Home | History | Annotate | Line # | Download | only in ic
elink3.c revision 1.125
      1 /*	$NetBSD: elink3.c,v 1.125 2008/04/08 12:07:26 cegger Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
     42  * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
     43  * All rights reserved.
     44  *
     45  * Redistribution and use in source and binary forms, with or without
     46  * modification, are permitted provided that the following conditions
     47  * are met:
     48  * 1. Redistributions of source code must retain the above copyright
     49  *    notice, this list of conditions and the following disclaimer.
     50  * 2. Redistributions in binary form must reproduce the above copyright
     51  *    notice, this list of conditions and the following disclaimer in the
     52  *    documentation and/or other materials provided with the distribution.
     53  * 3. All advertising materials mentioning features or use of this software
     54  *    must display the following acknowledgement:
     55  *      This product includes software developed by Herb Peyerl.
     56  * 4. The name of Herb Peyerl may not be used to endorse or promote products
     57  *    derived from this software without specific prior written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     60  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     61  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     62  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     63  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     64  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     65  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     66  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     67  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     68  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     69  */
     70 
     71 #include <sys/cdefs.h>
     72 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.125 2008/04/08 12:07:26 cegger Exp $");
     73 
     74 #include "opt_inet.h"
     75 #include "bpfilter.h"
     76 #include "rnd.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/systm.h>
     80 #include <sys/callout.h>
     81 #include <sys/kernel.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/socket.h>
     84 #include <sys/ioctl.h>
     85 #include <sys/errno.h>
     86 #include <sys/syslog.h>
     87 #include <sys/select.h>
     88 #include <sys/device.h>
     89 #if NRND > 0
     90 #include <sys/rnd.h>
     91 #endif
     92 
     93 #include <net/if.h>
     94 #include <net/if_dl.h>
     95 #include <net/if_ether.h>
     96 #include <net/if_media.h>
     97 
     98 #if NBPFILTER > 0
     99 #include <net/bpf.h>
    100 #include <net/bpfdesc.h>
    101 #endif
    102 
    103 #include <sys/cpu.h>
    104 #include <sys/bus.h>
    105 #include <sys/intr.h>
    106 
    107 #include <dev/mii/mii.h>
    108 #include <dev/mii/miivar.h>
    109 #include <dev/mii/mii_bitbang.h>
    110 
    111 #include <dev/ic/elink3var.h>
    112 #include <dev/ic/elink3reg.h>
    113 
    114 #ifdef DEBUG
    115 int epdebug = 0;
    116 #endif
    117 
    118 /*
    119  * XXX endian workaround for big-endian CPUs  with pcmcia:
    120  * if stream methods for bus_space_multi are not provided, define them
    121  * using non-stream bus_space_{read,write}_multi_.
    122  * Assumes host CPU is same endian-ness as bus.
    123  */
    124 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
    125 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
    126 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
    127 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
    128 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
    129 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
    130 
    131 /*
    132  * Structure to map media-present bits in boards to ifmedia codes and
    133  * printable media names. Used for table-driven ifmedia initialization.
    134  */
    135 struct ep_media {
    136 	int	epm_mpbit;		/* media present bit */
    137 	const char *epm_name;		/* name of medium */
    138 	int	epm_ifmedia;		/* ifmedia word for medium */
    139 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
    140 };
    141 
    142 /*
    143  * Media table for the Demon/Vortex/Boomerang chipsets.
    144  *
    145  * Note that MII on the Demon and Vortex (3c59x) indicates an external
    146  * MII connector (for connecting an external PHY) ... I think.  Treat
    147  * it as `manual' on these chips.
    148  *
    149  * Any Boomerang (3c90x) chips with MII really do have an internal
    150  * MII and real PHYs attached; no `native' media.
    151  */
    152 const struct ep_media ep_vortex_media[] = {
    153 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER|IFM_10_T,
    154 	  ELINKMEDIA_10BASE_T },
    155 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER|IFM_10_T|IFM_FDX,
    156 	  ELINKMEDIA_10BASE_T },
    157 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
    158 	  ELINKMEDIA_AUI },
    159 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
    160 	  ELINKMEDIA_10BASE_2 },
    161 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER|IFM_100_TX,
    162 	  ELINKMEDIA_100BASE_TX },
    163 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
    164 	  ELINKMEDIA_100BASE_TX },
    165 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER|IFM_100_FX,
    166 	  ELINKMEDIA_100BASE_FX },
    167 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER|IFM_MANUAL,
    168 	  ELINKMEDIA_MII },
    169 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER|IFM_100_T4,
    170 	  ELINKMEDIA_100BASE_T4 },
    171 	{ 0,			NULL,		0,
    172 	  0 },
    173 };
    174 
    175 /*
    176  * Media table for the older 3Com Etherlink III chipset, used
    177  * in the 3c509, 3c579, and 3c589.
    178  */
    179 const struct ep_media ep_509_media[] = {
    180 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER|IFM_10_T,
    181 	  ELINKMEDIA_10BASE_T },
    182 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER|IFM_10_5,
    183 	  ELINKMEDIA_AUI },
    184 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER|IFM_10_2,
    185 	  ELINKMEDIA_10BASE_2 },
    186 	{ 0,			NULL,		0,
    187 	  0 },
    188 };
    189 
    190 void	ep_internalconfig(struct ep_softc *sc);
    191 void	ep_vortex_probemedia(struct ep_softc *sc);
    192 void	ep_509_probemedia(struct ep_softc *sc);
    193 
    194 static void eptxstat(struct ep_softc *);
    195 static int epstatus(struct ep_softc *);
    196 int	epinit(struct ifnet *);
    197 void	epstop(struct ifnet *, int);
    198 int	epioctl(struct ifnet *, u_long, void *);
    199 void	epstart(struct ifnet *);
    200 void	epwatchdog(struct ifnet *);
    201 void	epreset(struct ep_softc *);
    202 static void epshutdown(void *);
    203 void	epread(struct ep_softc *);
    204 struct mbuf *epget(struct ep_softc *, int);
    205 void	epmbuffill(void *);
    206 void	epmbufempty(struct ep_softc *);
    207 void	epsetfilter(struct ep_softc *);
    208 void	ep_roadrunner_mii_enable(struct ep_softc *);
    209 void	epsetmedia(struct ep_softc *);
    210 
    211 /* ifmedia callbacks */
    212 int	ep_media_change(struct ifnet *ifp);
    213 void	ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
    214 
    215 /* MII callbacks */
    216 int	ep_mii_readreg(struct device *, int, int);
    217 void	ep_mii_writereg(struct device *, int, int, int);
    218 void	ep_statchg(struct device *);
    219 
    220 void	ep_tick(void *);
    221 
    222 static int epbusyeeprom(struct ep_softc *);
    223 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
    224 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
    225 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
    226 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
    227 static inline int ep_w1_reg(struct ep_softc *, int);
    228 
    229 /*
    230  * MII bit-bang glue.
    231  */
    232 u_int32_t ep_mii_bitbang_read(struct device *);
    233 void ep_mii_bitbang_write(struct device *, u_int32_t);
    234 
    235 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
    236 	ep_mii_bitbang_read,
    237 	ep_mii_bitbang_write,
    238 	{
    239 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
    240 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
    241 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
    242 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
    243 		0,			/* MII_BIT_DIR_PHY_HOST */
    244 	}
    245 };
    246 
    247 /*
    248  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
    249  * Window 1 registers offset!
    250  */
    251 static inline int
    252 ep_w1_reg(sc, reg)
    253 	struct ep_softc *sc;
    254 	int reg;
    255 {
    256 
    257 	switch (sc->ep_chipset) {
    258 	case ELINK_CHIPSET_CORKSCREW:
    259 		return (reg + 0x10);
    260 
    261 	case ELINK_CHIPSET_ROADRUNNER:
    262 		switch (reg) {
    263 		case ELINK_W1_FREE_TX:
    264 		case ELINK_W1_RUNNER_RDCTL:
    265 		case ELINK_W1_RUNNER_WRCTL:
    266 			return (reg);
    267 		}
    268 		return (reg + 0x10);
    269 	}
    270 
    271 	return (reg);
    272 }
    273 
    274 /*
    275  * Wait for any pending reset to complete.
    276  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
    277  * but older hardware doesn't implement it and we must delay.
    278  */
    279 static inline void
    280 ep_finish_reset(iot, ioh)
    281 	bus_space_tag_t iot;
    282 	bus_space_handle_t ioh;
    283 {
    284 	int i;
    285 
    286 	for (i = 0; i < 10000; i++) {
    287 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    288 		    COMMAND_IN_PROGRESS) == 0)
    289 			break;
    290 		DELAY(10);
    291 	}
    292 }
    293 
    294 /*
    295  * Issue a (reset) command, and be sure it has completed.
    296  * Used for global reset, TX_RESET, RX_RESET.
