
597
598 return 0;
599 }
600
601 static int
602 eqos_init(struct ifnet *ifp)
603 {
604 struct eqos_softc *sc = ifp->if_softc;
605 int error;
606
607 EQOS_LOCK(sc);
608 EQOS_TXLOCK(sc);
609 error = eqos_init_locked(sc);
610 EQOS_TXUNLOCK(sc);
611 EQOS_UNLOCK(sc);
612
613 return error;
614 }
615
616 static void
617 eqos_stop_locked(struct eqos_softc *sc, int disable)
618 {
619 struct ifnet *ifp = &sc->sc_ec.ec_if;
620 uint32_t val;
621 int retry;
622
623 EQOS_ASSERT_LOCKED(sc);
624
625 callout_stop(&sc->sc_stat_ch);
626
627 mii_down(&sc->sc_mii);
628
629 /* Disable receiver */
630 val = RD4(sc, GMAC_MAC_CONFIGURATION);
631 val &= ~GMAC_MAC_CONFIGURATION_RE;
632 WR4(sc, GMAC_MAC_CONFIGURATION, val);
633
634 /* Stop receive DMA */
635 val = RD4(sc, GMAC_DMA_CHAN0_RX_CONTROL);
636 val &= ~GMAC_DMA_CHAN0_RX_CONTROL_START;
637 WR4(sc, GMAC_DMA_CHAN0_RX_CONTROL, val);
638
639 /* Stop transmit DMA */
640 val = RD4(sc, GMAC_DMA_CHAN0_TX_CONTROL);
641 val &= ~GMAC_DMA_CHAN0_TX_CONTROL_START;
642 WR4(sc, GMAC_DMA_CHAN0_TX_CONTROL, val);
643
644 if (disable) {
645 /* Flush data in the TX FIFO */
646 val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
647 val |= GMAC_MTL_TXQ0_OPERATION_MODE_FTQ;
648 WR4(sc, GMAC_MTL_TXQ0_OPERATION_MODE, val);
649 /* Wait for flush to complete */
650 for (retry = 10000; retry > 0; retry--) {
651 val = RD4(sc, GMAC_MTL_TXQ0_OPERATION_MODE);
652 if ((val & GMAC_MTL_TXQ0_OPERATION_MODE_FTQ) == 0) {
653 break;
654 }
655 delay(1);
656 }
657 if (retry == 0) {
658 device_printf(sc->sc_dev,
659 "timeout flushing TX queue\n");
660 }
661 }
662
663 /* Disable transmitter */
664 val = RD4(sc, GMAC_MAC_CONFIGURATION);
665 val &= ~GMAC_MAC_CONFIGURATION_TE;
666 WR4(sc, GMAC_MAC_CONFIGURATION, val);
667
668 /* Disable interrupts */
669 eqos_disable_intr(sc);
670
671 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
672 }
673
674 static void
675 eqos_stop(struct ifnet *ifp, int disable)
676 {
677 struct eqos_softc * const sc = ifp->if_softc;
678
679 EQOS_LOCK(sc);
680 eqos_stop_locked(sc, disable);
681 EQOS_UNLOCK(sc);
682 }
683
684 static void
685 eqos_rxintr(struct eqos_softc *sc, int qid)
686 {
687 struct ifnet *ifp = &sc->sc_ec.ec_if;
688 int error, index, len, pkts = 0;
689 struct mbuf *m, *m0;
690 uint32_t tdes3;
691
692 for (index = sc->sc_rx.cur; ; index = RX_NEXT(index)) {
693 eqos_dma_sync(sc, sc->sc_rx.desc_map,
694 index, index + 1, RX_DESC_COUNT,
695 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
696
697 tdes3 = le32toh(sc->sc_rx.desc_ring[index].tdes3);
698 if ((tdes3 & EQOS_TDES3_OWN) != 0) {
699 break;
700 }
701
702 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.buf_map[index].map,
703 0, sc->sc_rx.buf_map[index].map->dm_mapsize,
704 BUS_DMASYNC_POSTREAD);
