elink3.c revision 1.107 1 /* $NetBSD: elink3.c,v 1.107 2004/08/09 00:25:33 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.107 2004/08/09 00:25:33 mycroft Exp $");
73
74 #include "opt_inet.h"
75 #include "opt_ns.h"
76 #include "bpfilter.h"
77 #include "rnd.h"
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/callout.h>
82 #include <sys/kernel.h>
83 #include <sys/mbuf.h>
84 #include <sys/socket.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/syslog.h>
88 #include <sys/select.h>
89 #include <sys/device.h>
90 #if NRND > 0
91 #include <sys/rnd.h>
92 #endif
93
94 #include <net/if.h>
95 #include <net/if_dl.h>
96 #include <net/if_ether.h>
97 #include <net/if_media.h>
98
99 #if NBPFILTER > 0
100 #include <net/bpf.h>
101 #include <net/bpfdesc.h>
102 #endif
103
104 #include <machine/cpu.h>
105 #include <machine/bus.h>
106 #include <machine/intr.h>
107
108 #include <dev/mii/mii.h>
109 #include <dev/mii/miivar.h>
110 #include <dev/mii/mii_bitbang.h>
111
112 #include <dev/ic/elink3var.h>
113 #include <dev/ic/elink3reg.h>
114
115 #ifdef DEBUG
116 int epdebug = 0;
117 #endif
118
119 /*
120 * XXX endian workaround for big-endian CPUs with pcmcia:
121 * if stream methods for bus_space_multi are not provided, define them
122 * using non-stream bus_space_{read,write}_multi_.
123 * Assumes host CPU is same endian-ness as bus.
124 */
125 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
126 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
127 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
128 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
129 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
130 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
131
132 /*
133 * Structure to map media-present bits in boards to ifmedia codes and
134 * printable media names. Used for table-driven ifmedia initialization.
135 */
136 struct ep_media {
137 int epm_mpbit; /* media present bit */
138 const char *epm_name; /* name of medium */
139 int epm_ifmedia; /* ifmedia word for medium */
140 int epm_epmedia; /* ELINKMEDIA_* constant */
141 };
142
143 /*
144 * Media table for the Demon/Vortex/Boomerang chipsets.
145 *
146 * Note that MII on the Demon and Vortex (3c59x) indicates an external
147 * MII connector (for connecting an external PHY) ... I think. Treat
148 * it as `manual' on these chips.
149 *
150 * Any Boomerang (3c90x) chips with MII really do have an internal
151 * MII and real PHYs attached; no `native' media.
152 */
153 const struct ep_media ep_vortex_media[] = {
154 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
155 ELINKMEDIA_10BASE_T },
156 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
157 ELINKMEDIA_10BASE_T },
158 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
159 ELINKMEDIA_AUI },
160 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
161 ELINKMEDIA_10BASE_2 },
162 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
163 ELINKMEDIA_100BASE_TX },
164 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
165 ELINKMEDIA_100BASE_TX },
166 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
167 ELINKMEDIA_100BASE_FX },
168 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
169 ELINKMEDIA_MII },
170 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
171 ELINKMEDIA_100BASE_T4 },
172 { 0, NULL, 0,
173 0 },
174 };
175
176 /*
177 * Media table for the older 3Com Etherlink III chipset, used
178 * in the 3c509, 3c579, and 3c589.
179 */
180 const struct ep_media ep_509_media[] = {
181 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
182 ELINKMEDIA_10BASE_T },
183 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
184 ELINKMEDIA_AUI },
185 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
186 ELINKMEDIA_10BASE_2 },
187 { 0, NULL, 0,
188 0 },
189 };
190
191 void ep_internalconfig __P((struct ep_softc *sc));
192 void ep_vortex_probemedia __P((struct ep_softc *sc));
193 void ep_509_probemedia __P((struct ep_softc *sc));
194
195 static void eptxstat __P((struct ep_softc *));
196 static int epstatus __P((struct ep_softc *));
197 int epinit __P((struct ifnet *));
198 void epstop __P((struct ifnet *, int));
199 int epioctl __P((struct ifnet *, u_long, caddr_t));
200 void epstart __P((struct ifnet *));
201 void epwatchdog __P((struct ifnet *));
202 void epreset __P((struct ep_softc *));
203 static void epshutdown __P((void *));
204 void epread __P((struct ep_softc *));
205 struct mbuf *epget __P((struct ep_softc *, int));
206 void epmbuffill __P((void *));
207 void epmbufempty __P((struct ep_softc *));
208 void epsetfilter __P((struct ep_softc *));
209 void ep_roadrunner_mii_enable __P((struct ep_softc *));
210 void epsetmedia __P((struct ep_softc *));
211
212 /* ifmedia callbacks */
213 int ep_media_change __P((struct ifnet *ifp));
214 void ep_media_status __P((struct ifnet *ifp, struct ifmediareq *req));
215
216 /* MII callbacks */
217 int ep_mii_readreg __P((struct device *, int, int));
218 void ep_mii_writereg __P((struct device *, int, int, int));
219 void ep_statchg __P((struct device *));
220
221 void ep_tick __P((void *));
222
223 static int epbusyeeprom __P((struct ep_softc *));
224 u_int16_t ep_read_eeprom __P((struct ep_softc *, u_int16_t));
225 static inline void ep_reset_cmd __P((struct ep_softc *sc,
226 u_int cmd, u_int arg));
227 static inline void ep_finish_reset __P((bus_space_tag_t, bus_space_handle_t));
228 static inline void ep_discard_rxtop __P((bus_space_tag_t, bus_space_handle_t));
229 static __inline int ep_w1_reg __P((struct ep_softc *, int));
230
231 /*
232 * MII bit-bang glue.
233 */
234 u_int32_t ep_mii_bitbang_read __P((struct device *));
235 void ep_mii_bitbang_write __P((struct device *, u_int32_t));
236
237 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
238 ep_mii_bitbang_read,
239 ep_mii_bitbang_write,
240 {
241 PHYSMGMT_DATA, /* MII_BIT_MDO */
242 PHYSMGMT_DATA, /* MII_BIT_MDI */
243 PHYSMGMT_CLK, /* MII_BIT_MDC */
244 PHYSMGMT_DIR, /* MII_BIT_DIR_HOST_PHY */
245 0, /* MII_BIT_DIR_PHY_HOST */
246 }
247 };
248
249 /*
250 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
251 * Window 1 registers offset!
252 */
253 static __inline int
254 ep_w1_reg(sc, reg)
255 struct ep_softc *sc;
256 int reg;
257 {
258
259 switch (sc->ep_chipset) {
260 case ELINK_CHIPSET_CORKSCREW:
261 return (reg + 0x10);
262
263 case ELINK_CHIPSET_ROADRUNNER:
264 switch (reg) {
265 case ELINK_W1_FREE_TX:
266 case ELINK_W1_RUNNER_RDCTL:
267 case ELINK_W1_RUNNER_WRCTL:
268 return (reg);
269 }
270 return (reg + 0x10);
271 }
272
273 return (reg);
274 }
275
276 /*
277 * Wait for any pending reset to complete.
278 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
279 * but older hardware doesn't implement it and we must delay.
280 */
281 static inline void
282 ep_finish_reset(iot, ioh)
283 bus_space_tag_t iot;
284 bus_space_handle_t ioh;
285 {
286 int i;
287
288 for (i = 0; i < 10000; i++) {
289 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
290 COMMAND_IN_PROGRESS) == 0)
291 break;
292 DELAY(10);
293 }
294 }
295
296 /*
297 * Issue a (reset) command, and be sure it has completed.
298 * Used for global reset, TX_RESET, RX_RESET.