    297  */
    298 static inline void
    299 ep_reset_cmd(sc, cmd, arg)
    300 	struct ep_softc *sc;
    301 	u_int cmd, arg;
    302 {
    303 	bus_space_tag_t iot = sc->sc_iot;
    304 	bus_space_handle_t ioh = sc->sc_ioh;
    305 
    306 	bus_space_write_2(iot, ioh, cmd, arg);
    307 	ep_finish_reset(iot, ioh);
    308 }
    309 
    310 
    311 static inline void
    312 ep_discard_rxtop(iot, ioh)
    313 	bus_space_tag_t iot;
    314 	bus_space_handle_t ioh;
    315 {
    316 	int i;
    317 
    318 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
    319 
    320         /*
    321 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
    322 	 * every received packet (adding latency and  limiting pkt-recv rate).
    323 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
    324 	 * is about right.
    325 	 */
    326 	for (i = 0; i < 8000; i++) {
    327 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    328 		    COMMAND_IN_PROGRESS) == 0)
    329 		    return;
    330 	}
    331 
    332 	/*  Didn't complete in a hurry. Do DELAY()s. */
    333 	ep_finish_reset(iot, ioh);
    334 }
    335 
    336 /*
    337  * Back-end attach and configure.
    338  */
    339 int
    340 epconfig(sc, chipset, enaddr)
    341 	struct ep_softc *sc;
    342 	u_short chipset;
    343 	u_int8_t *enaddr;
    344 {
    345 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    346 	bus_space_tag_t iot = sc->sc_iot;
    347 	bus_space_handle_t ioh = sc->sc_ioh;
    348 	u_int16_t i;
    349 	u_int8_t myla[ETHER_ADDR_LEN];
    350 
    351 	callout_init(&sc->sc_mii_callout, 0);
    352 	callout_init(&sc->sc_mbuf_callout, 0);
    353 
    354 	sc->ep_chipset = chipset;
    355 
    356 	/*
    357 	 * We could have been groveling around in other register
    358 	 * windows in the front-end; make sure we're in window 0
    359 	 * to read the EEPROM.
    360 	 */
    361 	GO_WINDOW(0);
    362 
    363 	if (enaddr == NULL) {
    364 		/*
    365 		 * Read the station address from the eeprom.
    366 		 */
    367 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    368 			u_int16_t x = ep_read_eeprom(sc, i);
    369 			myla[(i << 1)] = x >> 8;
    370 			myla[(i << 1) + 1] = x;
    371 		}
    372 		enaddr = myla;
    373 	}
    374 
    375 	/*
    376 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
    377 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
    378 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
    379 	 * packet length.
    380 	 * Commands to these cards implicitly upshift a packet size
    381 	 * or threshold by 2 bits.
    382 	 * To detect  cards with large-packet support, we probe by setting
    383 	 * the transmit threshold register, then change windows and
    384 	 * read back the threshold register directly, and see if the
    385 	 * threshold value was shifted or not.
    386 	 */
    387 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    388 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
    389 	GO_WINDOW(5);
    390 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
    391 	GO_WINDOW(1);
    392 	switch (i)  {
    393 	case ELINK_LARGEWIN_PROBE:
    394 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
    395 		sc->ep_pktlenshift = 0;
    396 		break;
    397 
    398 	case (ELINK_LARGEWIN_PROBE << 2):
    399 		sc->ep_pktlenshift = 2;
    400 		break;
    401 
    402 	default:
    403 		aprint_error_dev(&sc->sc_dev,
    404 		    "wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
    405 		    "Interface disabled\n",
    406 		    ELINK_LARGEWIN_PROBE, (int) i);
    407 		return (1);
    408 	}
    409 
    410 	/*
    411 	 * Ensure Tx-available interrupts are enabled for
    412 	 * start the interface.
    413 	 * XXX should be in epinit()?
    414 	 */
    415 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    416 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    417 
    418 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    419 	ifp->if_softc = sc;
    420 	ifp->if_start = epstart;
    421 	ifp->if_ioctl = epioctl;
    422 	ifp->if_watchdog = epwatchdog;
    423 	ifp->if_init = epinit;
    424 	ifp->if_stop = epstop;
    425 	ifp->if_flags =
    426 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
    427 	IFQ_SET_READY(&ifp->if_snd);
    428 
    429 	if_attach(ifp);
    430 	ether_ifattach(ifp, enaddr);
    431 
    432 	/*
    433 	 * Finish configuration:
    434 	 * determine chipset if the front-end couldn't do so,
    435 	 * show board details, set media.
    436 	 */
    437 
    438 	/*
    439 	 * Print RAM size.  We also print the Ethernet address in here.
    440 	 * It's extracted from the ifp, so we have to make sure it's
    441 	 * been attached first.
    442 	 */
    443 	ep_internalconfig(sc);
    444 	GO_WINDOW(0);
    445 
    446 	/*
    447 	 * Display some additional information, if pertinent.
    448 	 */
    449 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
    450 		aprint_normal_dev(&sc->sc_dev, "RoadRunner FIFO buffer enabled\n");
    451 
    452 	/*
    453 	 * Initialize our media structures and MII info.  We'll
    454 	 * probe the MII if we discover that we have one.
    455 	 */
    456 	sc->sc_mii.mii_ifp = ifp;
    457 	sc->sc_mii.mii_readreg = ep_mii_readreg;
    458 	sc->sc_mii.mii_writereg = ep_mii_writereg;
    459 	sc->sc_mii.mii_statchg = ep_statchg;
    460 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change,
    461 	    ep_media_status);
    462 
    463 	/*
    464 	 * All CORKSCREW chips have MII.
    465 	 */
    466 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
    467 		sc->ep_flags |= ELINK_FLAGS_MII;
    468 
    469 	/*
    470 	 * Now, determine which media we have.
    471 	 */
    472 	switch (sc->ep_chipset) {
    473 	case ELINK_CHIPSET_ROADRUNNER:
    474 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    475 			ep_roadrunner_mii_enable(sc);
    476 			GO_WINDOW(0);
    477 		}
    478 		/* FALLTHROUGH */
    479 
    480 	case ELINK_CHIPSET_CORKSCREW:
    481 	case ELINK_CHIPSET_BOOMERANG:
    482 		/*
    483 		 * If the device has MII, probe it.  We won't be using
    484 		 * any `native' media in this case, only PHYs.  If
    485 		 * we don't, just treat the Boomerang like the Vortex.
    486 		 */
    487 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    488 			mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff,
    489 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    490 			if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    491 				ifmedia_add(&sc->sc_mii.mii_media,
    492 				    IFM_ETHER|IFM_NONE, 0, NULL);
    493 				ifmedia_set(&sc->sc_mii.mii_media,
    494 				    IFM_ETHER|IFM_NONE);
    495 			} else {
    496 				ifmedia_set(&sc->sc_mii.mii_media,
    497 				    IFM_ETHER|IFM_AUTO);
    498 			}
    499 			break;
    500 		}
    501 		/* FALLTHROUGH */
    502 
    503 	case ELINK_CHIPSET_VORTEX:
    504 		ep_vortex_probemedia(sc);
    505 		break;
    506 
    507 	default:
    508 		ep_509_probemedia(sc);
    509 		break;
    510 	}
    511 
    512 	GO_WINDOW(1);		/* Window 1 is operating window */
    513 
    514 #if NRND > 0
    515 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    516 	    RND_TYPE_NET, 0);
    517 #endif
    518 
    519 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
    520 
    521 	/*  Establish callback to reset card when we reboot. */
    522 	sc->sd_hook = shutdownhook_establish(epshutdown, sc);
    523 
    524 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    525 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    526 
    527 	/* The attach is successful. */
    528 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
    529 	return (0);
    530 }
    531 
    532 
    533 /*
    534  * Show interface-model-independent info from window 3
    535  * internal-configuration register.
    536  */
    537 void
    538 ep_internalconfig(sc)
    539 	struct ep_softc *sc;
    540 {
    541 	bus_space_tag_t iot = sc->sc_iot;
    542 	bus_space_handle_t ioh = sc->sc_ioh;
    543 
    544 	u_int config0;
    545 	u_int config1;
    546 
    547 	int  ram_size, ram_width, ram_split;
    548 	/*
    549 	 * NVRAM buffer Rx:Tx config names for busmastering cards
    550 	 * (Demon, Vortex, and later).
    551 	 */
    552 	const char *const onboard_ram_config[] = {
    553 		"5:3", "3:1", "1:1", "3:5" };
    554 
    555 	GO_WINDOW(3);
    556 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
    557 	config1 = (u_int)bus_space_read_2(iot, ioh,
    558 	    ELINK_W3_INTERNAL_CONFIG + 2);
    559 	GO_WINDOW(0);
    560 
    561 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
    562 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
    563 
    564 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
    565 
    566 	aprint_normal_dev(&sc->sc_dev, "address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
    567 	       ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
    568 	       8 << ram_size,
    569 	       (ram_width) ? "word" : "byte",
    570 	       onboard_ram_config[ram_split]);
    571 }
    572 
    573 
    574 /*
    575  * Find supported media on 3c509-generation hardware that doesn't have
    576  * a "reset_options" register in window 3.
    577  * Use the config_cntrl register  in window 0 instead.
