elink3.c revision 1.103 1 /* $NetBSD: elink3.c,v 1.103 2002/06/08 16:59:26 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.103 2002/06/08 16:59:26 yamt Exp $");
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/kernel.h>
83 #include <sys/mbuf.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/syslog.h>
88 #include <sys/select.h>
89 #include <sys/device.h>
90 #if NRND > 0
91 #include <sys/rnd.h>
92 #endif
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_ether.h>
97 #include <net/if_media.h>
98
99 #if NBPFILTER > 0
100 #include <net/bpf.h>
101 #include <net/bpfdesc.h>
102 #endif
103
104 #include <machine/cpu.h>
105 #include <machine/bus.h>
106 #include <machine/intr.h>
107
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 #include <dev/mii/mii_bitbang.h>
111
112 #include <dev/ic/elink3var.h>
113 #include <dev/ic/elink3reg.h>
114
115 #ifdef DEBUG
116 int epdebug = 0;
117 #endif
118
119 /*
120 * XXX endian workaround for big-endian CPUs with pcmcia:
121 * if stream methods for bus_space_multi are not provided, define them
122 * using non-stream bus_space_{read,write}_multi_.
123 * Assumes host CPU is same endian-ness as bus.
124 */
125 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
126 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
127 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
128 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
129 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
130 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
131
132 /*
133 * Structure to map media-present bits in boards to ifmedia codes and
134 * printable media names. Used for table-driven ifmedia initialization.
135 */
136 struct ep_media {
137 int epm_mpbit; /* media present bit */
138 const char *epm_name; /* name of medium */
139 int epm_ifmedia; /* ifmedia word for medium */
140 int epm_epmedia; /* ELINKMEDIA_* constant */
141 };
142
143 /*
144 * Media table for the Demon/Vortex/Boomerang chipsets.
145 *
146 * Note that MII on the Demon and Vortex (3c59x) indicates an external
147 * MII connector (for connecting an external PHY) ... I think. Treat
148 * it as `manual' on these chips.
149 *
150 * Any Boomerang (3c90x) chips with MII really do have an internal
151 * MII and real PHYs attached; no `native' media.
152 */
153 const struct ep_media ep_vortex_media[] = {
154 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
155 ELINKMEDIA_10BASE_T },
156 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
157 ELINKMEDIA_10BASE_T },
158 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
159 ELINKMEDIA_AUI },
160 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
161 ELINKMEDIA_10BASE_2 },
162 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
163 ELINKMEDIA_100BASE_TX },
164 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
165 ELINKMEDIA_100BASE_TX },
166 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
167 ELINKMEDIA_100BASE_FX },
168 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
169 ELINKMEDIA_MII },
170 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
171 ELINKMEDIA_100BASE_T4 },
172 { 0, NULL, 0,
173 0 },
174 };
175
176 /*
177 * Media table for the older 3Com Etherlink III chipset, used
178 * in the 3c509, 3c579, and 3c589.
179 */
180 const struct ep_media ep_509_media[] = {
181 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
182 ELINKMEDIA_10BASE_T },
183 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
184 ELINKMEDIA_AUI },
185 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
186 ELINKMEDIA_10BASE_2 },
187 { 0, NULL, 0,
188 0 },
189 };
190
191 void ep_internalconfig __P((struct ep_softc *sc));
192 void ep_vortex_probemedia __P((struct ep_softc *sc));
193 void ep_509_probemedia __P((struct ep_softc *sc));
194
195 static void eptxstat __P((struct ep_softc *));
196 static int epstatus __P((struct ep_softc *));
197 int epinit __P((struct ifnet *));
198 void epstop __P((struct ifnet *, int));
199 int epioctl __P((struct ifnet *, u_long, caddr_t));
200 void epstart __P((struct ifnet *));
201 void epwatchdog __P((struct ifnet *));
202 void epreset __P((struct ep_softc *));
203 static void epshutdown __P((void *));
204 void epread __P((struct ep_softc *));
205 struct mbuf *epget __P((struct ep_softc *, int));
206 void epmbuffill __P((void *));
207 void epmbufempty __P((struct ep_softc *));
208 void epsetfilter __P((struct ep_softc *));
209 void ep_roadrunner_mii_enable __P((struct ep_softc *));
210 void epsetmedia __P((struct ep_softc *));
211
212 /* ifmedia callbacks */
213 int ep_media_change __P((struct ifnet *ifp));
214 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
215
216 /* MII callbacks */
217 int ep_mii_readreg __P((struct device *, int, int));
218 void ep_mii_writereg __P((struct device *, int, int, int));
219 void ep_statchg __P((struct device *));
220
221 void ep_tick __P((void *));
222
223 static int epbusyeeprom __P((struct ep_softc *));
224 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
225 static inline void ep_reset_cmd __P((struct ep_softc *sc,
226 u_int cmd, u_int arg));
227 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
228 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
229 static __inline int ep_w1_reg __P((struct ep_softc *, int));
230
231 /*
232 * MII bit-bang glue.
233 */
234 u_int32_t ep_mii_bitbang_read __P((struct device *));
235 void ep_mii_bitbang_write __P((struct device *, u_int32_t));
236
237 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
238 ep_mii_bitbang_read,
239 ep_mii_bitbang_write,
240 {
241 PHYSMGMT_DATA, /* MII_BIT_MDO */
242 PHYSMGMT_DATA, /* MII_BIT_MDI */
243 PHYSMGMT_CLK, /* MII_BIT_MDC */
244 PHYSMGMT_DIR, /* MII_BIT_DIR_HOST_PHY */
245 0, /* MII_BIT_DIR_PHY_HOST */
246 }
247 };
248
249 /*
250 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
251 * Window 1 registers offset!
252 */
253 static __inline int
254 ep_w1_reg(sc, reg)
255 struct ep_softc *sc;
256 int reg;
257 {
258
259 switch (sc->ep_chipset) {
260 case ELINK_CHIPSET_CORKSCREW:
261 return (reg + 0x10);
262
263 case ELINK_CHIPSET_ROADRUNNER:
264 switch (reg) {
265 case ELINK_W1_FREE_TX:
266 case ELINK_W1_RUNNER_RDCTL:
267 case ELINK_W1_RUNNER_WRCTL:
268 return (reg);
269 }
270 return (reg + 0x10);
271 }
272
273 return (reg);
274 }
275
276 /*
277 * Wait for any pending reset to complete.
278 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
279 * but older hardware doesn't implement it and we must delay.
280 */
281 static inline void
282 ep_finish_reset(iot, ioh)
283 bus_space_tag_t iot;
284 bus_space_handle_t ioh;
285 {
286 int i;
287
288 for (i = 0; i < 10000; i++) {
289 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
290 COMMAND_IN_PROGRESS) == 0)
291 break;
292 DELAY(10);
293 }
294 }
295
296 /*
297 * Issue a (reset) command, and be sure it has completed.
298 * Used for global reset, TX_RESET, RX_RESET.
299 */
300 static inline void
301 ep_reset_cmd(sc, cmd, arg)
302 struct ep_softc *sc;
303 u_int cmd, arg;
304 {
305 bus_space_tag_t iot = sc->sc_iot;
306 bus_space_handle_t ioh = sc->sc_ioh;
307
308 bus_space_write_2(iot, ioh, cmd, arg);
309 ep_finish_reset(iot, ioh);
310 }
311
312
313 static inline void
314 ep_discard_rxtop(iot, ioh)
315 bus_space_tag_t iot;
316 bus_space_handle_t ioh;
317 {
318 int i;
319
320 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
321
322 /*
323 * Spin for about 1 msec, to avoid forcing a DELAY() between
324 * every received packet (adding latency and limiting pkt-recv rate).