299 */
300 static inline void
301 ep_reset_cmd(sc, cmd, arg)
302 struct ep_softc *sc;
303 u_int cmd, arg;
304 {
305 bus_space_tag_t iot = sc->sc_iot;
306 bus_space_handle_t ioh = sc->sc_ioh;
307
308 bus_space_write_2(iot, ioh, cmd, arg);
309 ep_finish_reset(iot, ioh);
310 }
311
312
313 static inline void
314 ep_discard_rxtop(iot, ioh)
315 bus_space_tag_t iot;
316 bus_space_handle_t ioh;
317 {
318 int i;
319
320 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
321
322 /*
323 * Spin for about 1 msec, to avoid forcing a DELAY() between
324 * every received packet (adding latency and limiting pkt-recv rate).
325 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
326 * is about right.
327 */
328 for (i = 0; i < 8000; i++) {
329 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
330 COMMAND_IN_PROGRESS) == 0)
331 return;
332 }
333
334 /* Didn't complete in a hurry. Do DELAY()s. */
335 ep_finish_reset(iot, ioh);
336 }
337
338 /*
339 * Back-end attach and configure.
340 */
341 int
342 epconfig(sc, chipset, enaddr)
343 struct ep_softc *sc;
344 u_short chipset;
345 u_int8_t *enaddr;
346 {
347 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
348 bus_space_tag_t iot = sc->sc_iot;
349 bus_space_handle_t ioh = sc->sc_ioh;
350 u_int16_t i;
351 u_int8_t myla[ETHER_ADDR_LEN];
352
353 callout_init(&sc->sc_mii_callout);
354 callout_init(&sc->sc_mbuf_callout);
355
356 sc->ep_chipset = chipset;
357
358 /*
359 * We could have been groveling around in other register
360 * windows in the front-end; make sure we're in window 0
361 * to read the EEPROM.
362 */
363 GO_WINDOW(0);
364
365 if (enaddr == NULL) {
366 /*
367 * Read the station address from the eeprom.
368 */
369 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
370 u_int16_t x = ep_read_eeprom(sc, i);
371 myla[(i << 1)] = x >> 8;
372 myla[(i << 1) + 1] = x;
373 }
374 enaddr = myla;
375 }
376
377 /*
378 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
379 * allow FDDI-sized (4500) byte packets. Commands only take an
380 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
381 * packet length.
382 * Commands to these cards implicitly upshift a packet size
383 * or threshold by 2 bits.
384 * To detect cards with large-packet support, we probe by setting
385 * the transmit threshold register, then change windows and
386 * read back the threshold register directly, and see if the
387 * threshold value was shifted or not.
388 */
389 bus_space_write_2(iot, ioh, ELINK_COMMAND,
390 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
391 GO_WINDOW(5);
392 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
393 GO_WINDOW(1);
394 switch (i) {
395 case ELINK_LARGEWIN_PROBE:
396 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
397 sc->ep_pktlenshift = 0;
398 break;
399
400 case (ELINK_LARGEWIN_PROBE << 2):
401 sc->ep_pktlenshift = 2;
402 break;
403
404 default:
405 aprint_error(
406 "%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
407 "Interface disabled\n",
408 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
409 return (1);
410 }
411
412 /*
413 * Ensure Tx-available interrupts are enabled for
414 * start the interface.
415 * XXX should be in epinit()?
416 */
417 bus_space_write_2(iot, ioh, ELINK_COMMAND,
418 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
419
420 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
421 ifp->if_softc = sc;
422 ifp->if_start = epstart;
423 ifp->if_ioctl = epioctl;
424 ifp->if_watchdog = epwatchdog;
425 ifp->if_init = epinit;
426 ifp->if_stop = epstop;
427 ifp->if_flags =
428 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
429 IFQ_SET_READY(&ifp->if_snd);
430
431 if_attach(ifp);
432 ether_ifattach(ifp, enaddr);
433
434 /*
435 * Finish configuration:
436 * determine chipset if the front-end couldn't do so,
437 * show board details, set media.
438 */
439
440 /*
441 * Print RAM size. We also print the Ethernet address in here.
442 * It's extracted from the ifp, so we have to make sure it's
443 * been attached first.
444 */
445 ep_internalconfig(sc);
446 GO_WINDOW(0);
447
448 /*
449 * Display some additional information, if pertinent.
450 */
451 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
452 aprint_normal("%s: RoadRunner FIFO buffer enabled\n",
453 sc->sc_dev.dv_xname);
454
455 /*
456 * Initialize our media structures and MII info. We'll
457 * probe the MII if we discover that we have one.
458 */
459 sc->sc_mii.mii_ifp = ifp;
460 sc->sc_mii.mii_readreg = ep_mii_readreg;
461 sc->sc_mii.mii_writereg = ep_mii_writereg;
462 sc->sc_mii.mii_statchg = ep_statchg;
463 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change,
464 ep_media_status);
465
466 /*
467 * All CORKSCREW chips have MII.
468 */
469 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
470 sc->ep_flags |= ELINK_FLAGS_MII;
471
472 /*
473 * Now, determine which media we have.
474 */
475 switch (sc->ep_chipset) {
476 case ELINK_CHIPSET_ROADRUNNER:
477 if (sc->ep_flags & ELINK_FLAGS_MII) {
478 ep_roadrunner_mii_enable(sc);
479 GO_WINDOW(0);
480 }
481 /* FALLTHROUGH */
482
483 case ELINK_CHIPSET_CORKSCREW:
484 case ELINK_CHIPSET_BOOMERANG:
485 /*
486 * If the device has MII, probe it. We won't be using
487 * any `native' media in this case, only PHYs. If
488 * we don't, just treat the Boomerang like the Vortex.
489 */
490 if (sc->ep_flags & ELINK_FLAGS_MII) {
491 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
492 MII_PHY_ANY, MII_OFFSET_ANY, 0);
493 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
494 ifmedia_add(&sc->sc_mii.mii_media,
495 IFM_ETHER|IFM_NONE, 0, NULL);
496 ifmedia_set(&sc->sc_mii.mii_media,
497 IFM_ETHER|IFM_NONE);
498 } else {
499 ifmedia_set(&sc->sc_mii.mii_media,
500 IFM_ETHER|IFM_AUTO);
501 }
502 break;
503 }
504 /* FALLTHROUGH */
505
506 case ELINK_CHIPSET_VORTEX:
507 ep_vortex_probemedia(sc);
508 break;
509
510 default:
511 ep_509_probemedia(sc);
512 break;
513 }
514
515 GO_WINDOW(1); /* Window 1 is operating window */
516
517 #if NRND > 0
518 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
519 RND_TYPE_NET, 0);
520 #endif
521
522 sc->tx_start_thresh = 20; /* probably a good starting point. */
523
524 /* Establish callback to reset card when we reboot. */
525 sc->sd_hook = shutdownhook_establish(epshutdown, sc);
526
527 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
528 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
529
530 /* The attach is successful. */
531 sc->sc_flags |= ELINK_FLAGS_ATTACHED;
532 return (0);
533 }
534
535
536 /*
537 * Show interface-model-independent info from window 3
538 * internal-configuration register.
539 */
540 void
541 ep_internalconfig(sc)
542 struct ep_softc *sc;
543 {
544 bus_space_tag_t iot = sc->sc_iot;
545 bus_space_handle_t ioh = sc->sc_ioh;
546
547 u_int config0;
548 u_int config1;
549
550 int ram_size, ram_width, ram_split;
551 /*
552 * NVRAM buffer Rx:Tx config names for busmastering cards
553 * (Demon, Vortex, and later).
