Home | History | Annotate | Line # | Download | only in ic
elink3.c revision 1.11
      1 /*	$NetBSD: elink3.c,v 1.11 1996/10/21 22:34:21 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *      This product includes software developed by Herb Peyerl.
     18  * 4. The name of Herb Peyerl may not be used to endorse or promote products
     19  *    derived from this software without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include "bpfilter.h"
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/mbuf.h>
     38 #include <sys/socket.h>
     39 #include <sys/ioctl.h>
     40 #include <sys/errno.h>
     41 #include <sys/syslog.h>
     42 #include <sys/select.h>
     43 #include <sys/device.h>
     44 
     45 #include <net/if.h>
     46 #include <net/netisr.h>
     47 #include <net/if_dl.h>
     48 #include <net/if_types.h>
     49 #include <net/netisr.h>
     50 
     51 #ifdef INET
     52 #include <netinet/in.h>
     53 #include <netinet/in_systm.h>
     54 #include <netinet/in_var.h>
     55 #include <netinet/ip.h>
     56 #include <netinet/if_ether.h>
     57 #endif
     58 
     59 #ifdef NS
     60 #include <netns/ns.h>
     61 #include <netns/ns_if.h>
     62 #endif
     63 
     64 #if NBPFILTER > 0
     65 #include <net/bpf.h>
     66 #include <net/bpfdesc.h>
     67 #endif
     68 
     69 #include <machine/cpu.h>
     70 #include <machine/bus.h>
     71 #include <machine/intr.h>
     72 
     73 #include <dev/ic/elink3var.h>
     74 #include <dev/ic/elink3reg.h>
     75 
     76 #define ETHER_MIN_LEN	64
     77 #define ETHER_MAX_LEN   1518
     78 #define ETHER_ADDR_LEN  6
     79 
     80 struct cfdriver ep_cd = {
     81 	NULL, "ep", DV_IFNET
     82 };
     83 
     84 static void eptxstat __P((struct ep_softc *));
     85 static int epstatus __P((struct ep_softc *));
     86 void epinit __P((struct ep_softc *));
     87 int epioctl __P((struct ifnet *, u_long, caddr_t));
     88 void epstart __P((struct ifnet *));
     89 void epwatchdog __P((struct ifnet *));
     90 void epreset __P((struct ep_softc *));
     91 void epread __P((struct ep_softc *));
     92 struct mbuf *epget __P((struct ep_softc *, int));
     93 void epmbuffill __P((void *));
     94 void epmbufempty __P((struct ep_softc *));
     95 void epsetfilter __P((struct ep_softc *));
     96 void epsetlink __P((struct ep_softc *));
     97 
     98 static int epbusyeeprom __P((struct ep_softc *));
     99 
    100 void
    101 epconfig(sc, conn)
    102 	struct ep_softc *sc;
    103 	u_int16_t conn;
    104 {
    105 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    106 	bus_space_tag_t iot = sc->sc_iot;
    107 	bus_space_handle_t ioh = sc->sc_ioh;
    108 	u_int16_t i;
    109 
    110 	sc->ep_connectors = 0;
    111 	printf("%s: ", sc->sc_dev.dv_xname);
    112 	if (conn & IS_AUI) {
    113 		printf("aui");
    114 		sc->ep_connectors |= AUI;
    115 	}
    116 	if (conn & IS_BNC) {
    117 		if (sc->ep_connectors)
    118 			printf("/");
    119 		printf("bnc");
    120 		sc->ep_connectors |= BNC;
    121 	}
    122 	if (conn & IS_UTP) {
    123 		if (sc->ep_connectors)
    124 			printf("/");
    125 		printf("utp");
    126 		sc->ep_connectors |= UTP;
    127 	}
    128 	if (!sc->ep_connectors)
    129 		printf("no connectors!");
    130 
    131 	/*
    132 	 * Read the station address from the eeprom
    133 	 */
    134 	for (i = 0; i < 3; i++) {
    135 		u_int16_t x;
    136 		if (epbusyeeprom(sc))
    137 			return;
    138 		bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
    139 		    READ_EEPROM | i);
    140 		if (epbusyeeprom(sc))
    141 			return;
    142 		x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
    143 		sc->sc_arpcom.ac_enaddr[(i << 1)] = x >> 8;
    144 		sc->sc_arpcom.ac_enaddr[(i << 1) + 1] = x;
    145 	}
    146 
    147 	printf(" address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
    148 
    149 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    150 	ifp->if_softc = sc;
    151 	ifp->if_start = epstart;
    152 	ifp->if_ioctl = epioctl;
    153 	ifp->if_watchdog = epwatchdog;
    154 	ifp->if_flags =
    155 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    156 
    157 	if_attach(ifp);
    158 	ether_ifattach(ifp);
    159 
    160 #if NBPFILTER > 0
    161 	bpfattach(&sc->sc_arpcom.ac_if.if_bpf, ifp, DLT_EN10MB,
    162 		  sizeof(struct ether_header));
    163 #endif
    164 
    165 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
    166 }
    167 
    168 /*
    169  * The order in here seems important. Otherwise we may not receive
    170  * interrupts. ?!
