Home | History | Annotate | Line # | Download | only in ic
elink3.c revision 1.12
      1 /*	$NetBSD: elink3.c,v 1.12 1996/11/17 23:58:29 jonathan Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *      This product includes software developed by Herb Peyerl.
     18  * 4. The name of Herb Peyerl may not be used to endorse or promote products
     19  *    derived from this software without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 #include "bpfilter.h"
     34 
     35 #include <sys/param.h>
     36 #include <sys/systm.h>
     37 #include <sys/mbuf.h>
     38 #include <sys/socket.h>
     39 #include <sys/ioctl.h>
     40 #include <sys/errno.h>
     41 #include <sys/syslog.h>
     42 #include <sys/select.h>
     43 #include <sys/device.h>
     44 
     45 #include <net/if.h>
     46 #include <net/netisr.h>
     47 #include <net/if_dl.h>
     48 #include <net/if_types.h>
     49 #include <net/netisr.h>
     50 
     51 #ifdef INET
     52 #include <netinet/in.h>
     53 #include <netinet/in_systm.h>
     54 #include <netinet/in_var.h>
     55 #include <netinet/ip.h>
     56 #include <netinet/if_ether.h>
     57 #endif
     58 
     59 #ifdef NS
     60 #include <netns/ns.h>
     61 #include <netns/ns_if.h>
     62 #endif
     63 
     64 #if NBPFILTER > 0
     65 #include <net/bpf.h>
     66 #include <net/bpfdesc.h>
     67 #endif
     68 
     69 #include <machine/cpu.h>
     70 #include <machine/bus.h>
     71 #include <machine/intr.h>
     72 
     73 #include <dev/ic/elink3var.h>
     74 #include <dev/ic/elink3reg.h>
     75 
     76 #define ETHER_MIN_LEN	64
     77 #define ETHER_MAX_LEN   1518
     78 #define ETHER_ADDR_LEN  6
     79 
     80 struct cfdriver ep_cd = {
     81 	NULL, "ep", DV_IFNET
     82 };
     83 
     84 static void eptxstat __P((struct ep_softc *));
     85 static int epstatus __P((struct ep_softc *));
     86 void epinit __P((struct ep_softc *));
     87 int epioctl __P((struct ifnet *, u_long, caddr_t));
     88 void epstart __P((struct ifnet *));
     89 void epwatchdog __P((struct ifnet *));
     90 void epreset __P((struct ep_softc *));
     91 void epread __P((struct ep_softc *));
     92 struct mbuf *epget __P((struct ep_softc *, int));
     93 void epmbuffill __P((void *));
     94 void epmbufempty __P((struct ep_softc *));
     95 void epsetfilter __P((struct ep_softc *));
     96 void epsetlink __P((struct ep_softc *));
     97 
     98 static int epbusyeeprom __P((struct ep_softc *));
     99 
    100 void
    101 epconfig(sc, conn)
    102 	struct ep_softc *sc;
    103 	u_int16_t conn;
    104 {
    105 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    106 	bus_space_tag_t iot = sc->sc_iot;
    107 	bus_space_handle_t ioh = sc->sc_ioh;
    108 	u_int16_t i;
    109 
    110 	sc->ep_connectors = 0;
    111 	printf("%s: ", sc->sc_dev.dv_xname);
    112 	if (conn & IS_AUI) {
    113 		printf("aui");
    114 		sc->ep_connectors |= AUI;
    115 	}
    116 	if (conn & IS_BNC) {
    117 		if (sc->ep_connectors)
    118 			printf("/");
    119 		printf("bnc");
    120 		sc->ep_connectors |= BNC;
    121 	}
    122 	if (conn & IS_UTP) {
    123 		if (sc->ep_connectors)
    124 			printf("/");
    125 		printf("utp");
    126 		sc->ep_connectors |= UTP;
    127 	}
    128 	if (!sc->ep_connectors)
    129 		printf("no connectors!");
    130 
    131 	/*
    132 	 * Read the station address from the eeprom
    133 	 */
    134 	for (i = 0; i < 3; i++) {
    135 		u_int16_t x;
    136 		if (epbusyeeprom(sc))
    137 			return;
    138 		bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
    139 		    READ_EEPROM | i);
    140 		if (epbusyeeprom(sc))
    141 			return;
    142 		x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
    143 		sc->sc_arpcom.ac_enaddr[(i << 1)] = x >> 8;
    144 		sc->sc_arpcom.ac_enaddr[(i << 1) + 1] = x;
    145 	}
    146 
    147 	printf(" address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
    148 
    149 	/*
    150 	 * Vortex-based (3c59x, eisa)? and Boomerang (3c900)cards allow
    151 	 * FDDI-sized (4500) byte packets.  Commands only take an 11-bit
    152 	 * parameter, and  11 bits isn't enough to hold a full-size pkt length.