325 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
326 * is about right.
327 */
328 for (i = 0; i < 8000; i++) {
329 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
330 COMMAND_IN_PROGRESS) == 0)
331 return;
332 }
333
334 /* Didn't complete in a hurry. Do DELAY()s. */
335 ep_finish_reset(iot, ioh);
336 }
337
338 /*
339 * Back-end attach and configure.
340 */
341 int
342 epconfig(sc, chipset, enaddr)
343 struct ep_softc *sc;
344 u_short chipset;
345 u_int8_t *enaddr;
346 {
347 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
348 bus_space_tag_t iot = sc->sc_iot;
349 bus_space_handle_t ioh = sc->sc_ioh;
350 u_int16_t i;
351 u_int8_t myla[ETHER_ADDR_LEN];
352
353 callout_init(&sc->sc_mii_callout);
354 callout_init(&sc->sc_mbuf_callout);
355
356 sc->ep_chipset = chipset;
357
358 /*
359 * We could have been groveling around in other register
360 * windows in the front-end; make sure we're in window 0
361 * to read the EEPROM.
362 */
363 GO_WINDOW(0);
364
365 if (enaddr == NULL) {
366 /*
367 * Read the station address from the eeprom.
368 */
369 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
370 u_int16_t x = ep_read_eeprom(sc, i);
371 myla[(i << 1)] = x >> 8;
372 myla[(i << 1) + 1] = x;
373 }
374 enaddr = myla;
375 }
376
377 /*
378 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
379 * allow FDDI-sized (4500) byte packets. Commands only take an
380 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
381 * packet length.
382 * Commands to these cards implicitly upshift a packet size
383 * or threshold by 2 bits.
384 * To detect cards with large-packet support, we probe by setting
385 * the transmit threshold register, then change windows and
386 * read back the threshold register directly, and see if the
387 * threshold value was shifted or not.
388 */
389 bus_space_write_2(iot, ioh, ELINK_COMMAND,
390 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
391 GO_WINDOW(5);
392 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
393 GO_WINDOW(1);
394 switch (i) {
395 case ELINK_LARGEWIN_PROBE:
396 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
397 sc->ep_pktlenshift = 0;
398 break;
399
400 case (ELINK_LARGEWIN_PROBE << 2):
401 sc->ep_pktlenshift = 2;
402 break;
403
404 default:
405 printf("%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
406 "Interface disabled\n",
407 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
408 return (1);
409 }
410
411 /*
412 * Ensure Tx-available interrupts are enabled for
413 * start the interface.
414 * XXX should be in epinit()?
415 */
416 bus_space_write_2(iot, ioh, ELINK_COMMAND,
417 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
418
419 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
420 ifp->if_softc = sc;
421 ifp->if_start = epstart;
422 ifp->if_ioctl = epioctl;
423 ifp->if_watchdog = epwatchdog;
424 ifp->if_init = epinit;
425 ifp->if_stop = epstop;
426 ifp->if_flags =
427 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
428 IFQ_SET_READY(&ifp->if_snd);
429
430 if_attach(ifp);
431 ether_ifattach(ifp, enaddr);
432
433 /*
434 * Finish configuration:
435 * determine chipset if the front-end couldn't do so,
436 * show board details, set media.
437 */
438
439 /*
440 * Print RAM size. We also print the Ethernet address in here.
441 * It's extracted from the ifp, so we have to make sure it's
442 * been attached first.
443 */
444 ep_internalconfig(sc);
445 GO_WINDOW(0);
446
447 /*
448 * Display some additional information, if pertinent.
449 */
450 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
451 printf("%s: RoadRunner FIFO buffer enabled\n",
452 sc->sc_dev.dv_xname);
453
454 /*
455 * Initialize our media structures and MII info. We'll
456 * probe the MII if we discover that we have one.
457 */
458 sc->sc_mii.mii_ifp = ifp;
459 sc->sc_mii.mii_readreg = ep_mii_readreg;
460 sc->sc_mii.mii_writereg = ep_mii_writereg;
461 sc->sc_mii.mii_statchg = ep_statchg;
462 ifmedia_init(&sc->sc_mii.mii_media, 0, ep_media_change,
463 ep_media_status);
464
465 /*
466 * All CORKSCREW chips have MII.
467 */
468 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
469 sc->ep_flags |= ELINK_FLAGS_MII;
470
471 /*
472 * Now, determine which media we have.
473 */
474 switch (sc->ep_chipset) {
475 case ELINK_CHIPSET_ROADRUNNER:
476 if (sc->ep_flags & ELINK_FLAGS_MII) {
477 ep_roadrunner_mii_enable(sc);
478 GO_WINDOW(0);
479 }
480 /* FALLTHROUGH */
481
482 case ELINK_CHIPSET_CORKSCREW:
483 case ELINK_CHIPSET_BOOMERANG:
484 /*
485 * If the device has MII, probe it. We won't be using
486 * any `native' media in this case, only PHYs. If
487 * we don't, just treat the Boomerang like the Vortex.
488 */
489 if (sc->ep_flags & ELINK_FLAGS_MII) {
490 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
491 MII_PHY_ANY, MII_OFFSET_ANY, 0);
492 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
493 ifmedia_add(&sc->sc_mii.mii_media,
494 IFM_ETHER|IFM_NONE, 0, NULL);
495 ifmedia_set(&sc->sc_mii.mii_media,
496 IFM_ETHER|IFM_NONE);
497 } else {
498 ifmedia_set(&sc->sc_mii.mii_media,
499 IFM_ETHER|IFM_AUTO);
500 }
501 break;
502 }
503 /* FALLTHROUGH */
504
505 case ELINK_CHIPSET_VORTEX:
506 ep_vortex_probemedia(sc);
507 break;
508
509 default:
510 ep_509_probemedia(sc);
511 break;
512 }
513
514 GO_WINDOW(1); /* Window 1 is operating window */
515
516 #if NRND > 0
517 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
518 RND_TYPE_NET, 0);
519 #endif
520
521 sc->tx_start_thresh = 20; /* probably a good starting point. */
522
523 /* Establish callback to reset card when we reboot. */
524 sc->sd_hook = shutdownhook_establish(epshutdown, sc);
525
526 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
527 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
528
529 /* The attach is successful. */
530 sc->sc_flags |= ELINK_FLAGS_ATTACHED;
531 return (0);
532 }
533
534
535 /*
536 * Show interface-model-independent info from window 3
537 * internal-configuration register.
538 */
539 void
540 ep_internalconfig(sc)
541 struct ep_softc *sc;
542 {
543 bus_space_tag_t iot = sc->sc_iot;
544 bus_space_handle_t ioh = sc->sc_ioh;
545
546 u_int config0;
547 u_int config1;
548
549 int ram_size, ram_width, ram_speed, rom_size, ram_split;
550 /*
551 * NVRAM buffer Rx:Tx config names for busmastering cards
552 * (Demon, Vortex, and later).
553 */
554 const char *const onboard_ram_config[] = {
555 "5:3", "3:1", "1:1", "3:5" };
556
557 GO_WINDOW(3);
558 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
559 config1 = (u_int)bus_space_read_2(iot, ioh,
560 ELINK_W3_INTERNAL_CONFIG + 2);
561 GO_WINDOW(0);
562
563 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
564 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
565 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
566 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
567
568 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
569
570 printf("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
571 sc->sc_dev.dv_xname,
572 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
573 8 << ram_size,
574 (ram_width) ? "word" : "byte",
575 onboard_ram_config[ram_split]);
576 }
577
578
579 /*
580 * Find supported media on 3c509-generation hardware that doesn't have
581 * a "reset_options" register in window 3.