    578  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
    579  * that implement  CONFIG_CTRL.  We don't have a good way to set the
    580  * default active medium; punt to ifconfig  instead.
    581  */
    582 void
    583 ep_509_probemedia(sc)
    584 	struct ep_softc *sc;
    585 {
    586 	bus_space_tag_t iot = sc->sc_iot;
    587 	bus_space_handle_t ioh = sc->sc_ioh;
    588 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    589 	u_int16_t ep_w0_config, port;
    590 	const struct ep_media *epm;
    591 	const char *sep = "", *defmedianame = NULL;
    592 	int defmedia = 0;
    593 
    594 	GO_WINDOW(0);
    595 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
    596 
    597 	aprint_normal_dev(&sc->sc_dev, "");
    598 
    599 	/* Sanity check that there are any media! */
    600 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
    601 		aprint_error("no media present!\n");
    602 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    603 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    604 		return;
    605 	}
    606 
    607 	/*
    608 	 * Get the default media from the EEPROM.
    609 	 */
    610 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
    611 
    612 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
    613 
    614 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
    615 		if (ep_w0_config & epm->epm_mpbit) {
    616 			/*
    617 			 * This simple test works because 509 chipsets
    618 			 * don't do full-duplex.
    619 			 */
    620 			if (epm->epm_epmedia == port || defmedia == 0) {
    621 				defmedia = epm->epm_ifmedia;
    622 				defmedianame = epm->epm_name;
    623 			}
    624 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    625 			    NULL);
    626 			PRINT(epm->epm_name);
    627 		}
    628 	}
    629 
    630 #undef PRINT
    631 
    632 #ifdef DIAGNOSTIC
    633 	if (defmedia == 0)
    634 		panic("ep_509_probemedia: impossible");
    635 #endif
    636 
    637 	aprint_normal(" (default %s)\n", defmedianame);
    638 	ifmedia_set(ifm, defmedia);
    639 }
    640 
    641 /*
    642  * Find media present on large-packet-capable elink3 devices.
    643  * Show onboard configuration of large-packet-capable elink3 devices
    644  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
    645  * Use media and card-version info in window 3 instead.
    646  */
    647 void
    648 ep_vortex_probemedia(sc)
    649 	struct ep_softc *sc;
    650 {
    651 	bus_space_tag_t iot = sc->sc_iot;
    652 	bus_space_handle_t ioh = sc->sc_ioh;
    653 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    654 	const struct ep_media *epm;
    655 	u_int config1;
    656 	int reset_options;
    657 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
    658 	int defmedia = 0;
    659 	const char *sep = "", *defmedianame = NULL;
    660 
    661 	GO_WINDOW(3);
    662 	config1 = (u_int)bus_space_read_2(iot, ioh,
    663 	    ELINK_W3_INTERNAL_CONFIG + 2);
    664 	reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
    665 	GO_WINDOW(0);
    666 
    667 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
    668 
    669 	aprint_normal_dev(&sc->sc_dev, "");
    670 
    671 	/* Sanity check that there are any media! */
    672 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
    673 		aprint_error("no media present!\n");
    674 		ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
    675 		ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
    676 		return;
    677 	}
    678 
    679 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
    680 
    681 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
    682 		if (reset_options & epm->epm_mpbit) {
    683 			/*
    684 			 * Default media is a little more complicated
    685 			 * on the Vortex.  We support full-duplex which
    686 			 * uses the same reset options bit.
    687 			 *
    688 			 * XXX Check EEPROM for default to FDX?
    689 			 */
    690 			if (epm->epm_epmedia == default_media) {
    691 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
    692 					defmedia = epm->epm_ifmedia;
    693 					defmedianame = epm->epm_name;
    694 				}
    695 			} else if (defmedia == 0) {
    696 				defmedia = epm->epm_ifmedia;
    697 				defmedianame = epm->epm_name;
    698 			}
    699 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    700 			    NULL);
    701 			PRINT(epm->epm_name);
    702 		}
    703 	}
    704 
    705 #undef PRINT
    706 
    707 #ifdef DIAGNOSTIC
    708 	if (defmedia == 0)
    709 		panic("ep_vortex_probemedia: impossible");
    710 #endif
    711 
    712 	aprint_normal(" (default %s)\n", defmedianame);
    713 	ifmedia_set(ifm, defmedia);
    714 }
    715 
    716 /*
    717  * One second timer, used to tick the MII.
    718  */
    719 void
    720 ep_tick(arg)
    721 	void *arg;
    722 {
    723 	struct ep_softc *sc = arg;
    724 	int s;
    725 
    726 #ifdef DIAGNOSTIC
    727 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
    728 		panic("ep_tick");
    729 #endif
    730 
    731 	if (!device_is_active(&sc->sc_dev))
    732 		return;
    733 
    734 	s = splnet();
    735 	mii_tick(&sc->sc_mii);
    736 	splx(s);
    737 
    738 	callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
    739 }
    740 
    741 /*
    742  * Bring device up.
    743  *
    744  * The order in here seems important. Otherwise we may not receive
    745  * interrupts. ?!
    746  */
    747 int
    748 epinit(ifp)
    749 	struct ifnet *ifp;
    750 {
    751 	struct ep_softc *sc = ifp->if_softc;
    752 	bus_space_tag_t iot = sc->sc_iot;
    753 	bus_space_handle_t ioh = sc->sc_ioh;
    754 	int i, error;
    755 	const u_int8_t *addr;
    756 
    757 	if (!sc->enabled && (error = epenable(sc)) != 0)
    758 		return (error);
    759 
    760 	/* Make sure any pending reset has completed before touching board */
    761 	ep_finish_reset(iot, ioh);
    762 
    763 	/*
    764 	 * Cancel any pending I/O.
    765 	 */
    766 	epstop(ifp, 0);
    767 
    768 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
    769 	    && sc->bustype != ELINK_BUS_MCA) {
    770 		GO_WINDOW(0);
    771 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
    772 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
    773 		    ENABLE_DRQ_IRQ);
    774 	}
    775 
    776 	if (sc->bustype == ELINK_BUS_PCMCIA) {
    777 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
    778 	}
    779 
    780 	GO_WINDOW(2);
    781 	/* Reload the ether_addr. */
    782 	addr = CLLADDR(ifp->if_sadl);
    783 	for (i = 0; i < 6; i += 2)
    784 		bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
    785 		    (addr[i] << 0) | (addr[i + 1] << 8));
    786 
    787 	/*
    788 	 * Reset the station-address receive filter.
    789 	 * A bug workaround for busmastering (Vortex, Demon) cards.
    790 	 */
    791 	for (i = 0; i < 6; i += 2)
    792 		bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
    793 
    794 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    795 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    796 
    797 	GO_WINDOW(1);		/* Window 1 is operating window */
    798 	for (i = 0; i < 31; i++)
    799 		(void)bus_space_read_2(iot, ioh,
    800 				       ep_w1_reg(sc, ELINK_W1_TX_STATUS));
    801 
    802 	/* Set threshold for Tx-space available interrupt. */
    803 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    804 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    805 
    806 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    807 		/*
    808 		 * Enable options in the PCMCIA LAN COR register, via
    809 		 * RoadRunner Window 1.
    810 		 *
    811 		 * XXX MAGIC CONSTANTS!
    812 		 */
    813 		u_int16_t cor;
    814 
    815 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
    816 
    817 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
    818 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
    819 			cor |= 0x10;
    820 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
    821 			cor |= 0x20;
    822 		bus_space_write_2(iot, ioh, 0, cor);
    823 
    824 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
    825 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
    826 
    827 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    828 			ep_roadrunner_mii_enable(sc);
    829 			GO_WINDOW(1);
    830 		}
    831 	}
    832 
    833 	/* Enable interrupts. */
    834 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    835 	    SET_RD_0_MASK | WATCHED_INTERRUPTS);
    836 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    837 	    SET_INTR_MASK | WATCHED_INTERRUPTS);
    838 
    839 	/*
    840 	 * Attempt to get rid of any stray interrupts that occurred during
    841 	 * configuration.  On the i386 this isn't possible because one may
    842 	 * already be queued.  However, a single stray interrupt is
    843 	 * unimportant.
    844 	 */
    845 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
    846 
    847 	epsetfilter(sc);
    848 	epsetmedia(sc);
    849 
    850 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
    851 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
    852 
    853 	epmbuffill(sc);
    854 
    855 	/* Interface is now `running', with no output active. */
    856 	ifp->if_flags |= IFF_RUNNING;
    857 	ifp->if_flags &= ~IFF_OACTIVE;
    858 
    859 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    860 		/* Start the one second clock. */
    861 		callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
    862 	}
    863 
    864 	/* Attempt to start output, if any. */
    865 	epstart(ifp);
    866 
    867 	return (0);
    868 }
    869 
    870 
    871 /*
    872  * Set multicast receive filter.
    873  * elink3 hardware has no selective multicast filter in hardware.
    874  * Enable reception of all multicasts and filter in software.
