elink3.c revision 1.122 1 /* $NetBSD: elink3.c,v 1.122 2007/07/09 21:00:35 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
42 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by Herb Peyerl.
56 * 4. The name of Herb Peyerl may not be used to endorse or promote products
57 * derived from this software without specific prior written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
60 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
61 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
63 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
64 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
65 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
66 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
67 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
68 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
69 */
70
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.122 2007/07/09 21:00:35 ad Exp $");
73
74 #include "opt_inet.h"
75 #include "bpfilter.h"
76 #include "rnd.h"
77
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/callout.h>
81 #include <sys/kernel.h>
82 #include <sys/mbuf.h>
83 #include <sys/socket.h>
84 #include <sys/ioctl.h>
85 #include <sys/errno.h>
86 #include <sys/syslog.h>
87 #include <sys/select.h>
88 #include <sys/device.h>
89 #if NRND > 0
90 #include <sys/rnd.h>
91 #endif
92
93 #include <net/if.h>
94 #include <net/if_dl.h>
95 #include <net/if_ether.h>
96 #include <net/if_media.h>
97
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #include <net/bpfdesc.h>
101 #endif
102
103 #include <machine/cpu.h>
104 #include <machine/bus.h>
105 #include <machine/intr.h>
106
107 #include <dev/mii/mii.h>
108 #include <dev/mii/miivar.h>
109 #include <dev/mii/mii_bitbang.h>
110
111 #include <dev/ic/elink3var.h>
112 #include <dev/ic/elink3reg.h>
113
114 #ifdef DEBUG
115 int epdebug = 0;
116 #endif
117
118 /*
119 * XXX endian workaround for big-endian CPUs with pcmcia:
120 * if stream methods for bus_space_multi are not provided, define them
121 * using non-stream bus_space_{read,write}_multi_.
122 * Assumes host CPU is same endian-ness as bus.
123 */
124 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
125 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
126 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
127 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
128 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
129 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
130
131 /*
132 * Structure to map media-present bits in boards to ifmedia codes and
133 * printable media names. Used for table-driven ifmedia initialization.
134 */
135 struct ep_media {
136 int epm_mpbit; /* media present bit */
137 const char *epm_name; /* name of medium */
138 int epm_ifmedia; /* ifmedia word for medium */
139 int epm_epmedia; /* ELINKMEDIA_* constant */
140 };
141
142 /*
143 * Media table for the Demon/Vortex/Boomerang chipsets.
144 *
145 * Note that MII on the Demon and Vortex (3c59x) indicates an external
146 * MII connector (for connecting an external PHY) ... I think. Treat
147 * it as `manual' on these chips.
148 *
149 * Any Boomerang (3c90x) chips with MII really do have an internal
150 * MII and real PHYs attached; no `native' media.
151 */
152 const struct ep_media ep_vortex_media[] = {
153 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
154 ELINKMEDIA_10BASE_T },
155 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
156 ELINKMEDIA_10BASE_T },
157 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
158 ELINKMEDIA_AUI },
159 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
160 ELINKMEDIA_10BASE_2 },
161 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
162 ELINKMEDIA_100BASE_TX },
163 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
164 ELINKMEDIA_100BASE_TX },
165 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
166 ELINKMEDIA_100BASE_FX },
167 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
168 ELINKMEDIA_MII },
169 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
170 ELINKMEDIA_100BASE_T4 },
171 { 0, NULL, 0,
172 0 },
173 };
174
175 /*
176 * Media table for the older 3Com Etherlink III chipset, used
177 * in the 3c509, 3c579, and 3c589.
178 */
179 const struct ep_media ep_509_media[] = {
180 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
181 ELINKMEDIA_10BASE_T },
182 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
183 ELINKMEDIA_AUI },
184 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
185 ELINKMEDIA_10BASE_2 },
186 { 0, NULL, 0,
187 0 },
188 };
189
190 void ep_internalconfig(struct ep_softc *sc);
191 void ep_vortex_probemedia(struct ep_softc *sc);
192 void ep_509_probemedia(struct ep_softc *sc);
193
194 static void eptxstat(struct ep_softc *);
195 static int epstatus(struct ep_softc *);
196 int epinit(struct ifnet *);
197 void epstop(struct ifnet *, int);
198 int epioctl(struct ifnet *, u_long, void *);
199 void epstart(struct ifnet *);
200 void epwatchdog(struct ifnet *);
201 void epreset(struct ep_softc *);
202 static void epshutdown(void *);
203 void epread(struct ep_softc *);
204 struct mbuf *epget(struct ep_softc *, int);
205 void epmbuffill(void *);
206 void epmbufempty(struct ep_softc *);
207 void epsetfilter(struct ep_softc *);
208 void ep_roadrunner_mii_enable(struct ep_softc *);
209 void epsetmedia(struct ep_softc *);
210
211 /* ifmedia callbacks */
212 int ep_media_change(struct ifnet *ifp);
213 void ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
214
215 /* MII callbacks */
216 int ep_mii_readreg(struct device *, int, int);
217 void ep_mii_writereg(struct device *, int, int, int);
218 void ep_statchg(struct device *);
219
220 void ep_tick(void *);
221
222 static int epbusyeeprom(struct ep_softc *);
223 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
224 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
225 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
226 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
227 static inline int ep_w1_reg(struct ep_softc *, int);
228
229 /*
230 * MII bit-bang glue.
231 */
232 u_int32_t ep_mii_bitbang_read(struct device *);
233 void ep_mii_bitbang_write(struct device *, u_int32_t);
234
235 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
236 ep_mii_bitbang_read,
237 ep_mii_bitbang_write,
238 {
239 PHYSMGMT_DATA, /* MII_BIT_MDO */
240 PHYSMGMT_DATA, /* MII_BIT_MDI */
241 PHYSMGMT_CLK, /* MII_BIT_MDC */
242 PHYSMGMT_DIR, /* MII_BIT_DIR_HOST_PHY */
243 0, /* MII_BIT_DIR_PHY_HOST */
244 }
245 };
246
247 /*
248 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
249 * Window 1 registers offset!
250 */
251 static inline int
252 ep_w1_reg(sc, reg)
253 struct ep_softc *sc;
254 int reg;
255 {
256
257 switch (sc->ep_chipset) {
258 case ELINK_CHIPSET_CORKSCREW:
259 return (reg + 0x10);
260
261 case ELINK_CHIPSET_ROADRUNNER:
262 switch (reg) {
263 case ELINK_W1_FREE_TX:
264 case ELINK_W1_RUNNER_RDCTL:
265 case ELINK_W1_RUNNER_WRCTL:
266 return (reg);
267 }
268 return (reg + 0x10);
269 }
270
271 return (reg);
272 }
273
274 /*
275 * Wait for any pending reset to complete.
276 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
277 * but older hardware doesn't implement it and we must delay.
278 */
279 static inline void
280 ep_finish_reset(iot, ioh)
281 bus_space_tag_t iot;
282 bus_space_handle_t ioh;
283 {
284 int i;
285
286 for (i = 0; i < 10000; i++) {
287 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
288 COMMAND_IN_PROGRESS) == 0)
289 break;
290 DELAY(10);
291 }
292 }
293
294 /*
295 * Issue a (reset) command, and be sure it has completed.
296 * Used for global reset, TX_RESET, RX_RESET.
297 */
298 static inline void
299 ep_reset_cmd(sc, cmd, arg)
300 struct ep_softc *sc;
301 u_int cmd, arg;
302 {
303 bus_space_tag_t iot = sc->sc_iot;
304 bus_space_handle_t ioh = sc->sc_ioh;
305
306 bus_space_write_2(iot, ioh, cmd, arg);
307 ep_finish_reset(iot, ioh);
308 }
309
310
311 static inline void
312 ep_discard_rxtop(iot, ioh)
313 bus_space_tag_t iot;
314 bus_space_handle_t ioh;
315 {
316 int i;
317
318 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
319
320 /*
321 * Spin for about 1 msec, to avoid forcing a DELAY() between
322 * every received packet (adding latency and limiting pkt-recv rate).