705 bus_dmamap_unload(sc->sc_dmat,
706 sc->sc_rx.buf_map[index].map);
707
708 len = tdes3 & EQOS_TDES3_LENGTH_MASK;
709 if (len != 0) {
710 m = sc->sc_rx.buf_map[index].mbuf;
711 m_set_rcvif(m, ifp);
712 m->m_flags |= M_HASFCS;
713 m->m_pkthdr.len = len;
714 m->m_len = len;
715 m->m_nextpkt = NULL;
716
717 if_percpuq_enqueue(ifp->if_percpuq, m);
718 ++pkts;
719 }
720
721 if ((m0 = eqos_alloc_mbufcl(sc)) != NULL) {
722 error = eqos_setup_rxbuf(sc, index, m0);
723 if (error != 0) {
724 /* XXX hole in RX ring */
725 }
726 } else {
727 if_statinc(ifp, if_ierrors);
728 }
729 eqos_dma_sync(sc, sc->sc_rx.desc_map,
730 index, index + 1, RX_DESC_COUNT,
731 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
732
733 WR4(sc, GMAC_DMA_CHAN0_RX_END_ADDR,
734 (uint32_t)sc->sc_rx.desc_ring_paddr +
735 DESC_OFF(sc->sc_rx.cur));
736 }
737
738 sc->sc_rx.cur = index;
739
740 if (pkts != 0) {
741 rnd_add_uint32(&sc->sc_rndsource, pkts);
742 }
743 }
744
745 static void
746 eqos_txintr(struct eqos_softc *sc, int qid)
747 {
748 struct ifnet *ifp = &sc->sc_ec.ec_if;
749 struct eqos_bufmap *bmap;
750 struct eqos_dma_desc *desc;
751 uint32_t tdes3;
752 int i, pkts = 0;
753
754 EQOS_ASSERT_LOCKED(sc);
755
756 for (i = sc->sc_tx.next; sc->sc_tx.queued > 0; i = TX_NEXT(i)) {
757 KASSERT(sc->sc_tx.queued > 0);
758 KASSERT(sc->sc_tx.queued <= TX_DESC_COUNT);
759 eqos_dma_sync(sc, sc->sc_tx.desc_map,
760 i, i + 1, TX_DESC_COUNT,
761 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
762 desc = &sc->sc_tx.desc_ring[i];
763 tdes3 = le32toh(desc->tdes3);
764 if ((tdes3 & EQOS_TDES3_OWN) != 0) {
765 break;
766 }
767 bmap = &sc->sc_tx.buf_map[i];
768 if (bmap->mbuf != NULL) {
769 bus_dmamap_sync(sc->sc_dmat, bmap->map,
770 0, bmap->map->dm_mapsize,
771 BUS_DMASYNC_POSTWRITE);
772 bus_dmamap_unload(sc->sc_dmat, bmap->map);
773 m_freem(bmap->mbuf);
774 bmap->mbuf = NULL;
775 ++pkts;
776 }
777
778 eqos_setup_txdesc(sc, i, 0, 0, 0, 0);
779 eqos_dma_sync(sc, sc->sc_tx.desc_map,
780 i, i + 1, TX_DESC_COUNT,
781 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
782
783 ifp->if_flags &= ~IFF_OACTIVE;
784
785 /* Last descriptor in a packet contains DMA status */
786 if ((tdes3 & EQOS_TDES3_LD) != 0) {
787 if ((tdes3 & EQOS_TDES3_DE) != 0) {
788 device_printf(sc->sc_dev,
789 "TX [%u] desc error: 0x%08x\n",
790 i, tdes3);
791 if_statinc(ifp, if_oerrors);
792 } else if ((tdes3 & EQOS_TDES3_ES) != 0) {
793 device_printf(sc->sc_dev,
794 "TX [%u] tx error: 0x%08x\n",
795 i, tdes3);
796 if_statinc(ifp, if_oerrors);
797 } else {
798 if_statinc(ifp, if_opackets);
799 }
800 }
801
802 }
803
804 sc->sc_tx.next = i;
805
806 if (pkts != 0) {
807 rnd_add_uint32(&sc->sc_rndsource, pkts);
808 }
809 }
810
811 static void