    875  */
    876 void
    877 epsetfilter(sc)
    878 	struct ep_softc *sc;
    879 {
    880 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    881 
    882 	GO_WINDOW(1);		/* Window 1 is operating window */
    883 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
    884 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
    885 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
    886 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
    887 }
    888 
    889 int
    890 ep_media_change(ifp)
    891 	struct ifnet *ifp;
    892 {
    893 	struct ep_softc *sc = ifp->if_softc;
    894 
    895 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
    896 		epreset(sc);
    897 
    898 	return (0);
    899 }
    900 
    901 /*
    902  * Reset and enable the MII on the RoadRunner.
    903  */
    904 void
    905 ep_roadrunner_mii_enable(sc)
    906 	struct ep_softc *sc;
    907 {
    908 	bus_space_tag_t iot = sc->sc_iot;
    909 	bus_space_handle_t ioh = sc->sc_ioh;
    910 
    911 	GO_WINDOW(3);
    912 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    913 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
    914 	delay(1000);
    915 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    916 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
    917 	    ELINK_RUNNER_ENABLE_MII);
    918 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    919 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    920 	delay(1000);
    921 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    922 	    ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
    923 }
    924 
    925 /*
    926  * Set the card to use the specified media.
    927  */
    928 void
    929 epsetmedia(sc)
    930 	struct ep_softc *sc;
    931 {
    932 	bus_space_tag_t iot = sc->sc_iot;
    933 	bus_space_handle_t ioh = sc->sc_ioh;
    934 
    935 	/* Turn everything off.  First turn off linkbeat and UTP. */
    936 	GO_WINDOW(4);
    937 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
    938 
    939 	/* Turn off coax */
    940 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
    941 	delay(1000);
    942 
    943 	/*
    944 	 * If the device has MII, select it, and then tell the
    945 	 * PHY which media to use.
    946 	 */
    947 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    948 		int config0, config1;
    949 
    950 		GO_WINDOW(3);
    951 
    952 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    953 			int resopt;
    954 
    955 			resopt = bus_space_read_2(iot, ioh,
    956 			    ELINK_W3_RESET_OPTIONS);
    957 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    958 			    resopt | ELINK_RUNNER_ENABLE_MII);
    959 		}
    960 
    961 		config0 = (u_int)bus_space_read_2(iot, ioh,
    962 		    ELINK_W3_INTERNAL_CONFIG);
    963 		config1 = (u_int)bus_space_read_2(iot, ioh,
    964 		    ELINK_W3_INTERNAL_CONFIG + 2);
    965 
    966 		config1 = config1 & ~CONFIG_MEDIAMASK;
    967 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
    968 
    969 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
    970 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
    971 		    config1);
    972 		GO_WINDOW(1);	/* back to operating window */
    973 
    974 		mii_mediachg(&sc->sc_mii);
    975 		return;
    976 	}
    977 
    978 	/*
    979 	 * Now turn on the selected media/transceiver.
    980 	 */
    981 	GO_WINDOW(4);
    982 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
    983 	case IFM_10_T:
    984 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    985 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
    986 		break;
    987 
    988 	case IFM_10_2:
    989 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
    990 		DELAY(1000);	/* 50ms not enmough? */
    991 		break;
    992 
    993 	case IFM_100_TX:
    994 	case IFM_100_FX:
    995 	case IFM_100_T4:		/* XXX check documentation */
    996 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    997 		    LINKBEAT_ENABLE);
    998 		DELAY(1000);	/* not strictly necessary? */
    999 		break;
   1000 
   1001 	case IFM_10_5:
   1002 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
   1003 		    SQE_ENABLE);
   1004 		DELAY(1000);	/* not strictly necessary? */
   1005 		break;
   1006 
   1007 	case IFM_MANUAL:
   1008 		/*
   1009 		 * Nothing to do here; we are actually enabling the
   1010 		 * external PHY on the MII port.
   1011 		 */
   1012 		break;
   1013 
   1014 	case IFM_NONE:
   1015 		printf("%s: interface disabled\n", device_xname(&sc->sc_dev));
   1016 		return;
   1017 
   1018 	default:
   1019 		panic("epsetmedia: impossible");
   1020 	}
   1021 
   1022 	/*
   1023 	 * Tell the chip which port to use.
   1024 	 */
   1025 	switch (sc->ep_chipset) {
   1026 	case ELINK_CHIPSET_VORTEX:
   1027 	case ELINK_CHIPSET_BOOMERANG:
   1028 	    {
   1029 		int mctl, config0, config1;
   1030 
   1031 		GO_WINDOW(3);
   1032 		config0 = (u_int)bus_space_read_2(iot, ioh,
   1033 		    ELINK_W3_INTERNAL_CONFIG);
   1034 		config1 = (u_int)bus_space_read_2(iot, ioh,
   1035 		    ELINK_W3_INTERNAL_CONFIG + 2);
   1036 
   1037 		config1 = config1 & ~CONFIG_MEDIAMASK;
   1038 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
   1039 		    CONFIG_MEDIAMASK_SHIFT);
   1040 
   1041 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
   1042 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
   1043 		    config1);
   1044 
   1045 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   1046 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
   1047 			mctl |= MAC_CONTROL_FDX;
   1048 		else
   1049 			mctl &= ~MAC_CONTROL_FDX;
   1050 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   1051 		break;
   1052 	    }
   1053 	default:
   1054 	    {
   1055 		int w0_addr_cfg;
   1056 
   1057 		GO_WINDOW(0);
   1058 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
   1059 		w0_addr_cfg &= 0x3fff;
   1060 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
   1061 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
   1062 		DELAY(1000);
   1063 		break;
   1064 	    }
   1065 	}
   1066 
   1067 	GO_WINDOW(1);		/* Window 1 is operating window */
   1068 }
   1069 
   1070 /*
   1071  * Get currently-selected media from card.
   1072  * (if_media callback, may be called before interface is brought up).
   1073  */
   1074 void
   1075 ep_media_status(ifp, req)
   1076 	struct ifnet *ifp;
   1077 	struct ifmediareq *req;
   1078 {
   1079 	struct ep_softc *sc = ifp->if_softc;
   1080 	bus_space_tag_t iot = sc->sc_iot;
   1081 	bus_space_handle_t ioh = sc->sc_ioh;
   1082 
   1083 	if (sc->enabled == 0) {
   1084 		req->ifm_active = IFM_ETHER|IFM_NONE;
   1085 		req->ifm_status = 0;
   1086 		return;
   1087 	}
   1088 
   1089 	/*
   1090 	 * If we have MII, go ask the PHY what's going on.
   1091 	 */
   1092 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1093 		mii_pollstat(&sc->sc_mii);
   1094 		req->ifm_active = sc->sc_mii.mii_media_active;
   1095 		req->ifm_status = sc->sc_mii.mii_media_status;
   1096 		return;
   1097 	}
   1098 
   1099 	/*
   1100 	 * Ok, at this point we claim that our active media is
   1101 	 * the currently selected media.  We'll update our status
   1102 	 * if our chipset allows us to detect link.
   1103 	 */
   1104 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1105 	req->ifm_status = 0;
   1106 
   1107 	switch (sc->ep_chipset) {
   1108 	case ELINK_CHIPSET_VORTEX:
   1109 	case ELINK_CHIPSET_BOOMERANG:
   1110 		GO_WINDOW(4);
   1111 		req->ifm_status = IFM_AVALID;
   1112 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
   1113 		    LINKBEAT_DETECT)
   1114 			req->ifm_status |= IFM_ACTIVE;
   1115 		GO_WINDOW(1);	/* back to operating window */
   1116 		break;
   1117 	}
   1118 }
   1119 
   1120 
   1121 
   1122 /*
   1123  * Start outputting on the interface.
   1124  * Always called as splnet().
   1125  */
   1126 void
   1127 epstart(ifp)
   1128 	struct ifnet *ifp;
   1129 {
   1130 	struct ep_softc *sc = ifp->if_softc;
   1131 	bus_space_tag_t iot = sc->sc_iot;
   1132 	bus_space_handle_t ioh = sc->sc_ioh;
   1133 	struct mbuf *m, *m0;
   1134 	int sh, len, pad;
   1135 	bus_size_t txreg;
   1136 
   1137 	/* Don't transmit if interface is busy or not running */
   1138 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1139 		return;
   1140 
   1141 startagain:
   1142 	/* Sneak a peek at the next packet */
   1143 	IFQ_POLL(&ifp->if_snd, m0);
   1144 	if (m0 == 0)
   1145 		return;
   1146 
   1147 	/* We need to use m->m_pkthdr.len, so require the header */
   1148 	if ((m0->m_flags & M_PKTHDR) == 0)
   1149 		panic("epstart: no header mbuf");
   1150 	len = m0->m_pkthdr.len;
   1151 
   1152 	pad = (4 - len) & 3;
   1153 
   1154 	/*
   1155 	 * The 3c509 automatically pads short packets to minimum ethernet
   1156 	 * length, but we drop packets that are too large. Perhaps we should
   1157 	 * truncate them instead?