323 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
324 * is about right.
325 */
326 for (i = 0; i < 8000; i++) {
327 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
328 COMMAND_IN_PROGRESS) == 0)
329 return;
330 }
331
332 /* Didn't complete in a hurry. Do DELAY()s. */
333 ep_finish_reset(iot, ioh);
334 }
335
336 /*
337 * Back-end attach and configure.
338 */
339 int
340 epconfig(sc, chipset, enaddr)
341 struct ep_softc *sc;
342 u_short chipset;
343 u_int8_t *enaddr;
344 {
345 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
346 bus_space_tag_t iot = sc->sc_iot;
347 bus_space_handle_t ioh = sc->sc_ioh;
348 u_int16_t i;
349 u_int8_t myla[ETHER_ADDR_LEN];
350
351 callout_init(&sc->sc_mii_callout, 0);
352 callout_init(&sc->sc_mbuf_callout, 0);
353
354 sc->ep_chipset = chipset;
355
356 /*
357 * We could have been groveling around in other register
358 * windows in the front-end; make sure we're in window 0
359 * to read the EEPROM.
360 */
361 GO_WINDOW(0);
362
363 if (enaddr == NULL) {
364 /*
365 * Read the station address from the eeprom.
366 */
367 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
368 u_int16_t x = ep_read_eeprom(sc, i);
369 myla[(i << 1)] = x >> 8;
370 myla[(i << 1) + 1] = x;
371 }
372 enaddr = myla;
373 }
374
375 /*
376 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
377 * allow FDDI-sized (4500) byte packets. Commands only take an
378 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
379 * packet length.
380 * Commands to these cards implicitly upshift a packet size
381 * or threshold by 2 bits.
382 * To detect cards with large-packet support, we probe by setting
383 * the transmit threshold register, then change windows and
384 * read back the threshold register directly, and see if the
385 * threshold value was shifted or not.
386 */
387 bus_space_write_2(iot, ioh, ELINK_COMMAND,
388 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
389 GO_WINDOW(5);
390 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
391 GO_WINDOW(1);
392 switch (i) {
393 case ELINK_LARGEWIN_PROBE:
394 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
395 sc->ep_pktlenshift = 0;
396 break;
397
398 case (ELINK_LARGEWIN_PROBE << 2):
399 sc->ep_pktlenshift = 2;
400 break;
401
402 default:
403 aprint_error(
404 "%s: wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
405 "Interface disabled\n",
406 sc->sc_dev.dv_xname, ELINK_LARGEWIN_PROBE, (int) i);
407 return (1);
408 }
409
410 /*
411 * Ensure Tx-available interrupts are enabled for
412 * start the interface.
413 * XXX should be in epinit()?
414 */
415 bus_space_write_2(iot, ioh, ELINK_COMMAND,
416 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
417
418 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
419 ifp->if_softc = sc;
420 ifp->if_start = epstart;
421 ifp->if_ioctl = epioctl;
422 ifp->if_watchdog = epwatchdog;
423 ifp->if_init = epinit;
424 ifp->if_stop = epstop;
425 ifp->if_flags =
426 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
427 IFQ_SET_READY(&ifp->if_snd);
428
429 if_attach(ifp);
430 ether_ifattach(ifp, enaddr);
431
432 /*
433 * Finish configuration:
434 * determine chipset if the front-end couldn't do so,
435 * show board details, set media.
436 */
437
438 /*
439 * Print RAM size. We also print the Ethernet address in here.
440 * It's extracted from the ifp, so we have to make sure it's
441 * been attached first.
442 */
443 ep_internalconfig(sc);
444 GO_WINDOW(0);
445
446 /*
447 * Display some additional information, if pertinent.
448 */
449 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
450 aprint_normal("%s: RoadRunner FIFO buffer enabled\n",
451 sc->sc_dev.dv_xname);
452
453 /*
454 * Initialize our media structures and MII info. We'll
455 * probe the MII if we discover that we have one.
456 */
457 sc->sc_mii.mii_ifp = ifp;
458 sc->sc_mii.mii_readreg = ep_mii_readreg;
459 sc->sc_mii.mii_writereg = ep_mii_writereg;
460 sc->sc_mii.mii_statchg = ep_statchg;
461 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change,
462 ep_media_status);
463
464 /*
465 * All CORKSCREW chips have MII.
466 */
467 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
468 sc->ep_flags |= ELINK_FLAGS_MII;
469
470 /*
471 * Now, determine which media we have.
472 */
473 switch (sc->ep_chipset) {
474 case ELINK_CHIPSET_ROADRUNNER:
475 if (sc->ep_flags & ELINK_FLAGS_MII) {
476 ep_roadrunner_mii_enable(sc);
477 GO_WINDOW(0);
478 }
479 /* FALLTHROUGH */
480
481 case ELINK_CHIPSET_CORKSCREW:
482 case ELINK_CHIPSET_BOOMERANG:
483 /*
484 * If the device has MII, probe it. We won't be using
485 * any `native' media in this case, only PHYs. If
486 * we don't, just treat the Boomerang like the Vortex.
487 */
488 if (sc->ep_flags & ELINK_FLAGS_MII) {
489 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
490 MII_PHY_ANY, MII_OFFSET_ANY, 0);
491 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
492 ifmedia_add(&sc->sc_mii.mii_media,
493 IFM_ETHER|IFM_NONE, 0, NULL);
494 ifmedia_set(&sc->sc_mii.mii_media,
495 IFM_ETHER|IFM_NONE);
496 } else {
497 ifmedia_set(&sc->sc_mii.mii_media,
498 IFM_ETHER|IFM_AUTO);
499 }
500 break;
501 }
502 /* FALLTHROUGH */
503
504 case ELINK_CHIPSET_VORTEX:
505 ep_vortex_probemedia(sc);
506 break;
507
508 default:
509 ep_509_probemedia(sc);
510 break;
511 }
512
513 GO_WINDOW(1); /* Window 1 is operating window */
514
515 #if NRND > 0
516 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
517 RND_TYPE_NET, 0);
518 #endif
519
520 sc->tx_start_thresh = 20; /* probably a good starting point. */
521
522 /* Establish callback to reset card when we reboot. */
523 sc->sd_hook = shutdownhook_establish(epshutdown, sc);
524
525 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
526 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
527
528 /* The attach is successful. */
529 sc->sc_flags |= ELINK_FLAGS_ATTACHED;
530 return (0);
531 }
532
533
534 /*
535 * Show interface-model-independent info from window 3
536 * internal-configuration register.
537 */
538 void
539 ep_internalconfig(sc)
540 struct ep_softc *sc;
541 {
542 bus_space_tag_t iot = sc->sc_iot;
543 bus_space_handle_t ioh = sc->sc_ioh;
544
545 u_int config0;
546 u_int config1;
547
548 int ram_size, ram_width, ram_split;
549 /*
550 * NVRAM buffer Rx:Tx config names for busmastering cards
551 * (Demon, Vortex, and later).
552 */
553 const char *const onboard_ram_config[] = {
554 "5:3", "3:1", "1:1", "3:5" };
555
556 GO_WINDOW(3);
557 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
558 config1 = (u_int)bus_space_read_2(iot, ioh,
559 ELINK_W3_INTERNAL_CONFIG + 2);
560 GO_WINDOW(0);
561
562 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
563 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
564
565 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
566
567 aprint_normal("%s: address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
568 sc->sc_dev.dv_xname,
569 ether_sprintf(LLADDR(sc->sc_ethercom.ec_if.if_sadl)),
570 8 << ram_size,
571 (ram_width) ? "word" : "byte",
572 onboard_ram_config[ram_split]);
573 }
574
575
576 /*
577 * Find supported media on 3c509-generation hardware that doesn't have
578 * a "reset_options" register in window 3.