812 eqos_start_locked(struct eqos_softc *sc)
813 {
814 struct ifnet *ifp = &sc->sc_ec.ec_if;
815 struct mbuf *m;
816 int cnt, nsegs, start;
817
818 EQOS_ASSERT_TXLOCKED(sc);
819
820 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
821 return;
822
823 for (cnt = 0, start = sc->sc_tx.cur; ; cnt++) {
824 if (sc->sc_tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
825 ifp->if_flags |= IFF_OACTIVE;
826 break;
827 }
828
829 IFQ_POLL(&ifp->if_snd, m);
830 if (m == NULL) {
831 break;
832 }
833
834 nsegs = eqos_setup_txbuf(sc, sc->sc_tx.cur, m);
835 if (nsegs <= 0) {
836 if (nsegs == -1) {
837 ifp->if_flags |= IFF_OACTIVE;
838 } else if (nsegs == -2) {
839 IFQ_DEQUEUE(&ifp->if_snd, m);
840 m_freem(m);
841 }
842 break;
843 }
844
845 IFQ_DEQUEUE(&ifp->if_snd, m);
846 bpf_mtap(ifp, m, BPF_D_OUT);
847
848 sc->sc_tx.cur = TX_SKIP(sc->sc_tx.cur, nsegs);
849 }
850
851 if (cnt != 0) {
852 eqos_dma_sync(sc, sc->sc_tx.desc_map,
853 start, sc->sc_tx.cur, TX_DESC_COUNT,
854 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
855
856 /* Start and run TX DMA */
857 WR4(sc, GMAC_DMA_CHAN0_TX_END_ADDR,
858 (uint32_t)sc->sc_tx.desc_ring_paddr +
859 DESC_OFF(sc->sc_tx.cur));
860 }
861 }
862
863 static void
864 eqos_start(struct ifnet *ifp)
865 {
866 struct eqos_softc *sc = ifp->if_softc;
867
868 EQOS_TXLOCK(sc);
869 eqos_start_locked(sc);
870 EQOS_TXUNLOCK(sc);
871 }
872
873 int
874 eqos_intr(void *arg)
875 {
876 struct eqos_softc *sc = arg;
877 struct ifnet *ifp = &sc->sc_ec.ec_if;
878 uint32_t mac_status, mtl_status, dma_status, rx_tx_status;
879
880 sc->sc_ev_intr.ev_count++;
881
882 mac_status = RD4(sc, GMAC_MAC_INTERRUPT_STATUS);
883 mac_status &= RD4(sc, GMAC_MAC_INTERRUPT_ENABLE);
884
885 if (mac_status) {
886 sc->sc_ev_mac.ev_count++;
887 #ifdef DEBUG_LOUD
888 device_printf(sc->sc_dev,
889 "GMAC_MAC_INTERRUPT_STATUS = 0x%08X\n", mac_status);
890 #endif
891 }
892
893 mtl_status = RD4(sc, GMAC_MTL_INTERRUPT_STATUS);
894 if (mtl_status) {
895 sc->sc_ev_mtl.ev_count++;
896 #ifdef DEBUG_LOUD
897 device_printf(sc->sc_dev,
898 "GMAC_MTL_INTERRUPT_STATUS = 0x%08X\n", mtl_status);
899 #endif
900 }
901
902 dma_status = RD4(sc, GMAC_DMA_CHAN0_STATUS);
903 dma_status &= RD4(sc, GMAC_DMA_CHAN0_INTR_ENABLE);
904 if (dma_status) {
905 WR4(sc, GMAC_DMA_CHAN0_STATUS, dma_status);
906 }
907
908 EQOS_LOCK(sc);
909 if ((dma_status & GMAC_DMA_CHAN0_STATUS_RI) != 0) {
910 eqos_rxintr(sc, 0);
911 sc->sc_ev_rxintr.ev_count++;
912 }
913
914 if ((dma_status & GMAC_DMA_CHAN0_STATUS_TI) != 0) {
915 eqos_txintr(sc, 0);
916 if_schedule_deferred_start(ifp);
917 sc->sc_ev_txintr.ev_count++;
918 }
919 EQOS_UNLOCK(sc);
920
921 #ifdef DEBUG_LOUD
922 if ((mac_status | mtl_status | dma_status) == 0) {
923 device_printf(sc->sc_dev, "spurious interrupt?!\n");
