elink3.c revision 1.131 1 /* $NetBSD: elink3.c,v 1.131 2010/04/05 07:19:34 joerg Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
35 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
36 * All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by Herb Peyerl.
49 * 4. The name of Herb Peyerl may not be used to endorse or promote products
50 * derived from this software without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
53 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
54 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
55 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
56 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
57 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
61 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.131 2010/04/05 07:19:34 joerg Exp $");
66
67 #include "opt_inet.h"
68 #include "rnd.h"
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/kernel.h>
74 #include <sys/mbuf.h>
75 #include <sys/socket.h>
76 #include <sys/ioctl.h>
77 #include <sys/errno.h>
78 #include <sys/syslog.h>
79 #include <sys/select.h>
80 #include <sys/device.h>
81 #if NRND > 0
82 #include <sys/rnd.h>
83 #endif
84
85 #include <net/if.h>
86 #include <net/if_dl.h>
87 #include <net/if_ether.h>
88 #include <net/if_media.h>
89
90 #include <net/bpf.h>
91 #include <net/bpfdesc.h>
92
93 #include <sys/cpu.h>
94 #include <sys/bus.h>
95 #include <sys/intr.h>
96
97 #include <dev/mii/mii.h>
98 #include <dev/mii/miivar.h>
99 #include <dev/mii/mii_bitbang.h>
100
101 #include <dev/ic/elink3var.h>
102 #include <dev/ic/elink3reg.h>
103
104 #ifdef DEBUG
105 int epdebug = 0;
106 #endif
107
108 /*
109 * XXX endian workaround for big-endian CPUs with pcmcia:
110 * if stream methods for bus_space_multi are not provided, define them
111 * using non-stream bus_space_{read,write}_multi_.
112 * Assumes host CPU is same endian-ness as bus.
113 */
114 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
115 #define bus_space_read_multi_stream_2 bus_space_read_multi_2
116 #define bus_space_read_multi_stream_4 bus_space_read_multi_4
117 #define bus_space_write_multi_stream_2 bus_space_write_multi_2
118 #define bus_space_write_multi_stream_4 bus_space_write_multi_4
119 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
120
121 /*
122 * Structure to map media-present bits in boards to ifmedia codes and
123 * printable media names. Used for table-driven ifmedia initialization.
124 */
125 struct ep_media {
126 int epm_mpbit; /* media present bit */
127 const char *epm_name; /* name of medium */
128 int epm_ifmedia; /* ifmedia word for medium */
129 int epm_epmedia; /* ELINKMEDIA_* constant */
130 };
131
132 /*
133 * Media table for the Demon/Vortex/Boomerang chipsets.
134 *
135 * Note that MII on the Demon and Vortex (3c59x) indicates an external
136 * MII connector (for connecting an external PHY) ... I think. Treat
137 * it as `manual' on these chips.
138 *
139 * Any Boomerang (3c90x) chips with MII really do have an internal
140 * MII and real PHYs attached; no `native' media.
141 */
142 const struct ep_media ep_vortex_media[] = {
143 { ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
144 ELINKMEDIA_10BASE_T },
145 { ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
146 ELINKMEDIA_10BASE_T },
147 { ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
148 ELINKMEDIA_AUI },
149 { ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
150 ELINKMEDIA_10BASE_2 },
151 { ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
152 ELINKMEDIA_100BASE_TX },
153 { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
154 ELINKMEDIA_100BASE_TX },
155 { ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
156 ELINKMEDIA_100BASE_FX },
157 { ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
158 ELINKMEDIA_MII },
159 { ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
160 ELINKMEDIA_100BASE_T4 },
161 { 0, NULL, 0,
162 0 },
163 };
164
165 /*
166 * Media table for the older 3Com Etherlink III chipset, used
167 * in the 3c509, 3c579, and 3c589.