579 * Use the config_cntrl register in window 0 instead.
580 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
581 * that implement CONFIG_CTRL. We don't have a good way to set the
582 * default active medium; punt to ifconfig instead.
583 */
584 void
585 ep_509_probemedia(sc)
586 struct ep_softc *sc;
587 {
588 bus_space_tag_t iot = sc->sc_iot;
589 bus_space_handle_t ioh = sc->sc_ioh;
590 struct ifmedia *ifm = &sc->sc_mii.mii_media;
591 u_int16_t ep_w0_config, port;
592 const struct ep_media *epm;
593 const char *sep = "", *defmedianame = NULL;
594 int defmedia = 0;
595
596 GO_WINDOW(0);
597 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
598
599 aprint_normal("%s: ", sc->sc_dev.dv_xname);
600
601 /* Sanity check that there are any media! */
602 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
603 aprint_error("no media present!\n");
604 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
605 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
606 return;
607 }
608
609 /*
610 * Get the default media from the EEPROM.
611 */
612 port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
613
614 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
615
616 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
617 if (ep_w0_config & epm->epm_mpbit) {
618 /*
619 * This simple test works because 509 chipsets
620 * don't do full-duplex.
621 */
622 if (epm->epm_epmedia == port || defmedia == 0) {
623 defmedia = epm->epm_ifmedia;
624 defmedianame = epm->epm_name;
625 }
626 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
627 NULL);
628 PRINT(epm->epm_name);
629 }
630 }
631
632 #undef PRINT
633
634 #ifdef DIAGNOSTIC
635 if (defmedia == 0)
636 panic("ep_509_probemedia: impossible");
637 #endif
638
639 aprint_normal(" (default %s)\n", defmedianame);
640 ifmedia_set(ifm, defmedia);
641 }
642
643 /*
644 * Find media present on large-packet-capable elink3 devices.
645 * Show onboard configuration of large-packet-capable elink3 devices
646 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
647 * Use media and card-version info in window 3 instead.
648 */
649 void
650 ep_vortex_probemedia(sc)
651 struct ep_softc *sc;
652 {
653 bus_space_tag_t iot = sc->sc_iot;
654 bus_space_handle_t ioh = sc->sc_ioh;
655 struct ifmedia *ifm = &sc->sc_mii.mii_media;
656 const struct ep_media *epm;
657 u_int config1;
658 int reset_options;
659 int default_media; /* 3-bit encoding of default (EEPROM) media */
660 int defmedia = 0;
661 const char *sep = "", *defmedianame = NULL;
662
663 GO_WINDOW(3);
664 config1 = (u_int)bus_space_read_2(iot, ioh,
665 ELINK_W3_INTERNAL_CONFIG + 2);
666 reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
667 GO_WINDOW(0);
668
669 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
670
671 aprint_normal("%s: ", sc->sc_dev.dv_xname);
672
673 /* Sanity check that there are any media! */
674 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
675 aprint_error("no media present!\n");
676 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
677 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
678 return;
679 }
680
681 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
682
683 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
684 if (reset_options & epm->epm_mpbit) {
685 /*
686 * Default media is a little more complicated
687 * on the Vortex. We support full-duplex which
688 * uses the same reset options bit.
689 *
690 * XXX Check EEPROM for default to FDX?
691 */
692 if (epm->epm_epmedia == default_media) {
693 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
694 defmedia = epm->epm_ifmedia;
695 defmedianame = epm->epm_name;
696 }
697 } else if (defmedia == 0) {
698 defmedia = epm->epm_ifmedia;
699 defmedianame = epm->epm_name;
700 }
701 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
702 NULL);
703 PRINT(epm->epm_name);
704 }
705 }
706
707 #undef PRINT
708
709 #ifdef DIAGNOSTIC
710 if (defmedia == 0)
711 panic("ep_vortex_probemedia: impossible");
712 #endif
713
714 aprint_normal(" (default %s)\n", defmedianame);
715 ifmedia_set(ifm, defmedia);
716 }
717
718 /*
719 * One second timer, used to tick the MII.
720 */
721 void
722 ep_tick(arg)
723 void *arg;
724 {
725 struct ep_softc *sc = arg;
726 int s;
727
728 #ifdef DIAGNOSTIC
729 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
730 panic("ep_tick");
731 #endif
732
733 if (!device_is_active(&sc->sc_dev))
734 return;
735
736 s = splnet();
737 mii_tick(&sc->sc_mii);
738 splx(s);
739
740 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
741 }
742
743 /*
744 * Bring device up.
745 *
746 * The order in here seems important. Otherwise we may not receive
747 * interrupts. ?!
748 */
749 int
750 epinit(ifp)
751 struct ifnet *ifp;
752 {
753 struct ep_softc *sc = ifp->if_softc;
754 bus_space_tag_t iot = sc->sc_iot;
755 bus_space_handle_t ioh = sc->sc_ioh;
756 int i, error;
757 u_int8_t *addr;
758
759 if (!sc->enabled && (error = epenable(sc)) != 0)
760 return (error);
761
762 /* Make sure any pending reset has completed before touching board */
763 ep_finish_reset(iot, ioh);
764
765 /*
766 * Cancel any pending I/O.
767 */
768 epstop(ifp, 0);
769
770 if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
771 && sc->bustype != ELINK_BUS_MCA) {
772 GO_WINDOW(0);
773 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
774 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
775 ENABLE_DRQ_IRQ);
776 }
777
778 if (sc->bustype == ELINK_BUS_PCMCIA) {
779 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
780 }
781
782 GO_WINDOW(2);
783 /* Reload the ether_addr. */
784 addr = LLADDR(ifp->if_sadl);
785 for (i = 0; i < 6; i += 2)
786 bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
787 (addr[i] << 0) | (addr[i + 1] << 8));
788
789 /*
790 * Reset the station-address receive filter.
791 * A bug workaround for busmastering (Vortex, Demon) cards.
792 */
793 for (i = 0; i < 6; i += 2)
794 bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
795
796 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
797 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
798
799 GO_WINDOW(1); /* Window 1 is operating window */
800 for (i = 0; i < 31; i++)
801 (void)bus_space_read_2(iot, ioh,
802 ep_w1_reg(sc, ELINK_W1_TX_STATUS));
803
804 /* Set threshold for Tx-space available interrupt. */
805 bus_space_write_2(iot, ioh, ELINK_COMMAND,
806 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
807
808 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
809 /*
810 * Enable options in the PCMCIA LAN COR register, via
811 * RoadRunner Window 1.
812 *
813 * XXX MAGIC CONSTANTS!
814 */
815 u_int16_t cor;
816
817 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
818
819 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
820 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
821 cor |= 0x10;
822 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
823 cor |= 0x20;
824 bus_space_write_2(iot, ioh, 0, cor);
825
826 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
827 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
828
829 if (sc->ep_flags & ELINK_FLAGS_MII) {
830 ep_roadrunner_mii_enable(sc);
831 GO_WINDOW(1);
832 }
833 }
834
835 /* Enable interrupts. */
836 bus_space_write_2(iot, ioh, ELINK_COMMAND,
837 SET_RD_0_MASK | WATCHED_INTERRUPTS);
838 bus_space_write_2(iot, ioh, ELINK_COMMAND,
839 SET_INTR_MASK | WATCHED_INTERRUPTS);
840
841 /*
842 * Attempt to get rid of any stray interrupts that occurred during
843 * configuration. On the i386 this isn't possible because one may
844 * already be queued. However, a single stray interrupt is
845 * unimportant.
846 */
847 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
848
849 epsetfilter(sc);
850 epsetmedia(sc);
851
852 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
853 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
854
855 epmbuffill(sc);
856
857 /* Interface is now `running', with no output active. */
858 ifp->if_flags |= IFF_RUNNING;
859 ifp->if_flags &= ~IFF_OACTIVE;
860
861 if (sc->ep_flags & ELINK_FLAGS_MII) {
862 /* Start the one second clock. */
863 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
864 }
865
866 /* Attempt to start output, if any. */
867 epstart(ifp);
868
869 return (0);
870 }
871
872
873 /*
874 * Set multicast receive filter.