    153 	 * Commands to these cards implicitly upshift a packet size
    154 	 * or threshold by 2 bits.
    155 	 * To detect  cards with large-packet support, we probe by setting
    156 	 * the transmit threshold register, then change windows and
    157 	 * read back the threshold register directly, and see if the
    158 	 * threshold value was shifted or not.
    159 	 */
    160 	bus_space_write_2(iot, ioh, EP_COMMAND,
    161 			  SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
    162 	GO_WINDOW(5);
    163 	i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
    164 	GO_WINDOW(1);
    165 	switch (i)  {
    166 	case EP_THRESH_DISABLE:
    167 		sc->ep_pktlenshift = 0;
    168 		break;
    169 
    170 	case (EP_THRESH_DISABLE << 2):
    171 		sc->ep_pktlenshift = 2;
    172 		break;
    173 
    174 	default:
    175 		printf("%s: wrote %d to TX_AVAIL_THRESH, read back %d. Interface disabled",
    176 		    sc->sc_dev.dv_xname, EP_THRESH_DISABLE, (int) i);
    177 		return;
    178 	}
    179 	/*
    180 	 * Ensure Tx-available interrupts are enabled for
    181 	 * start the interface.
    182 	 * XXX should be in epinit().
    183 	 */
    184 	bus_space_write_2(iot, ioh, EP_COMMAND,
    185 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    186 
    187 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    188 	ifp->if_softc = sc;
    189 	ifp->if_start = epstart;
    190 	ifp->if_ioctl = epioctl;
    191 	ifp->if_watchdog = epwatchdog;
    192 	ifp->if_flags =
    193 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    194 
    195 	if_attach(ifp);
    196 	ether_ifattach(ifp);
    197 
    198 #if NBPFILTER > 0
    199 	bpfattach(&sc->sc_arpcom.ac_if.if_bpf, ifp, DLT_EN10MB,
    200 		  sizeof(struct ether_header));
    201 #endif
    202 
    203 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
    204 
    205 #if 0
    206 	/* XXX */
    207 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_RESET);
    208 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_RESET);
    209 #else
    210 
    211 	epinit(sc);		/*XXX fix up after probe */
    212 	DELAY(20000);
    213 	epstop(sc);		/*XXX reset after probe, stop interface. */
    214 	DELAY(20000);
    215 #endif
    216 }
    217 
    218 /*
    219  * The order in here seems important. Otherwise we may not receive
    220  * interrupts. ?!
    221  */
    222 void
    223 epinit(sc)
    224 	register struct ep_softc *sc;
    225 {
    226 	register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    227 	bus_space_tag_t iot = sc->sc_iot;
    228 	bus_space_handle_t ioh = sc->sc_ioh;
    229 	int i;
    230 
    231 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    232 		;
    233 
    234 	if (sc->bustype != EP_BUS_PCI) {
    235 		GO_WINDOW(0);
    236 		bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
    237 		bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
    238 	}
    239 
    240 	if (sc->bustype == EP_BUS_PCMCIA) {
    241 #ifdef EP_COAX_DEFAULT
    242 		bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
    243 #else
    244 		bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,0<<14);
    245 #endif
    246 		bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
    247 	}
    248 
    249 	GO_WINDOW(2);
    250 	for (i = 0; i < 6; i++)	/* Reload the ether_addr. */
    251 		bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
    252 		    sc->sc_arpcom.ac_enaddr[i]);
    253 
    254 	/*
    255 	 * Reset the station-address receive filter.
    256 	 * A bug workaround for busmastering  (Vortex, Demon) cards.
    257 	 */
    258 	for (i = 0; i < 6; i++)
    259 		bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
    260 
    261 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_RESET);
    262 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_RESET);
    263 
    264 	GO_WINDOW(1);		/* Window 1 is operating window */
    265 	for (i = 0; i < 31; i++)
    266 		bus_space_read_1(iot, ioh, EP_W1_TX_STATUS);
    267 
    268 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
    269 				S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
    270 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
    271 				S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
    272 
    273 	/*
    274 	 * Attempt to get rid of any stray interrupts that occured during
    275 	 * configuration.  On the i386 this isn't possible because one may
    276 	 * already be queued.  However, a single stray interrupt is
    277 	 * unimportant.