554 */
555 const char *const onboard_ram_config[] = {
556 "5:3", "3:1", "1:1", "3:5" };
557
558 GO_WINDOW(3);
559 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
560 config1 = (u_int)bus_space_read_2(iot, ioh,
561 ELINK_W3_INTERNAL_CONFIG + 2);
562 GO_WINDOW(0);
563
564 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
565 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
566
567 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
568
569 aprint_normal("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
570 sc->sc_dev.dv_xname,
571 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
572 8 << ram_size,
573 (ram_width) ? "word" : "byte",
574 onboard_ram_config[ram_split]);
575 }
576
577
578 /*
579 * Find supported media on 3c509-generation hardware that doesn't have
580 * a "reset_options" register in window 3.
581 * Use the config_cntrl register in window 0 instead.
582 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
583 * that implement CONFIG_CTRL. We don't have a good way to set the
584 * default active medium; punt to ifconfig instead.
585 */
586 void
587 ep_509_probemedia(sc)
588 struct ep_softc *sc;
589 {
590 bus_space_tag_t iot = sc->sc_iot;
591 bus_space_handle_t ioh = sc->sc_ioh;
592 struct ifmedia *ifm = &sc->sc_mii.mii_media;
593 u_int16_t ep_w0_config, port;
594 const struct ep_media *epm;
595 const char *sep = "", *defmedianame = NULL;
596 int defmedia = 0;
597
598 GO_WINDOW(0);
599 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
600
601 aprint_normal("%s: ", sc->sc_dev.dv_xname);
602
603 /* Sanity check that there are any media! */
604 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
605 aprint_error("no media present!\n");
606 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
607 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
608 return;
609 }
610
611 /*
612 * Get the default media from the EEPROM.
613 */
614 port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
615
616 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
617
618 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
619 if (ep_w0_config & epm->epm_mpbit) {
620 /*
621 * This simple test works because 509 chipsets
622 * don't do full-duplex.
623 */
624 if (epm->epm_epmedia == port || defmedia == 0) {
625 defmedia = epm->epm_ifmedia;
626 defmedianame = epm->epm_name;
627 }
628 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
629 NULL);
630 PRINT(epm->epm_name);
631 }
632 }
633
634 #undef PRINT
635
636 #ifdef DIAGNOSTIC
637 if (defmedia == 0)
638 panic("ep_509_probemedia: impossible");
639 #endif
640
641 aprint_normal(" (default %s)\n", defmedianame);
642 ifmedia_set(ifm, defmedia);
643 }
644
645 /*
646 * Find media present on large-packet-capable elink3 devices.
647 * Show onboard configuration of large-packet-capable elink3 devices
648 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
649 * Use media and card-version info in window 3 instead.
650 */
651 void
652 ep_vortex_probemedia(sc)
653 struct ep_softc *sc;
654 {
655 bus_space_tag_t iot = sc->sc_iot;
656 bus_space_handle_t ioh = sc->sc_ioh;
657 struct ifmedia *ifm = &sc->sc_mii.mii_media;
658 const struct ep_media *epm;
659 u_int config1;
660 int reset_options;
661 int default_media; /* 3-bit encoding of default (EEPROM) media */
662 int defmedia = 0;
663 const char *sep = "", *defmedianame = NULL;
664
665 GO_WINDOW(3);
666 config1 = (u_int)bus_space_read_2(iot, ioh,
667 ELINK_W3_INTERNAL_CONFIG + 2);
668 reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
669 GO_WINDOW(0);
670
671 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
672
673 aprint_normal("%s: ", sc->sc_dev.dv_xname);
674
675 /* Sanity check that there are any media! */
676 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
677 aprint_error("no media present!\n");
678 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
679 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
680 return;
681 }
682
683 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
684
685 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
686 if (reset_options & epm->epm_mpbit) {
687 /*
688 * Default media is a little more complicated
689 * on the Vortex. We support full-duplex which
690 * uses the same reset options bit.
691 *
692 * XXX Check EEPROM for default to FDX?
693 */
694 if (epm->epm_epmedia == default_media) {
695 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
696 defmedia = epm->epm_ifmedia;
697 defmedianame = epm->epm_name;
698 }
699 } else if (defmedia == 0) {
700 defmedia = epm->epm_ifmedia;
701 defmedianame = epm->epm_name;
702 }
703 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
704 NULL);
705 PRINT(epm->epm_name);
706 }
707 }
708
709 #undef PRINT
710
711 #ifdef DIAGNOSTIC
712 if (defmedia == 0)
713 panic("ep_vortex_probemedia: impossible");
714 #endif
715
716 aprint_normal(" (default %s)\n", defmedianame);
717 ifmedia_set(ifm, defmedia);
718 }
719
720 /*
721 * One second timer, used to tick the MII.
722 */
723 void
724 ep_tick(arg)
725 void *arg;
726 {
727 struct ep_softc *sc = arg;
728 int s;
729
730 #ifdef DIAGNOSTIC
731 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
732 panic("ep_tick");
733 #endif
734
735 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
736 return;
737
738 s = splnet();
739 mii_tick(&sc->sc_mii);
740 splx(s);
741
742 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
743 }
744
745 /*
746 * Bring device up.
747 *
748 * The order in here seems important. Otherwise we may not receive
749 * interrupts. ?!
750 */
751 int
752 epinit(ifp)
753 struct ifnet *ifp;
754 {
755 struct ep_softc *sc = ifp->if_softc;
756 bus_space_tag_t iot = sc->sc_iot;
757 bus_space_handle_t ioh = sc->sc_ioh;
758 int i, error;
759 u_int8_t *addr;
760
761 if (!sc->enabled && (error = epenable(sc)) != 0)
762 return (error);
763
764 /* Make sure any pending reset has completed before touching board */
765 ep_finish_reset(iot, ioh);
766
767 /*
768 * Cancel any pending I/O.
769 */
770 epstop(ifp, 0);
771
772 if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
773 && sc->bustype != ELINK_BUS_MCA) {
774 GO_WINDOW(0);
775 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
776 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
777 ENABLE_DRQ_IRQ);
778 }
779
780 if (sc->bustype == ELINK_BUS_PCMCIA) {
781 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
782 }
783
784 GO_WINDOW(2);
785 /* Reload the ether_addr. */
786 addr = LLADDR(ifp->if_sadl);
787 for (i = 0; i < 6; i += 2)
788 bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
789 (addr[i] << 0) | (addr[i + 1] << 8));
790
791 /*
792 * Reset the station-address receive filter.
793 * A bug workaround for busmastering (Vortex, Demon) cards.
794 */
795 for (i = 0; i < 6; i += 2)
796 bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
797
798 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
799 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
800
801 GO_WINDOW(1); /* Window 1 is operating window */
802 for (i = 0; i < 31; i++)
803 bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS));
804
805 /* Set threshold for Tx-space available interrupt. */
806 bus_space_write_2(iot, ioh, ELINK_COMMAND,
807 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
808
809 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
810 /*
811 * Enable options in the PCMCIA LAN COR register, via
812 * RoadRunner Window 1.
813 *
814 * XXX MAGIC CONSTANTS!
815 */
816 u_int16_t cor;
817
818 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
819
820 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
821 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
822 cor |= 0x10;
823 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
824 cor |= 0x20;
825 bus_space_write_2(iot, ioh, 0, cor);
826
827 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
828 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
829
830 if (sc->ep_flags & ELINK_FLAGS_MII) {
831 ep_roadrunner_mii_enable(sc);
832 GO_WINDOW(1);
833 }
834 }
835
836 /* Enable interrupts. */
837 bus_space_write_2(iot, ioh, ELINK_COMMAND,
838 SET_RD_0_MASK | WATCHED_INTERRUPTS);
839 bus_space_write_2(iot, ioh, ELINK_COMMAND,
840 SET_INTR_MASK | WATCHED_INTERRUPTS);
841
842 /*
843 * Attempt to get rid of any stray interrupts that occurred during
844 * configuration. On the i386 this isn't possible because one may
845 * already be queued. However, a single stray interrupt is
846 * unimportant.