582 * Use the config_cntrl register in window 0 instead.
583 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
584 * that implement CONFIG_CTRL. We don't have a good way to set the
585 * default active medium; punt to ifconfig instead.
586 */
587 void
588 ep_509_probemedia(sc)
589 struct ep_softc *sc;
590 {
591 bus_space_tag_t iot = sc->sc_iot;
592 bus_space_handle_t ioh = sc->sc_ioh;
593 struct ifmedia *ifm = &sc->sc_mii.mii_media;
594 u_int16_t ep_w0_config, port;
595 const struct ep_media *epm;
596 const char *sep = "", *defmedianame = NULL;
597 int defmedia = 0;
598
599 GO_WINDOW(0);
600 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
601
602 printf("%s: ", sc->sc_dev.dv_xname);
603
604 /* Sanity check that there are any media! */
605 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
606 printf("no media present!\n");
607 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
608 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
609 return;
610 }
611
612 /*
613 * Get the default media from the EEPROM.
614 */
615 port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
616
617 #define PRINT(str) printf("%s%s", sep, str); sep = ", "
618
619 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
620 if (ep_w0_config & epm->epm_mpbit) {
621 /*
622 * This simple test works because 509 chipsets
623 * don't do full-duplex.
624 */
625 if (epm->epm_epmedia == port || defmedia == 0) {
626 defmedia = epm->epm_ifmedia;
627 defmedianame = epm->epm_name;
628 }
629 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
630 NULL);
631 PRINT(epm->epm_name);
632 }
633 }
634
635 #undef PRINT
636
637 #ifdef DIAGNOSTIC
638 if (defmedia == 0)
639 panic("ep_509_probemedia: impossible");
640 #endif
641
642 printf(" (default %s)\n", defmedianame);
643 ifmedia_set(ifm, defmedia);
644 }
645
646 /*
647 * Find media present on large-packet-capable elink3 devices.
648 * Show onboard configuration of large-packet-capable elink3 devices
649 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
650 * Use media and card-version info in window 3 instead.
651 */
652 void
653 ep_vortex_probemedia(sc)
654 struct ep_softc *sc;
655 {
656 bus_space_tag_t iot = sc->sc_iot;
657 bus_space_handle_t ioh = sc->sc_ioh;
658 struct ifmedia *ifm = &sc->sc_mii.mii_media;
659 const struct ep_media *epm;
660 u_int config1;
661 int reset_options;
662 int default_media; /* 3-bit encoding of default (EEPROM) media */
663 int defmedia = 0;
664 const char *sep = "", *defmedianame = NULL;
665
666 GO_WINDOW(3);
667 config1 = (u_int)bus_space_read_2(iot, ioh,
668 ELINK_W3_INTERNAL_CONFIG + 2);
669 reset_options = (int)bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
670 GO_WINDOW(0);
671
672 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
673
674 printf("%s: ", sc->sc_dev.dv_xname);
675
676 /* Sanity check that there are any media! */
677 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
678 printf("no media present!\n");
679 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
680 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
681 return;
682 }
683
684 #define PRINT(str) printf("%s%s", sep, str); sep = ", "
685
686 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
687 if (reset_options & epm->epm_mpbit) {
688 /*
689 * Default media is a little more complicated
690 * on the Vortex. We support full-duplex which
691 * uses the same reset options bit.
692 *
693 * XXX Check EEPROM for default to FDX?
694 */
695 if (epm->epm_epmedia == default_media) {
696 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
697 defmedia = epm->epm_ifmedia;
698 defmedianame = epm->epm_name;
699 }
700 } else if (defmedia == 0) {
701 defmedia = epm->epm_ifmedia;
702 defmedianame = epm->epm_name;
703 }
704 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
705 NULL);
706 PRINT(epm->epm_name);
707 }
708 }
709
710 #undef PRINT
711
712 #ifdef DIAGNOSTIC
713 if (defmedia == 0)
714 panic("ep_vortex_probemedia: impossible");
715 #endif
716
717 printf(" (default %s)\n", defmedianame);
718 ifmedia_set(ifm, defmedia);
719 }
720
721 /*
722 * One second timer, used to tick the MII.
723 */
724 void
725 ep_tick(arg)
726 void *arg;
727 {
728 struct ep_softc *sc = arg;
729 int s;
730
731 #ifdef DIAGNOSTIC
732 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
733 panic("ep_tick");
734 #endif
735
736 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
737 return;
738
739 s = splnet();
740 mii_tick(&sc->sc_mii);
741 splx(s);
742
743 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
744 }
745
746 /*
747 * Bring device up.
748 *
749 * The order in here seems important. Otherwise we may not receive
750 * interrupts. ?!
751 */
752 int
753 epinit(ifp)
754 struct ifnet *ifp;
755 {
756 struct ep_softc *sc = ifp->if_softc;
757 bus_space_tag_t iot = sc->sc_iot;
758 bus_space_handle_t ioh = sc->sc_ioh;
759 int i, error;
760
761 if (!sc->enabled && (error = epenable(sc)) != 0)
762 return (error);
763
764 /* Make sure any pending reset has completed before touching board */
765 ep_finish_reset(iot, ioh);
766
767 /*
768 * Cancel any pending I/O.
769 */
770 epstop(ifp, 0);
771
772 if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
773 && sc->bustype != ELINK_BUS_MCA) {
774 GO_WINDOW(0);
775 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
776 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
777 ENABLE_DRQ_IRQ);
778 }
779
780 if (sc->bustype == ELINK_BUS_PCMCIA) {
781 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
782 }
783
784 GO_WINDOW(2);
785 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
786 bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
787 LLADDR(ifp->if_sadl)[i]);
788
789 /*
790 * Reset the station-address receive filter.
791 * A bug workaround for busmastering (Vortex, Demon) cards.
792 */
793 for (i = 0; i < 6; i++)
794 bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
795
796 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
797 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
798
799 GO_WINDOW(1); /* Window 1 is operating window */
800 for (i = 0; i < 31; i++)
801 bus_space_read_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
802
803 /* Set threshold for Tx-space available interrupt. */
804 bus_space_write_2(iot, ioh, ELINK_COMMAND,
805 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
806
807 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
808 /*
809 * Enable options in the PCMCIA LAN COR register, via
810 * RoadRunner Window 1.
811 *
812 * XXX MAGIC CONSTANTS!
813 */
814 u_int16_t cor;
815
816 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
817
818 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
819 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
820 cor |= 0x10;
821 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
822 cor |= 0x20;
823 bus_space_write_2(iot, ioh, 0, cor);
824
825 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
826 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
827
828 if (sc->ep_flags & ELINK_FLAGS_MII) {
829 ep_roadrunner_mii_enable(sc);
830 GO_WINDOW(1);
831 }
832 }
833
834 /* Enable interrupts. */
835 bus_space_write_2(iot, ioh, ELINK_COMMAND,
836 SET_RD_0_MASK | WATCHED_INTERRUPTS);
837 bus_space_write_2(iot, ioh, ELINK_COMMAND,
838 SET_INTR_MASK | WATCHED_INTERRUPTS);
839
840 /*
841 * Attempt to get rid of any stray interrupts that occurred during
842 * configuration. On the i386 this isn't possible because one may
843 * already be queued. However, a single stray interrupt is
844 * unimportant.
845 */
846 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
847
848 epsetfilter(sc);
849 epsetmedia(sc);
850
851 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
852 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
853
854 epmbuffill(sc);
855
856 /* Interface is now `running', with no output active. */
857 ifp->if_flags |= IFF_RUNNING;
858 ifp->if_flags &= ~IFF_OACTIVE;
859
860 if (sc->ep_flags & ELINK_FLAGS_MII) {
861 /* Start the one second clock. */
862 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
863 }
864
865 /* Attempt to start output, if any. */
866 epstart(ifp);
867
868 return (0);
869 }
870
871
872 /*
873 * Set multicast receive filter.