875 * elink3 hardware has no selective multicast filter in hardware.
876 * Enable reception of all multicasts and filter in software.
877 */
878 void
879 epsetfilter(sc)
880 struct ep_softc *sc;
881 {
882 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
883
884 GO_WINDOW(1); /* Window 1 is operating window */
885 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
886 SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
887 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
888 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
889 }
890
891 int
892 ep_media_change(ifp)
893 struct ifnet *ifp;
894 {
895 struct ep_softc *sc = ifp->if_softc;
896
897 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
898 epreset(sc);
899
900 return (0);
901 }
902
903 /*
904 * Reset and enable the MII on the RoadRunner.
905 */
906 void
907 ep_roadrunner_mii_enable(sc)
908 struct ep_softc *sc;
909 {
910 bus_space_tag_t iot = sc->sc_iot;
911 bus_space_handle_t ioh = sc->sc_ioh;
912
913 GO_WINDOW(3);
914 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
915 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
916 delay(1000);
917 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
918 ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
919 ELINK_RUNNER_ENABLE_MII);
920 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
921 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
922 delay(1000);
923 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
924 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
925 }
926
927 /*
928 * Set the card to use the specified media.
929 */
930 void
931 epsetmedia(sc)
932 struct ep_softc *sc;
933 {
934 bus_space_tag_t iot = sc->sc_iot;
935 bus_space_handle_t ioh = sc->sc_ioh;
936
937 /* Turn everything off. First turn off linkbeat and UTP. */
938 GO_WINDOW(4);
939 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
940
941 /* Turn off coax */
942 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
943 delay(1000);
944
945 /*
946 * If the device has MII, select it, and then tell the
947 * PHY which media to use.
948 */
949 if (sc->ep_flags & ELINK_FLAGS_MII) {
950 int config0, config1;
951
952 GO_WINDOW(3);
953
954 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
955 int resopt;
956
957 resopt = bus_space_read_2(iot, ioh,
958 ELINK_W3_RESET_OPTIONS);
959 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
960 resopt | ELINK_RUNNER_ENABLE_MII);
961 }
962
963 config0 = (u_int)bus_space_read_2(iot, ioh,
964 ELINK_W3_INTERNAL_CONFIG);
965 config1 = (u_int)bus_space_read_2(iot, ioh,
966 ELINK_W3_INTERNAL_CONFIG + 2);
967
968 config1 = config1 & ~CONFIG_MEDIAMASK;
969 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
970
971 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
972 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
973 config1);
974 GO_WINDOW(1); /* back to operating window */
975
976 mii_mediachg(&sc->sc_mii);
977 return;
978 }
979
980 /*
981 * Now turn on the selected media/transceiver.
982 */
983 GO_WINDOW(4);
984 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
985 case IFM_10_T:
986 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
987 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
988 break;
989
990 case IFM_10_2:
991 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
992 DELAY(1000); /* 50ms not enmough? */
993 break;
994
995 case IFM_100_TX:
996 case IFM_100_FX:
997 case IFM_100_T4: /* XXX check documentation */
998 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
999 LINKBEAT_ENABLE);
1000 DELAY(1000); /* not strictly necessary? */
1001 break;
1002
1003 case IFM_10_5:
1004 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
1005 SQE_ENABLE);
1006 DELAY(1000); /* not strictly necessary? */
1007 break;
1008
1009 case IFM_MANUAL:
1010 /*
1011 * Nothing to do here; we are actually enabling the
1012 * external PHY on the MII port.
1013 */
1014 break;
1015
1016 case IFM_NONE:
1017 printf("%s: interface disabled\n", sc->sc_dev.dv_xname);
1018 return;
1019
1020 default:
1021 panic("epsetmedia: impossible");
1022 }
1023
1024 /*
1025 * Tell the chip which port to use.
1026 */
1027 switch (sc->ep_chipset) {
1028 case ELINK_CHIPSET_VORTEX:
1029 case ELINK_CHIPSET_BOOMERANG:
1030 {
1031 int mctl, config0, config1;
1032
1033 GO_WINDOW(3);
1034 config0 = (u_int)bus_space_read_2(iot, ioh,
1035 ELINK_W3_INTERNAL_CONFIG);
1036 config1 = (u_int)bus_space_read_2(iot, ioh,
1037 ELINK_W3_INTERNAL_CONFIG + 2);
1038
1039 config1 = config1 & ~CONFIG_MEDIAMASK;
1040 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1041 CONFIG_MEDIAMASK_SHIFT);
1042
1043 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1044 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1045 config1);
1046
1047 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1048 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1049 mctl |= MAC_CONTROL_FDX;
1050 else
1051 mctl &= ~MAC_CONTROL_FDX;
1052 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1053 break;
1054 }
1055 default:
1056 {
1057 int w0_addr_cfg;
1058
1059 GO_WINDOW(0);
1060 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1061 w0_addr_cfg &= 0x3fff;
1062 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1063 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1064 DELAY(1000);
1065 break;
1066 }
1067 }
1068
1069 GO_WINDOW(1); /* Window 1 is operating window */
1070 }
1071
1072 /*
1073 * Get currently-selected media from card.
1074 * (if_media callback, may be called before interface is brought up).
1075 */
1076 void
1077 ep_media_status(ifp, req)
1078 struct ifnet *ifp;
1079 struct ifmediareq *req;
1080 {
1081 struct ep_softc *sc = ifp->if_softc;
1082 bus_space_tag_t iot = sc->sc_iot;
1083 bus_space_handle_t ioh = sc->sc_ioh;
1084
1085 if (sc->enabled == 0) {
1086 req->ifm_active = IFM_ETHER|IFM_NONE;
1087 req->ifm_status = 0;
1088 return;
1089 }
1090
1091 /*
1092 * If we have MII, go ask the PHY what's going on.
1093 */
1094 if (sc->ep_flags & ELINK_FLAGS_MII) {
1095 mii_pollstat(&sc->sc_mii);
1096 req->ifm_active = sc->sc_mii.mii_media_active;
1097 req->ifm_status = sc->sc_mii.mii_media_status;
1098 return;
1099 }
1100
1101 /*
1102 * Ok, at this point we claim that our active media is
1103 * the currently selected media. We'll update our status
1104 * if our chipset allows us to detect link.
1105 */
1106 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1107 req->ifm_status = 0;
1108
1109 switch (sc->ep_chipset) {
1110 case ELINK_CHIPSET_VORTEX:
1111 case ELINK_CHIPSET_BOOMERANG:
1112 GO_WINDOW(4);
1113 req->ifm_status = IFM_AVALID;
1114 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1115 LINKBEAT_DETECT)
1116 req->ifm_status |= IFM_ACTIVE;
1117 GO_WINDOW(1); /* back to operating window */
1118 break;
1119 }
1120 }
1121
1122
1123
1124 /*
1125 * Start outputting on the interface.
1126 * Always called as splnet().
1127 */
1128 void
1129 epstart(ifp)
1130 struct ifnet *ifp;
1131 {
1132 struct ep_softc *sc = ifp->if_softc;
1133 bus_space_tag_t iot = sc->sc_iot;
1134 bus_space_handle_t ioh = sc->sc_ioh;
1135 struct mbuf *m, *m0;
1136 int sh, len, pad;
1137 bus_size_t txreg;
1138
1139 /* Don't transmit if interface is busy or not running */
1140 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1141 return;
1142
1143 startagain:
1144 /* Sneak a peek at the next packet */
1145 IFQ_POLL(&ifp->if_snd, m0);
1146 if (m0 == 0)
1147 return;
1148
1149 /* We need to use m->m_pkthdr.len, so require the header */
1150 if ((m0->m_flags & M_PKTHDR) == 0)
1151 panic("epstart: no header mbuf");
1152 len = m0->m_pkthdr.len;
1153
1154 pad = (4 - len) & 3;
1155
1156 /*
1157 * The 3c509 automatically pads short packets to minimum ethernet
1158 * length, but we drop packets that are too large. Perhaps we should
1159 * truncate them instead?