847 */
848 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
849
850 epsetfilter(sc);
851 epsetmedia(sc);
852
853 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
854 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
855
856 epmbuffill(sc);
857
858 /* Interface is now `running', with no output active. */
859 ifp->if_flags |= IFF_RUNNING;
860 ifp->if_flags &= ~IFF_OACTIVE;
861
862 if (sc->ep_flags & ELINK_FLAGS_MII) {
863 /* Start the one second clock. */
864 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
865 }
866
867 /* Attempt to start output, if any. */
868 epstart(ifp);
869
870 return (0);
871 }
872
873
874 /*
875 * Set multicast receive filter.
876 * elink3 hardware has no selective multicast filter in hardware.
877 * Enable reception of all multicasts and filter in software.
878 */
879 void
880 epsetfilter(sc)
881 struct ep_softc *sc;
882 {
883 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
884
885 GO_WINDOW(1); /* Window 1 is operating window */
886 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
887 SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
888 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
889 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
890 }
891
892 int
893 ep_media_change(ifp)
894 struct ifnet *ifp;
895 {
896 struct ep_softc *sc = ifp->if_softc;
897
898 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
899 epreset(sc);
900
901 return (0);
902 }
903
904 /*
905 * Reset and enable the MII on the RoadRunner.
906 */
907 void
908 ep_roadrunner_mii_enable(sc)
909 struct ep_softc *sc;
910 {
911 bus_space_tag_t iot = sc->sc_iot;
912 bus_space_handle_t ioh = sc->sc_ioh;
913
914 GO_WINDOW(3);
915 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
916 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
917 delay(1000);
918 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
919 ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
920 ELINK_RUNNER_ENABLE_MII);
921 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
922 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
923 delay(1000);
924 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
925 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
926 }
927
928 /*
929 * Set the card to use the specified media.
930 */
931 void
932 epsetmedia(sc)
933 struct ep_softc *sc;
934 {
935 bus_space_tag_t iot = sc->sc_iot;
936 bus_space_handle_t ioh = sc->sc_ioh;
937
938 /* Turn everything off. First turn off linkbeat and UTP. */
939 GO_WINDOW(4);
940 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
941
942 /* Turn off coax */
943 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
944 delay(1000);
945
946 /*
947 * If the device has MII, select it, and then tell the
948 * PHY which media to use.
949 */
950 if (sc->ep_flags & ELINK_FLAGS_MII) {
951 int config0, config1;
952
953 GO_WINDOW(3);
954
955 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
956 int resopt;
957
958 resopt = bus_space_read_2(iot, ioh,
959 ELINK_W3_RESET_OPTIONS);
960 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
961 resopt | ELINK_RUNNER_ENABLE_MII);
962 }
963
964 config0 = (u_int)bus_space_read_2(iot, ioh,
965 ELINK_W3_INTERNAL_CONFIG);
966 config1 = (u_int)bus_space_read_2(iot, ioh,
967 ELINK_W3_INTERNAL_CONFIG + 2);
968
969 config1 = config1 & ~CONFIG_MEDIAMASK;
970 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
971
972 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
973 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
974 config1);
975 GO_WINDOW(1); /* back to operating window */
976
977 mii_mediachg(&sc->sc_mii);
978 return;
979 }
980
981 /*
982 * Now turn on the selected media/transceiver.
983 */
984 GO_WINDOW(4);
985 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
986 case IFM_10_T:
987 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
988 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
989 break;
990
991 case IFM_10_2:
992 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
993 DELAY(1000); /* 50ms not enmough? */
994 break;
995
996 case IFM_100_TX:
997 case IFM_100_FX:
998 case IFM_100_T4: /* XXX check documentation */
999 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
1000 LINKBEAT_ENABLE);
1001 DELAY(1000); /* not strictly necessary? */
1002 break;
1003
1004 case IFM_10_5:
1005 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
1006 SQE_ENABLE);
1007 DELAY(1000); /* not strictly necessary? */
1008 break;
1009
1010 case IFM_MANUAL:
1011 /*
1012 * Nothing to do here; we are actually enabling the
1013 * external PHY on the MII port.
1014 */
1015 break;
1016
1017 case IFM_NONE:
1018 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
1019 return;
1020
1021 default:
1022 panic("epsetmedia: impossible");
1023 }
1024
1025 /*
1026 * Tell the chip which port to use.
1027 */
1028 switch (sc->ep_chipset) {
1029 case ELINK_CHIPSET_VORTEX:
1030 case ELINK_CHIPSET_BOOMERANG:
1031 {
1032 int mctl, config0, config1;
1033
1034 GO_WINDOW(3);
1035 config0 = (u_int)bus_space_read_2(iot, ioh,
1036 ELINK_W3_INTERNAL_CONFIG);
1037 config1 = (u_int)bus_space_read_2(iot, ioh,
1038 ELINK_W3_INTERNAL_CONFIG + 2);
1039
1040 config1 = config1 & ~CONFIG_MEDIAMASK;
1041 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1042 CONFIG_MEDIAMASK_SHIFT);
1043
1044 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1045 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1046 config1);
1047
1048 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1049 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1050 mctl |= MAC_CONTROL_FDX;
1051 else
1052 mctl &= ~MAC_CONTROL_FDX;
1053 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1054 break;
1055 }
1056 default:
1057 {
1058 int w0_addr_cfg;
1059
1060 GO_WINDOW(0);
1061 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1062 w0_addr_cfg &= 0x3fff;
1063 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1064 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1065 DELAY(1000);
1066 break;
1067 }
1068 }
1069
1070 GO_WINDOW(1); /* Window 1 is operating window */
1071 }
1072
1073 /*
1074 * Get currently-selected media from card.
1075 * (if_media callback, may be called before interface is brought up).
1076 */
1077 void
1078 ep_media_status(ifp, req)
1079 struct ifnet *ifp;
1080 struct ifmediareq *req;
1081 {
1082 struct ep_softc *sc = ifp->if_softc;
1083 bus_space_tag_t iot = sc->sc_iot;
1084 bus_space_handle_t ioh = sc->sc_ioh;
1085
1086 if (sc->enabled == 0) {
1087 req->ifm_active = IFM_ETHER|IFM_NONE;
1088 req->ifm_status = 0;
1089 return;
1090 }
1091
1092 /*
1093 * If we have MII, go ask the PHY what's going on.
1094 */
1095 if (sc->ep_flags & ELINK_FLAGS_MII) {
1096 mii_pollstat(&sc->sc_mii);
1097 req->ifm_active = sc->sc_mii.mii_media_active;
1098 req->ifm_status = sc->sc_mii.mii_media_status;
1099 return;
1100 }
1101
1102 /*
1103 * Ok, at this point we claim that our active media is
1104 * the currently selected media. We'll update our status
1105 * if our chipset allows us to detect link.
1106 */
1107 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1108 req->ifm_status = 0;
1109
1110 switch (sc->ep_chipset) {
1111 case ELINK_CHIPSET_VORTEX:
1112 case ELINK_CHIPSET_BOOMERANG:
1113 GO_WINDOW(4);
1114 req->ifm_status = IFM_AVALID;
1115 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1116 LINKBEAT_DETECT)
1117 req->ifm_status |= IFM_ACTIVE;
1118 GO_WINDOW(1); /* back to operating window */
1119 break;
1120 }
1121 }
1122
1123
1124
1125 /*
1126 * Start outputting on the interface.
1127 * Always called as splnet().