    278 	 */
    279 	bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
    280 
    281 	epsetfilter(sc);
    282 	epsetlink(sc);
    283 
    284 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
    285 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
    286 
    287 	epmbuffill(sc);
    288 
    289 	/* Interface is now `running', with no output active. */
    290 	ifp->if_flags |= IFF_RUNNING;
    291 	ifp->if_flags &= ~IFF_OACTIVE;
    292 
    293 	/* Attempt to start output, if any. */
    294 	epstart(ifp);
    295 }
    296 
    297 void
    298 epsetfilter(sc)
    299 	register struct ep_softc *sc;
    300 {
    301 	register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    302 
    303 	GO_WINDOW(1);		/* Window 1 is operating window */
    304 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
    305 	    FIL_INDIVIDUAL | FIL_BRDCST |
    306 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
    307 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
    308 }
    309 
    310 void
    311 epsetlink(sc)
    312 	register struct ep_softc *sc;
    313 {
    314 	register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    315 	bus_space_tag_t iot = sc->sc_iot;
    316 	bus_space_handle_t ioh = sc->sc_ioh;
    317 
    318 	/*
    319 	 * you can `ifconfig (link0|-link0) ep0' to get the following
    320 	 * behaviour:
    321 	 *	-link0	disable AUI/UTP. enable BNC.
    322 	 *	link0	disable BNC. enable AUI.
    323 	 *	link1	if the card has a UTP connector, and link0 is
    324 	 *		set too, then you get the UTP port.
    325 	 */
    326 	GO_WINDOW(4);
    327 	bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, DISABLE_UTP);
    328 	if (!(ifp->if_flags & IFF_LINK0) && (sc->ep_connectors & BNC)) {
    329 		if (sc->bustype == EP_BUS_PCMCIA) {
    330 			GO_WINDOW(0);
    331 			bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
    332 			GO_WINDOW(1);
    333 		}
    334 		bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
    335 		delay(1000);
    336 	}
    337 	if (ifp->if_flags & IFF_LINK0) {
    338 		bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
    339 		delay(1000);
    340 		if ((ifp->if_flags & IFF_LINK1) && (sc->ep_connectors & UTP)) {
    341 			if (sc->bustype == EP_BUS_PCMCIA) {
    342 				GO_WINDOW(0);
    343 				bus_space_write_2(iot, ioh,
    344 				    EP_W0_ADDRESS_CFG,0<<14);
    345 				GO_WINDOW(4);
    346 			}
    347 			bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, ENABLE_UTP);
    348 		}
    349 	}
    350 	GO_WINDOW(1);
    351 }
    352 
    353 /*
    354  * Start outputting on the interface.
    355  * Always called as splnet().
    356  */
    357 void
    358 epstart(ifp)
    359 	struct ifnet *ifp;
    360 {
    361 	register struct ep_softc *sc = ifp->if_softc;
    362 	bus_space_tag_t iot = sc->sc_iot;
    363 	bus_space_handle_t ioh = sc->sc_ioh;
    364 	struct mbuf *m, *m0;
    365 	int sh, len, pad;
    366 
    367 	/* Don't transmit if interface is busy or not running */
    368 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    369 		return;
    370 
    371 startagain:
    372 	/* Sneak a peek at the next packet */
    373 	m0 = ifp->if_snd.ifq_head;
    374 	if (m0 == 0)
    375 		return;
    376 
    377 	/* We need to use m->m_pkthdr.len, so require the header */
    378 	if ((m0->m_flags & M_PKTHDR) == 0)
    379 		panic("epstart: no header mbuf");
    380 	len = m0->m_pkthdr.len;
    381 
    382 	pad = (4 - len) & 3;
    383 
    384 	/*
    385 	 * The 3c509 automatically pads short packets to minimum ethernet
    386 	 * length, but we drop packets that are too large. Perhaps we should
    387 	 * truncate them instead?
    388 	 */
    389 	if (len + pad > ETHER_MAX_LEN) {
    390 		/* packet is obviously too large: toss it */
    391 		++ifp->if_oerrors;
    392 		IF_DEQUEUE(&ifp->if_snd, m0);
    393 		m_freem(m0);
    394 		goto readcheck;
    395 	}
    396 
    397 	if (bus_space_read_2(iot, ioh, EP_W1_FREE_TX) < len + pad + 4) {
    398 		bus_space_write_2(iot, ioh, EP_COMMAND,
    399 		    SET_TX_AVAIL_THRESH |
    400 		    ((len + pad + 4) >> sc->ep_pktlenshift));
    401 		/* not enough room in FIFO */
    402 		ifp->if_flags |= IFF_OACTIVE;
    403 		return;
    404 	} else {
    405 		bus_space_write_2(iot, ioh, EP_COMMAND,
    406 		    SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
    407 	}
    408 
    409 	IF_DEQUEUE(&ifp->if_snd, m0);
    410 	if (m0 == 0)		/* not really needed */
    411 		return;
    412 
    413 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
    414 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
    415 
    416 #if NBPFILTER > 0
    417 	if (ifp->if_bpf)
    418 		bpf_mtap(ifp->if_bpf, m0);
    419 #endif
    420 
    421 	/*
    422 	 * Do the output at splhigh() so that an interrupt from another device
    423 	 * won't cause a FIFO underrun.