874 * elink3 hardware has no selective multicast filter in hardware.
875 * Enable reception of all multicasts and filter in software.
876 */
877 void
878 epsetfilter(sc)
879 struct ep_softc *sc;
880 {
881 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
882
883 GO_WINDOW(1); /* Window 1 is operating window */
884 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
885 SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
886 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
887 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
888 }
889
890 int
891 ep_media_change(ifp)
892 struct ifnet *ifp;
893 {
894 struct ep_softc *sc = ifp->if_softc;
895
896 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
897 epreset(sc);
898
899 return (0);
900 }
901
902 /*
903 * Reset and enable the MII on the RoadRunner.
904 */
905 void
906 ep_roadrunner_mii_enable(sc)
907 struct ep_softc *sc;
908 {
909 bus_space_tag_t iot = sc->sc_iot;
910 bus_space_handle_t ioh = sc->sc_ioh;
911
912 GO_WINDOW(3);
913 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
914 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
915 delay(1000);
916 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
917 ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
918 ELINK_RUNNER_ENABLE_MII);
919 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
920 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
921 delay(1000);
922 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
923 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
924 }
925
926 /*
927 * Set the card to use the specified media.
928 */
929 void
930 epsetmedia(sc)
931 struct ep_softc *sc;
932 {
933 bus_space_tag_t iot = sc->sc_iot;
934 bus_space_handle_t ioh = sc->sc_ioh;
935
936 /* Turn everything off. First turn off linkbeat and UTP. */
937 GO_WINDOW(4);
938 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
939
940 /* Turn off coax */
941 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
942 delay(1000);
943
944 /*
945 * If the device has MII, select it, and then tell the
946 * PHY which media to use.
947 */
948 if (sc->ep_flags & ELINK_FLAGS_MII) {
949 int config0, config1;
950
951 GO_WINDOW(3);
952
953 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
954 int resopt;
955
956 resopt = bus_space_read_2(iot, ioh,
957 ELINK_W3_RESET_OPTIONS);
958 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
959 resopt | ELINK_RUNNER_ENABLE_MII);
960 }
961
962 config0 = (u_int)bus_space_read_2(iot, ioh,
963 ELINK_W3_INTERNAL_CONFIG);
964 config1 = (u_int)bus_space_read_2(iot, ioh,
965 ELINK_W3_INTERNAL_CONFIG + 2);
966
967 config1 = config1 & ~CONFIG_MEDIAMASK;
968 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
969
970 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
971 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
972 config1);
973 GO_WINDOW(1); /* back to operating window */
974
975 mii_mediachg(&sc->sc_mii);
976 return;
977 }
978
979 /*
980 * Now turn on the selected media/transceiver.
981 */
982 GO_WINDOW(4);
983 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
984 case IFM_10_T:
985 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
986 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
987 break;
988
989 case IFM_10_2:
990 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
991 DELAY(1000); /* 50ms not enmough? */
992 break;
993
994 case IFM_100_TX:
995 case IFM_100_FX:
996 case IFM_100_T4: /* XXX check documentation */
997 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
998 LINKBEAT_ENABLE);
999 DELAY(1000); /* not strictly necessary? */
1000 break;
1001
1002 case IFM_10_5:
1003 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
1004 SQE_ENABLE);
1005 DELAY(1000); /* not strictly necessary? */
1006 break;
1007
1008 case IFM_MANUAL:
1009 /*
1010 * Nothing to do here; we are actually enabling the
1011 * external PHY on the MII port.
1012 */
1013 break;
1014
1015 case IFM_NONE:
1016 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
1017 return;
1018
1019 default:
1020 panic("epsetmedia: impossible");
1021 }
1022
1023 /*
1024 * Tell the chip which port to use.
1025 */
1026 switch (sc->ep_chipset) {
1027 case ELINK_CHIPSET_VORTEX:
1028 case ELINK_CHIPSET_BOOMERANG:
1029 {
1030 int mctl, config0, config1;
1031
1032 GO_WINDOW(3);
1033 config0 = (u_int)bus_space_read_2(iot, ioh,
1034 ELINK_W3_INTERNAL_CONFIG);
1035 config1 = (u_int)bus_space_read_2(iot, ioh,
1036 ELINK_W3_INTERNAL_CONFIG + 2);
1037
1038 config1 = config1 & ~CONFIG_MEDIAMASK;
1039 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1040 CONFIG_MEDIAMASK_SHIFT);
1041
1042 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1043 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1044 config1);
1045
1046 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1047 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1048 mctl |= MAC_CONTROL_FDX;
1049 else
1050 mctl &= ~MAC_CONTROL_FDX;
1051 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1052 break;
1053 }
1054 default:
1055 {
1056 int w0_addr_cfg;
1057
1058 GO_WINDOW(0);
1059 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1060 w0_addr_cfg &= 0x3fff;
1061 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1062 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1063 DELAY(1000);
1064 break;
1065 }
1066 }
1067
1068 GO_WINDOW(1); /* Window 1 is operating window */
1069 }
1070
1071 /*
1072 * Get currently-selected media from card.
1073 * (if_media callback, may be called before interface is brought up).
1074 */
1075 void
1076 ep_media_status(ifp, req)
1077 struct ifnet *ifp;
1078 struct ifmediareq *req;
1079 {
1080 struct ep_softc *sc = ifp->if_softc;
1081 bus_space_tag_t iot = sc->sc_iot;
1082 bus_space_handle_t ioh = sc->sc_ioh;
1083
1084 if (sc->enabled == 0) {
1085 req->ifm_active = IFM_ETHER|IFM_NONE;
1086 req->ifm_status = 0;
1087 return;
1088 }
1089
1090 /*
1091 * If we have MII, go ask the PHY what's going on.
1092 */
1093 if (sc->ep_flags & ELINK_FLAGS_MII) {
1094 mii_pollstat(&sc->sc_mii);
1095 req->ifm_active = sc->sc_mii.mii_media_active;
1096 req->ifm_status = sc->sc_mii.mii_media_status;
1097 return;
1098 }
1099
1100 /*
1101 * Ok, at this point we claim that our active media is
1102 * the currently selected media. We'll update our status
1103 * if our chipset allows us to detect link.
1104 */
1105 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1106 req->ifm_status = 0;
1107
1108 switch (sc->ep_chipset) {
1109 case ELINK_CHIPSET_VORTEX:
1110 case ELINK_CHIPSET_BOOMERANG:
1111 GO_WINDOW(4);
1112 req->ifm_status = IFM_AVALID;
1113 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1114 LINKBEAT_DETECT)
1115 req->ifm_status |= IFM_ACTIVE;
1116 GO_WINDOW(1); /* back to operating window */
1117 break;
1118 }
1119 }
1120
1121
1122
1123 /*
1124 * Start outputting on the interface.
1125 * Always called as splnet().
1126 */
1127 void
1128 epstart(ifp)
1129 struct ifnet *ifp;
1130 {
1131 struct ep_softc *sc = ifp->if_softc;
1132 bus_space_tag_t iot = sc->sc_iot;
1133 bus_space_handle_t ioh = sc->sc_ioh;
1134 struct mbuf *m, *m0;
1135 int sh, len, pad;
1136 bus_size_t txreg;
1137
1138 /* Don't transmit if interface is busy or not running */
1139 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1140 return;
1141
1142 startagain:
1143 /* Sneak a peek at the next packet */
1144 IFQ_POLL(&ifp->if_snd, m0);
1145 if (m0 == 0)
1146 return;
1147
1148 /* We need to use m->m_pkthdr.len, so require the header */
1149 if ((m0->m_flags & M_PKTHDR) == 0)
1150 panic("epstart: no header mbuf");
1151 len = m0->m_pkthdr.len;
1152
1153 pad = (4 - len) & 3;
1154
1155 /*
1156 * The 3c509 automatically pads short packets to minimum ethernet
1157 * length, but we drop packets that are too large. Perhaps we should
1158 * truncate them instead?