    171  */
    172 void
    173 epinit(sc)
    174 	register struct ep_softc *sc;
    175 {
    176 	register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    177 	bus_space_tag_t iot = sc->sc_iot;
    178 	bus_space_handle_t ioh = sc->sc_ioh;
    179 	int i;
    180 
    181 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    182 		;
    183 
    184 	if (sc->bustype != EP_BUS_PCI) {
    185 		GO_WINDOW(0);
    186 		bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
    187 		bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
    188 	}
    189 
    190 	if (sc->bustype == EP_BUS_PCMCIA) {
    191 #ifdef EP_COAX_DEFAULT
    192 		bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
    193 #else
    194 		bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,0<<14);
    195 #endif
    196 		bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
    197 	}
    198 
    199 	GO_WINDOW(2);
    200 	for (i = 0; i < 6; i++)	/* Reload the ether_addr. */
    201 		bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
    202 		    sc->sc_arpcom.ac_enaddr[i]);
    203 
    204 	if (sc->bustype == EP_BUS_PCI || sc->bustype == EP_BUS_EISA)
    205 		/* Reset the station-address receive filter */
    206 		for (i = 0; i < 6; i++)
    207 			bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
    208 
    209 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_RESET);
    210 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_RESET);
    211 
    212 	GO_WINDOW(1);		/* Window 1 is operating window */
    213 	for (i = 0; i < 31; i++)
    214 		bus_space_read_1(iot, ioh, EP_W1_TX_STATUS);
    215 
    216 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
    217 				S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
    218 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
    219 				S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
    220 
    221 	/*
    222 	 * Attempt to get rid of any stray interrupts that occured during
    223 	 * configuration.  On the i386 this isn't possible because one may
    224 	 * already be queued.  However, a single stray interrupt is
    225 	 * unimportant.
    226 	 */
    227 	bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
    228 
    229 	epsetfilter(sc);
    230 	epsetlink(sc);
    231 
    232 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
    233 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
    234 
    235 	epmbuffill(sc);
    236 
    237 	/* Interface is now `running', with no output active. */
    238 	ifp->if_flags |= IFF_RUNNING;
    239 	ifp->if_flags &= ~IFF_OACTIVE;
    240 
    241 	/* Attempt to start output, if any. */
    242 	epstart(ifp);
    243 }
    244 
    245 void
    246 epsetfilter(sc)
    247 	register struct ep_softc *sc;
    248 {
    249 	register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    250 
    251 	GO_WINDOW(1);		/* Window 1 is operating window */
    252 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
    253 	    FIL_INDIVIDUAL | FIL_BRDCST |
    254 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
    255 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
    256 }
    257 
    258 void
    259 epsetlink(sc)
    260 	register struct ep_softc *sc;
    261 {
    262 	register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    263 	bus_space_tag_t iot = sc->sc_iot;
    264 	bus_space_handle_t ioh = sc->sc_ioh;
    265 
    266 	/*
    267 	 * you can `ifconfig (link0|-link0) ep0' to get the following
    268 	 * behaviour:
    269 	 *	-link0	disable AUI/UTP. enable BNC.
    270 	 *	link0	disable BNC. enable AUI.
    271 	 *	link1	if the card has a UTP connector, and link0 is
    272 	 *		set too, then you get the UTP port.