924 }
925 #endif
926
927 rx_tx_status = RD4(sc, GMAC_MAC_RX_TX_STATUS);
928 if (rx_tx_status) {
929 sc->sc_ev_status.ev_count++;
930 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_RWT) != 0)
931 sc->sc_ev_rwt.ev_count++;
932 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXCOL) != 0)
933 sc->sc_ev_excol.ev_count++;
934 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCOL) != 0)
935 sc->sc_ev_lcol.ev_count++;
936 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_EXDEF) != 0)
937 sc->sc_ev_exdef.ev_count++;
938 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_LCARR) != 0)
939 sc->sc_ev_lcarr.ev_count++;
940 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_NCARR) != 0)
941 sc->sc_ev_ncarr.ev_count++;
942 if ((rx_tx_status & GMAC_MAC_RX_TX_STATUS_TJT) != 0)
943 sc->sc_ev_tjt.ev_count++;
944 #ifdef DEBUG_LOUD
945 device_printf(sc->sc_dev, "GMAC_MAC_RX_TX_STATUS = 0x%08x\n",
946 rx_tx_status);
947 #endif
948 }
949
950 return 1;
951 }
952
953 static int
954 eqos_ioctl(struct ifnet *ifp, u_long cmd, void *data)
955 {
956 struct eqos_softc *sc = ifp->if_softc;
957 int error, s;
958
959 #ifndef EQOS_MPSAFE
960 s = splnet();
961 #endif
962
963 switch (cmd) {
964 default:
965 #ifdef EQOS_MPSAFE
966 s = splnet();
967 #endif
968 error = ether_ioctl(ifp, cmd, data);
969 #ifdef EQOS_MPSAFE
970 splx(s);
971 #endif
972 if (error != ENETRESET)
973 break;
974
975 error = 0;
976
977 if (cmd == SIOCSIFCAP)
978 error = (*ifp->if_init)(ifp);
979 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
980 ;
981 else if ((ifp->if_flags & IFF_RUNNING) != 0) {
982 EQOS_LOCK(sc);
983 eqos_setup_rxfilter(sc);
984 EQOS_UNLOCK(sc);
985 }
986 break;
987 }
988
989 #ifndef EQOS_MPSAFE
990 splx(s);
991 #endif
992
993 return error;
994 }
995
996 static void
997 eqos_get_eaddr(struct eqos_softc *sc, uint8_t *eaddr)
998 {
999 prop_dictionary_t prop = device_properties(sc->sc_dev);
1000 uint32_t maclo, machi;
1001 prop_data_t eaprop;
1002
1003 eaprop = prop_dictionary_get(prop, "mac-address");
1004 if (eaprop != NULL) {
1005 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
1006 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
1007 memcpy(eaddr, prop_data_value(eaprop),
1008 ETHER_ADDR_LEN);
1009 return;
1010 }
1011
1012 maclo = htobe32(RD4(sc, GMAC_MAC_ADDRESS0_LOW));
1013 machi = htobe16(RD4(sc, GMAC_MAC_ADDRESS0_HIGH) & 0xFFFF);
1014
1015 if (maclo == 0xFFFFFFFF && machi == 0xFFFF) {
1016 /* Create one */
1017 maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
1018 machi = cprng_strong32() & 0xffff;
1019 }
1020
1021 eaddr[0] = maclo & 0xff;
1022 eaddr[1] = (maclo >> 8) & 0xff;
1023 eaddr[2] = (maclo >> 16) & 0xff;
1024 eaddr[3] = (maclo >> 24) & 0xff;