1128 */
1129 void
1130 epstart(ifp)
1131 struct ifnet *ifp;
1132 {
1133 struct ep_softc *sc = ifp->if_softc;
1134 bus_space_tag_t iot = sc->sc_iot;
1135 bus_space_handle_t ioh = sc->sc_ioh;
1136 struct mbuf *m, *m0;
1137 int sh, len, pad;
1138 bus_size_t txreg;
1139
1140 /* Don't transmit if interface is busy or not running */
1141 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1142 return;
1143
1144 startagain:
1145 /* Sneak a peek at the next packet */
1146 IFQ_POLL(&ifp->if_snd, m0);
1147 if (m0 == 0)
1148 return;
1149
1150 /* We need to use m->m_pkthdr.len, so require the header */
1151 if ((m0->m_flags & M_PKTHDR) == 0)
1152 panic("epstart: no header mbuf");
1153 len = m0->m_pkthdr.len;
1154
1155 pad = (4 - len) & 3;
1156
1157 /*
1158 * The 3c509 automatically pads short packets to minimum ethernet
1159 * length, but we drop packets that are too large. Perhaps we should
1160 * truncate them instead?
1161 */
1162 if (len + pad > ETHER_MAX_LEN) {
1163 /* packet is obviously too large: toss it */
1164 ++ifp->if_oerrors;
1165 IFQ_DEQUEUE(&ifp->if_snd, m0);
1166 m_freem(m0);
1167 goto readcheck;
1168 }
1169
1170 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1171 len + pad + 4) {
1172 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1173 SET_TX_AVAIL_THRESH |
1174 ((len + pad + 4) >> sc->ep_pktlenshift));
1175 /* not enough room in FIFO */
1176 ifp->if_flags |= IFF_OACTIVE;
1177 return;
1178 } else {
1179 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1180 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1181 }
1182
1183 IFQ_DEQUEUE(&ifp->if_snd, m0);
1184 if (m0 == 0) /* not really needed */
1185 return;
1186
1187 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1188 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1189
1190 #if NBPFILTER > 0
1191 if (ifp->if_bpf)
1192 bpf_mtap(ifp->if_bpf, m0);
1193 #endif
1194
1195 /*
1196 * Do the output at a high interrupt priority level so that an
1197 * interrupt from another device won't cause a FIFO underrun.
1198 * We choose splsched() since that blocks essentially everything
1199 * except for interrupts from serial devices (which typically
1200 * lose data if their interrupt isn't serviced fast enough).
1201 *
1202 * XXX THIS CAN CAUSE CLOCK DRIFT!
1203 */
1204 sh = splsched();
1205
1206 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1207
1208 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1209 /*
1210 * Prime the FIFO buffer counter (number of 16-bit
1211 * words about to be written to the FIFO).
1212 *
1213 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1214 * COUNTER IS NON-ZERO!
1215 */
1216 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1217 (len + pad) >> 1);
1218 }
1219
1220 bus_space_write_2(iot, ioh, txreg, len);
1221 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1222 if (ELINK_IS_BUS_32(sc->bustype)) {
1223 for (m = m0; m;) {
1224 if (m->m_len > 3) {
1225 /* align our reads from core */
1226 if (mtod(m, u_long) & 3) {
1227 u_long count =
1228 4 - (mtod(m, u_long) & 3);
1229 bus_space_write_multi_1(iot, ioh,
1230 txreg, mtod(m, u_int8_t *), count);
1231 m->m_data =
1232 (void *)(mtod(m, u_long) + count);
1233 m->m_len -= count;
1234 }
1235 bus_space_write_multi_stream_4(iot, ioh,
1236 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1237 m->m_data = (void *)(mtod(m, u_long) +
1238 (u_long)(m->m_len & ~3));
1239 m->m_len -= m->m_len & ~3;
1240 }
1241 if (m->m_len) {
1242 bus_space_write_multi_1(iot, ioh,
1243 txreg, mtod(m, u_int8_t *), m->m_len);
1244 }
1245 MFREE(m, m0);
1246 m = m0;
1247 }
1248 } else {
1249 for (m = m0; m;) {
1250 if (m->m_len > 1) {
1251 if (mtod(m, u_long) & 1) {
1252 bus_space_write_1(iot, ioh,
1253 txreg, *(mtod(m, u_int8_t *)));
1254 m->m_data =
1255 (void *)(mtod(m, u_long) + 1);
1256 m->m_len -= 1;
1257 }
1258 bus_space_write_multi_stream_2(iot, ioh,
1259 txreg, mtod(m, u_int16_t *),
1260 m->m_len >> 1);
1261 }
1262 if (m->m_len & 1) {
1263 bus_space_write_1(iot, ioh, txreg,
1264 *(mtod(m, u_int8_t *) + m->m_len - 1));
1265 }
1266 MFREE(m, m0);
1267 m = m0;
1268 }
1269 }
1270 while (pad--)
1271 bus_space_write_1(iot, ioh, txreg, 0);
1272
1273 splx(sh);
1274
1275 ++ifp->if_opackets;
1276
1277 readcheck:
1278 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1279 ERR_INCOMPLETE) == 0) {
1280 /* We received a complete packet. */
1281 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1282
1283 if ((status & INTR_LATCH) == 0) {
1284 /*
1285 * No interrupt, read the packet and continue
1286 * Is this supposed to happen? Is my motherboard
1287 * completely busted?
1288 */
1289 epread(sc);
1290 } else {
1291 /* Got an interrupt, return so that it gets serviced. */
1292 return;
1293 }
1294 } else {
1295 /* Check if we are stuck and reset [see XXX comment] */
1296 if (epstatus(sc)) {
1297 if (ifp->if_flags & IFF_DEBUG)
1298 printf("%s: adapter reset\n",
1299 sc->sc_dev.dv_xname);
1300 epreset(sc);
1301 }
1302 }
1303
1304 goto startagain;
1305 }
1306
1307
1308 /*
1309 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1310 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1311 * We detect this situation and we reset the adapter.
1312 * It happens at times when there is a lot of broadcast traffic
1313 * on the cable (once in a blue moon).
1314 */
1315 static int
1316 epstatus(sc)
1317 struct ep_softc *sc;
1318 {
1319 bus_space_tag_t iot = sc->sc_iot;
1320 bus_space_handle_t ioh = sc->sc_ioh;
1321 u_int16_t fifost;
1322
1323 /*
1324 * Check the FIFO status and act accordingly
1325 */
1326 GO_WINDOW(4);
1327 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1328 GO_WINDOW(1);
1329
1330 if (fifost & FIFOS_RX_UNDERRUN) {
1331 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1332 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1333 epreset(sc);
1334 return 0;
1335 }
1336
1337 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1338 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1339 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1340 return 1;
1341 }
1342
1343 if (fifost & FIFOS_RX_OVERRUN) {
1344 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1345 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1346 return 1;
1347 }
1348
1349 if (fifost & FIFOS_TX_OVERRUN) {
1350 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1351 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1352 epreset(sc);
1353 return 0;
1354 }
1355
1356 return 0;
1357 }
1358
1359
1360 static void
1361 eptxstat(sc)
1362 struct ep_softc *sc;
1363 {
1364 bus_space_tag_t iot = sc->sc_iot;
1365 bus_space_handle_t ioh = sc->sc_ioh;
1366 int i;
1367
1368 /*
1369 * We need to read+write TX_STATUS until we get a 0 status
1370 * in order to turn off the interrupt flag.