1159 */
1160 if (len + pad > ETHER_MAX_LEN) {
1161 /* packet is obviously too large: toss it */
1162 ++ifp->if_oerrors;
1163 IFQ_DEQUEUE(&ifp->if_snd, m0);
1164 m_freem(m0);
1165 goto readcheck;
1166 }
1167
1168 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1169 len + pad + 4) {
1170 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1171 SET_TX_AVAIL_THRESH |
1172 ((len + pad + 4) >> sc->ep_pktlenshift));
1173 /* not enough room in FIFO */
1174 ifp->if_flags |= IFF_OACTIVE;
1175 return;
1176 } else {
1177 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1178 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1179 }
1180
1181 IFQ_DEQUEUE(&ifp->if_snd, m0);
1182 if (m0 == 0) /* not really needed */
1183 return;
1184
1185 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1186 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1187
1188 #if NBPFILTER > 0
1189 if (ifp->if_bpf)
1190 bpf_mtap(ifp->if_bpf, m0);
1191 #endif
1192
1193 /*
1194 * Do the output at a high interrupt priority level so that an
1195 * interrupt from another device won't cause a FIFO underrun.
1196 * We choose splsched() since that blocks essentially everything
1197 * except for interrupts from serial devices (which typically
1198 * lose data if their interrupt isn't serviced fast enough).
1199 *
1200 * XXX THIS CAN CAUSE CLOCK DRIFT!
1201 */
1202 sh = splsched();
1203
1204 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1205
1206 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1207 /*
1208 * Prime the FIFO buffer counter (number of 16-bit
1209 * words about to be written to the FIFO).
1210 *
1211 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1212 * COUNTER IS NON-ZERO!
1213 */
1214 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1215 (len + pad) >> 1);
1216 }
1217
1218 bus_space_write_2(iot, ioh, txreg, len);
1219 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1220 if (ELINK_IS_BUS_32(sc->bustype)) {
1221 for (m = m0; m;) {
1222 if (m->m_len > 3) {
1223 /* align our reads from core */
1224 if (mtod(m, u_long) & 3) {
1225 u_long count =
1226 4 - (mtod(m, u_long) & 3);
1227 bus_space_write_multi_1(iot, ioh,
1228 txreg, mtod(m, u_int8_t *), count);
1229 m->m_data =
1230 (void *)(mtod(m, u_long) + count);
1231 m->m_len -= count;
1232 }
1233 bus_space_write_multi_stream_4(iot, ioh,
1234 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1235 m->m_data = (void *)(mtod(m, u_long) +
1236 (u_long)(m->m_len & ~3));
1237 m->m_len -= m->m_len & ~3;
1238 }
1239 if (m->m_len) {
1240 bus_space_write_multi_1(iot, ioh,
1241 txreg, mtod(m, u_int8_t *), m->m_len);
1242 }
1243 MFREE(m, m0);
1244 m = m0;
1245 }
1246 } else {
1247 for (m = m0; m;) {
1248 if (m->m_len > 1) {
1249 if (mtod(m, u_long) & 1) {
1250 bus_space_write_1(iot, ioh,
1251 txreg, *(mtod(m, u_int8_t *)));
1252 m->m_data =
1253 (void *)(mtod(m, u_long) + 1);
1254 m->m_len -= 1;
1255 }
1256 bus_space_write_multi_stream_2(iot, ioh,
1257 txreg, mtod(m, u_int16_t *),
1258 m->m_len >> 1);
1259 }
1260 if (m->m_len & 1) {
1261 bus_space_write_1(iot, ioh, txreg,
1262 *(mtod(m, u_int8_t *) + m->m_len - 1));
1263 }
1264 MFREE(m, m0);
1265 m = m0;
1266 }
1267 }
1268 while (pad--)
1269 bus_space_write_1(iot, ioh, txreg, 0);
1270
1271 splx(sh);
1272
1273 ++ifp->if_opackets;
1274
1275 readcheck:
1276 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1277 ERR_INCOMPLETE) == 0) {
1278 /* We received a complete packet. */
1279 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1280
1281 if ((status & INTR_LATCH) == 0) {
1282 /*
1283 * No interrupt, read the packet and continue
1284 * Is this supposed to happen? Is my motherboard
1285 * completely busted?
1286 */
1287 epread(sc);
1288 } else {
1289 /* Got an interrupt, return so that it gets serviced. */
1290 return;
1291 }
1292 } else {
1293 /* Check if we are stuck and reset [see XXX comment] */
1294 if (epstatus(sc)) {
1295 if (ifp->if_flags & IFF_DEBUG)
1296 printf("%s: adapter reset\n",
1297 sc->sc_dev.dv_xname);
1298 epreset(sc);
1299 }
1300 }
1301
1302 goto startagain;
1303 }
1304
1305
1306 /*
1307 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1308 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1309 * We detect this situation and we reset the adapter.
1310 * It happens at times when there is a lot of broadcast traffic
1311 * on the cable (once in a blue moon).
1312 */
1313 static int
1314 epstatus(sc)
1315 struct ep_softc *sc;
1316 {
1317 bus_space_tag_t iot = sc->sc_iot;
1318 bus_space_handle_t ioh = sc->sc_ioh;
1319 u_int16_t fifost;
1320
1321 /*
1322 * Check the FIFO status and act accordingly
1323 */
1324 GO_WINDOW(4);
1325 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1326 GO_WINDOW(1);
1327
1328 if (fifost & FIFOS_RX_UNDERRUN) {
1329 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1330 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1331 epreset(sc);
1332 return 0;
1333 }
1334
1335 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1336 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1337 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1338 return 1;
1339 }
1340
1341 if (fifost & FIFOS_RX_OVERRUN) {
1342 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1343 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1344 return 1;
1345 }
1346
1347 if (fifost & FIFOS_TX_OVERRUN) {
1348 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1349 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1350 epreset(sc);
1351 return 0;
1352 }
1353
1354 return 0;
1355 }
1356
1357
1358 static void
1359 eptxstat(sc)
1360 struct ep_softc *sc;
1361 {
1362 bus_space_tag_t iot = sc->sc_iot;
1363 bus_space_handle_t ioh = sc->sc_ioh;
1364 int i;
1365
1366 /*
1367 * We need to read+write TX_STATUS until we get a 0 status
1368 * in order to turn off the interrupt flag.