    424 	 */
    425 	sh = splhigh();
    426 
    427 	bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1, len);
    428 	bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1,
    429 	    0xffff);	/* Second dword meaningless */
    430 	if (EP_IS_BUS_32(sc->bustype)) {
    431 		for (m = m0; m; ) {
    432 			if (m->m_len > 3)
    433 				bus_space_write_multi_4(iot, ioh,
    434 				    EP_W1_TX_PIO_WR_1, mtod(m, u_int32_t *),
    435 				    m->m_len / 4);
    436 			if (m->m_len & 3)
    437 				bus_space_write_multi_1(iot, ioh,
    438 				    EP_W1_TX_PIO_WR_1,
    439 				    mtod(m, u_int8_t *) + (m->m_len & ~3),
    440 				    m->m_len & 3);
    441 			MFREE(m, m0);
    442 			m = m0;
    443 		}
    444 	} else {
    445 		for (m = m0; m; ) {
    446 			if (m->m_len > 1)
    447 				bus_space_write_multi_2(iot, ioh,
    448 				    EP_W1_TX_PIO_WR_1, mtod(m, u_int16_t *),
    449 				    m->m_len / 2);
    450 			if (m->m_len & 1)
    451 				bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1,
    452 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
    453 			MFREE(m, m0);
    454 			m = m0;
    455 		}
    456 	}
    457 	while (pad--)
    458 		bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1, 0);
    459 
    460 	splx(sh);
    461 
    462 	++ifp->if_opackets;
    463 
    464 readcheck:
    465 	if ((bus_space_read_2(iot, ioh, EP_W1_RX_STATUS) & ERR_INCOMPLETE) == 0) {
    466 		/* We received a complete packet. */
    467 		u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
    468 
    469 		if ((status & S_INTR_LATCH) == 0) {
    470 			/*
    471 			 * No interrupt, read the packet and continue
    472 			 * Is  this supposed to happen? Is my motherboard
    473 			 * completely busted?
    474 			 */
    475 			epread(sc);
    476 		}
    477 		else
    478 			/* Got an interrupt, return so that it gets serviced. */
    479 			return;
    480 	}
    481 	else {
    482 		/* Check if we are stuck and reset [see XXX comment] */
    483 		if (epstatus(sc)) {
    484 			if (ifp->if_flags & IFF_DEBUG)
    485 				printf("%s: adapter reset\n",
    486 				    sc->sc_dev.dv_xname);
    487 			epreset(sc);
    488 		}
    489 	}
    490 
    491 	goto startagain;
    492 }
    493 
    494 
    495 /*
    496  * XXX: The 3c509 card can get in a mode where both the fifo status bit
    497  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
    498  *	We detect this situation and we reset the adapter.
    499  *	It happens at times when there is a lot of broadcast traffic
    500  *	on the cable (once in a blue moon).
    501  */
    502 static int
    503 epstatus(sc)
    504 	register struct ep_softc *sc;
    505 {
    506 	bus_space_tag_t iot = sc->sc_iot;
    507 	bus_space_handle_t ioh = sc->sc_ioh;
    508 	u_int16_t fifost;
    509 
    510 	/*
    511 	 * Check the FIFO status and act accordingly
    512 	 */
    513 	GO_WINDOW(4);
    514 	fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
    515 	GO_WINDOW(1);
    516 
    517 	if (fifost & FIFOS_RX_UNDERRUN) {
    518 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    519 			printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
    520 		epreset(sc);
    521 		return 0;
    522 	}
    523 
    524 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
    525 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    526 			printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
    527 		return 1;
    528 	}
    529 
    530 	if (fifost & FIFOS_RX_OVERRUN) {
    531 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    532 			printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
    533 		return 1;
    534 	}
    535 
    536 	if (fifost & FIFOS_TX_OVERRUN) {
    537 		if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    538 			printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
    539 		epreset(sc);
    540 		return 0;
    541 	}
    542 
    543 	return 0;
    544 }
    545 
    546 
    547 static void
    548 eptxstat(sc)
    549 	register struct ep_softc *sc;
    550 {
    551 	bus_space_tag_t iot = sc->sc_iot;
    552 	bus_space_handle_t ioh = sc->sc_ioh;
    553 	int i;
    554 
    555 	/*
    556 	 * We need to read+write TX_STATUS until we get a 0 status
    557 	 * in order to turn off the interrupt flag.