1160 */
1161 if (len + pad > ETHER_MAX_LEN) {
1162 /* packet is obviously too large: toss it */
1163 ++ifp->if_oerrors;
1164 IFQ_DEQUEUE(&ifp->if_snd, m0);
1165 m_freem(m0);
1166 goto readcheck;
1167 }
1168
1169 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1170 len + pad + 4) {
1171 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1172 SET_TX_AVAIL_THRESH |
1173 ((len + pad + 4) >> sc->ep_pktlenshift));
1174 /* not enough room in FIFO */
1175 ifp->if_flags |= IFF_OACTIVE;
1176 return;
1177 } else {
1178 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1179 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1180 }
1181
1182 IFQ_DEQUEUE(&ifp->if_snd, m0);
1183 if (m0 == 0) /* not really needed */
1184 return;
1185
1186 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1187 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1188
1189 #if NBPFILTER > 0
1190 if (ifp->if_bpf)
1191 bpf_mtap(ifp->if_bpf, m0);
1192 #endif
1193
1194 /*
1195 * Do the output at a high interrupt priority level so that an
1196 * interrupt from another device won't cause a FIFO underrun.
1197 * We choose splsched() since that blocks essentially everything
1198 * except for interrupts from serial devices (which typically
1199 * lose data if their interrupt isn't serviced fast enough).
1200 *
1201 * XXX THIS CAN CAUSE CLOCK DRIFT!
1202 */
1203 sh = splsched();
1204
1205 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1206
1207 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1208 /*
1209 * Prime the FIFO buffer counter (number of 16-bit
1210 * words about to be written to the FIFO).
1211 *
1212 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1213 * COUNTER IS NON-ZERO!
1214 */
1215 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1216 (len + pad) >> 1);
1217 }
1218
1219 bus_space_write_2(iot, ioh, txreg, len);
1220 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1221 if (ELINK_IS_BUS_32(sc->bustype)) {
1222 for (m = m0; m;) {
1223 if (m->m_len > 3) {
1224 /* align our reads from core */
1225 if (mtod(m, u_long) & 3) {
1226 u_long count =
1227 4 - (mtod(m, u_long) & 3);
1228 bus_space_write_multi_1(iot, ioh,
1229 txreg, mtod(m, u_int8_t *), count);
1230 m->m_data =
1231 (void *)(mtod(m, u_long) + count);
1232 m->m_len -= count;
1233 }
1234 bus_space_write_multi_stream_4(iot, ioh,
1235 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1236 m->m_data = (void *)(mtod(m, u_long) +
1237 (u_long)(m->m_len & ~3));
1238 m->m_len -= m->m_len & ~3;
1239 }
1240 if (m->m_len) {
1241 bus_space_write_multi_1(iot, ioh,
1242 txreg, mtod(m, u_int8_t *), m->m_len);
1243 }
1244 MFREE(m, m0);
1245 m = m0;
1246 }
1247 } else {
1248 for (m = m0; m;) {
1249 if (m->m_len > 1) {
1250 if (mtod(m, u_long) & 1) {
1251 bus_space_write_1(iot, ioh,
1252 txreg, *(mtod(m, u_int8_t *)));
1253 m->m_data =
1254 (void *)(mtod(m, u_long) + 1);
1255 m->m_len -= 1;
1256 }
1257 bus_space_write_multi_stream_2(iot, ioh,
1258 txreg, mtod(m, u_int16_t *),
1259 m->m_len >> 1);
1260 }
1261 if (m->m_len & 1) {
1262 bus_space_write_1(iot, ioh, txreg,
1263 *(mtod(m, u_int8_t *) + m->m_len - 1));
1264 }
1265 MFREE(m, m0);
1266 m = m0;
1267 }
1268 }
1269 while (pad--)
1270 bus_space_write_1(iot, ioh, txreg, 0);
1271
1272 splx(sh);
1273
1274 ++ifp->if_opackets;
1275
1276 readcheck:
1277 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1278 ERR_INCOMPLETE) == 0) {
1279 /* We received a complete packet. */
1280 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1281
1282 if ((status & INTR_LATCH) == 0) {
1283 /*
1284 * No interrupt, read the packet and continue
1285 * Is this supposed to happen? Is my motherboard
1286 * completely busted?
1287 */
1288 epread(sc);
1289 } else {
1290 /* Got an interrupt, return so that it gets serviced. */
1291 return;
1292 }
1293 } else {
1294 /* Check if we are stuck and reset [see XXX comment] */
1295 if (epstatus(sc)) {
1296 if (ifp->if_flags & IFF_DEBUG)
1297 printf("%s: adapter reset\n",
1298 sc->sc_dev.dv_xname);
1299 epreset(sc);
1300 }
1301 }
1302
1303 goto startagain;
1304 }
1305
1306
1307 /*
1308 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1309 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1310 * We detect this situation and we reset the adapter.
1311 * It happens at times when there is a lot of broadcast traffic
1312 * on the cable (once in a blue moon).
1313 */
1314 static int
1315 epstatus(sc)
1316 struct ep_softc *sc;
1317 {
1318 bus_space_tag_t iot = sc->sc_iot;
1319 bus_space_handle_t ioh = sc->sc_ioh;
1320 u_int16_t fifost;
1321
1322 /*
1323 * Check the FIFO status and act accordingly
1324 */
1325 GO_WINDOW(4);
1326 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1327 GO_WINDOW(1);
1328
1329 if (fifost & FIFOS_RX_UNDERRUN) {
1330 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1331 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
1332 epreset(sc);
1333 return 0;
1334 }
1335
1336 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1337 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1338 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
1339 return 1;
1340 }
1341
1342 if (fifost & FIFOS_RX_OVERRUN) {
1343 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1344 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
1345 return 1;
1346 }
1347
1348 if (fifost & FIFOS_TX_OVERRUN) {
1349 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1350 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
1351 epreset(sc);
1352 return 0;
1353 }
1354
1355 return 0;
1356 }
1357
1358
1359 static void
1360 eptxstat(sc)
1361 struct ep_softc *sc;
1362 {
1363 bus_space_tag_t iot = sc->sc_iot;
1364 bus_space_handle_t ioh = sc->sc_ioh;
1365 int i;
1366
1367 /*
1368 * We need to read+write TX_STATUS until we get a 0 status
1369 * in order to turn off the interrupt flag.
1370 */
1371 while ((i = bus_space_read_2(iot, ioh,
1372 ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1373 bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1374 0x0);
1375
1376 if (i & TXS_JABBER) {
1377 ++sc->sc_ethercom.ec_if.if_oerrors;
1378 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1379 printf("%s: jabber (%x)\n",
1380 sc->sc_dev.dv_xname, i);
1381 epreset(sc);
1382 } else if (i & TXS_UNDERRUN) {
1383 ++sc->sc_ethercom.ec_if.if_oerrors;
1384 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1385 printf("%s: fifo underrun (%x) @%d\n",
1386 sc->sc_dev.dv_xname, i,
1387 sc->tx_start_thresh);
1388 if (sc->tx_succ_ok < 100)
1389 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1390 sc->tx_start_thresh + 20);
1391 sc->tx_succ_ok = 0;
1392 epreset(sc);
1393 } else if (i & TXS_MAX_COLLISION) {
1394 ++sc->sc_ethercom.ec_if.if_collisions;
1395 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1396 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1397 } else
1398 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1399 }
1400 }
1401
1402 int
1403 epintr(arg)
1404 void *arg;
1405 {
1406 struct ep_softc *sc = arg;
1407 bus_space_tag_t iot = sc->sc_iot;
1408 bus_space_handle_t ioh = sc->sc_ioh;
1409 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1410 u_int16_t status;
1411 int ret = 0;
1412
1413 if (sc->enabled == 0 || !device_is_active(&sc->sc_dev))
1414 return (0);
1415
1416
1417 for (;;) {
1418 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1419
1420 if ((status & WATCHED_INTERRUPTS) == 0) {
1421 if ((status & INTR_LATCH) == 0) {
1422 #if 0
1423 printf("%s: intr latch cleared\n",
1424 sc->sc_dev.dv_xname);
1425 #endif
1426 break;
1427 }
1428 }
1429
1430 ret = 1;
1431
1432 /*
1433 * Acknowledge any interrupts. It's important that we do this
1434 * first, since there would otherwise be a race condition.