1369 */
1370 while ((i = bus_space_read_1(iot, ioh,
1371 ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1372 bus_space_write_1(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1373 0x0);
1374
1375 if (i & TXS_JABBER) {
1376 ++sc->sc_ethercom.ec_if.if_oerrors;
1377 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1378 printf("%s: jabber (%x)\n",
1379 sc->sc_dev.dv_xname, i);
1380 epreset(sc);
1381 } else if (i & TXS_UNDERRUN) {
1382 ++sc->sc_ethercom.ec_if.if_oerrors;
1383 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1384 printf("%s: fifo underrun (%x) @%d\n",
1385 sc->sc_dev.dv_xname, i,
1386 sc->tx_start_thresh);
1387 if (sc->tx_succ_ok < 100)
1388 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1389 sc->tx_start_thresh + 20);
1390 sc->tx_succ_ok = 0;
1391 epreset(sc);
1392 } else if (i & TXS_MAX_COLLISION) {
1393 ++sc->sc_ethercom.ec_if.if_collisions;
1394 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1395 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1396 } else
1397 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1398 }
1399 }
1400
1401 int
1402 epintr(arg)
1403 void *arg;
1404 {
1405 struct ep_softc *sc = arg;
1406 bus_space_tag_t iot = sc->sc_iot;
1407 bus_space_handle_t ioh = sc->sc_ioh;
1408 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1409 u_int16_t status;
1410 int ret = 0;
1411
1412 if (sc->enabled == 0 ||
1413 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1414 return (0);
1415
1416
1417 for (;;) {
1418 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1419
1420 if ((status & WATCHED_INTERRUPTS) == 0) {
1421 if ((status & INTR_LATCH) == 0) {
1422 #if 0
1423 printf("%s: intr latch cleared\n",
1424 sc->sc_dev.dv_xname);
1425 #endif
1426 break;
1427 }
1428 }
1429
1430 ret = 1;
1431
1432 /*
1433 * Acknowledge any interrupts. It's important that we do this
1434 * first, since there would otherwise be a race condition.
1435 * Due to the i386 interrupt queueing, we may get spurious
1436 * interrupts occasionally.
1437 */
1438 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1439 (status & (INTR_LATCH | ALL_INTERRUPTS)));
1440
1441 #if 0
1442 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1443
1444 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1445 (status & RX_COMPLETE)?" RX_COMPLETE":"",
1446 (status & TX_COMPLETE)?" TX_COMPLETE":"",
1447 (status & TX_AVAIL)?" TX_AVAIL":"",
1448 (status & CARD_FAILURE)?" CARD_FAILURE":"");
1449 #endif
1450
1451 if (status & RX_COMPLETE) {
1452 epread(sc);
1453 }
1454 if (status & TX_AVAIL) {
1455 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1456 epstart(&sc->sc_ethercom.ec_if);
1457 }
1458 if (status & CARD_FAILURE) {
1459 printf("%s: adapter failure (%x)\n",
1460 sc->sc_dev.dv_xname, status);
1461 #if 1
1462 epinit(ifp);
1463 #else
1464 epreset(sc);
1465 #endif
1466 return (1);
1467 }
1468 if (status & TX_COMPLETE) {
1469 eptxstat(sc);
1470 epstart(ifp);
1471 }
1472
1473 #if NRND > 0
1474 if (status)
1475 rnd_add_uint32(&sc->rnd_source, status);
1476 #endif
1477 }
1478
1479 /* no more interrupts */
1480 return (ret);
1481 }
1482
1483 void
1484 epread(sc)
1485 struct ep_softc *sc;
1486 {
1487 bus_space_tag_t iot = sc->sc_iot;
1488 bus_space_handle_t ioh = sc->sc_ioh;
1489 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1490 struct mbuf *m;
1491 int len;
1492
1493 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1494
1495 again:
1496 if (ifp->if_flags & IFF_DEBUG) {
1497 int err = len & ERR_MASK;
1498 char *s = NULL;
1499
1500 if (len & ERR_INCOMPLETE)
1501 s = "incomplete packet";
1502 else if (err == ERR_OVERRUN)
1503 s = "packet overrun";
1504 else if (err == ERR_RUNT)
1505 s = "runt packet";
1506 else if (err == ERR_ALIGNMENT)
1507 s = "bad alignment";
1508 else if (err == ERR_CRC)
1509 s = "bad crc";
1510 else if (err == ERR_OVERSIZE)
1511 s = "oversized packet";
1512 else if (err == ERR_DRIBBLE)
1513 s = "dribble bits";
1514
1515 if (s)
1516 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1517 }
1518
1519 if (len & ERR_INCOMPLETE)
1520 return;
1521
1522 if (len & ERR_RX) {
1523 ++ifp->if_ierrors;
1524 goto abort;
1525 }
1526
1527 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1528
1529 /* Pull packet off interface. */
1530 m = epget(sc, len);
1531 if (m == 0) {
1532 ifp->if_ierrors++;
1533 goto abort;
1534 }
1535
1536 ++ifp->if_ipackets;
1537
1538 #if NBPFILTER > 0
1539 /*
1540 * Check if there's a BPF listener on this interface.
1541 * If so, hand off the raw packet to BPF.
1542 */
1543 if (ifp->if_bpf)
1544 bpf_mtap(ifp->if_bpf, m);
1545 #endif
1546
1547 (*ifp->if_input)(ifp, m);
1548
1549 /*
1550 * In periods of high traffic we can actually receive enough
1551 * packets so that the fifo overrun bit will be set at this point,
1552 * even though we just read a packet. In this case we
1553 * are not going to receive any more interrupts. We check for
1554 * this condition and read again until the fifo is not full.
1555 * We could simplify this test by not using epstatus(), but
1556 * rechecking the RX_STATUS register directly. This test could
1557 * result in unnecessary looping in cases where there is a new
1558 * packet but the fifo is not full, but it will not fix the
1559 * stuck behavior.
1560 *
1561 * Even with this improvement, we still get packet overrun errors
1562 * which are hurting performance. Maybe when I get some more time
1563 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1564 */
1565 if (epstatus(sc)) {
1566 len = bus_space_read_2(iot, ioh,
1567 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1568 /* Check if we are stuck and reset [see XXX comment] */
1569 if (len & ERR_INCOMPLETE) {
1570 if (ifp->if_flags & IFF_DEBUG)
1571 printf("%s: adapter reset\n",
1572 sc->sc_dev.dv_xname);
1573 epreset(sc);
1574 return;
1575 }
1576 goto again;
1577 }
1578
1579 return;
1580
1581 abort:
1582 ep_discard_rxtop(iot, ioh);
1583
1584 }
1585
1586 struct mbuf *
1587 epget(sc, totlen)
1588 struct ep_softc *sc;
1589 int totlen;
1590 {
1591 bus_space_tag_t iot = sc->sc_iot;
1592 bus_space_handle_t ioh = sc->sc_ioh;
1593 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1594 struct mbuf *m;
1595 bus_size_t rxreg;
1596 int len, remaining;
1597 int s;
1598 caddr_t newdata;
1599 u_long offset;
1600
1601 m = sc->mb[sc->next_mb];
1602 sc->mb[sc->next_mb] = 0;
1603 if (m == 0) {
1604 MGETHDR(m, M_DONTWAIT, MT_DATA);
1605 if (m == 0)
1606 return 0;
1607 } else {
1608 /* If the queue is no longer full, refill. */
1609 if (sc->last_mb == sc->next_mb)
1610 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1611
1612 /* Convert one of our saved mbuf's. */
1613 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1614 m->m_data = m->m_pktdat;
1615 m->m_flags = M_PKTHDR;
1616 memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1617 }
1618 m->m_pkthdr.rcvif = ifp;
1619 m->m_pkthdr.len = totlen;
1620 len = MHLEN;
1621
1622 /*
1623 * Allocate big enough space to hold whole packet, to avoid
1624 * allocating new mbufs on splsched().
1625 */
1626 if (totlen + ALIGNBYTES > len) {
1627 if (totlen + ALIGNBYTES > MCLBYTES) {
1628 len = ALIGN(totlen + ALIGNBYTES);
1629 MEXTMALLOC(m, len, M_DONTWAIT);
1630 } else {
1631 len = MCLBYTES;
1632 MCLGET(m, M_DONTWAIT);
1633 }
1634 if ((m->m_flags & M_EXT) == 0) {
1635 m_free(m);
1636 return 0;
1637 }
1638 }
1639
1640 /* align the struct ip header */
1641 newdata = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
1642 - sizeof(struct ether_header);
1643 m->m_data = newdata;
1644 m->m_len = totlen;
1645
1646 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1647 remaining = totlen;
1648 offset = mtod(m, u_long);
1649
1650 /*
1651 * We read the packet at a high interrupt priority level so that
1652 * an interrupt from another device won't cause the card's packet
1653 * buffer to overflow. We choose splsched() since that blocks
1654 * essentially everything except for interrupts from serial
1655 * devices (which typically lose data if their interrupt isn't
1656 * serviced fast enough).