1025 eaddr[4] = machi & 0xff;
1026 eaddr[5] = (machi >> 8) & 0xff;
1027 }
1028
1029 static void
1030 eqos_axi_configure(struct eqos_softc *sc)
1031 {
1032 prop_dictionary_t prop = device_properties(sc->sc_dev);
1033 uint32_t val;
1034 u_int uival;
1035 bool bval;
1036
1037 val = RD4(sc, GMAC_DMA_SYSBUS_MODE);
1038 if (prop_dictionary_get_bool(prop, "snps,mixed-burst", &bval) && bval) {
1039 val |= GMAC_DMA_SYSBUS_MODE_MB;
1040 }
1041 if (prop_dictionary_get_bool(prop, "snps,fixed-burst", &bval) && bval) {
1042 val |= GMAC_DMA_SYSBUS_MODE_FB;
1043 }
1044 if (prop_dictionary_get_uint(prop, "snps,wr_osr_lmt", &uival)) {
1045 val &= ~GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_MASK;
1046 val |= uival << GMAC_DMA_SYSBUS_MODE_WR_OSR_LMT_SHIFT;
1047 }
1048 if (prop_dictionary_get_uint(prop, "snps,rd_osr_lmt", &uival)) {
1049 val &= ~GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_MASK;
1050 val |= uival << GMAC_DMA_SYSBUS_MODE_RD_OSR_LMT_SHIFT;
1051 }
1052
1053 if (!EQOS_HW_FEATURE_ADDR64_32BIT(sc)) {
1054 val |= GMAC_DMA_SYSBUS_MODE_EAME;
1055 }
1056
1057 /* XXX */
1058 val |= GMAC_DMA_SYSBUS_MODE_BLEN16;
1059 val |= GMAC_DMA_SYSBUS_MODE_BLEN8;
1060 val |= GMAC_DMA_SYSBUS_MODE_BLEN4;
1061
1062 WR4(sc, GMAC_DMA_SYSBUS_MODE, val);
1063 }
1064
1065 static int
1066 eqos_setup_dma(struct eqos_softc *sc, int qid)
1067 {
1068 struct mbuf *m;
1069 int error, nsegs, i;
1070
1071 /* Setup TX ring */
1072 error = bus_dmamap_create(sc->sc_dmat, TX_DESC_SIZE, 1, TX_DESC_SIZE,
1073 DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_tx.desc_map);
1074 if (error) {
1075 return error;
1076 }
1077 error = bus_dmamem_alloc(sc->sc_dmat, TX_DESC_SIZE, DESC_ALIGN,
1078 DESC_BOUNDARY, &sc->sc_tx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1079 if (error) {
1080 return error;
1081 }
1082 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_tx.desc_dmaseg, nsegs,
1083 TX_DESC_SIZE, (void *)&sc->sc_tx.desc_ring, BUS_DMA_WAITOK);
1084 if (error) {
1085 return error;
1086 }
1087 error = bus_dmamap_load(sc->sc_dmat, sc->sc_tx.desc_map,
1088 sc->sc_tx.desc_ring, TX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1089 if (error) {
1090 return error;
1091 }
1092 sc->sc_tx.desc_ring_paddr = sc->sc_tx.desc_map->dm_segs[0].ds_addr;
1093
1094 memset(sc->sc_tx.desc_ring, 0, TX_DESC_SIZE);
1095 bus_dmamap_sync(sc->sc_dmat, sc->sc_tx.desc_map, 0, TX_DESC_SIZE,
1096 BUS_DMASYNC_PREWRITE);
1097
1098 sc->sc_tx.queued = TX_DESC_COUNT;
1099 for (i = 0; i < TX_DESC_COUNT; i++) {
1100 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1101 TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
1102 &sc->sc_tx.buf_map[i].map);
1103 if (error != 0) {
1104 device_printf(sc->sc_dev,
1105 "cannot create TX buffer map\n");