    273 	 */
    274 	GO_WINDOW(4);
    275 	bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, DISABLE_UTP);
    276 	if (!(ifp->if_flags & IFF_LINK0) && (sc->ep_connectors & BNC)) {
    277 		if (sc->bustype == EP_BUS_PCMCIA) {
    278 			GO_WINDOW(0);
    279 			bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
    280 			GO_WINDOW(1);
    281 		}
    282 		bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
    283 		delay(1000);
    284 	}
    285 	if (ifp->if_flags & IFF_LINK0) {
    286 		bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
    287 		delay(1000);
    288 		if ((ifp->if_flags & IFF_LINK1) && (sc->ep_connectors & UTP)) {
    289 			if (sc->bustype == EP_BUS_PCMCIA) {
    290 				GO_WINDOW(0);
    291 				bus_space_write_2(iot, ioh,
    292 				    EP_W0_ADDRESS_CFG,0<<14);
    293 				GO_WINDOW(4);
    294 			}
    295 			bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, ENABLE_UTP);
    296 		}
    297 	}
    298 	GO_WINDOW(1);
    299 }
    300 
    301 /*
    302  * Start outputting on the interface.
    303  * Always called as splnet().
    304  */
    305 void
    306 epstart(ifp)
    307 	struct ifnet *ifp;
    308 {
    309 	register struct ep_softc *sc = ifp->if_softc;
    310 	bus_space_tag_t iot = sc->sc_iot;
    311 	bus_space_handle_t ioh = sc->sc_ioh;
    312 	struct mbuf *m, *m0;
    313 	int sh, len, pad;
    314 
    315 	/* Don't transmit if interface is busy or not running */
    316 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    317 		return;
    318 
    319 startagain:
    320 	/* Sneak a peek at the next packet */
    321 	m0 = ifp->if_snd.ifq_head;
    322 	if (m0 == 0)
    323 		return;
    324 
    325 	/* We need to use m->m_pkthdr.len, so require the header */
    326 	if ((m0->m_flags & M_PKTHDR) == 0)
    327 		panic("epstart: no header mbuf");
    328 	len = m0->m_pkthdr.len;
    329 
    330 	pad = (4 - len) & 3;
    331 
    332 	/*
    333 	 * The 3c509 automatically pads short packets to minimum ethernet
    334 	 * length, but we drop packets that are too large. Perhaps we should
    335 	 * truncate them instead?
    336 	 */
    337 	if (len + pad > ETHER_MAX_LEN) {
    338 		/* packet is obviously too large: toss it */
    339 		++ifp->if_oerrors;
    340 		IF_DEQUEUE(&ifp->if_snd, m0);
    341 		m_freem(m0);
    342 		goto readcheck;
    343 	}
    344 
    345 	if (bus_space_read_2(iot, ioh, EP_W1_FREE_TX) < len + pad + 4) {
    346 		bus_space_write_2(iot, ioh, EP_COMMAND,
    347 		    SET_TX_AVAIL_THRESH | (len + pad + 4));
    348 		/* not enough room in FIFO */
    349 		ifp->if_flags |= IFF_OACTIVE;
    350 		return;
    351 	} else {
    352 		bus_space_write_2(iot, ioh, EP_COMMAND,
    353 		    SET_TX_AVAIL_THRESH | 2044);
    354 	}
    355 
    356 	IF_DEQUEUE(&ifp->if_snd, m0);
    357 	if (m0 == 0)		/* not really needed */
    358 		return;
    359 
    360 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
    361 	    (len / 4 + sc->tx_start_thresh));
    362 
    363 #if NBPFILTER > 0
    364 	if (ifp->if_bpf)
    365 		bpf_mtap(ifp->if_bpf, m0);
    366 #endif
    367 
    368 	/*
    369 	 * Do the output at splhigh() so that an interrupt from another device
    370 	 * won't cause a FIFO underrun.
    371 	 */
    372 	sh = splhigh();
    373 
    374 	bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1, len);
    375 	bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1,
    376 	    0xffff);	/* Second dword meaningless */
    377 	if (EP_IS_BUS_32(sc->bustype)) {
    378 		for (m = m0; m; ) {
    379 			if (m->m_len > 3)
    380 				bus_space_write_multi_4(iot, ioh,
    381 				    EP_W1_TX_PIO_WR_1, mtod(m, u_int32_t *),
    382 				    m->m_len / 4);
    383 			if (m->m_len & 3)
    384 				bus_space_write_multi_1(iot, ioh,
    385 				    EP_W1_TX_PIO_WR_1,
    386 				    mtod(m, u_int8_t *) + (m->m_len & ~3),
    387 				    m->m_len & 3);
    388 			MFREE(m, m0);
    389 			m = m0;
    390 		}
    391 	} else {
    392 		for (m = m0; m; ) {
    393 			if (m->m_len > 1)
    394 				bus_space_write_multi_2(iot, ioh,
    395 				    EP_W1_TX_PIO_WR_1, mtod(m, u_int16_t *),
    396 				    m->m_len / 2);
    397 			if (m->m_len & 1)
    398 				bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1,
    399 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
    400 			MFREE(m, m0);
    401 			m = m0;
    402 		}
    403 	}
    404 	while (pad--)
    405 		bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1, 0);
    406 
    407 	splx(sh);
    408 
    409 	++ifp->if_opackets;
    410 
    411 readcheck:
    412 	if ((bus_space_read_2(iot, ioh, EP_W1_RX_STATUS) & ERR_INCOMPLETE) == 0) {
    413 		/* We received a complete packet. */
    414 		u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
    415 
    416 		if ((status & S_INTR_LATCH) == 0) {
    417 			/*
    418 			 * No interrupt, read the packet and continue
    419 			 * Is  this supposed to happen? Is my motherboard
    420 			 * completely busted?