   1158 	 */
   1159 	if (len + pad > ETHER_MAX_LEN) {
   1160 		/* packet is obviously too large: toss it */
   1161 		++ifp->if_oerrors;
   1162 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1163 		m_freem(m0);
   1164 		goto readcheck;
   1165 	}
   1166 
   1167 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
   1168 	    len + pad + 4) {
   1169 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1170 		    SET_TX_AVAIL_THRESH |
   1171 		    ((len + pad + 4) >> sc->ep_pktlenshift));
   1172 		/* not enough room in FIFO */
   1173 		ifp->if_flags |= IFF_OACTIVE;
   1174 		return;
   1175 	} else {
   1176 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1177 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
   1178 	}
   1179 
   1180 	IFQ_DEQUEUE(&ifp->if_snd, m0);
   1181 	if (m0 == 0)		/* not really needed */
   1182 		return;
   1183 
   1184 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
   1185 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
   1186 
   1187 #if NBPFILTER > 0
   1188 	if (ifp->if_bpf)
   1189 		bpf_mtap(ifp->if_bpf, m0);
   1190 #endif
   1191 
   1192 	/*
   1193 	 * Do the output at a high interrupt priority level so that an
   1194 	 * interrupt from another device won't cause a FIFO underrun.
   1195 	 * We choose splsched() since that blocks essentially everything
   1196 	 * except for interrupts from serial devices (which typically
   1197 	 * lose data if their interrupt isn't serviced fast enough).
   1198 	 *
   1199 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
   1200 	 */
   1201 	sh = splsched();
   1202 
   1203 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
   1204 
   1205 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1206 		/*
   1207 		 * Prime the FIFO buffer counter (number of 16-bit
   1208 		 * words about to be written to the FIFO).
   1209 		 *
   1210 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1211 		 * COUNTER IS NON-ZERO!
   1212 		 */
   1213 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
   1214 		    (len + pad) >> 1);
   1215 	}
   1216 
   1217 	bus_space_write_2(iot, ioh, txreg, len);
   1218 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
   1219 	if (ELINK_IS_BUS_32(sc->bustype)) {
   1220 		for (m = m0; m;) {
   1221 			if (m->m_len > 3)  {
   1222 				/* align our reads from core */
   1223 				if (mtod(m, u_long) & 3)  {
   1224 					u_long count =
   1225 					    4 - (mtod(m, u_long) & 3);
   1226 					bus_space_write_multi_1(iot, ioh,
   1227 					    txreg, mtod(m, u_int8_t *), count);
   1228 					m->m_data =
   1229 					    (void *)(mtod(m, u_long) + count);
   1230 					m->m_len -= count;
   1231 				}
   1232 				bus_space_write_multi_stream_4(iot, ioh,
   1233 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
   1234 				m->m_data = (void *)(mtod(m, u_long) +
   1235 					(u_long)(m->m_len & ~3));
   1236 				m->m_len -= m->m_len & ~3;
   1237 			}
   1238 			if (m->m_len)  {
   1239 				bus_space_write_multi_1(iot, ioh,
   1240 				    txreg, mtod(m, u_int8_t *), m->m_len);
   1241 			}
   1242 			MFREE(m, m0);
   1243 			m = m0;
   1244 		}
   1245 	} else {
   1246 		for (m = m0; m;) {
   1247 			if (m->m_len > 1)  {
   1248 				if (mtod(m, u_long) & 1)  {
   1249 					bus_space_write_1(iot, ioh,
   1250 					    txreg, *(mtod(m, u_int8_t *)));
   1251 					m->m_data =
   1252 					    (void *)(mtod(m, u_long) + 1);
   1253 					m->m_len -= 1;
   1254 				}
   1255 				bus_space_write_multi_stream_2(iot, ioh,
   1256 				    txreg, mtod(m, u_int16_t *),
   1257 				    m->m_len >> 1);
   1258 			}
   1259 			if (m->m_len & 1)  {
   1260 				bus_space_write_1(iot, ioh, txreg,
   1261 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
   1262 			}
   1263 			MFREE(m, m0);
   1264 			m = m0;
   1265 		}
   1266 	}
   1267 	while (pad--)
   1268 		bus_space_write_1(iot, ioh, txreg, 0);
   1269 
   1270 	splx(sh);
   1271 
   1272 	++ifp->if_opackets;
   1273 
   1274 readcheck:
   1275 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
   1276 	    ERR_INCOMPLETE) == 0) {
   1277 		/* We received a complete packet. */
   1278 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1279 
   1280 		if ((status & INTR_LATCH) == 0) {
   1281 			/*
   1282 			 * No interrupt, read the packet and continue
   1283 			 * Is  this supposed to happen? Is my motherboard
   1284 			 * completely busted?
   1285 			 */
   1286 			epread(sc);
   1287 		} else {
   1288 			/* Got an interrupt, return so that it gets serviced. */
   1289 			return;
   1290 		}
   1291 	} else {
   1292 		/* Check if we are stuck and reset [see XXX comment] */
   1293 		if (epstatus(sc)) {
   1294 			if (ifp->if_flags & IFF_DEBUG)
   1295 				printf("%s: adapter reset\n",
   1296 				    device_xname(&sc->sc_dev));
   1297 			epreset(sc);
   1298 		}
   1299 	}
   1300 
   1301 	goto startagain;
   1302 }
   1303 
   1304 
   1305 /*
   1306  * XXX: The 3c509 card can get in a mode where both the fifo status bit
   1307  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
   1308  *	We detect this situation and we reset the adapter.
   1309  *	It happens at times when there is a lot of broadcast traffic
   1310  *	on the cable (once in a blue moon).
   1311  */
   1312 static int
   1313 epstatus(sc)
   1314 	struct ep_softc *sc;
   1315 {
   1316 	bus_space_tag_t iot = sc->sc_iot;
   1317 	bus_space_handle_t ioh = sc->sc_ioh;
   1318 	u_int16_t fifost;
   1319 
   1320 	/*
   1321 	 * Check the FIFO status and act accordingly
   1322 	 */
   1323 	GO_WINDOW(4);
   1324 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
   1325 	GO_WINDOW(1);
   1326 
   1327 	if (fifost & FIFOS_RX_UNDERRUN) {
   1328 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1329 			printf("%s: RX underrun\n", device_xname(&sc->sc_dev));
   1330 		epreset(sc);
   1331 		return 0;
   1332 	}
   1333 
   1334 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
   1335 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1336 			printf("%s: RX Status overrun\n", device_xname(&sc->sc_dev));
   1337 		return 1;
   1338 	}
   1339 
   1340 	if (fifost & FIFOS_RX_OVERRUN) {
   1341 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1342 			printf("%s: RX overrun\n", device_xname(&sc->sc_dev));
   1343 		return 1;
   1344 	}
   1345 
   1346 	if (fifost & FIFOS_TX_OVERRUN) {
   1347 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1348 			printf("%s: TX overrun\n", device_xname(&sc->sc_dev));
   1349 		epreset(sc);
   1350 		return 0;
   1351 	}
   1352 
   1353 	return 0;
   1354 }
   1355 
   1356 
   1357 static void
   1358 eptxstat(sc)
   1359 	struct ep_softc *sc;
   1360 {
   1361 	bus_space_tag_t iot = sc->sc_iot;
   1362 	bus_space_handle_t ioh = sc->sc_ioh;
   1363 	int i;
   1364 
   1365 	/*
   1366 	 * We need to read+write TX_STATUS until we get a 0 status
   1367 	 * in order to turn off the interrupt flag.
   1368 	 */
   1369 	while ((i = bus_space_read_2(iot, ioh,
   1370 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
   1371 		bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
   1372 		    0x0);
   1373 
   1374 		if (i & TXS_JABBER) {
   1375 			++sc->sc_ethercom.ec_if.if_oerrors;
   1376 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1377 				printf("%s: jabber (%x)\n",
   1378 				       device_xname(&sc->sc_dev), i);
   1379 			epreset(sc);
   1380 		} else if (i & TXS_UNDERRUN) {
   1381 			++sc->sc_ethercom.ec_if.if_oerrors;
   1382 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1383 				printf("%s: fifo underrun (%x) @%d\n",
   1384 				       device_xname(&sc->sc_dev), i,
   1385 				       sc->tx_start_thresh);
   1386 			if (sc->tx_succ_ok < 100)
   1387 				    sc->tx_start_thresh = min(ETHER_MAX_LEN,
   1388 					    sc->tx_start_thresh + 20);
   1389 			sc->tx_succ_ok = 0;
   1390 			epreset(sc);
   1391 		} else if (i & TXS_MAX_COLLISION) {
   1392 			++sc->sc_ethercom.ec_if.if_collisions;
   1393 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
   1394 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1395 		} else
   1396 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
   1397 	}
   1398 }
   1399 
   1400 int
   1401 epintr(arg)
   1402 	void *arg;
   1403 {
   1404 	struct ep_softc *sc = arg;
   1405 	bus_space_tag_t iot = sc->sc_iot;
   1406 	bus_space_handle_t ioh = sc->sc_ioh;
   1407 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1408 	u_int16_t status;
   1409 	int ret = 0;
   1410 
   1411 	if (sc->enabled == 0 || !device_is_active(&sc->sc_dev))
   1412 		return (0);
   1413 
   1414 
   1415 	for (;;) {
   1416 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1417 
   1418 		if ((status & WATCHED_INTERRUPTS) == 0) {
   1419 			if ((status & INTR_LATCH) == 0) {
   1420 #if 0
   1421 				printf("%s: intr latch cleared\n",
   1422 				       device_xname(&sc->sc_dev));
   1423 #endif
   1424 				break;
   1425 			}
   1426 		}
   1427 
   1428 		ret = 1;
   1429 
   1430 		/*
   1431 		 * Acknowledge any interrupts.  It's important that we do this
   1432 		 * first, since there would otherwise be a race condition.