1106 return error;
1107 }
1108 eqos_setup_txdesc(sc, i, 0, 0, 0, 0);
1109 }
1110
1111 /* Setup RX ring */
1112 error = bus_dmamap_create(sc->sc_dmat, RX_DESC_SIZE, 1, RX_DESC_SIZE,
1113 DESC_BOUNDARY, BUS_DMA_WAITOK, &sc->sc_rx.desc_map);
1114 if (error) {
1115 return error;
1116 }
1117 error = bus_dmamem_alloc(sc->sc_dmat, RX_DESC_SIZE, DESC_ALIGN,
1118 DESC_BOUNDARY, &sc->sc_rx.desc_dmaseg, 1, &nsegs, BUS_DMA_WAITOK);
1119 if (error) {
1120 return error;
1121 }
1122 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_rx.desc_dmaseg, nsegs,
1123 RX_DESC_SIZE, (void *)&sc->sc_rx.desc_ring, BUS_DMA_WAITOK);
1124 if (error) {
1125 return error;
1126 }
1127 error = bus_dmamap_load(sc->sc_dmat, sc->sc_rx.desc_map,
1128 sc->sc_rx.desc_ring, RX_DESC_SIZE, NULL, BUS_DMA_WAITOK);
1129 if (error) {
1130 return error;
1131 }
1132 sc->sc_rx.desc_ring_paddr = sc->sc_rx.desc_map->dm_segs[0].ds_addr;
1133
1134 memset(sc->sc_rx.desc_ring, 0, RX_DESC_SIZE);
1135
1136 for (i = 0; i < RX_DESC_COUNT; i++) {
1137 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1138 RX_DESC_COUNT, MCLBYTES, 0, BUS_DMA_WAITOK,
1139 &sc->sc_rx.buf_map[i].map);
1140 if (error != 0) {
1141 device_printf(sc->sc_dev,
1142 "cannot create RX buffer map\n");
1143 return error;
1144 }
1145 if ((m = eqos_alloc_mbufcl(sc)) == NULL) {
1146 device_printf(sc->sc_dev, "cannot allocate RX mbuf\n");
1147 return ENOMEM;
1148 }
1149 error = eqos_setup_rxbuf(sc, i, m);
1150 if (error != 0) {
1151 device_printf(sc->sc_dev, "cannot create RX buffer\n");
1152 return error;
1153 }
1154 }
1155 bus_dmamap_sync(sc->sc_dmat, sc->sc_rx.desc_map,
1156 0, sc->sc_rx.desc_map->dm_mapsize,
1157 BUS_DMASYNC_PREWRITE);
1158
1159 aprint_debug_dev(sc->sc_dev, "TX ring @ 0x%lX, RX ring @ 0x%lX\n",
1160 sc->sc_tx.desc_ring_paddr, sc->sc_rx.desc_ring_paddr);
1161
1162 return 0;
1163 }
1164
1165 int
1166 eqos_attach(struct eqos_softc *sc)
1167 {
1168 struct mii_data *mii = &sc->sc_mii;
1169 struct ifnet *ifp = &sc->sc_ec.ec_if;
1170 uint8_t eaddr[ETHER_ADDR_LEN];
1171 u_int userver, snpsver;
1172 int mii_flags = 0;
1173 int error;
1174 int n;
1175
1176 const uint32_t ver = RD4(sc, GMAC_MAC_VERSION);
1177 userver = (ver & GMAC_MAC_VERSION_USERVER_MASK) >>
1178 GMAC_MAC_VERSION_USERVER_SHIFT;
1179 snpsver = ver & GMAC_MAC_VERSION_SNPSVER_MASK;
1180
1181 if (snpsver != 0x51) {
1182 aprint_error(": EQOS version 0x%02xx not supported\n",
1183 snpsver);
1184 return ENXIO;
1185 }
1186
1187 if (sc->sc_csr_clock < 20000000) {
1188 aprint_error(": CSR clock too low\n");
1189 return EINVAL;
1190 } else if (sc->sc_csr_clock < 35000000) {
1191 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_20_35;
1192 } else if (sc->sc_csr_clock < 60000000) {