    421 			 */
    422 			epread(sc);
    423 		}
    424 		else
    425 			/* Got an interrupt, return so that it gets serviced. */
    426 			return;
    427 	}
    428 	else {
    429 		/* Check if we are stuck and reset [see XXX comment] */
    430 		if (epstatus(sc)) {
    431 			if (ifp->if_flags & IFF_DEBUG)
    432 				printf("%s: adapter reset\n",
    433 				    sc->sc_dev.dv_xname);
    434 			epreset(sc);
    435 		}
    436 	}
    437 
    438 	goto startagain;
    439 }
    440 
    441 
    442 /*
    443  * XXX: The 3c509 card can get in a mode where both the fifo status bit
    444  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
    445  *	We detect this situation and we reset the adapter.
    446  *	It happens at times when there is a lot of broadcast traffic
    447  *	on the cable (once in a blue moon).
    448  */
    449 static int
    450 epstatus(sc)
    451 	register struct ep_softc *sc;
    452 {
    453 	bus_space_tag_t iot = sc->sc_iot;
    454 	bus_space_handle_t ioh = sc->sc_ioh;
    455 	u_int16_t fifost;
    456 
    457 	/*
    458 	 * Check the FIFO status and act accordingly
    459 	 */
    460 	GO_WINDOW(4);
    461 	fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
    462 	GO_WINDOW(1);
    463 
    464 	if (fifost & FIFOS_RX_UNDERRUN) {
    465 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    466 			printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
    467 		epreset(sc);
    468 		return 0;
    469 	}
    470 
    471 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
    472 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    473 			printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
    474 		return 1;
    475 	}
    476 
    477 	if (fifost & FIFOS_RX_OVERRUN) {
    478 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    479 			printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
    480 		return 1;
    481 	}
    482 
    483 	if (fifost & FIFOS_TX_OVERRUN) {
    484 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    485 			printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
    486 		epreset(sc);
    487 		return 0;
    488 	}
    489 
    490 	return 0;
    491 }
    492 
    493 
    494 static void
    495 eptxstat(sc)
    496 	register struct ep_softc *sc;
    497 {
    498 	bus_space_tag_t iot = sc->sc_iot;
    499 	bus_space_handle_t ioh = sc->sc_ioh;
    500 	int i;
    501 
    502 	/*
    503 	 * We need to read+write TX_STATUS until we get a 0 status
    504 	 * in order to turn off the interrupt flag.
    505 	 */
    506 	while ((i = bus_space_read_1(iot, ioh, EP_W1_TX_STATUS)) & TXS_COMPLETE) {
    507 		bus_space_write_1(iot, ioh, EP_W1_TX_STATUS, 0x0);
    508 
    509 		if (i & TXS_JABBER) {
    510 			++sc->sc_arpcom.ac_if.if_oerrors;
    511 			if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    512 				printf("%s: jabber (%x)\n",
    513 				       sc->sc_dev.dv_xname, i);
    514 			epreset(sc);
    515 		} else if (i & TXS_UNDERRUN) {
    516 			++sc->sc_arpcom.ac_if.if_oerrors;
    517 			if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    518 				printf("%s: fifo underrun (%x) @%d\n",
    519 				       sc->sc_dev.dv_xname, i,
    520 				       sc->tx_start_thresh);
    521 			if (sc->tx_succ_ok < 100)
    522 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
    523 					    sc->tx_start_thresh + 20);
    524 			sc->tx_succ_ok = 0;
    525 			epreset(sc);
    526 		} else if (i & TXS_MAX_COLLISION) {
    527 			++sc->sc_arpcom.ac_if.if_collisions;
    528 			bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
    529 			sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
    530 		} else
    531 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
    532 	}
    533 }
    534 
    535 int
    536 epintr(arg)
    537 	void *arg;
    538 {
    539 	register struct ep_softc *sc = arg;
    540 	bus_space_tag_t iot = sc->sc_iot;
    541 	bus_space_handle_t ioh = sc->sc_ioh;
    542 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    543 	u_int16_t status;
    544 	int ret = 0;
    545 
    546 	for (;;) {
    547 		bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
    548 
    549 		status = bus_space_read_2(iot, ioh, EP_STATUS);
    550 
    551 		if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
    552 			       S_RX_COMPLETE | S_CARD_FAILURE)) == 0)
    553 			break;
    554 
    555 		ret = 1;
    556 
    557 		/*
    558 		 * Acknowledge any interrupts.  It's important that we do this
    559 		 * first, since there would otherwise be a race condition.