   1433 		 * Due to the i386 interrupt queueing, we may get spurious
   1434 		 * interrupts occasionally.
   1435 		 */
   1436 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
   1437 		    (status & (INTR_LATCH | ALL_INTERRUPTS)));
   1438 
   1439 #if 0
   1440 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1441 
   1442 		printf("%s: intr%s%s%s%s\n", device_xname(&sc->sc_dev),
   1443 		       (status & RX_COMPLETE)?" RX_COMPLETE":"",
   1444 		       (status & TX_COMPLETE)?" TX_COMPLETE":"",
   1445 		       (status & TX_AVAIL)?" TX_AVAIL":"",
   1446 		       (status & CARD_FAILURE)?" CARD_FAILURE":"");
   1447 #endif
   1448 
   1449 		if (status & RX_COMPLETE) {
   1450 			epread(sc);
   1451 		}
   1452 		if (status & TX_AVAIL) {
   1453 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1454 			epstart(&sc->sc_ethercom.ec_if);
   1455 		}
   1456 		if (status & CARD_FAILURE) {
   1457 			printf("%s: adapter failure (%x)\n",
   1458 			    device_xname(&sc->sc_dev), status);
   1459 #if 1
   1460 			epinit(ifp);
   1461 #else
   1462 			epreset(sc);
   1463 #endif
   1464 			return (1);
   1465 		}
   1466 		if (status & TX_COMPLETE) {
   1467 			eptxstat(sc);
   1468 			epstart(ifp);
   1469 		}
   1470 
   1471 #if NRND > 0
   1472 		if (status)
   1473 			rnd_add_uint32(&sc->rnd_source, status);
   1474 #endif
   1475 	}
   1476 
   1477 	/* no more interrupts */
   1478 	return (ret);
   1479 }
   1480 
   1481 void
   1482 epread(sc)
   1483 	struct ep_softc *sc;
   1484 {
   1485 	bus_space_tag_t iot = sc->sc_iot;
   1486 	bus_space_handle_t ioh = sc->sc_ioh;
   1487 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1488 	struct mbuf *m;
   1489 	int len;
   1490 
   1491 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1492 
   1493 again:
   1494 	if (ifp->if_flags & IFF_DEBUG) {
   1495 		int err = len & ERR_MASK;
   1496 		const char *s = NULL;
   1497 
   1498 		if (len & ERR_INCOMPLETE)
   1499 			s = "incomplete packet";
   1500 		else if (err == ERR_OVERRUN)
   1501 			s = "packet overrun";
   1502 		else if (err == ERR_RUNT)
   1503 			s = "runt packet";
   1504 		else if (err == ERR_ALIGNMENT)
   1505 			s = "bad alignment";
   1506 		else if (err == ERR_CRC)
   1507 			s = "bad crc";
   1508 		else if (err == ERR_OVERSIZE)
   1509 			s = "oversized packet";
   1510 		else if (err == ERR_DRIBBLE)
   1511 			s = "dribble bits";
   1512 
   1513 		if (s)
   1514 			printf("%s: %s\n", device_xname(&sc->sc_dev), s);
   1515 	}
   1516 
   1517 	if (len & ERR_INCOMPLETE)
   1518 		return;
   1519 
   1520 	if (len & ERR_RX) {
   1521 		++ifp->if_ierrors;
   1522 		goto abort;
   1523 	}
   1524 
   1525 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
   1526 
   1527 	/* Pull packet off interface. */
   1528 	m = epget(sc, len);
   1529 	if (m == 0) {
   1530 		ifp->if_ierrors++;
   1531 		goto abort;
   1532 	}
   1533 
   1534 	++ifp->if_ipackets;
   1535 
   1536 #if NBPFILTER > 0
   1537 	/*
   1538 	 * Check if there's a BPF listener on this interface.
   1539 	 * If so, hand off the raw packet to BPF.
   1540 	 */
   1541 	if (ifp->if_bpf)
   1542 		bpf_mtap(ifp->if_bpf, m);
   1543 #endif
   1544 
   1545 	(*ifp->if_input)(ifp, m);
   1546 
   1547 	/*
   1548 	 * In periods of high traffic we can actually receive enough
   1549 	 * packets so that the fifo overrun bit will be set at this point,
   1550 	 * even though we just read a packet. In this case we
   1551 	 * are not going to receive any more interrupts. We check for
   1552 	 * this condition and read again until the fifo is not full.
   1553 	 * We could simplify this test by not using epstatus(), but
   1554 	 * rechecking the RX_STATUS register directly. This test could
   1555 	 * result in unnecessary looping in cases where there is a new
   1556 	 * packet but the fifo is not full, but it will not fix the
   1557 	 * stuck behavior.
   1558 	 *
   1559 	 * Even with this improvement, we still get packet overrun errors
   1560 	 * which are hurting performance. Maybe when I get some more time
   1561 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
   1562 	 */
   1563 	if (epstatus(sc)) {
   1564 		len = bus_space_read_2(iot, ioh,
   1565 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1566 		/* Check if we are stuck and reset [see XXX comment] */
   1567 		if (len & ERR_INCOMPLETE) {
   1568 			if (ifp->if_flags & IFF_DEBUG)
   1569 				printf("%s: adapter reset\n",
   1570 				    device_xname(&sc->sc_dev));
   1571 			epreset(sc);
   1572 			return;
   1573 		}
   1574 		goto again;
   1575 	}
   1576 
   1577 	return;
   1578 
   1579 abort:
   1580 	ep_discard_rxtop(iot, ioh);
   1581 
   1582 }
   1583 
   1584 struct mbuf *
   1585 epget(sc, totlen)
   1586 	struct ep_softc *sc;
   1587 	int totlen;
   1588 {
   1589 	bus_space_tag_t iot = sc->sc_iot;
   1590 	bus_space_handle_t ioh = sc->sc_ioh;
   1591 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1592 	struct mbuf *m;
   1593 	bus_size_t rxreg;
   1594 	int len, remaining;
   1595 	int s;
   1596 	void *newdata;
   1597 	u_long offset;
   1598 
   1599 	m = sc->mb[sc->next_mb];
   1600 	sc->mb[sc->next_mb] = 0;
   1601 	if (m == 0) {
   1602 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1603 		if (m == 0)
   1604 			return 0;
   1605 	} else {
   1606 		/* If the queue is no longer full, refill. */
   1607 		if (sc->last_mb == sc->next_mb)
   1608 			callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
   1609 
   1610 		/* Convert one of our saved mbuf's. */
   1611 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1612 		m->m_data = m->m_pktdat;
   1613 		m->m_flags = M_PKTHDR;
   1614 		memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
   1615 	}
   1616 	m->m_pkthdr.rcvif = ifp;
   1617 	m->m_pkthdr.len = totlen;
   1618 	len = MHLEN;
   1619 
   1620 	/*
   1621 	 * Allocate big enough space to hold whole packet, to avoid
   1622 	 * allocating new mbufs on splsched().
   1623 	 */
   1624 	if (totlen + ALIGNBYTES > len) {
   1625 		if (totlen + ALIGNBYTES > MCLBYTES) {
   1626 			len = ALIGN(totlen + ALIGNBYTES);
   1627 			MEXTMALLOC(m, len, M_DONTWAIT);
   1628 		} else {
   1629 			len = MCLBYTES;
   1630 			MCLGET(m, M_DONTWAIT);
   1631 		}
   1632 		if ((m->m_flags & M_EXT) == 0) {
   1633 			m_free(m);
   1634 			return 0;
   1635 		}
   1636 	}
   1637 
   1638 	/* align the struct ip header */
   1639 	newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
   1640 	    - sizeof(struct ether_header);
   1641 	m->m_data = newdata;
   1642 	m->m_len = totlen;
   1643 
   1644 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
   1645 	remaining = totlen;
   1646 	offset = mtod(m, u_long);
   1647 
   1648 	/*
   1649 	 * We read the packet at a high interrupt priority level so that
   1650 	 * an interrupt from another device won't cause the card's packet
   1651 	 * buffer to overflow.  We choose splsched() since that blocks
   1652 	 * essentially everything except for interrupts from serial
   1653 	 * devices (which typically lose data if their interrupt isn't
   1654 	 * serviced fast enough).