1657 *
1658 * XXX THIS CAN CAUSE CLOCK DRIFT!
1659 */
1660 s = splsched();
1661
1662 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1663 /*
1664 * Prime the FIFO buffer counter (number of 16-bit
1665 * words about to be read from the FIFO).
1666 *
1667 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1668 * COUNTER IS NON-ZERO!
1669 */
1670 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1671 }
1672
1673 if (ELINK_IS_BUS_32(sc->bustype)) {
1674 /*
1675 * Read bytes up to the point where we are aligned.
1676 * (We can align to 4 bytes, rather than ALIGNBYTES,
1677 * here because we're later reading 4-byte chunks.)
1678 */
1679 if ((remaining > 3) && (offset & 3)) {
1680 int count = (4 - (offset & 3));
1681 bus_space_read_multi_1(iot, ioh,
1682 rxreg, (u_int8_t *) offset, count);
1683 offset += count;
1684 remaining -= count;
1685 }
1686 if (remaining > 3) {
1687 bus_space_read_multi_stream_4(iot, ioh,
1688 rxreg, (u_int32_t *) offset,
1689 remaining >> 2);
1690 offset += remaining & ~3;
1691 remaining &= 3;
1692 }
1693 if (remaining) {
1694 bus_space_read_multi_1(iot, ioh,
1695 rxreg, (u_int8_t *) offset, remaining);
1696 }
1697 } else {
1698 if ((remaining > 1) && (offset & 1)) {
1699 bus_space_read_multi_1(iot, ioh,
1700 rxreg, (u_int8_t *) offset, 1);
1701 remaining -= 1;
1702 offset += 1;
1703 }
1704 if (remaining > 1) {
1705 bus_space_read_multi_stream_2(iot, ioh,
1706 rxreg, (u_int16_t *) offset,
1707 remaining >> 1);
1708 offset += remaining & ~1;
1709 }
1710 if (remaining & 1) {
1711 bus_space_read_multi_1(iot, ioh,
1712 rxreg, (u_int8_t *) offset, remaining & 1);
1713 }
1714 }
1715
1716 ep_discard_rxtop(iot, ioh);
1717
1718 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1719 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1720 splx(s);
1721
1722 return (m);
1723 }
1724
1725 int
1726 epioctl(ifp, cmd, data)
1727 struct ifnet *ifp;
1728 u_long cmd;
1729 caddr_t data;
1730 {
1731 struct ep_softc *sc = ifp->if_softc;
1732 struct ifreq *ifr = (struct ifreq *)data;
1733 int s, error = 0;
1734
1735 s = splnet();
1736
1737 switch (cmd) {
1738
1739 case SIOCSIFMEDIA:
1740 case SIOCGIFMEDIA:
1741 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1742 break;
1743
1744 case SIOCADDMULTI:
1745 case SIOCDELMULTI:
1746 if (sc->enabled == 0) {
1747 error = EIO;
1748 break;
1749 }
1750
1751 default:
1752 error = ether_ioctl(ifp, cmd, data);
1753
1754 if (error == ENETRESET) {
1755 /*
1756 * Multicast list has changed; set the hardware filter
1757 * accordingly.
1758 */
1759 epreset(sc);
1760 error = 0;
1761 }
1762 break;
1763 }
1764
1765 splx(s);
1766 return (error);
1767 }
1768
1769 void
1770 epreset(sc)
1771 struct ep_softc *sc;
1772 {
1773 int s;
1774
1775 s = splnet();
1776 epinit(&sc->sc_ethercom.ec_if);
1777 splx(s);
1778 }
1779
1780 void
1781 epwatchdog(ifp)
1782 struct ifnet *ifp;
1783 {
1784 struct ep_softc *sc = ifp->if_softc;
1785
1786 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1787 ++sc->sc_ethercom.ec_if.if_oerrors;
1788
1789 epreset(sc);
1790 }
1791
1792 void
1793 epstop(ifp, disable)
1794 struct ifnet *ifp;
1795 int disable;
1796 {
1797 struct ep_softc *sc = ifp->if_softc;
1798 bus_space_tag_t iot = sc->sc_iot;
1799 bus_space_handle_t ioh = sc->sc_ioh;
1800
1801 if (sc->ep_flags & ELINK_FLAGS_MII) {
1802 /* Stop the one second clock. */
1803 callout_stop(&sc->sc_mbuf_callout);
1804
1805 /* Down the MII. */
1806 mii_down(&sc->sc_mii);
1807 }
1808
1809 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1810 /*
1811 * Clear the FIFO buffer count, thus halting
1812 * any currently-running transactions.
1813 */
1814 GO_WINDOW(1); /* sanity */
1815 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1816 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1817 }
1818
1819 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1820 ep_discard_rxtop(iot, ioh);
1821
1822 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1823 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1824
1825 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1826 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1827
1828 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1829 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1830 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1831 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1832
1833 epmbufempty(sc);
1834
1835 if (disable)
1836 epdisable(sc);
1837
1838 ifp->if_flags &= ~IFF_RUNNING;
1839 }
1840
1841
1842 /*
1843 * Before reboots, reset card completely.
1844 */
1845 static void
1846 epshutdown(arg)
1847 void *arg;
1848 {
1849 struct ep_softc *sc = arg;
1850 int s = splnet();
1851
1852 if (sc->enabled) {
1853 epstop(&sc->sc_ethercom.ec_if, 1);
1854 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1855 sc->enabled = 0;
1856 }
1857 splx(s);
1858 }
1859
1860 /*
1861 * We get eeprom data from the id_port given an offset into the
1862 * eeprom. Basically; after the ID_sequence is sent to all of
1863 * the cards; they enter the ID_CMD state where they will accept
1864 * command requests. 0x80-0xbf loads the eeprom data. We then
1865 * read the port 16 times and with every read; the cards check
1866 * for contention (ie: if one card writes a 0 bit and another
1867 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1868 * each card compares the data on the bus; if there is a difference
1869 * then that card goes into ID_WAIT state again). In the meantime;
1870 * one bit of data is returned in the AX register which is conveniently
1871 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1872 * bit of data with each read.