    558 	 */
    559 	while ((i = bus_space_read_1(iot, ioh, EP_W1_TX_STATUS)) & TXS_COMPLETE) {
    560 		bus_space_write_1(iot, ioh, EP_W1_TX_STATUS, 0x0);
    561 
    562 		if (i & TXS_JABBER) {
    563 			++sc->sc_arpcom.ac_if.if_oerrors;
    564 			if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    565 				printf("%s: jabber (%x)\n",
    566 				       sc->sc_dev.dv_xname, i);
    567 			epreset(sc);
    568 		} else if (i & TXS_UNDERRUN) {
    569 			++sc->sc_arpcom.ac_if.if_oerrors;
    570 			if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
    571 				printf("%s: fifo underrun (%x) @%d\n",
    572 				       sc->sc_dev.dv_xname, i,
    573 				       sc->tx_start_thresh);
    574 			if (sc->tx_succ_ok < 100)
    575 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
    576 					    sc->tx_start_thresh + 20);
    577 			sc->tx_succ_ok = 0;
    578 			epreset(sc);
    579 		} else if (i & TXS_MAX_COLLISION) {
    580 			++sc->sc_arpcom.ac_if.if_collisions;
    581 			bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
    582 			sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
    583 		} else
    584 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
    585 	}
    586 }
    587 
    588 int
    589 epintr(arg)
    590 	void *arg;
    591 {
    592 	register struct ep_softc *sc = arg;
    593 	bus_space_tag_t iot = sc->sc_iot;
    594 	bus_space_handle_t ioh = sc->sc_ioh;
    595 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    596 	u_int16_t status;
    597 	int ret = 0;
    598 
    599 	for (;;) {
    600 		bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
    601 
    602 		status = bus_space_read_2(iot, ioh, EP_STATUS);
    603 
    604 		if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
    605 			       S_RX_COMPLETE | S_CARD_FAILURE)) == 0)
    606 			break;
    607 
    608 		ret = 1;
    609 
    610 		/*
    611 		 * Acknowledge any interrupts.  It's important that we do this
    612 		 * first, since there would otherwise be a race condition.
    613 		 * Due to the i386 interrupt queueing, we may get spurious
    614 		 * interrupts occasionally.
    615 		 */
    616 		bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | status);
    617 
    618 		if (status & S_RX_COMPLETE)
    619 			epread(sc);
    620 		if (status & S_TX_AVAIL) {
    621 			sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
    622 			epstart(&sc->sc_arpcom.ac_if);
    623 		}
    624 		if (status & S_CARD_FAILURE) {
    625 			printf("%s: adapter failure (%x)\n",
    626 			    sc->sc_dev.dv_xname, status);
    627 			epreset(sc);
    628 			return (1);
    629 		}
    630 		if (status & S_TX_COMPLETE) {
    631 			eptxstat(sc);
    632 			epstart(ifp);
    633 		}
    634 	}
    635 
    636 	/* no more interrupts */
    637 	return (ret);
    638 }
    639 
    640 void
    641 epread(sc)
    642 	register struct ep_softc *sc;
    643 {
    644 	bus_space_tag_t iot = sc->sc_iot;
    645 	bus_space_handle_t ioh = sc->sc_ioh;
    646 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    647 	struct mbuf *m;
    648 	struct ether_header *eh;
    649 	int len;
    650 
    651 	len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
    652 
    653 again:
    654 	if (ifp->if_flags & IFF_DEBUG) {
    655 		int err = len & ERR_MASK;
    656 		char *s = NULL;
    657 
    658 		if (len & ERR_INCOMPLETE)
    659 			s = "incomplete packet";
    660 		else if (err == ERR_OVERRUN)
    661 			s = "packet overrun";
    662 		else if (err == ERR_RUNT)
    663 			s = "runt packet";
    664 		else if (err == ERR_ALIGNMENT)
    665 			s = "bad alignment";
    666 		else if (err == ERR_CRC)
    667 			s = "bad crc";
    668 		else if (err == ERR_OVERSIZE)
    669 			s = "oversized packet";
    670 		else if (err == ERR_DRIBBLE)
    671 			s = "dribble bits";
    672 
    673 		if (s)
    674 			printf("%s: %s\n", sc->sc_dev.dv_xname, s);
    675 	}
    676 
    677 	if (len & ERR_INCOMPLETE)
    678 		return;
    679 
    680 	if (len & ERR_RX) {
    681 		++ifp->if_ierrors;
    682 		goto abort;
    683 	}
    684 
    685 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
    686 
    687 	/* Pull packet off interface. */
    688 	m = epget(sc, len);
    689 	if (m == 0) {
    690 		ifp->if_ierrors++;
    691 		goto abort;
    692 	}
    693 
    694 	++ifp->if_ipackets;
    695 
    696 	/* We assume the header fit entirely in one mbuf. */
    697 	eh = mtod(m, struct ether_header *);
    698 
    699 #if NBPFILTER > 0
    700 	/*
    701 	 * Check if there's a BPF listener on this interface.