1435 * Due to the i386 interrupt queueing, we may get spurious
1436 * interrupts occasionally.
1437 */
1438 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1439 (status & (INTR_LATCH | ALL_INTERRUPTS)));
1440
1441 #if 0
1442 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1443
1444 printf("%s: intr%s%s%s%s\n", sc->sc_dev.dv_xname,
1445 (status & RX_COMPLETE)?" RX_COMPLETE":"",
1446 (status & TX_COMPLETE)?" TX_COMPLETE":"",
1447 (status & TX_AVAIL)?" TX_AVAIL":"",
1448 (status & CARD_FAILURE)?" CARD_FAILURE":"");
1449 #endif
1450
1451 if (status & RX_COMPLETE) {
1452 epread(sc);
1453 }
1454 if (status & TX_AVAIL) {
1455 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1456 epstart(&sc->sc_ethercom.ec_if);
1457 }
1458 if (status & CARD_FAILURE) {
1459 printf("%s: adapter failure (%x)\n",
1460 sc->sc_dev.dv_xname, status);
1461 #if 1
1462 epinit(ifp);
1463 #else
1464 epreset(sc);
1465 #endif
1466 return (1);
1467 }
1468 if (status & TX_COMPLETE) {
1469 eptxstat(sc);
1470 epstart(ifp);
1471 }
1472
1473 #if NRND > 0
1474 if (status)
1475 rnd_add_uint32(&sc->rnd_source, status);
1476 #endif
1477 }
1478
1479 /* no more interrupts */
1480 return (ret);
1481 }
1482
1483 void
1484 epread(sc)
1485 struct ep_softc *sc;
1486 {
1487 bus_space_tag_t iot = sc->sc_iot;
1488 bus_space_handle_t ioh = sc->sc_ioh;
1489 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1490 struct mbuf *m;
1491 int len;
1492
1493 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1494
1495 again:
1496 if (ifp->if_flags & IFF_DEBUG) {
1497 int err = len & ERR_MASK;
1498 const char *s = NULL;
1499
1500 if (len & ERR_INCOMPLETE)
1501 s = "incomplete packet";
1502 else if (err == ERR_OVERRUN)
1503 s = "packet overrun";
1504 else if (err == ERR_RUNT)
1505 s = "runt packet";
1506 else if (err == ERR_ALIGNMENT)
1507 s = "bad alignment";
1508 else if (err == ERR_CRC)
1509 s = "bad crc";
1510 else if (err == ERR_OVERSIZE)
1511 s = "oversized packet";
1512 else if (err == ERR_DRIBBLE)
1513 s = "dribble bits";
1514
1515 if (s)
1516 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
1517 }
1518
1519 if (len & ERR_INCOMPLETE)
1520 return;
1521
1522 if (len & ERR_RX) {
1523 ++ifp->if_ierrors;
1524 goto abort;
1525 }
1526
1527 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1528
1529 /* Pull packet off interface. */
1530 m = epget(sc, len);
1531 if (m == 0) {
1532 ifp->if_ierrors++;
1533 goto abort;
1534 }
1535
1536 ++ifp->if_ipackets;
1537
1538 #if NBPFILTER > 0
1539 /*
1540 * Check if there's a BPF listener on this interface.
1541 * If so, hand off the raw packet to BPF.
1542 */
1543 if (ifp->if_bpf)
1544 bpf_mtap(ifp->if_bpf, m);
1545 #endif
1546
1547 (*ifp->if_input)(ifp, m);
1548
1549 /*
1550 * In periods of high traffic we can actually receive enough
1551 * packets so that the fifo overrun bit will be set at this point,
1552 * even though we just read a packet. In this case we
1553 * are not going to receive any more interrupts. We check for
1554 * this condition and read again until the fifo is not full.
1555 * We could simplify this test by not using epstatus(), but
1556 * rechecking the RX_STATUS register directly. This test could
1557 * result in unnecessary looping in cases where there is a new
1558 * packet but the fifo is not full, but it will not fix the
1559 * stuck behavior.
1560 *
1561 * Even with this improvement, we still get packet overrun errors
1562 * which are hurting performance. Maybe when I get some more time
1563 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1564 */
1565 if (epstatus(sc)) {
1566 len = bus_space_read_2(iot, ioh,
1567 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1568 /* Check if we are stuck and reset [see XXX comment] */
1569 if (len & ERR_INCOMPLETE) {
1570 if (ifp->if_flags & IFF_DEBUG)
1571 printf("%s: adapter reset\n",
1572 sc->sc_dev.dv_xname);
1573 epreset(sc);
1574 return;
1575 }
1576 goto again;
1577 }
1578
1579 return;
1580
1581 abort:
1582 ep_discard_rxtop(iot, ioh);
1583
1584 }
1585
1586 struct mbuf *
1587 epget(sc, totlen)
1588 struct ep_softc *sc;
1589 int totlen;
1590 {
1591 bus_space_tag_t iot = sc->sc_iot;
1592 bus_space_handle_t ioh = sc->sc_ioh;
1593 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1594 struct mbuf *m;
1595 bus_size_t rxreg;
1596 int len, remaining;
1597 int s;
1598 void *newdata;
1599 u_long offset;
1600
1601 m = sc->mb[sc->next_mb];
1602 sc->mb[sc->next_mb] = 0;
1603 if (m == 0) {
1604 MGETHDR(m, M_DONTWAIT, MT_DATA);
1605 if (m == 0)
1606 return 0;
1607 } else {
1608 /* If the queue is no longer full, refill. */
1609 if (sc->last_mb == sc->next_mb)
1610 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1611
1612 /* Convert one of our saved mbuf's. */
1613 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1614 m->m_data = m->m_pktdat;
1615 m->m_flags = M_PKTHDR;
1616 memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1617 }
1618 m->m_pkthdr.rcvif = ifp;
1619 m->m_pkthdr.len = totlen;
1620 len = MHLEN;
1621
1622 /*
1623 * Allocate big enough space to hold whole packet, to avoid
1624 * allocating new mbufs on splsched().
1625 */
1626 if (totlen + ALIGNBYTES > len) {
1627 if (totlen + ALIGNBYTES > MCLBYTES) {
1628 len = ALIGN(totlen + ALIGNBYTES);
1629 MEXTMALLOC(m, len, M_DONTWAIT);
1630 } else {
1631 len = MCLBYTES;
1632 MCLGET(m, M_DONTWAIT);
1633 }
1634 if ((m->m_flags & M_EXT) == 0) {
1635 m_free(m);
1636 return 0;
1637 }
1638 }
1639
1640 /* align the struct ip header */
1641 newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
1642 - sizeof(struct ether_header);
1643 m->m_data = newdata;
1644 m->m_len = totlen;
1645
1646 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1647 remaining = totlen;
1648 offset = mtod(m, u_long);
1649
1650 /*
1651 * We read the packet at a high interrupt priority level so that
1652 * an interrupt from another device won't cause the card's packet
1653 * buffer to overflow. We choose splsched() since that blocks
1654 * essentially everything except for interrupts from serial
1655 * devices (which typically lose data if their interrupt isn't
1656 * serviced fast enough).