   1655 	 *
   1656 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
   1657 	 */
   1658 	s = splsched();
   1659 
   1660 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1661 		/*
   1662 		 * Prime the FIFO buffer counter (number of 16-bit
   1663 		 * words about to be read from the FIFO).
   1664 		 *
   1665 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1666 		 * COUNTER IS NON-ZERO!
   1667 		 */
   1668 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
   1669 	}
   1670 
   1671 	if (ELINK_IS_BUS_32(sc->bustype)) {
   1672 		/*
   1673 		 * Read bytes up to the point where we are aligned.
   1674 		 * (We can align to 4 bytes, rather than ALIGNBYTES,
   1675 		 * here because we're later reading 4-byte chunks.)
   1676 		 */
   1677 		if ((remaining > 3) && (offset & 3))  {
   1678 			int count = (4 - (offset & 3));
   1679 			bus_space_read_multi_1(iot, ioh,
   1680 			    rxreg, (u_int8_t *) offset, count);
   1681 			offset += count;
   1682 			remaining -= count;
   1683 		}
   1684 		if (remaining > 3) {
   1685 			bus_space_read_multi_stream_4(iot, ioh,
   1686 			    rxreg, (u_int32_t *) offset,
   1687 				    remaining >> 2);
   1688 			offset += remaining & ~3;
   1689 			remaining &= 3;
   1690 		}
   1691 		if (remaining)  {
   1692 			bus_space_read_multi_1(iot, ioh,
   1693 			    rxreg, (u_int8_t *) offset, remaining);
   1694 		}
   1695 	} else {
   1696 		if ((remaining > 1) && (offset & 1))  {
   1697 			bus_space_read_multi_1(iot, ioh,
   1698 			    rxreg, (u_int8_t *) offset, 1);
   1699 			remaining -= 1;
   1700 			offset += 1;
   1701 		}
   1702 		if (remaining > 1) {
   1703 			bus_space_read_multi_stream_2(iot, ioh,
   1704 			    rxreg, (u_int16_t *) offset,
   1705 			    remaining >> 1);
   1706 			offset += remaining & ~1;
   1707 		}
   1708 		if (remaining & 1)  {
   1709 				bus_space_read_multi_1(iot, ioh,
   1710 			    rxreg, (u_int8_t *) offset, remaining & 1);
   1711 		}
   1712 	}
   1713 
   1714 	ep_discard_rxtop(iot, ioh);
   1715 
   1716 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
   1717 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1718 	splx(s);
   1719 
   1720 	return (m);
   1721 }
   1722 
   1723 int
   1724 epioctl(ifp, cmd, data)
   1725 	struct ifnet *ifp;
   1726 	u_long cmd;
   1727 	void *data;
   1728 {
   1729 	struct ep_softc *sc = ifp->if_softc;
   1730 	struct ifreq *ifr = (struct ifreq *)data;
   1731 	int s, error = 0;
   1732 
   1733 	s = splnet();
   1734 
   1735 	switch (cmd) {
   1736 
   1737 	case SIOCSIFMEDIA:
   1738 	case SIOCGIFMEDIA:
   1739 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
   1740 		break;
   1741 
   1742 	case SIOCADDMULTI:
   1743 	case SIOCDELMULTI:
   1744 		if (sc->enabled == 0) {
   1745 			error = EIO;
   1746 			break;
   1747 		}
   1748 
   1749 	default:
   1750 		error = ether_ioctl(ifp, cmd, data);
   1751 
   1752 		if (error == ENETRESET) {
   1753 			/*
   1754 			 * Multicast list has changed; set the hardware filter
   1755 			 * accordingly.
   1756 			 */
   1757 			if (ifp->if_flags & IFF_RUNNING)
   1758 				epreset(sc);
   1759 			error = 0;
   1760 		}
   1761 		break;
   1762 	}
   1763 
   1764 	splx(s);
   1765 	return (error);
   1766 }
   1767 
   1768 void
   1769 epreset(sc)
   1770 	struct ep_softc *sc;
   1771 {
   1772 	int s;
   1773 
   1774 	s = splnet();
   1775 	epinit(&sc->sc_ethercom.ec_if);
   1776 	splx(s);
   1777 }
   1778 
   1779 void
   1780 epwatchdog(ifp)
   1781 	struct ifnet *ifp;
   1782 {
   1783 	struct ep_softc *sc = ifp->if_softc;
   1784 
   1785 	log(LOG_ERR, "%s: device timeout\n", device_xname(&sc->sc_dev));
   1786 	++sc->sc_ethercom.ec_if.if_oerrors;
   1787 
   1788 	epreset(sc);
   1789 }
   1790 
   1791 void
   1792 epstop(ifp, disable)
   1793 	struct ifnet *ifp;
   1794 	int disable;
   1795 {
   1796 	struct ep_softc *sc = ifp->if_softc;
   1797 	bus_space_tag_t iot = sc->sc_iot;
   1798 	bus_space_handle_t ioh = sc->sc_ioh;
   1799 
   1800 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1801 		/* Stop the one second clock. */
   1802 		callout_stop(&sc->sc_mbuf_callout);
   1803 
   1804 		/* Down the MII. */
   1805 		mii_down(&sc->sc_mii);
   1806 	}
   1807 
   1808 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
   1809 		/*
   1810 		 * Clear the FIFO buffer count, thus halting
   1811 		 * any currently-running transactions.
   1812 		 */
   1813 		GO_WINDOW(1);		/* sanity */
   1814 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
   1815 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1816 	}
   1817 
   1818 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
   1819 	ep_discard_rxtop(iot, ioh);
   1820 
   1821 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
   1822 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
   1823 
   1824 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
   1825 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
   1826 
   1827 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
   1828 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
   1829 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
   1830 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
   1831 
   1832 	epmbufempty(sc);
   1833 
   1834 	if (disable)
   1835 		epdisable(sc);
   1836 
   1837 	ifp->if_flags &= ~IFF_RUNNING;
   1838 }
   1839 
   1840 
   1841 /*
   1842  * Before reboots, reset card completely.
   1843  */
   1844 static void
   1845 epshutdown(arg)
   1846 	void *arg;
   1847 {
   1848 	struct ep_softc *sc = arg;
   1849 	int s = splnet();
   1850 
   1851 	if (sc->enabled) {
   1852 		epstop(&sc->sc_ethercom.ec_if, 0);
   1853 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
   1854 		epdisable(sc);
   1855 		sc->enabled = 0;
   1856 	}
   1857 	splx(s);
   1858 }
   1859 
   1860 /*
   1861  * We get eeprom data from the id_port given an offset into the
   1862  * eeprom.  Basically; after the ID_sequence is sent to all of
   1863  * the cards; they enter the ID_CMD state where they will accept
   1864  * command requests. 0x80-0xbf loads the eeprom data.  We then
   1865  * read the port 16 times and with every read; the cards check
   1866  * for contention (ie: if one card writes a 0 bit and another
   1867  * writes a 1 bit then the host sees a 0. At the end of the cycle;
   1868  * each card compares the data on the bus; if there is a difference
   1869  * then that card goes into ID_WAIT state again). In the meantime;
   1870  * one bit of data is returned in the AX register which is conveniently
   1871  * returned to us by bus_space_read_2().  Hence; we read 16 times getting one
   1872  * bit of data with each read.
   1873  *
   1874  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
   1875  */
   1876 u_int16_t
   1877 epreadeeprom(iot, ioh, offset)
   1878 	bus_space_tag_t iot;
   1879 	bus_space_handle_t ioh;
   1880 	int offset;
   1881 {
   1882 	u_int16_t data = 0;
   1883 	int i;
   1884 
   1885 	bus_space_write_2(iot, ioh, 0, 0x80 + offset);
   1886 	delay(1000);
   1887 	for (i = 0; i < 16; i++)
   1888 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
   1889 	return (data);
   1890 }
   1891 
   1892 static int
   1893 epbusyeeprom(sc)
   1894 	struct ep_softc *sc;
   1895 {
   1896 	bus_space_tag_t iot = sc->sc_iot;
   1897 	bus_space_handle_t ioh = sc->sc_ioh;
   1898 	bus_size_t eecmd;
   1899 	int i = 100, j;
   1900 	uint16_t busybit;
   1901 
   1902 	if (sc->bustype == ELINK_BUS_PCMCIA) {
   1903 		delay(1000);
   1904 		return 0;
   1905 	}
   1906 
   1907 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
   1908 		eecmd = CORK_ASIC_EEPROM_COMMAND;
   1909 		busybit = CORK_EEPROM_BUSY;
   1910 	} else {
   1911 		eecmd = ELINK_W0_EEPROM_COMMAND;
   1912 		busybit = EEPROM_BUSY;
   1913 	}
   1914 
   1915 	j = 0;		/* bad GCC flow analysis */
   1916 	while (i--) {
   1917 		j = bus_space_read_2(iot, ioh, eecmd);
   1918 		if (j & busybit)
   1919 			delay(100);
   1920 		else
   1921 			break;
   1922 	}
   1923 	if (i == 0) {
   1924 		aprint_normal("\n");
   1925 		aprint_error_dev(&sc->sc_dev, "eeprom failed to come ready\n");
   1926 		return (1);
   1927 	}
   1928 	if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
   1929 	    (j & EEPROM_TST_MODE) != 0) {
   1930 		/* XXX PnP mode? */
   1931 		printf("\n%s: erase pencil mark!\n", device_xname(&sc->sc_dev));
   1932 		return (1);
   1933 	}
   1934 	return (0);
   1935 }
   1936 
   1937 u_int16_t
   1938 ep_read_eeprom(sc, offset)
   1939 	struct ep_softc *sc;
   1940 	u_int16_t offset;
   1941 {
   1942 	bus_size_t eecmd, eedata;
   1943 	u_int16_t readcmd;
   1944 
   1945 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
   1946 		eecmd = CORK_ASIC_EEPROM_COMMAND;
   1947 		eedata = CORK_ASIC_EEPROM_DATA;
   1948 	} else {
   1949 		eecmd = ELINK_W0_EEPROM_COMMAND;
   1950 		eedata = ELINK_W0_EEPROM_DATA;
   1951 	}
   1952 
   1953 	/*
   1954 	 * RoadRunner has a larger EEPROM, so a different read command
   1955 	 * is required.