    702 	 * If so, hand off the raw packet to BPF.
    703 	 */
    704 	if (ifp->if_bpf) {
    705 		bpf_mtap(ifp->if_bpf, m);
    706 
    707 		/*
    708 		 * Note that the interface cannot be in promiscuous mode if
    709 		 * there are no BPF listeners.  And if we are in promiscuous
    710 		 * mode, we have to check if this packet is really ours.
    711 		 */
    712 		if ((ifp->if_flags & IFF_PROMISC) &&
    713 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
    714 		    bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
    715 			    sizeof(eh->ether_dhost)) != 0) {
    716 			m_freem(m);
    717 			return;
    718 		}
    719 	}
    720 #endif
    721 
    722 	/* We assume the header fit entirely in one mbuf. */
    723 	m_adj(m, sizeof(struct ether_header));
    724 	ether_input(ifp, eh, m);
    725 
    726 	/*
    727 	 * In periods of high traffic we can actually receive enough
    728 	 * packets so that the fifo overrun bit will be set at this point,
    729 	 * even though we just read a packet. In this case we
    730 	 * are not going to receive any more interrupts. We check for
    731 	 * this condition and read again until the fifo is not full.
    732 	 * We could simplify this test by not using epstatus(), but
    733 	 * rechecking the RX_STATUS register directly. This test could
    734 	 * result in unnecessary looping in cases where there is a new
    735 	 * packet but the fifo is not full, but it will not fix the
    736 	 * stuck behavior.
    737 	 *
    738 	 * Even with this improvement, we still get packet overrun errors
    739 	 * which are hurting performance. Maybe when I get some more time
    740 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
    741 	 */
    742 	if (epstatus(sc)) {
    743 		len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
    744 		/* Check if we are stuck and reset [see XXX comment] */
    745 		if (len & ERR_INCOMPLETE) {
    746 			if (ifp->if_flags & IFF_DEBUG)
    747 				printf("%s: adapter reset\n",
    748 				    sc->sc_dev.dv_xname);
    749 			epreset(sc);
    750 			return;
    751 		}
    752 		goto again;
    753 	}
    754 
    755 	return;
    756 
    757 abort:
    758 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
    759 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    760 		;
    761 }
    762 
    763 struct mbuf *
    764 epget(sc, totlen)
    765 	struct ep_softc *sc;
    766 	int totlen;
    767 {
    768 	bus_space_tag_t iot = sc->sc_iot;
    769 	bus_space_handle_t ioh = sc->sc_ioh;
    770 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
    771 	struct mbuf *top, **mp, *m;
    772 	int len;
    773 	int sh;
    774 
    775 	m = sc->mb[sc->next_mb];
    776 	sc->mb[sc->next_mb] = 0;
    777 	if (m == 0) {
    778 		MGETHDR(m, M_DONTWAIT, MT_DATA);
    779 		if (m == 0)
    780 			return 0;
    781 	} else {
    782 		/* If the queue is no longer full, refill. */
    783 		if (sc->last_mb == sc->next_mb)
    784 			timeout(epmbuffill, sc, 1);
    785 		/* Convert one of our saved mbuf's. */
    786 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
    787 		m->m_data = m->m_pktdat;
    788 		m->m_flags = M_PKTHDR;
    789 	}
    790 	m->m_pkthdr.rcvif = ifp;
    791 	m->m_pkthdr.len = totlen;
    792 	len = MHLEN;
    793 	top = 0;
    794 	mp = &top;
    795 
    796 	/*
    797 	 * We read the packet at splhigh() so that an interrupt from another
    798 	 * device doesn't cause the card's buffer to overflow while we're
    799 	 * reading it.  We may still lose packets at other times.