    560 		 * Due to the i386 interrupt queueing, we may get spurious
    561 		 * interrupts occasionally.
    562 		 */
    563 		bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | status);
    564 
    565 		if (status & S_RX_COMPLETE)
    566 			epread(sc);
    567 		if (status & S_TX_AVAIL) {
    568 			sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
    569 			epstart(&sc->sc_arpcom.ac_if);
    570 		}
    571 		if (status & S_CARD_FAILURE) {
    572 			printf("%s: adapter failure (%x)\n",
    573 			    sc->sc_dev.dv_xname, status);
    574 			epreset(sc);
    575 			return (1);
    576 		}
    577 		if (status & S_TX_COMPLETE) {
    578 			eptxstat(sc);
    579 			epstart(ifp);
    580 		}
    581 	}
    582 
    583 	/* no more interrupts */
    584 	return (ret);
    585 }
    586 
    587 void
    588 epread(sc)
    589 	register struct ep_softc *sc;
    590 {
    591 	bus_space_tag_t iot = sc->sc_iot;
    592 	bus_space_handle_t ioh = sc->sc_ioh;
    593 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    594 	struct mbuf *m;
    595 	struct ether_header *eh;
    596 	int len;
    597 
    598 	len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
    599 
    600 again:
    601 	if (ifp->if_flags & IFF_DEBUG) {
    602 		int err = len & ERR_MASK;
    603 		char *s = NULL;
    604 
    605 		if (len & ERR_INCOMPLETE)
    606 			s = "incomplete packet";
    607 		else if (err == ERR_OVERRUN)
    608 			s = "packet overrun";
    609 		else if (err == ERR_RUNT)
    610 			s = "runt packet";
    611 		else if (err == ERR_ALIGNMENT)
    612 			s = "bad alignment";
    613 		else if (err == ERR_CRC)
    614 			s = "bad crc";
    615 		else if (err == ERR_OVERSIZE)
    616 			s = "oversized packet";
    617 		else if (err == ERR_DRIBBLE)
    618 			s = "dribble bits";
    619 
    620 		if (s)
    621 			printf("%s: %s\n", sc->sc_dev.dv_xname, s);
    622 	}
    623 
    624 	if (len & ERR_INCOMPLETE)
    625 		return;
    626 
    627 	if (len & ERR_RX) {
    628 		++ifp->if_ierrors;
    629 		goto abort;
    630 	}
    631 
    632 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
    633 
    634 	/* Pull packet off interface. */
    635 	m = epget(sc, len);
    636 	if (m == 0) {
    637 		ifp->if_ierrors++;
    638 		goto abort;
    639 	}
    640 
    641 	++ifp->if_ipackets;
    642 
    643 	/* We assume the header fit entirely in one mbuf. */
    644 	eh = mtod(m, struct ether_header *);
    645 
    646 #if NBPFILTER > 0
    647 	/*
    648 	 * Check if there's a BPF listener on this interface.
    649 	 * If so, hand off the raw packet to BPF.
    650 	 */
    651 	if (ifp->if_bpf) {
    652 		bpf_mtap(ifp->if_bpf, m);
    653 
    654 		/*
    655 		 * Note that the interface cannot be in promiscuous mode if
    656 		 * there are no BPF listeners.  And if we are in promiscuous
    657 		 * mode, we have to check if this packet is really ours.