1193 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_35_60;
1194 } else if (sc->sc_csr_clock < 100000000) {
1195 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_60_100;
1196 } else if (sc->sc_csr_clock < 150000000) {
1197 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_100_150;
1198 } else if (sc->sc_csr_clock < 250000000) {
1199 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_150_250;
1200 } else if (sc->sc_csr_clock < 300000000) {
1201 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_300_500;
1202 } else if (sc->sc_csr_clock < 800000000) {
1203 sc->sc_clock_range = GMAC_MAC_MDIO_ADDRESS_CR_500_800;
1204 } else {
1205 aprint_error(": CSR clock too high\n");
1206 return EINVAL;
1207 }
1208
1209 for (n = 0; n < 4; n++) {
1210 sc->sc_hw_feature[n] = RD4(sc, GMAC_MAC_HW_FEATURE(n));
1211 }
1212
1213 aprint_naive("\n");
1214 aprint_normal(": DesignWare EQOS ver 0x%02x (0x%02x)\n",
1215 snpsver, userver);
1216 aprint_verbose_dev(sc->sc_dev, "hw features %08x %08x %08x %08x\n",
1217 sc->sc_hw_feature[0], sc->sc_hw_feature[1],
1218 sc->sc_hw_feature[2], sc->sc_hw_feature[3]);
1219
1220 if (EQOS_HW_FEATURE_ADDR64_32BIT(sc)) {
1221 bus_dma_tag_t ntag;
1222
1223 error = bus_dmatag_subregion(sc->sc_dmat, 0, UINT32_MAX,
1224 &ntag, 0);
1225 if (error) {
1226 aprint_error_dev(sc->sc_dev,
1227 "failed to restrict DMA: %d\n", error);
1228 return error;
1229 }
1230 aprint_verbose_dev(sc->sc_dev, "using 32-bit DMA\n");
1231 sc->sc_dmat = ntag;
1232 }
1233
1234 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
1235 mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_NET);
1236 callout_init(&sc->sc_stat_ch, CALLOUT_FLAGS);
1237 callout_setfunc(&sc->sc_stat_ch, eqos_tick, sc);
1238
1239 eqos_get_eaddr(sc, eaddr);
1240 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", ether_sprintf(eaddr));
1241
1242 /* Soft reset EMAC core */
1243 error = eqos_reset(sc);
1244 if (error != 0) {
1245 return error;
1246 }
1247
1248 /* Configure AXI Bus mode parameters */
1249 eqos_axi_configure(sc);
1250
1251 /* Setup DMA descriptors */
1252 if (eqos_setup_dma(sc, 0) != 0) {
1253 aprint_error_dev(sc->sc_dev, "failed to setup DMA descriptors\n");
1254 return EINVAL;
1255 }
1256
1257 /* Setup ethernet interface */
1258 ifp->if_softc = sc;
1259 snprintf(ifp->if_xname, IFNAMSIZ, "%s", device_xname(sc->sc_dev));
1260 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1261 #ifdef EQOS_MPSAFE
1262 ifp->if_extflags = IFEF_MPSAFE;
1263 #endif
1264 ifp->if_start = eqos_start;
1265 ifp->if_ioctl = eqos_ioctl;
1266 ifp->if_init = eqos_init;
1267 ifp->if_stop = eqos_stop;
1268 ifp->if_capabilities = 0;
1269 ifp->if_capenable = ifp->if_capabilities;
1270 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