1371 */
1372 while ((i = bus_space_read_2(iot, ioh,
1373 ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1374 bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1375 0x0);
1376
1377 if (i & TXS_JABBER) {
1378 ++sc->sc_ethercom.ec_if.if_oerrors;
1379 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1380 printf("%s: jabber (%x)\n",
1381 sc->sc_dev.dv_xname, i);
1382 epreset(sc);
1383 } else if (i & TXS_UNDERRUN) {
1384 ++sc->sc_ethercom.ec_if.if_oerrors;
1385 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1386 printf("%s: fifo underrun (%x) @%d\n",
1387 sc->sc_dev.dv_xname, i,
1388 sc->tx_start_thresh);
1389 if (sc->tx_succ_ok < 100)
1390 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1391 sc->tx_start_thresh + 20);
1392 sc->tx_succ_ok = 0;
1393 epreset(sc);
1394 } else if (i & TXS_MAX_COLLISION) {
1395 ++sc->sc_ethercom.ec_if.if_collisions;
1396 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1397 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1398 } else
1399 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1400 }
1401 }
1402
1403 int
1404 epintr(arg)
1405 void *arg;
1406 {
1407 struct ep_softc *sc = arg;
1408 bus_space_tag_t iot = sc->sc_iot;
1409 bus_space_handle_t ioh = sc->sc_ioh;
1410 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1411 u_int16_t status;
1412 int ret = 0;
1413
1414 if (sc->enabled == 0 ||
1415 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
1416 return (0);
1417
1418
1419 for (;;) {
1420 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1421
1422 if ((status & WATCHED_INTERRUPTS) == 0) {
1423 if ((status & INTR_LATCH) == 0) {
1424 #if 0
1425 printf("%s: intr latch cleared\n",
1426 sc->sc_dev.dv_xname);
1427 #endif
1428 break;
1429 }
1430 }
1431
1432 ret = 1;
1433
1434 /*
1435 * Acknowledge any interrupts. It's important that we do this
1436 * first, since there would otherwise be a race condition.
1437 * Due to the i386 interrupt queueing, we may get spurious
1438 * interrupts occasionally.
1439 */
1440 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1441 (status & (INTR_LATCH | ALL_INTERRUPTS)));
1442
1443 #if 0
1444 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1445
1446 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1447 (status & RX_COMPLETE)?" RX_COMPLETE":"",
1448 (status & TX_COMPLETE)?" TX_COMPLETE":"",
1449 (status & TX_AVAIL)?" TX_AVAIL":"",
1450 (status & CARD_FAILURE)?" CARD_FAILURE":"");
1451 #endif
1452
1453 if (status & RX_COMPLETE) {
1454 epread(sc);
1455 }
1456 if (status & TX_AVAIL) {
1457 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1458 epstart(&sc->sc_ethercom.ec_if);
1459 }
1460 if (status & CARD_FAILURE) {
1461 printf("%s: adapter failure (%x)\n",
1462 sc->sc_dev.dv_xname, status);
1463 #if 1
1464 epinit(ifp);
1465 #else
1466 epreset(sc);
1467 #endif
1468 return (1);
1469 }
1470 if (status & TX_COMPLETE) {
1471 eptxstat(sc);
1472 epstart(ifp);
1473 }
1474
1475 #if NRND > 0
1476 if (status)
1477 rnd_add_uint32(&sc->rnd_source, status);
1478 #endif
1479 }
1480
1481 /* no more interrupts */
1482 return (ret);
1483 }
1484
1485 void
1486 epread(sc)
1487 struct ep_softc *sc;
1488 {
1489 bus_space_tag_t iot = sc->sc_iot;
1490 bus_space_handle_t ioh = sc->sc_ioh;
1491 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1492 struct mbuf *m;
1493 int len;
1494
1495 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1496
1497 again:
1498 if (ifp->if_flags & IFF_DEBUG) {
1499 int err = len & ERR_MASK;
1500 char *s = NULL;
1501
1502 if (len & ERR_INCOMPLETE)
1503 s = "incomplete packet";
1504 else if (err == ERR_OVERRUN)
1505 s = "packet overrun";
1506 else if (err == ERR_RUNT)
1507 s = "runt packet";
1508 else if (err == ERR_ALIGNMENT)
1509 s = "bad alignment";
1510 else if (err == ERR_CRC)
1511 s = "bad crc";
1512 else if (err == ERR_OVERSIZE)
1513 s = "oversized packet";
1514 else if (err == ERR_DRIBBLE)
1515 s = "dribble bits";
1516
1517 if (s)
1518 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1519 }
1520
1521 if (len & ERR_INCOMPLETE)
1522 return;
1523
1524 if (len & ERR_RX) {
1525 ++ifp->if_ierrors;
1526 goto abort;
1527 }
1528
1529 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1530
1531 /* Pull packet off interface. */
1532 m = epget(sc, len);
1533 if (m == 0) {
1534 ifp->if_ierrors++;
1535 goto abort;
1536 }
1537
1538 ++ifp->if_ipackets;
1539
1540 #if NBPFILTER > 0
1541 /*
1542 * Check if there's a BPF listener on this interface.
1543 * If so, hand off the raw packet to BPF.
1544 */
1545 if (ifp->if_bpf)
1546 bpf_mtap(ifp->if_bpf, m);
1547 #endif
1548
1549 (*ifp->if_input)(ifp, m);
1550
1551 /*
1552 * In periods of high traffic we can actually receive enough
1553 * packets so that the fifo overrun bit will be set at this point,
1554 * even though we just read a packet. In this case we
1555 * are not going to receive any more interrupts. We check for
1556 * this condition and read again until the fifo is not full.
1557 * We could simplify this test by not using epstatus(), but
1558 * rechecking the RX_STATUS register directly. This test could
1559 * result in unnecessary looping in cases where there is a new
1560 * packet but the fifo is not full, but it will not fix the
1561 * stuck behavior.
1562 *
1563 * Even with this improvement, we still get packet overrun errors
1564 * which are hurting performance. Maybe when I get some more time
1565 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1566 */
1567 if (epstatus(sc)) {
1568 len = bus_space_read_2(iot, ioh,
1569 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1570 /* Check if we are stuck and reset [see XXX comment] */
1571 if (len & ERR_INCOMPLETE) {
1572 if (ifp->if_flags & IFF_DEBUG)
1573 printf("%s: adapter reset\n",
1574 sc->sc_dev.dv_xname);
1575 epreset(sc);
1576 return;
1577 }
1578 goto again;
1579 }
1580
1581 return;
1582
1583 abort:
1584 ep_discard_rxtop(iot, ioh);
1585
1586 }
1587
1588 struct mbuf *
1589 epget(sc, totlen)
1590 struct ep_softc *sc;
1591 int totlen;
1592 {
1593 bus_space_tag_t iot = sc->sc_iot;
1594 bus_space_handle_t ioh = sc->sc_ioh;
1595 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1596 struct mbuf *m;
1597 bus_size_t rxreg;
1598 int len, remaining;
1599 int s;
1600 caddr_t newdata;
1601 u_long offset;
1602
1603 m = sc->mb[sc->next_mb];
1604 sc->mb[sc->next_mb] = 0;
1605 if (m == 0) {
1606 MGETHDR(m, M_DONTWAIT, MT_DATA);
1607 if (m == 0)
1608 return 0;
1609 } else {
1610 /* If the queue is no longer full, refill. */
1611 if (sc->last_mb == sc->next_mb)
1612 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1613
1614 /* Convert one of our saved mbuf's. */
1615 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1616 m->m_data = m->m_pktdat;
1617 m->m_flags = M_PKTHDR;
1618 memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1619 }
1620 m->m_pkthdr.rcvif = ifp;
1621 m->m_pkthdr.len = totlen;
1622 len = MHLEN;
1623
1624 /*
1625 * Allocate big enough space to hold whole packet, to avoid
1626 * allocating new mbufs on splsched().