1873 *
1874 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1875 */
1876 u_int16_t
1877 epreadeeprom(iot, ioh, offset)
1878 bus_space_tag_t iot;
1879 bus_space_handle_t ioh;
1880 int offset;
1881 {
1882 u_int16_t data = 0;
1883 int i;
1884
1885 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1886 delay(1000);
1887 for (i = 0; i < 16; i++)
1888 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1889 return (data);
1890 }
1891
1892 static int
1893 epbusyeeprom(sc)
1894 struct ep_softc *sc;
1895 {
1896 bus_space_tag_t iot = sc->sc_iot;
1897 bus_space_handle_t ioh = sc->sc_ioh;
1898 bus_size_t eecmd;
1899 int i = 100, j;
1900 uint16_t busybit;
1901
1902 if (sc->bustype == ELINK_BUS_PCMCIA) {
1903 delay(1000);
1904 return 0;
1905 }
1906
1907 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1908 eecmd = CORK_ASIC_EEPROM_COMMAND;
1909 busybit = CORK_EEPROM_BUSY;
1910 } else {
1911 eecmd = ELINK_W0_EEPROM_COMMAND;
1912 busybit = EEPROM_BUSY;
1913 }
1914
1915 j = 0; /* bad GCC flow analysis */
1916 while (i--) {
1917 j = bus_space_read_2(iot, ioh, eecmd);
1918 if (j & busybit)
1919 delay(100);
1920 else
1921 break;
1922 }
1923 if (i == 0) {
1924 printf("\n%s: eeprom failed to come ready\n",
1925 sc->sc_dev.dv_xname);
1926 return (1);
1927 }
1928 if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1929 (j & EEPROM_TST_MODE) != 0) {
1930 /* XXX PnP mode? */
1931 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1932 return (1);
1933 }
1934 return (0);
1935 }
1936
1937 u_int16_t
1938 ep_read_eeprom(sc, offset)
1939 struct ep_softc *sc;
1940 u_int16_t offset;
1941 {
1942 bus_size_t eecmd, eedata;
1943 u_int16_t readcmd;
1944
1945 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1946 eecmd = CORK_ASIC_EEPROM_COMMAND;
1947 eedata = CORK_ASIC_EEPROM_DATA;
1948 } else {
1949 eecmd = ELINK_W0_EEPROM_COMMAND;
1950 eedata = ELINK_W0_EEPROM_DATA;
1951 }
1952
1953 /*
1954 * RoadRunner has a larger EEPROM, so a different read command
1955 * is required.
1956 */
1957 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1958 readcmd = READ_EEPROM_RR;
1959 else
1960 readcmd = READ_EEPROM;
1961
1962 if (epbusyeeprom(sc))
1963 return (0); /* XXX why is eeprom busy? */
1964
1965 bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1966
1967 if (epbusyeeprom(sc))
1968 return (0); /* XXX why is eeprom busy? */
1969
1970 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1971 }
1972
1973 void
1974 epmbuffill(v)
1975 void *v;
1976 {
1977 struct ep_softc *sc = v;
1978 struct mbuf *m;
1979 int s, i;
1980
1981 s = splnet();
1982 i = sc->last_mb;
1983 do {
1984 if (sc->mb[i] == 0) {
1985 MGET(m, M_DONTWAIT, MT_DATA);
1986 if (m == 0)
1987 break;
1988 sc->mb[i] = m;
1989 }
1990 i = (i + 1) % MAX_MBS;
1991 } while (i != sc->next_mb);
1992 sc->last_mb = i;
1993 /* If the queue was not filled, try again. */
1994 if (sc->last_mb != sc->next_mb)
1995 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1996 splx(s);
1997 }
1998
1999 void
2000 epmbufempty(sc)
2001 struct ep_softc *sc;
2002 {
2003 int s, i;
2004
2005 s = splnet();
2006 for (i = 0; i<MAX_MBS; i++) {
2007 if (sc->mb[i]) {
2008 m_freem(sc->mb[i]);
2009 sc->mb[i] = NULL;
2010 }
2011 }
2012 sc->last_mb = sc->next_mb = 0;
2013 callout_stop(&sc->sc_mbuf_callout);
2014 splx(s);
2015 }
2016
2017 int
2018 epenable(sc)
2019 struct ep_softc *sc;
2020 {
2021
2022 if (sc->enabled == 0 && sc->enable != NULL) {
2023 if ((*sc->enable)(sc) != 0) {
2024 printf("%s: device enable failed\n",
2025 sc->sc_dev.dv_xname);
2026 return (EIO);
2027 }
2028 }
2029
2030 sc->enabled = 1;
2031 return (0);
2032 }
2033
2034 void
2035 epdisable(sc)
2036 struct ep_softc *sc;
2037 {
2038
2039 if (sc->enabled != 0 && sc->disable != NULL) {
2040 (*sc->disable)(sc);
2041 sc->enabled = 0;
2042 }
2043 }
2044
2045 /*
2046 * ep_activate:
2047 *
2048 * Handle device activation/deactivation requests.
2049 */
2050 int
2051 ep_activate(self, act)
2052 struct device *self;
2053 enum devact act;
2054 {
2055 struct ep_softc *sc = (struct ep_softc *)self;
2056 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2057 int error = 0, s;
2058
2059 s = splnet();
2060 switch (act) {
2061 case DVACT_ACTIVATE:
2062 error = EOPNOTSUPP;
2063 break;
2064
2065 case DVACT_DEACTIVATE:
2066 if (sc->ep_flags & ELINK_FLAGS_MII)
2067 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2068 MII_OFFSET_ANY);
2069 if_deactivate(ifp);
2070 break;
2071 }
2072 splx(s);
2073 return (error);
2074 }
2075
2076 /*
2077 * ep_detach:
2078 *
2079 * Detach a elink3 interface.
2080 */
2081 int
2082 ep_detach(self, flags)
2083 struct device *self;
2084 int flags;
2085 {
2086 struct ep_softc *sc = (struct ep_softc *)self;
2087 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2088
2089 /* Succeed now if there's no work to do. */
2090 if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2091 return (0);
2092
2093 epdisable(sc);
2094
2095 callout_stop(&sc->sc_mii_callout);
2096 callout_stop(&sc->sc_mbuf_callout);
2097
2098 if (sc->ep_flags & ELINK_FLAGS_MII) {
2099 /* Detach all PHYs */
2100 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2101 }
2102
2103 /* Delete all remaining media. */
2104 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2105
2106 #if NRND > 0
2107 rnd_detach_source(&sc->rnd_source);
2108 #endif
2109 ether_ifdetach(ifp);
2110 if_detach(ifp);
2111
2112 shutdownhook_disestablish(sc->sd_hook);
2113
2114 return (0);
2115 }
2116
2117 u_int32_t
2118 ep_mii_bitbang_read(self)
2119 struct device *self;
2120 {
2121 struct ep_softc *sc = (void *) self;
2122
2123 /* We're already in Window 4. */
2124 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2125 ELINK_W4_BOOM_PHYSMGMT));
2126 }
2127
2128 void
2129 ep_mii_bitbang_write(self, val)
2130 struct device *self;
2131 u_int32_t val;
2132 {
2133 struct ep_softc *sc = (void *) self;
2134
2135 /* We're already in Window 4. */
2136 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2137 ELINK_W4_BOOM_PHYSMGMT, val);
2138 }
2139
2140 int
2141 ep_mii_readreg(self, phy, reg)
2142 struct device *self;
2143 int phy, reg;
2144 {
2145 struct ep_softc *sc = (void *) self;
2146 int val;
2147
2148 GO_WINDOW(4);
2149
2150 val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2151
2152 GO_WINDOW(1);
2153
2154 return (val);
2155 }
2156
2157 void
2158 ep_mii_writereg(self, phy, reg, val)
2159 struct device *self;
2160 int phy, reg, val;
2161 {
2162 struct ep_softc *sc = (void *) self;
2163
2164 GO_WINDOW(4);
2165
2166 mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2167
2168 GO_WINDOW(1);
2169 }
2170
2171 void
2172 ep_statchg(self)
2173 struct device *self;
2174 {
2175 struct ep_softc *sc = (struct ep_softc *)self;
2176 bus_space_tag_t iot = sc->sc_iot;
2177 bus_space_handle_t ioh = sc->sc_ioh;
2178 int mctl;
2179
2180 GO_WINDOW(3);
2181 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2182 if (sc->sc_mii.mii_media_active & IFM_FDX)
2183 mctl |= MAC_CONTROL_FDX;
2184 else
2185 mctl &= ~MAC_CONTROL_FDX;
2186 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2187 GO_WINDOW(1); /* back to operating window */
2188 }
2189