1271 IFQ_SET_READY(&ifp->if_snd);
1272
1273 /* 802.1Q VLAN-sized frames are supported */
1274 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
1275
1276 /* Attach MII driver */
1277 sc->sc_ec.ec_mii = mii;
1278 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1279 mii->mii_ifp = ifp;
1280 mii->mii_readreg = eqos_mii_readreg;
1281 mii->mii_writereg = eqos_mii_writereg;
1282 mii->mii_statchg = eqos_mii_statchg;
1283 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id, MII_OFFSET_ANY,
1284 mii_flags);
1285
1286 if (LIST_EMPTY(&mii->mii_phys)) {
1287 aprint_error_dev(sc->sc_dev, "no PHY found!\n");
1288 return ENOENT;
1289 }
1290 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1291
1292 /* Master interrupt evcnt */
1293 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
1294 NULL, device_xname(sc->sc_dev), "interrupts");
1295
1296 /* Per-interrupt type, using main interrupt */
1297 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
1298 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rxintr");
1299 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
1300 &sc->sc_ev_intr, device_xname(sc->sc_dev), "txintr");
1301 evcnt_attach_dynamic(&sc->sc_ev_mac, EVCNT_TYPE_INTR,
1302 &sc->sc_ev_intr, device_xname(sc->sc_dev), "macstatus");
1303 evcnt_attach_dynamic(&sc->sc_ev_mtl, EVCNT_TYPE_INTR,
1304 &sc->sc_ev_intr, device_xname(sc->sc_dev), "intrstatus");
1305 evcnt_attach_dynamic(&sc->sc_ev_status, EVCNT_TYPE_INTR,
1306 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rxtxstatus");
1307
1308 /* RX/TX Status specific type, using rxtxstatus interrupt */
1309 evcnt_attach_dynamic(&sc->sc_ev_rwt, EVCNT_TYPE_INTR,
1310 &sc->sc_ev_status, device_xname(sc->sc_dev), "rwt");
1311 evcnt_attach_dynamic(&sc->sc_ev_excol, EVCNT_TYPE_INTR,
1312 &sc->sc_ev_status, device_xname(sc->sc_dev), "excol");
1313 evcnt_attach_dynamic(&sc->sc_ev_lcol, EVCNT_TYPE_INTR,
1314 &sc->sc_ev_status, device_xname(sc->sc_dev), "lcol");
1315 evcnt_attach_dynamic(&sc->sc_ev_exdef, EVCNT_TYPE_INTR,
1316 &sc->sc_ev_status, device_xname(sc->sc_dev), "exdef");
1317 evcnt_attach_dynamic(&sc->sc_ev_lcarr, EVCNT_TYPE_INTR,
1318 &sc->sc_ev_status, device_xname(sc->sc_dev), "lcarr");
1319 evcnt_attach_dynamic(&sc->sc_ev_ncarr, EVCNT_TYPE_INTR,
1320 &sc->sc_ev_status, device_xname(sc->sc_dev), "ncarr");
1321 evcnt_attach_dynamic(&sc->sc_ev_tjt, EVCNT_TYPE_INTR,
1322 &sc->sc_ev_status, device_xname(sc->sc_dev), "tjt");
1323
1324 /* Attach interface */
1325 if_attach(ifp);
1326 if_deferred_start_init(ifp, NULL);
1327
1328 /* Attach ethernet interface */
1329 ether_ifattach(ifp, eaddr);
1330
1331 rnd_attach_source(&sc->sc_rndsource, ifp->if_xname, RND_TYPE_NET,
1332 RND_FLAG_DEFAULT);
1333
1334 return 0;
1335 }
1336