    658 		 */
    659 		if ((ifp->if_flags & IFF_PROMISC) &&
    660 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
    661 		    bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
    662 			    sizeof(eh->ether_dhost)) != 0) {
    663 			m_freem(m);
    664 			return;
    665 		}
    666 	}
    667 #endif
    668 
    669 	/* We assume the header fit entirely in one mbuf. */
    670 	m_adj(m, sizeof(struct ether_header));
    671 	ether_input(ifp, eh, m);
    672 
    673 	/*
    674 	 * In periods of high traffic we can actually receive enough
    675 	 * packets so that the fifo overrun bit will be set at this point,
    676 	 * even though we just read a packet. In this case we
    677 	 * are not going to receive any more interrupts. We check for
    678 	 * this condition and read again until the fifo is not full.
    679 	 * We could simplify this test by not using epstatus(), but
    680 	 * rechecking the RX_STATUS register directly. This test could
    681 	 * result in unnecessary looping in cases where there is a new
    682 	 * packet but the fifo is not full, but it will not fix the
    683 	 * stuck behavior.
    684 	 *
    685 	 * Even with this improvement, we still get packet overrun errors
    686 	 * which are hurting performance. Maybe when I get some more time
    687 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
    688 	 */
    689 	if (epstatus(sc)) {
    690 		len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
    691 		/* Check if we are stuck and reset [see XXX comment] */
    692 		if (len & ERR_INCOMPLETE) {
    693 			if (ifp->if_flags & IFF_DEBUG)
    694 				printf("%s: adapter reset\n",
    695 				    sc->sc_dev.dv_xname);
    696 			epreset(sc);
    697 			return;
    698 		}
    699 		goto again;
    700 	}
    701 
    702 	return;
    703 
    704 abort:
    705 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
    706 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    707 		;
    708 }
    709 
    710 struct mbuf *
    711 epget(sc, totlen)
    712 	struct ep_softc *sc;
    713 	int totlen;
    714 {
    715 	bus_space_tag_t iot = sc->sc_iot;
    716 	bus_space_handle_t ioh = sc->sc_ioh;
    717 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    718 	struct mbuf *top, **mp, *m;
    719 	int len;
    720 	int sh;
    721 
    722 	m = sc->mb[sc->next_mb];
    723 	sc->mb[sc->next_mb] = 0;
    724 	if (m == 0) {
    725 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    726 		if (m == 0)
    727 			return 0;
    728 	} else {
    729 		/* If the queue is no longer full, refill. */
    730 		if (sc->last_mb == sc->next_mb)
    731 			timeout(epmbuffill, sc, 1);
    732 		/* Convert one of our saved mbuf's. */
    733 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
    734 		m->m_data = m->m_pktdat;
    735 		m->m_flags = M_PKTHDR;
    736 	}
    737 	m->m_pkthdr.rcvif = ifp;
    738 	m->m_pkthdr.len = totlen;
    739 	len = MHLEN;
    740 	top = 0;
    741 	mp = &top;
    742 
    743 	/*
    744 	 * We read the packet at splhigh() so that an interrupt from another
    745 	 * device doesn't cause the card's buffer to overflow while we're
    746 	 * reading it.  We may still lose packets at other times.