1627 */
1628 if (totlen + ALIGNBYTES > len) {
1629 if (totlen + ALIGNBYTES > MCLBYTES) {
1630 len = ALIGN(totlen + ALIGNBYTES);
1631 MEXTMALLOC(m, len, M_DONTWAIT);
1632 } else {
1633 len = MCLBYTES;
1634 MCLGET(m, M_DONTWAIT);
1635 }
1636 if ((m->m_flags & M_EXT) == 0) {
1637 m_free(m);
1638 return 0;
1639 }
1640 }
1641
1642 /* align the struct ip header */
1643 newdata = (caddr_t) ALIGN(m->m_data + sizeof(struct ether_header))
1644 - sizeof(struct ether_header);
1645 m->m_data = newdata;
1646 m->m_len = totlen;
1647
1648 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1649 remaining = totlen;
1650 offset = mtod(m, u_long);
1651
1652 /*
1653 * We read the packet at a high interrupt priority level so that
1654 * an interrupt from another device won't cause the card's packet
1655 * buffer to overflow. We choose splsched() since that blocks
1656 * essentially everything except for interrupts from serial
1657 * devices (which typically lose data if their interrupt isn't
1658 * serviced fast enough).
1659 *
1660 * XXX THIS CAN CAUSE CLOCK DRIFT!
1661 */
1662 s = splsched();
1663
1664 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1665 /*
1666 * Prime the FIFO buffer counter (number of 16-bit
1667 * words about to be read from the FIFO).
1668 *
1669 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1670 * COUNTER IS NON-ZERO!
1671 */
1672 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1673 }
1674
1675 if (ELINK_IS_BUS_32(sc->bustype)) {
1676 /*
1677 * Read bytes up to the point where we are aligned.
1678 * (We can align to 4 bytes, rather than ALIGNBYTES,
1679 * here because we're later reading 4-byte chunks.)
1680 */
1681 if ((remaining > 3) && (offset & 3)) {
1682 int count = (4 - (offset & 3));
1683 bus_space_read_multi_1(iot, ioh,
1684 rxreg, (u_int8_t *) offset, count);
1685 offset += count;
1686 remaining -= count;
1687 }
1688 if (remaining > 3) {
1689 bus_space_read_multi_stream_4(iot, ioh,
1690 rxreg, (u_int32_t *) offset,
1691 remaining >> 2);
1692 offset += remaining & ~3;
1693 remaining &= 3;
1694 }
1695 if (remaining) {
1696 bus_space_read_multi_1(iot, ioh,
1697 rxreg, (u_int8_t *) offset, remaining);
1698 }
1699 } else {
1700 if ((remaining > 1) && (offset & 1)) {
1701 bus_space_read_multi_1(iot, ioh,
1702 rxreg, (u_int8_t *) offset, 1);
1703 remaining -= 1;
1704 offset += 1;
1705 }
1706 if (remaining > 1) {
1707 bus_space_read_multi_stream_2(iot, ioh,
1708 rxreg, (u_int16_t *) offset,
1709 remaining >> 1);
1710 offset += remaining & ~1;
1711 }
1712 if (remaining & 1) {
1713 bus_space_read_multi_1(iot, ioh,
1714 rxreg, (u_int8_t *) offset, remaining & 1);
1715 }
1716 }
1717
1718 ep_discard_rxtop(iot, ioh);
1719
1720 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1721 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1722 splx(s);
1723
1724 return (m);
1725 }
1726
1727 int
1728 epioctl(ifp, cmd, data)
1729 struct ifnet *ifp;
1730 u_long cmd;
1731 caddr_t data;
1732 {
1733 struct ep_softc *sc = ifp->if_softc;
1734 struct ifreq *ifr = (struct ifreq *)data;
1735 int s, error = 0;
1736
1737 s = splnet();
1738
1739 switch (cmd) {
1740
1741 case SIOCSIFMEDIA:
1742 case SIOCGIFMEDIA:
1743 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1744 break;
1745
1746 case SIOCADDMULTI:
1747 case SIOCDELMULTI:
1748 if (sc->enabled == 0) {
1749 error = EIO;
1750 break;
1751 }
1752
1753 default:
1754 error = ether_ioctl(ifp, cmd, data);
1755
1756 if (error == ENETRESET) {
1757 /*
1758 * Multicast list has changed; set the hardware filter
1759 * accordingly.
1760 */
1761 epreset(sc);
1762 error = 0;
1763 }
1764 break;
1765 }
1766
1767 splx(s);
1768 return (error);
1769 }
1770
1771 void
1772 epreset(sc)
1773 struct ep_softc *sc;
1774 {
1775 int s;
1776
1777 s = splnet();
1778 epinit(&sc->sc_ethercom.ec_if);
1779 splx(s);
1780 }
1781
1782 void
1783 epwatchdog(ifp)
1784 struct ifnet *ifp;
1785 {
1786 struct ep_softc *sc = ifp->if_softc;
1787
1788 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1789 ++sc->sc_ethercom.ec_if.if_oerrors;
1790
1791 epreset(sc);
1792 }
1793
1794 void
1795 epstop(ifp, disable)
1796 struct ifnet *ifp;
1797 int disable;
1798 {
1799 struct ep_softc *sc = ifp->if_softc;
1800 bus_space_tag_t iot = sc->sc_iot;
1801 bus_space_handle_t ioh = sc->sc_ioh;
1802
1803 if (sc->ep_flags & ELINK_FLAGS_MII) {
1804 /* Stop the one second clock. */
1805 callout_stop(&sc->sc_mbuf_callout);
1806
1807 /* Down the MII. */
1808 mii_down(&sc->sc_mii);
1809 }
1810
1811 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1812 /*
1813 * Clear the FIFO buffer count, thus halting
1814 * any currently-running transactions.
1815 */
1816 GO_WINDOW(1); /* sanity */
1817 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1818 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1819 }
1820
1821 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1822 ep_discard_rxtop(iot, ioh);
1823
1824 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1825 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1826
1827 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1828 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1829
1830 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1831 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1832 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1833 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1834
1835 epmbufempty(sc);
1836
1837 if (disable)
1838 epdisable(sc);
1839
1840 ifp->if_flags &= ~IFF_RUNNING;
1841 }
1842
1843
1844 /*
1845 * Before reboots, reset card completely.
1846 */
1847 static void
1848 epshutdown(arg)
1849 void *arg;
1850 {
1851 struct ep_softc *sc = arg;
1852 int s = splnet();
1853
1854 if (sc->enabled) {
1855 epstop(&sc->sc_ethercom.ec_if, 1);
1856 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1857 sc->enabled = 0;
1858 }
1859 splx(s);
1860 }
1861
1862 /*
1863 * We get eeprom data from the id_port given an offset into the
1864 * eeprom. Basically; after the ID_sequence is sent to all of
1865 * the cards; they enter the ID_CMD state where they will accept
1866 * command requests. 0x80-0xbf loads the eeprom data. We then
1867 * read the port 16 times and with every read; the cards check
1868 * for contention (ie: if one card writes a 0 bit and another
1869 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1870 * each card compares the data on the bus; if there is a difference
1871 * then that card goes into ID_WAIT state again). In the meantime;
1872 * one bit of data is returned in the AX register which is conveniently
1873 * returned to us by bus_space_read_2(). Hence; we read 16 times getting one
1874 * bit of data with each read.