    800 	 */
    801 	sh = splhigh();
    802 
    803 	while (totlen > 0) {
    804 		if (top) {
    805 			m = sc->mb[sc->next_mb];
    806 			sc->mb[sc->next_mb] = 0;
    807 			if (m == 0) {
    808 				MGET(m, M_DONTWAIT, MT_DATA);
    809 				if (m == 0) {
    810 					splx(sh);
    811 					m_freem(top);
    812 					return 0;
    813 				}
    814 			} else {
    815 				sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
    816 			}
    817 			len = MLEN;
    818 		}
    819 		if (totlen >= MINCLSIZE) {
    820 			MCLGET(m, M_DONTWAIT);
    821 			if (m->m_flags & M_EXT)
    822 				len = MCLBYTES;
    823 		}
    824 		len = min(totlen, len);
    825 		if (EP_IS_BUS_32(sc->bustype)) {
    826 			if (len > 3) {
    827 				len &= ~3;
    828 				bus_space_read_multi_4(iot, ioh,
    829 				    EP_W1_RX_PIO_RD_1, mtod(m, u_int32_t *),
    830 				    len / 4);
    831 			} else
    832 				bus_space_read_multi_1(iot, ioh,
    833 				    EP_W1_RX_PIO_RD_1, mtod(m, u_int8_t *),
    834 				    len);
    835 		} else {
    836 			if (len > 1) {
    837 				len &= ~1;
    838 				bus_space_read_multi_2(iot, ioh,
    839 				    EP_W1_RX_PIO_RD_1, mtod(m, u_int16_t *),
    840 				    len / 2);
    841 			} else
    842 				*(mtod(m, u_int8_t *)) =
    843 				    bus_space_read_1(iot, ioh, EP_W1_RX_PIO_RD_1);
    844 		}
    845 		m->m_len = len;
    846 		totlen -= len;
    847 		*mp = m;
    848 		mp = &m->m_next;
    849 	}
    850 
    851 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
    852 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    853 		;
    854 
    855 	splx(sh);
    856 
    857 	return top;
    858 }
    859 
    860 int
    861 epioctl(ifp, cmd, data)
    862 	register struct ifnet *ifp;
    863 	u_long cmd;
    864 	caddr_t data;
    865 {
    866 	struct ep_softc *sc = ifp->if_softc;
    867 	struct ifaddr *ifa = (struct ifaddr *)data;
    868 	struct ifreq *ifr = (struct ifreq *)data;
    869 	int s, error = 0;
    870 
    871 	s = splnet();
    872 
    873 	switch (cmd) {
    874 
    875 	case SIOCSIFADDR:
    876 		ifp->if_flags |= IFF_UP;
    877 
    878 		switch (ifa->ifa_addr->sa_family) {
    879 #ifdef INET
    880 		case AF_INET:
    881 			epinit(sc);
    882 			arp_ifinit(&sc->sc_arpcom, ifa);
    883 			break;
    884 #endif
    885 #ifdef NS
    886 		case AF_NS:
    887 		    {
    888 			register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
    889 
    890 			if (ns_nullhost(*ina))
    891 				ina->x_host =
    892 				    *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
    893 			else
    894 				bcopy(ina->x_host.c_host,
    895 				    sc->sc_arpcom.ac_enaddr,
    896 				    sizeof(sc->sc_arpcom.ac_enaddr));
    897 			/* Set new address. */
    898 			epinit(sc);
    899 			break;
    900 		    }
    901 #endif
    902 		default:
    903 			epinit(sc);
    904 			break;
    905 		}
    906 		break;
    907 
    908 	case SIOCSIFFLAGS:
    909 		if ((ifp->if_flags & IFF_UP) == 0 &&
    910 		    (ifp->if_flags & IFF_RUNNING) != 0) {
    911 			/*
    912 			 * If interface is marked down and it is running, then
    913 			 * stop it.
    914 			 */
    915 			epstop(sc);
    916 			ifp->if_flags &= ~IFF_RUNNING;
    917 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
    918 			   (ifp->if_flags & IFF_RUNNING) == 0) {
    919 			/*
    920 			 * If interface is marked up and it is stopped, then
    921 			 * start it.
    922 			 */
    923 			epinit(sc);
    924 		} else {
    925 			/*
    926 			 * deal with flags changes:
    927 			 * IFF_MULTICAST, IFF_PROMISC,
    928 			 * IFF_LINK0, IFF_LINK1,
    929 			 */
    930 			epsetfilter(sc);
    931 			epsetlink(sc);
    932 		}
    933 		break;
    934 
    935 	case SIOCADDMULTI:
    936 	case SIOCDELMULTI:
    937 		error = (cmd == SIOCADDMULTI) ?
    938 		    ether_addmulti(ifr, &sc->sc_arpcom) :
    939 		    ether_delmulti(ifr, &sc->sc_arpcom);
    940 
    941 		if (error == ENETRESET) {
    942 			/*
    943 			 * Multicast list has changed; set the hardware filter
    944 			 * accordingly.