1657 *
1658 * XXX THIS CAN CAUSE CLOCK DRIFT!
1659 */
1660 s = splsched();
1661
1662 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1663 /*
1664 * Prime the FIFO buffer counter (number of 16-bit
1665 * words about to be read from the FIFO).
1666 *
1667 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1668 * COUNTER IS NON-ZERO!
1669 */
1670 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1671 }
1672
1673 if (ELINK_IS_BUS_32(sc->bustype)) {
1674 /*
1675 * Read bytes up to the point where we are aligned.
1676 * (We can align to 4 bytes, rather than ALIGNBYTES,
1677 * here because we're later reading 4-byte chunks.)
1678 */
1679 if ((remaining > 3) && (offset & 3)) {
1680 int count = (4 - (offset & 3));
1681 bus_space_read_multi_1(iot, ioh,
1682 rxreg, (u_int8_t *) offset, count);
1683 offset += count;
1684 remaining -= count;
1685 }
1686 if (remaining > 3) {
1687 bus_space_read_multi_stream_4(iot, ioh,
1688 rxreg, (u_int32_t *) offset,
1689 remaining >> 2);
1690 offset += remaining & ~3;
1691 remaining &= 3;
1692 }
1693 if (remaining) {
1694 bus_space_read_multi_1(iot, ioh,
1695 rxreg, (u_int8_t *) offset, remaining);
1696 }
1697 } else {
1698 if ((remaining > 1) && (offset & 1)) {
1699 bus_space_read_multi_1(iot, ioh,
1700 rxreg, (u_int8_t *) offset, 1);
1701 remaining -= 1;
1702 offset += 1;
1703 }
1704 if (remaining > 1) {
1705 bus_space_read_multi_stream_2(iot, ioh,
1706 rxreg, (u_int16_t *) offset,
1707 remaining >> 1);
1708 offset += remaining & ~1;
1709 }
1710 if (remaining & 1) {
1711 bus_space_read_multi_1(iot, ioh,
1712 rxreg, (u_int8_t *) offset, remaining & 1);
1713 }
1714 }
1715
1716 ep_discard_rxtop(iot, ioh);
1717
1718 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1719 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1720 splx(s);
1721
1722 return (m);
1723 }
1724
1725 int
1726 epioctl(ifp, cmd, data)
1727 struct ifnet *ifp;
1728 u_long cmd;
1729 void *data;
1730 {
1731 struct ep_softc *sc = ifp->if_softc;
1732 struct ifreq *ifr = (struct ifreq *)data;
1733 int s, error = 0;
1734
1735 s = splnet();
1736
1737 switch (cmd) {
1738
1739 case SIOCSIFMEDIA:
1740 case SIOCGIFMEDIA:
1741 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1742 break;
1743
1744 case SIOCADDMULTI:
1745 case SIOCDELMULTI:
1746 if (sc->enabled == 0) {
1747 error = EIO;
1748 break;
1749 }
1750
1751 default:
1752 error = ether_ioctl(ifp, cmd, data);
1753
1754 if (error == ENETRESET) {
1755 /*
1756 * Multicast list has changed; set the hardware filter
1757 * accordingly.
1758 */
1759 if (ifp->if_flags & IFF_RUNNING)
1760 epreset(sc);
1761 error = 0;
1762 }
1763 break;
1764 }
1765
1766 splx(s);
1767 return (error);
1768 }
1769
1770 void
1771 epreset(sc)
1772 struct ep_softc *sc;
1773 {
1774 int s;
1775
1776 s = splnet();
1777 epinit(&sc->sc_ethercom.ec_if);
1778 splx(s);
1779 }
1780
1781 void
1782 epwatchdog(ifp)
1783 struct ifnet *ifp;
1784 {
1785 struct ep_softc *sc = ifp->if_softc;
1786
1787 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1788 ++sc->sc_ethercom.ec_if.if_oerrors;
1789
1790 epreset(sc);
1791 }
1792
1793 void
1794 epstop(ifp, disable)
1795 struct ifnet *ifp;
1796 int disable;
1797 {
1798 struct ep_softc *sc = ifp->if_softc;
1799 bus_space_tag_t iot = sc->sc_iot;
1800 bus_space_handle_t ioh = sc->sc_ioh;
1801
1802 if (sc->ep_flags & ELINK_FLAGS_MII) {
1803 /* Stop the one second clock. */
1804 callout_stop(&sc->sc_mbuf_callout);
1805
1806 /* Down the MII. */
1807 mii_down(&sc->sc_mii);
1808 }
1809
1810 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1811 /*
1812 * Clear the FIFO buffer count, thus halting
1813 * any currently-running transactions.
1814 */
1815 GO_WINDOW(1); /* sanity */
1816 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1817 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1818 }
1819
1820 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1821 ep_discard_rxtop(iot, ioh);
1822
1823 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1824 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1825
1826 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1827 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1828
1829 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1830 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1831 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1832 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1833
1834 epmbufempty(sc);
1835
1836 if (disable)
1837 epdisable(sc);
1838
1839 ifp->if_flags &= ~IFF_RUNNING;
1840 }
1841
1842
1843 /*
1844 * Before reboots, reset card completely.
1845 */
1846 static void
1847 epshutdown(arg)
1848 void *arg;
1849 {
1850 struct ep_softc *sc = arg;
1851 int s = splnet();
1852
1853 if (sc->enabled) {
1854 epstop(&sc->sc_ethercom.ec_if, 0);
1855 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1856 epdisable(sc);
1857 sc->enabled = 0;
1858 }
1859 splx(s);
1860 }
1861
1862 /*
1863 * We get eeprom data from the id_port given an offset into the
1864 * eeprom. Basically; after the ID_sequence is sent to all of
1865 * the cards; they enter the ID_CMD state where they will accept
1866 * command requests. 0x80-0xbf loads the eeprom data. We then
1867 * read the port 16 times and with every read; the cards check
1868 * for contention (ie: if one card writes a 0 bit and another
1869 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1870 * each card compares the data on the bus; if there is a difference
1871 * then that card goes into ID_WAIT state again). In the meantime;
1872 * one bit of data is returned in the AX register which is conveniently
1873 * returned to us by bus_space_read_2(). Hence; we read 16 times getting one
1874 * bit of data with each read.
1875 *
1876 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1877 */
1878 u_int16_t
1879 epreadeeprom(iot, ioh, offset)
1880 bus_space_tag_t iot;
1881 bus_space_handle_t ioh;
1882 int offset;
1883 {
1884 u_int16_t data = 0;
1885 int i;
1886
1887 bus_space_write_2(iot, ioh, 0, 0x80 + offset);
1888 delay(1000);
1889 for (i = 0; i < 16; i++)
1890 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1891 return (data);
1892 }
1893
1894 static int
1895 epbusyeeprom(sc)
1896 struct ep_softc *sc;
1897 {
1898 bus_space_tag_t iot = sc->sc_iot;
1899 bus_space_handle_t ioh = sc->sc_ioh;
1900 bus_size_t eecmd;
1901 int i = 100, j;
1902 uint16_t busybit;
1903
1904 if (sc->bustype == ELINK_BUS_PCMCIA) {
1905 delay(1000);
1906 return 0;
1907 }
1908
1909 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1910 eecmd = CORK_ASIC_EEPROM_COMMAND;
1911 busybit = CORK_EEPROM_BUSY;
1912 } else {
1913 eecmd = ELINK_W0_EEPROM_COMMAND;
1914 busybit = EEPROM_BUSY;
1915 }
1916
1917 j = 0; /* bad GCC flow analysis */
1918 while (i--) {
1919 j = bus_space_read_2(iot, ioh, eecmd);
1920 if (j & busybit)
1921 delay(100);
1922 else
1923 break;
1924 }
1925 if (i == 0) {
1926 printf("\n%s: eeprom failed to come ready\n",
1927 sc->sc_dev.dv_xname);
1928 return (1);
1929 }
1930 if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1931 (j & EEPROM_TST_MODE) != 0) {
1932 /* XXX PnP mode? */
1933 printf("\n%s: erase pencil mark!\n", sc->sc_dev.dv_xname);
1934 return (1);
1935 }
1936 return (0);
1937 }
1938
1939 u_int16_t
1940 ep_read_eeprom(sc, offset)
1941 struct ep_softc *sc;
1942 u_int16_t offset;
1943 {
1944 bus_size_t eecmd, eedata;
1945 u_int16_t readcmd;
1946
1947 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1948 eecmd = CORK_ASIC_EEPROM_COMMAND;
1949 eedata = CORK_ASIC_EEPROM_DATA;
1950 } else {
1951 eecmd = ELINK_W0_EEPROM_COMMAND;
1952 eedata = ELINK_W0_EEPROM_DATA;
1953 }
1954
1955 /*
1956 * RoadRunner has a larger EEPROM, so a different read command
1957 * is required.