    747 	 */
    748 	sh = splhigh();
    749 
    750 	while (totlen > 0) {
    751 		if (top) {
    752 			m = sc->mb[sc->next_mb];
    753 			sc->mb[sc->next_mb] = 0;
    754 			if (m == 0) {
    755 				MGET(m, M_DONTWAIT, MT_DATA);
    756 				if (m == 0) {
    757 					splx(sh);
    758 					m_freem(top);
    759 					return 0;
    760 				}
    761 			} else {
    762 				sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
    763 			}
    764 			len = MLEN;
    765 		}
    766 		if (totlen >= MINCLSIZE) {
    767 			MCLGET(m, M_DONTWAIT);
    768 			if (m->m_flags & M_EXT)
    769 				len = MCLBYTES;
    770 		}
    771 		len = min(totlen, len);
    772 		if (EP_IS_BUS_32(sc->bustype)) {
    773 			if (len > 3) {
    774 				len &= ~3;
    775 				bus_space_read_multi_4(iot, ioh,
    776 				    EP_W1_RX_PIO_RD_1, mtod(m, u_int32_t *),
    777 				    len / 4);
    778 			} else
    779 				bus_space_read_multi_1(iot, ioh,
    780 				    EP_W1_RX_PIO_RD_1, mtod(m, u_int8_t *),
    781 				    len);
    782 		} else {
    783 			if (len > 1) {
    784 				len &= ~1;
    785 				bus_space_read_multi_2(iot, ioh,
    786 				    EP_W1_RX_PIO_RD_1, mtod(m, u_int16_t *),
    787 				    len / 2);
    788 			} else
    789 				*(mtod(m, u_int8_t *)) =
    790 				    bus_space_read_1(iot, ioh, EP_W1_RX_PIO_RD_1);
    791 		}
    792 		m->m_len = len;
    793 		totlen -= len;
    794 		*mp = m;
    795 		mp = &m->m_next;
    796 	}
    797 
    798 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
    799 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    800 		;
    801 
    802 	splx(sh);
    803 
    804 	return top;
    805 }
    806 
    807 int
    808 epioctl(ifp, cmd, data)
    809 	register struct ifnet *ifp;
    810 	u_long cmd;
    811 	caddr_t data;
    812 {
    813 	struct ep_softc *sc = ifp->if_softc;
    814 	struct ifaddr *ifa = (struct ifaddr *)data;
    815 	struct ifreq *ifr = (struct ifreq *)data;
    816 	int s, error = 0;
    817 
    818 	s = splnet();
    819 
    820 	switch (cmd) {
    821 
    822 	case SIOCSIFADDR:
    823 		ifp->if_flags |= IFF_UP;
    824 
    825 		switch (ifa->ifa_addr->sa_family) {
    826 #ifdef INET
    827 		case AF_INET:
    828 			epinit(sc);
    829 			arp_ifinit(&sc->sc_arpcom, ifa);
    830 			break;
    831 #endif
    832 #ifdef NS
    833 		case AF_NS:
    834 		    {
    835 			register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
    836 
    837 			if (ns_nullhost(*ina))
    838 				ina->x_host =
    839 				    *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
    840 			else
    841 				bcopy(ina->x_host.c_host,
    842 				    sc->sc_arpcom.ac_enaddr,
    843 				    sizeof(sc->sc_arpcom.ac_enaddr));
    844 			/* Set new address. */
    845 			epinit(sc);
    846 			break;
    847 		    }
    848 #endif
    849 		default:
    850 			epinit(sc);
    851 			break;
    852 		}
    853 		break;
    854 
    855 	case SIOCSIFFLAGS:
    856 		if ((ifp->if_flags & IFF_UP) == 0 &&
    857 		    (ifp->if_flags & IFF_RUNNING) != 0) {
    858 			/*
    859 			 * If interface is marked down and it is running, then
    860 			 * stop it.
    861 			 */
    862 			epstop(sc);
    863 			ifp->if_flags &= ~IFF_RUNNING;
    864 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
    865 			   (ifp->if_flags & IFF_RUNNING) == 0) {
    866 			/*
    867 			 * If interface is marked up and it is stopped, then
    868 			 * start it.
    869 			 */
    870 			epinit(sc);
    871 		} else {
    872 			/*
    873 			 * deal with flags changes:
    874 			 * IFF_MULTICAST, IFF_PROMISC,
    875 			 * IFF_LINK0, IFF_LINK1,
    876 			 */
    877 			epsetfilter(sc);
    878 			epsetlink(sc);
    879 		}
    880 		break;
    881 
    882 	case SIOCADDMULTI:
    883 	case SIOCDELMULTI:
    884 		error = (cmd == SIOCADDMULTI) ?
    885 		    ether_addmulti(ifr, &sc->sc_arpcom) :
    886 		    ether_delmulti(ifr, &sc->sc_arpcom);
    887 
    888 		if (error == ENETRESET) {
    889 			/*
    890 			 * Multicast list has changed; set the hardware filter
    891 			 * accordingly.