    945 			 */
    946 			epreset(sc);
    947 			error = 0;
    948 		}
    949 		break;
    950 
    951 	default:
    952 		error = EINVAL;
    953 		break;
    954 	}
    955 
    956 	splx(s);
    957 	return (error);
    958 }
    959 
    960 void
    961 epreset(sc)
    962 	struct ep_softc *sc;
    963 {
    964 	int s;
    965 
    966 	s = splnet();
    967 	epstop(sc);
    968 	epinit(sc);
    969 	splx(s);
    970 }
    971 
    972 void
    973 epwatchdog(ifp)
    974 	struct ifnet *ifp;
    975 {
    976 	struct ep_softc *sc = ifp->if_softc;
    977 
    978 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
    979 	++sc->sc_arpcom.ac_if.if_oerrors;
    980 
    981 	epreset(sc);
    982 }
    983 
    984 void
    985 epstop(sc)
    986 	register struct ep_softc *sc;
    987 {
    988 	bus_space_tag_t iot = sc->sc_iot;
    989 	bus_space_handle_t ioh = sc->sc_ioh;
    990 
    991 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
    992 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
    993 	while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
    994 		;
    995 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
    996 	bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
    997 	bus_space_write_2(iot, ioh, EP_COMMAND, RX_RESET);
    998 	bus_space_write_2(iot, ioh, EP_COMMAND, TX_RESET);
    999 	bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
   1000 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
   1001 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
   1002 	bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
   1003 
   1004 	epmbufempty(sc);
   1005 }
   1006 
   1007 /*
   1008  * We get eeprom data from the id_port given an offset into the
   1009  * eeprom.  Basically; after the ID_sequence is sent to all of
   1010  * the cards; they enter the ID_CMD state where they will accept
   1011  * command requests. 0x80-0xbf loads the eeprom data.  We then
   1012  * read the port 16 times and with every read; the cards check
   1013  * for contention (ie: if one card writes a 0 bit and another
   1014  * writes a 1 bit then the host sees a 0. At the end of the cycle;
   1015  * each card compares the data on the bus; if there is a difference
   1016  * then that card goes into ID_WAIT state again). In the meantime;
   1017  * one bit of data is returned in the AX register which is conveniently
   1018  * returned to us by bus_space_read_1().  Hence; we read 16 times getting one
   1019  * bit of data with each read.
   1020  *
   1021  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
   1022  */
   1023 u_int16_t
   1024 epreadeeprom(iot, ioh, offset)
   1025 	bus_space_tag_t iot;
   1026 	bus_space_handle_t ioh;
   1027 	int offset;
   1028 {
   1029 	u_int16_t data = 0;
   1030 	int i;
   1031 
   1032 	bus_space_write_1(iot, ioh, 0, 0x80 + offset);
   1033 	delay(1000);
   1034 	for (i = 0; i < 16; i++)
   1035 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
   1036 	return (data);
   1037 }
   1038 
   1039 static int
   1040 epbusyeeprom(sc)
   1041 	struct ep_softc *sc;
   1042 {
   1043 	bus_space_tag_t iot = sc->sc_iot;
   1044 	bus_space_handle_t ioh = sc->sc_ioh;
   1045 	int i = 100, j;
   1046 
   1047 	if (sc->bustype == EP_BUS_PCMCIA) {
   1048 		delay(1000);
   1049 		return 0;
   1050 	}
   1051 
   1052 	while (i--) {
   1053 		j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
   1054 		if (j & EEPROM_BUSY)
   1055 			delay(100);
   1056 		else
   1057 			break;
   1058 	}
   1059 	if (!i) {
   1060 		printf("\n%s: eeprom failed to come ready\n",
   1061 		    sc->sc_dev.dv_xname);
   1062 		return (1);
   1063 	}
   1064 	if (j & EEPROM_TST_MODE) {
   1065 		printf("\n%s: erase pencil mark, or disable plug-n-play mode!\n",
   1066 		    sc->sc_dev.dv_xname);
   1067 		return (1);
   1068 	}
   1069 	return (0);
   1070 }
   1071 
   1072 void
   1073 epmbuffill(v)
   1074 	void *v;
   1075 {
   1076 	struct ep_softc *sc = v;
   1077 	int s, i;
   1078 
   1079 	s = splnet();
   1080 	i = sc->last_mb;
   1081 	do {
   1082 		if (sc->mb[i] == NULL)
   1083 			MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
   1084 		if (sc->mb[i] == NULL)
   1085 			break;
   1086 		i = (i + 1) % MAX_MBS;
   1087 	} while (i != sc->next_mb);
   1088 	sc->last_mb = i;
   1089 	/* If the queue was not filled, try again. */
   1090 	if (sc->last_mb != sc->next_mb)
   1091 		timeout(epmbuffill, sc, 1);
   1092 	splx(s);
   1093 }
   1094 
   1095 void
   1096 epmbufempty(sc)
   1097 	struct ep_softc *sc;
   1098 {
   1099 	int s, i;
   1100 
   1101 	s = splnet();
   1102 	for (i = 0; i<MAX_MBS; i++) {
   1103 		if (sc->mb[i]) {
   1104 			m_freem(sc->mb[i]);
   1105 			sc->mb[i] = NULL;
   1106 		}
   1107 	}
   1108 	sc->last_mb = sc->next_mb = 0;
   1109 	untimeout(epmbuffill, sc);
   1110 	splx(s);
   1111 }
   1112