1875 *
1876 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1877 */
1878 u_int16_t
1879 epreadeeprom(iot, ioh, offset)
1880 bus_space_tag_t iot;
1881 bus_space_handle_t ioh;
1882 int offset;
1883 {
1884 u_int16_t data = 0;
1885 int i;
1886
1887 bus_space_write_2(iot, ioh, 0, 0x80 + offset);
1888 delay(1000);
1889 for (i = 0; i < 16; i++)
1890 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1891 return (data);
1892 }
1893
1894 static int
1895 epbusyeeprom(sc)
1896 struct ep_softc *sc;
1897 {
1898 bus_space_tag_t iot = sc->sc_iot;
1899 bus_space_handle_t ioh = sc->sc_ioh;
1900 bus_size_t eecmd;
1901 int i = 100, j;
1902 uint16_t busybit;
1903
1904 if (sc->bustype == ELINK_BUS_PCMCIA) {
1905 delay(1000);
1906 return 0;
1907 }
1908
1909 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1910 eecmd = CORK_ASIC_EEPROM_COMMAND;
1911 busybit = CORK_EEPROM_BUSY;
1912 } else {
1913 eecmd = ELINK_W0_EEPROM_COMMAND;
1914 busybit = EEPROM_BUSY;
1915 }
1916
1917 j = 0; /* bad GCC flow analysis */
1918 while (i--) {
1919 j = bus_space_read_2(iot, ioh, eecmd);
1920 if (j & busybit)
1921 delay(100);
1922 else
1923 break;
1924 }
1925 if (i == 0) {
1926 printf("\n%s: eeprom failed to come ready\n",
1927 sc->sc_dev.dv_xname);
1928 return (1);
1929 }
1930 if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1931 (j & EEPROM_TST_MODE) != 0) {
1932 /* XXX PnP mode? */
1933 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1934 return (1);
1935 }
1936 return (0);
1937 }
1938
1939 u_int16_t
1940 ep_read_eeprom(sc, offset)
1941 struct ep_softc *sc;
1942 u_int16_t offset;
1943 {
1944 bus_size_t eecmd, eedata;
1945 u_int16_t readcmd;
1946
1947 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1948 eecmd = CORK_ASIC_EEPROM_COMMAND;
1949 eedata = CORK_ASIC_EEPROM_DATA;
1950 } else {
1951 eecmd = ELINK_W0_EEPROM_COMMAND;
1952 eedata = ELINK_W0_EEPROM_DATA;
1953 }
1954
1955 /*
1956 * RoadRunner has a larger EEPROM, so a different read command
1957 * is required.
1958 */
1959 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1960 readcmd = READ_EEPROM_RR;
1961 else
1962 readcmd = READ_EEPROM;
1963
1964 if (epbusyeeprom(sc))
1965 return (0); /* XXX why is eeprom busy? */
1966
1967 bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1968
1969 if (epbusyeeprom(sc))
1970 return (0); /* XXX why is eeprom busy? */
1971
1972 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1973 }
1974
1975 void
1976 epmbuffill(v)
1977 void *v;
1978 {
1979 struct ep_softc *sc = v;
1980 struct mbuf *m;
1981 int s, i;
1982
1983 s = splnet();
1984 i = sc->last_mb;
1985 do {
1986 if (sc->mb[i] == 0) {
1987 MGET(m, M_DONTWAIT, MT_DATA);
1988 if (m == 0)
1989 break;
1990 sc->mb[i] = m;
1991 }
1992 i = (i + 1) % MAX_MBS;
1993 } while (i != sc->next_mb);
1994 sc->last_mb = i;
1995 /* If the queue was not filled, try again. */
1996 if (sc->last_mb != sc->next_mb)
1997 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1998 splx(s);
1999 }
2000
2001 void
2002 epmbufempty(sc)
2003 struct ep_softc *sc;
2004 {
2005 int s, i;
2006
2007 s = splnet();
2008 for (i = 0; i<MAX_MBS; i++) {
2009 if (sc->mb[i]) {
2010 m_freem(sc->mb[i]);
2011 sc->mb[i] = NULL;
2012 }
2013 }
2014 sc->last_mb = sc->next_mb = 0;
2015 callout_stop(&sc->sc_mbuf_callout);
2016 splx(s);
2017 }
2018
2019 int
2020 epenable(sc)
2021 struct ep_softc *sc;
2022 {
2023
2024 if (sc->enabled == 0 && sc->enable != NULL) {
2025 if ((*sc->enable)(sc) != 0) {
2026 printf("%s: device enable failed\n",
2027 sc->sc_dev.dv_xname);
2028 return (EIO);
2029 }
2030 }
2031
2032 sc->enabled = 1;
2033 return (0);
2034 }
2035
2036 void
2037 epdisable(sc)
2038 struct ep_softc *sc;
2039 {
2040
2041 if (sc->enabled != 0 && sc->disable != NULL) {
2042 (*sc->disable)(sc);
2043 sc->enabled = 0;
2044 }
2045 }
2046
2047 /*
2048 * ep_activate:
2049 *
2050 * Handle device activation/deactivation requests.
2051 */
2052 int
2053 ep_activate(self, act)
2054 struct device *self;
2055 enum devact act;
2056 {
2057 struct ep_softc *sc = (struct ep_softc *)self;
2058 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2059 int error = 0, s;
2060
2061 s = splnet();
2062 switch (act) {
2063 case DVACT_ACTIVATE:
2064 error = EOPNOTSUPP;
2065 break;
2066
2067 case DVACT_DEACTIVATE:
2068 if (sc->ep_flags & ELINK_FLAGS_MII)
2069 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2070 MII_OFFSET_ANY);
2071 if_deactivate(ifp);
2072 break;
2073 }
2074 splx(s);
2075 return (error);
2076 }
2077
2078 /*
2079 * ep_detach:
2080 *
2081 * Detach a elink3 interface.
2082 */
2083 int
2084 ep_detach(self, flags)
2085 struct device *self;
2086 int flags;
2087 {
2088 struct ep_softc *sc = (struct ep_softc *)self;
2089 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2090
2091 /* Succeed now if there's no work to do. */
2092 if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2093 return (0);
2094
2095 epdisable(sc);
2096
2097 callout_stop(&sc->sc_mii_callout);
2098 callout_stop(&sc->sc_mbuf_callout);
2099
2100 if (sc->ep_flags & ELINK_FLAGS_MII) {
2101 /* Detach all PHYs */
2102 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2103 }
2104
2105 /* Delete all remaining media. */
2106 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2107
2108 #if NRND > 0
2109 rnd_detach_source(&sc->rnd_source);
2110 #endif
2111 ether_ifdetach(ifp);
2112 if_detach(ifp);
2113
2114 shutdownhook_disestablish(sc->sd_hook);
2115
2116 return (0);
2117 }
2118
2119 u_int32_t
2120 ep_mii_bitbang_read(self)
2121 struct device *self;
2122 {
2123 struct ep_softc *sc = (void *) self;
2124
2125 /* We're already in Window 4. */
2126 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2127 ELINK_W4_BOOM_PHYSMGMT));
2128 }
2129
2130 void
2131 ep_mii_bitbang_write(self, val)
2132 struct device *self;
2133 u_int32_t val;
2134 {
2135 struct ep_softc *sc = (void *) self;
2136
2137 /* We're already in Window 4. */
2138 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2139 ELINK_W4_BOOM_PHYSMGMT, val);
2140 }
2141
2142 int
2143 ep_mii_readreg(self, phy, reg)
2144 struct device *self;
2145 int phy, reg;
2146 {
2147 struct ep_softc *sc = (void *) self;
2148 int val;
2149
2150 GO_WINDOW(4);
2151
2152 val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2153
2154 GO_WINDOW(1);
2155
2156 return (val);
2157 }
2158
2159 void
2160 ep_mii_writereg(self, phy, reg, val)
2161 struct device *self;
2162 int phy, reg, val;
2163 {
2164 struct ep_softc *sc = (void *) self;
2165
2166 GO_WINDOW(4);
2167
2168 mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2169
2170 GO_WINDOW(1);
2171 }
2172
2173 void
2174 ep_statchg(self)
2175 struct device *self;
2176 {
2177 struct ep_softc *sc = (struct ep_softc *)self;
2178 bus_space_tag_t iot = sc->sc_iot;
2179 bus_space_handle_t ioh = sc->sc_ioh;
2180 int mctl;
2181
2182 GO_WINDOW(3);
2183 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2184 if (sc->sc_mii.mii_media_active & IFM_FDX)
2185 mctl |= MAC_CONTROL_FDX;
2186 else
2187 mctl &= ~MAC_CONTROL_FDX;
2188 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2189 GO_WINDOW(1); /* back to operating window */
2190 }
2191