    892 			 */
    893 			epreset(sc);
    894 			error = 0;
    895 		}
    896 		break;
    897 
    898 	default:
    899 		error = EINVAL;
    900 		break;
    901 	}
    902 
    903 	splx(s);
    904 	return (error);
    905 }
    906 
    907 void
    908 epreset(sc)
    909 	struct ep_softc *sc;
    910 {
    911 	int s;
    912 
    913 	s = splnet();
    914 	epstop(sc);
    915 	epinit(sc);
    916 	splx(s);
    917 }
    918 
    919 void
    920 epwatchdog(ifp)
    921 	struct ifnet *ifp;
    922 {
    923 	struct ep_softc *sc = ifp->if_softc;
    924 
    925 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
    926 	++sc->sc_arpcom.ac_if.if_oerrors;
    927 
    928 	epreset(sc);
    929 }
    930 
    931 void
    932 epstop(sc)
    933 	register struct ep_softc *sc;
    934 {
    935 	bus_space_tag_t iot = sc->sc_iot;
    936 	bus_space_handle_t ioh = sc->sc_ioh;
    937 
    938 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
    939 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
    940 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    941 		;
    942 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
    943 	bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
    944 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_RESET);
    945 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_RESET);
    946 	bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
    947 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
    948 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
    949 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
    950 
    951 	epmbufempty(sc);
    952 }
    953 
    954 /*
    955  * We get eeprom data from the id_port given an offset into the
    956  * eeprom.  Basically; after the ID_sequence is sent to all of
    957  * the cards; they enter the ID_CMD state where they will accept
    958  * command requests. 0x80-0xbf loads the eeprom data.  We then
    959  * read the port 16 times and with every read; the cards check
    960  * for contention (ie: if one card writes a 0 bit and another
    961  * writes a 1 bit then the host sees a 0. At the end of the cycle;
    962  * each card compares the data on the bus; if there is a difference
    963  * then that card goes into ID_WAIT state again). In the meantime;
    964  * one bit of data is returned in the AX register which is conveniently
    965  * returned to us by bus_space_read_1().  Hence; we read 16 times getting one
    966  * bit of data with each read.
    967  *
    968  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
    969  */
    970 u_int16_t
    971 epreadeeprom(iot, ioh, offset)
    972 	bus_space_tag_t iot;
    973 	bus_space_handle_t ioh;
    974 	int offset;
    975 {
    976 	u_int16_t data = 0;
    977 	int i;
    978 
    979 	bus_space_write_1(iot, ioh, 0, 0x80 + offset);
    980 	delay(1000);
    981 	for (i = 0; i < 16; i++)
    982 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
    983 	return (data);
    984 }
    985 
    986 static int
    987 epbusyeeprom(sc)
    988 	struct ep_softc *sc;
    989 {
    990 	bus_space_tag_t iot = sc->sc_iot;
    991 	bus_space_handle_t ioh = sc->sc_ioh;
    992 	int i = 100, j;
    993 
    994 	if (sc->bustype == EP_BUS_PCMCIA) {
    995 		delay(1000);
    996 		return 0;
    997 	}
    998 
    999 	while (i--) {
   1000 		j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
   1001 		if (j & EEPROM_BUSY)
   1002 			delay(100);
   1003 		else
   1004 			break;
   1005 	}
   1006 	if (!i) {
   1007 		printf("\n%s: eeprom failed to come ready\n",
   1008 		    sc->sc_dev.dv_xname);
   1009 		return (1);
   1010 	}
   1011 	if (j & EEPROM_TST_MODE) {
   1012 		printf("\n%s: erase pencil mark, or disable plug-n-play mode!\n",
   1013 		    sc->sc_dev.dv_xname);
   1014 		return (1);
   1015 	}
   1016 	return (0);
   1017 }
   1018 
   1019 void
   1020 epmbuffill(v)
   1021 	void *v;
   1022 {
   1023 	struct ep_softc *sc = v;
   1024 	int s, i;
   1025 
   1026 	s = splnet();
   1027 	i = sc->last_mb;
   1028 	do {
   1029 		if (sc->mb[i] == NULL)
   1030 			MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
   1031 		if (sc->mb[i] == NULL)
   1032 			break;
   1033 		i = (i + 1) % MAX_MBS;
   1034 	} while (i != sc->next_mb);
   1035 	sc->last_mb = i;
   1036 	/* If the queue was not filled, try again. */
   1037 	if (sc->last_mb != sc->next_mb)
   1038 		timeout(epmbuffill, sc, 1);
   1039 	splx(s);
   1040 }
   1041 
   1042 void
   1043 epmbufempty(sc)
   1044 	struct ep_softc *sc;
   1045 {
   1046 	int s, i;
   1047 
   1048 	s = splnet();
   1049 	for (i = 0; i<MAX_MBS; i++) {
   1050 		if (sc->mb[i]) {
   1051 			m_freem(sc->mb[i]);
   1052 			sc->mb[i] = NULL;
   1053 		}
   1054 	}
   1055 	sc->last_mb = sc->next_mb = 0;
   1056 	untimeout(epmbuffill, sc);
   1057 	splx(s);
   1058 }
   1059