1958 */
1959 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1960 readcmd = READ_EEPROM_RR;
1961 else
1962 readcmd = READ_EEPROM;
1963
1964 if (epbusyeeprom(sc))
1965 return (0); /* XXX why is eeprom busy? */
1966
1967 bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1968
1969 if (epbusyeeprom(sc))
1970 return (0); /* XXX why is eeprom busy? */
1971
1972 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1973 }
1974
1975 void
1976 epmbuffill(v)
1977 void *v;
1978 {
1979 struct ep_softc *sc = v;
1980 struct mbuf *m;
1981 int s, i;
1982
1983 s = splnet();
1984 i = sc->last_mb;
1985 do {
1986 if (sc->mb[i] == 0) {
1987 MGET(m, M_DONTWAIT, MT_DATA);
1988 if (m == 0)
1989 break;
1990 sc->mb[i] = m;
1991 }
1992 i = (i + 1) % MAX_MBS;
1993 } while (i != sc->next_mb);
1994 sc->last_mb = i;
1995 /* If the queue was not filled, try again. */
1996 if (sc->last_mb != sc->next_mb)
1997 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1998 splx(s);
1999 }
2000
2001 void
2002 epmbufempty(sc)
2003 struct ep_softc *sc;
2004 {
2005 int s, i;
2006
2007 s = splnet();
2008 for (i = 0; i<MAX_MBS; i++) {
2009 if (sc->mb[i]) {
2010 m_freem(sc->mb[i]);
2011 sc->mb[i] = NULL;
2012 }
2013 }
2014 sc->last_mb = sc->next_mb = 0;
2015 callout_stop(&sc->sc_mbuf_callout);
2016 splx(s);
2017 }
2018
2019 int
2020 epenable(sc)
2021 struct ep_softc *sc;
2022 {
2023
2024 if (sc->enabled == 0 && sc->enable != NULL) {
2025 if ((*sc->enable)(sc) != 0) {
2026 printf("%s: device enable failed\n",
2027 sc->sc_dev.dv_xname);
2028 return (EIO);
2029 }
2030 }
2031
2032 sc->enabled = 1;
2033 return (0);
2034 }
2035
2036 void
2037 epdisable(sc)
2038 struct ep_softc *sc;
2039 {
2040
2041 if (sc->enabled != 0 && sc->disable != NULL) {
2042 (*sc->disable)(sc);
2043 sc->enabled = 0;
2044 }
2045 }
2046
2047 /*
2048 * ep_activate:
2049 *
2050 * Handle device activation/deactivation requests.
2051 */
2052 int
2053 ep_activate(self, act)
2054 struct device *self;
2055 enum devact act;
2056 {
2057 struct ep_softc *sc = (struct ep_softc *)self;
2058 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2059 int error = 0, s;
2060
2061 s = splnet();
2062 switch (act) {
2063 case DVACT_ACTIVATE:
2064 error = EOPNOTSUPP;
2065 break;
2066
2067 case DVACT_DEACTIVATE:
2068 if (sc->ep_flags & ELINK_FLAGS_MII)
2069 mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
2070 MII_OFFSET_ANY);
2071 if_deactivate(ifp);
2072 break;
2073 }
2074 splx(s);
2075 return (error);
2076 }
2077
2078 /*
2079 * ep_detach:
2080 *
2081 * Detach a elink3 interface.
2082 */
2083 int
2084 ep_detach(struct device *self, int flags)
2085 {
2086 struct ep_softc *sc = (struct ep_softc *)self;
2087 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2088
2089 /* Succeed now if there's no work to do. */
2090 if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2091 return (0);
2092
2093 epdisable(sc);
2094
2095 callout_stop(&sc->sc_mii_callout);
2096 callout_stop(&sc->sc_mbuf_callout);
2097
2098 if (sc->ep_flags & ELINK_FLAGS_MII) {
2099 /* Detach all PHYs */
2100 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2101 }
2102
2103 /* Delete all remaining media. */
2104 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2105
2106 #if NRND > 0
2107 rnd_detach_source(&sc->rnd_source);
2108 #endif
2109 ether_ifdetach(ifp);
2110 if_detach(ifp);
2111
2112 shutdownhook_disestablish(sc->sd_hook);
2113
2114 return (0);
2115 }
2116
2117 u_int32_t
2118 ep_mii_bitbang_read(self)
2119 struct device *self;
2120 {
2121 struct ep_softc *sc = (void *) self;
2122
2123 /* We're already in Window 4. */
2124 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2125 ELINK_W4_BOOM_PHYSMGMT));
2126 }
2127
2128 void
2129 ep_mii_bitbang_write(self, val)
2130 struct device *self;
2131 u_int32_t val;
2132 {
2133 struct ep_softc *sc = (void *) self;
2134
2135 /* We're already in Window 4. */
2136 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2137 ELINK_W4_BOOM_PHYSMGMT, val);
2138 }
2139
2140 int
2141 ep_mii_readreg(self, phy, reg)
2142 struct device *self;
2143 int phy, reg;
2144 {
2145 struct ep_softc *sc = (void *) self;
2146 int val;
2147
2148 GO_WINDOW(4);
2149
2150 val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2151
2152 GO_WINDOW(1);
2153
2154 return (val);
2155 }
2156
2157 void
2158 ep_mii_writereg(self, phy, reg, val)
2159 struct device *self;
2160 int phy, reg, val;
2161 {
2162 struct ep_softc *sc = (void *) self;
2163
2164 GO_WINDOW(4);
2165
2166 mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2167
2168 GO_WINDOW(1);
2169 }
2170
2171 void
2172 ep_statchg(self)
2173 struct device *self;
2174 {
2175 struct ep_softc *sc = (struct ep_softc *)self;
2176 bus_space_tag_t iot = sc->sc_iot;
2177 bus_space_handle_t ioh = sc->sc_ioh;
2178 int mctl;
2179
2180 GO_WINDOW(3);
2181 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2182 if (sc->sc_mii.mii_media_active & IFM_FDX)
2183 mctl |= MAC_CONTROL_FDX;
2184 else
2185 mctl &= ~MAC_CONTROL_FDX;
2186 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2187 GO_WINDOW(1); /* back to operating window */
2188 }
2189
2190 void
2191 ep_power(int why, void *arg)
2192 {
2193 struct ep_softc *sc = arg;
2194 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2195 int s;
2196
2197 s = splnet();
2198 switch (why) {
2199 case PWR_SUSPEND:
2200 case PWR_STANDBY:
2201 epstop(ifp, 1);
2202 break;
2203 case PWR_RESUME:
2204 if (ifp->if_flags & IFF_UP) {
2205 (void)epinit(ifp);
2206 }
2207 break;
2208 case PWR_SOFTSUSPEND:
2209 case PWR_SOFTSTANDBY:
2210 case PWR_SOFTRESUME:
2211 break;
2212 }
2213 splx(s);
2214 }
2215