   1956 	 */
   1957 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
   1958 		readcmd = READ_EEPROM_RR;
   1959 	else
   1960 		readcmd = READ_EEPROM;
   1961 
   1962 	if (epbusyeeprom(sc))
   1963 		return (0);		/* XXX why is eeprom busy? */
   1964 
   1965 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
   1966 
   1967 	if (epbusyeeprom(sc))
   1968 		return (0);		/* XXX why is eeprom busy? */
   1969 
   1970 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
   1971 }
   1972 
   1973 void
   1974 epmbuffill(v)
   1975 	void *v;
   1976 {
   1977 	struct ep_softc *sc = v;
   1978 	struct mbuf *m;
   1979 	int s, i;
   1980 
   1981 	s = splnet();
   1982 	i = sc->last_mb;
   1983 	do {
   1984 		if (sc->mb[i] == 0) {
   1985 			MGET(m, M_DONTWAIT, MT_DATA);
   1986 			if (m == 0)
   1987 				break;
   1988 			sc->mb[i] = m;
   1989 		}
   1990 		i = (i + 1) % MAX_MBS;
   1991 	} while (i != sc->next_mb);
   1992 	sc->last_mb = i;
   1993 	/* If the queue was not filled, try again. */
   1994 	if (sc->last_mb != sc->next_mb)
   1995 		callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
   1996 	splx(s);
   1997 }
   1998 
   1999 void
   2000 epmbufempty(sc)
   2001 	struct ep_softc *sc;
   2002 {
   2003 	int s, i;
   2004 
   2005 	s = splnet();
   2006 	for (i = 0; i<MAX_MBS; i++) {
   2007 		if (sc->mb[i]) {
   2008 			m_freem(sc->mb[i]);
   2009 			sc->mb[i] = NULL;
   2010 		}
   2011 	}
   2012 	sc->last_mb = sc->next_mb = 0;
   2013 	callout_stop(&sc->sc_mbuf_callout);
   2014 	splx(s);
   2015 }
   2016 
   2017 int
   2018 epenable(sc)
   2019 	struct ep_softc *sc;
   2020 {
   2021 
   2022 	if (sc->enabled == 0 && sc->enable != NULL) {
   2023 		if ((*sc->enable)(sc) != 0) {
   2024 			aprint_error_dev(&sc->sc_dev, "device enable failed\n");
   2025 			return (EIO);
   2026 		}
   2027 	}
   2028 
   2029 	sc->enabled = 1;
   2030 	return (0);
   2031 }
   2032 
   2033 void
   2034 epdisable(sc)
   2035 	struct ep_softc *sc;
   2036 {
   2037 
   2038 	if (sc->enabled != 0 && sc->disable != NULL) {
   2039 		(*sc->disable)(sc);
   2040 		sc->enabled = 0;
   2041 	}
   2042 }
   2043 
   2044 /*
   2045  * ep_activate:
   2046  *
   2047  *	Handle device activation/deactivation requests.
   2048  */
   2049 int
   2050 ep_activate(self, act)
   2051 	struct device *self;
   2052 	enum devact act;
   2053 {
   2054 	struct ep_softc *sc = (struct ep_softc *)self;
   2055 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2056 	int error = 0, s;
   2057 
   2058 	s = splnet();
   2059 	switch (act) {
   2060 	case DVACT_ACTIVATE:
   2061 		error = EOPNOTSUPP;
   2062 		break;
   2063 
   2064 	case DVACT_DEACTIVATE:
   2065 		if (sc->ep_flags & ELINK_FLAGS_MII)
   2066 			mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
   2067 			    MII_OFFSET_ANY);
   2068 		if_deactivate(ifp);
   2069 		break;
   2070 	}
   2071 	splx(s);
   2072 	return (error);
   2073 }
   2074 
   2075 /*
   2076  * ep_detach:
   2077  *
   2078  *	Detach a elink3 interface.
   2079  */
   2080 int
   2081 ep_detach(struct device *self, int flags)
   2082 {
   2083 	struct ep_softc *sc = (struct ep_softc *)self;
   2084 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2085 
   2086 	/* Succeed now if there's no work to do. */
   2087 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
   2088 		return (0);
   2089 
   2090 	epdisable(sc);
   2091 
   2092 	callout_stop(&sc->sc_mii_callout);
   2093 	callout_stop(&sc->sc_mbuf_callout);
   2094 
   2095 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   2096 		/* Detach all PHYs */
   2097 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2098 	}
   2099 
   2100 	/* Delete all remaining media. */
   2101 	ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
   2102 
   2103 #if NRND > 0
   2104 	rnd_detach_source(&sc->rnd_source);
   2105 #endif
   2106 	ether_ifdetach(ifp);
   2107 	if_detach(ifp);
   2108 
   2109 	shutdownhook_disestablish(sc->sd_hook);
   2110 
   2111 	return (0);
   2112 }
   2113 
   2114 u_int32_t
   2115 ep_mii_bitbang_read(self)
   2116 	struct device *self;
   2117 {
   2118 	struct ep_softc *sc = (void *) self;
   2119 
   2120 	/* We're already in Window 4. */
   2121 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
   2122 	    ELINK_W4_BOOM_PHYSMGMT));
   2123 }
   2124 
   2125 void
   2126 ep_mii_bitbang_write(self, val)
   2127 	struct device *self;
   2128 	u_int32_t val;
   2129 {
   2130 	struct ep_softc *sc = (void *) self;
   2131 
   2132 	/* We're already in Window 4. */
   2133 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
   2134 	    ELINK_W4_BOOM_PHYSMGMT, val);
   2135 }
   2136 
   2137 int
   2138 ep_mii_readreg(self, phy, reg)
   2139 	struct device *self;
   2140 	int phy, reg;
   2141 {
   2142 	struct ep_softc *sc = (void *) self;
   2143 	int val;
   2144 
   2145 	GO_WINDOW(4);
   2146 
   2147 	val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
   2148 
   2149 	GO_WINDOW(1);
   2150 
   2151 	return (val);
   2152 }
   2153 
   2154 void
   2155 ep_mii_writereg(self, phy, reg, val)
   2156 	struct device *self;
   2157 	int phy, reg, val;
   2158 {
   2159 	struct ep_softc *sc = (void *) self;
   2160 
   2161 	GO_WINDOW(4);
   2162 
   2163 	mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
   2164 
   2165 	GO_WINDOW(1);
   2166 }
   2167 
   2168 void
   2169 ep_statchg(self)
   2170 	struct device *self;
   2171 {
   2172 	struct ep_softc *sc = (struct ep_softc *)self;
   2173 	bus_space_tag_t iot = sc->sc_iot;
   2174 	bus_space_handle_t ioh = sc->sc_ioh;
   2175 	int mctl;
   2176 
   2177 	GO_WINDOW(3);
   2178 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   2179 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   2180 		mctl |= MAC_CONTROL_FDX;
   2181 	else
   2182 		mctl &= ~MAC_CONTROL_FDX;
   2183 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   2184 	GO_WINDOW(1);	/* back to operating window */
   2185 }
   2186 
   2187 void
   2188 ep_power(int why, void *arg)
   2189 {
   2190 	struct ep_softc *sc = arg;
   2191 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2192 	int s;
   2193 
   2194 	s = splnet();
   2195 	switch (why) {
   2196 	case PWR_SUSPEND:
   2197 	case PWR_STANDBY:
   2198 		epstop(ifp, 1);
   2199 		break;
   2200 	case PWR_RESUME:
   2201 		if (ifp->if_flags & IFF_UP) {
   2202 			(void)epinit(ifp);
   2203 		}
   2204 		break;
   2205 	case PWR_SOFTSUSPEND:
   2206 	case PWR_SOFTSTANDBY:
   2207 	case PWR_SOFTRESUME:
   2208 		break;
   2209 	}
   2210 	splx(s);
   2211 }
   2212