168 */
169 const struct ep_media ep_509_media[] = {
170 { ELINK_W0_CC_UTP, "10baseT", IFM_ETHER|IFM_10_T,
171 ELINKMEDIA_10BASE_T },
172 { ELINK_W0_CC_AUI, "10base5", IFM_ETHER|IFM_10_5,
173 ELINKMEDIA_AUI },
174 { ELINK_W0_CC_BNC, "10base2", IFM_ETHER|IFM_10_2,
175 ELINKMEDIA_10BASE_2 },
176 { 0, NULL, 0,
177 0 },
178 };
179
180 void ep_internalconfig(struct ep_softc *sc);
181 void ep_vortex_probemedia(struct ep_softc *sc);
182 void ep_509_probemedia(struct ep_softc *sc);
183
184 static void eptxstat(struct ep_softc *);
185 static int epstatus(struct ep_softc *);
186 int epinit(struct ifnet *);
187 void epstop(struct ifnet *, int);
188 int epioctl(struct ifnet *, u_long, void *);
189 void epstart(struct ifnet *);
190 void epwatchdog(struct ifnet *);
191 void epreset(struct ep_softc *);
192 static bool epshutdown(device_t, int);
193 void epread(struct ep_softc *);
194 struct mbuf *epget(struct ep_softc *, int);
195 void epmbuffill(void *);
196 void epmbufempty(struct ep_softc *);
197 void epsetfilter(struct ep_softc *);
198 void ep_roadrunner_mii_enable(struct ep_softc *);
199 void epsetmedia(struct ep_softc *);
200
201 /* ifmedia callbacks */
202 int ep_media_change(struct ifnet *ifp);
203 void ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
204
205 /* MII callbacks */
206 int ep_mii_readreg(device_t, int, int);
207 void ep_mii_writereg(device_t, int, int, int);
208 void ep_statchg(device_t);
209
210 void ep_tick(void *);
211
212 static int epbusyeeprom(struct ep_softc *);
213 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
214 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
215 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
216 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
217 static inline int ep_w1_reg(struct ep_softc *, int);
218
219 /*
220 * MII bit-bang glue.
221 */
222 u_int32_t ep_mii_bitbang_read(device_t);
223 void ep_mii_bitbang_write(device_t, u_int32_t);
224
225 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
226 ep_mii_bitbang_read,
227 ep_mii_bitbang_write,
228 {
229 PHYSMGMT_DATA, /* MII_BIT_MDO */
230 PHYSMGMT_DATA, /* MII_BIT_MDI */
231 PHYSMGMT_CLK, /* MII_BIT_MDC */
232 PHYSMGMT_DIR, /* MII_BIT_DIR_HOST_PHY */
233 0, /* MII_BIT_DIR_PHY_HOST */
234 }
235 };
236
237 /*
238 * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
239 * Window 1 registers offset!
240 */
241 static inline int
242 ep_w1_reg(struct ep_softc *sc, int reg)
243 {
244
245 switch (sc->ep_chipset) {
246 case ELINK_CHIPSET_CORKSCREW:
247 return (reg + 0x10);
248
249 case ELINK_CHIPSET_ROADRUNNER:
250 switch (reg) {
251 case ELINK_W1_FREE_TX:
252 case ELINK_W1_RUNNER_RDCTL:
253 case ELINK_W1_RUNNER_WRCTL:
254 return (reg);
255 }
256 return (reg + 0x10);
257 }
258
259 return (reg);
260 }
261
262 /*
263 * Wait for any pending reset to complete.
264 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
265 * but older hardware doesn't implement it and we must delay.
266 */
267 static inline void
268 ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
269 {
270 int i;
271
272 for (i = 0; i < 10000; i++) {
273 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
274 COMMAND_IN_PROGRESS) == 0)
275 break;
276 DELAY(10);
277 }
278 }
279
280 /*
281 * Issue a (reset) command, and be sure it has completed.
282 * Used for global reset, TX_RESET, RX_RESET.
283 */
284 static inline void
285 ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
286 {
287 bus_space_tag_t iot = sc->sc_iot;
288 bus_space_handle_t ioh = sc->sc_ioh;
289
290 bus_space_write_2(iot, ioh, cmd, arg);
291 ep_finish_reset(iot, ioh);
292 }
293
294
295 static inline void
296 ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
297 {
298 int i;
299
300 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
301
302 /*
303 * Spin for about 1 msec, to avoid forcing a DELAY() between
304 * every received packet (adding latency and limiting pkt-recv rate).
305 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
306 * is about right.
307 */
308 for (i = 0; i < 8000; i++) {
309 if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
310 COMMAND_IN_PROGRESS) == 0)
311 return;
312 }
313
314 /* Didn't complete in a hurry. Do DELAY()s. */
315 ep_finish_reset(iot, ioh);
316 }
317
318 /*
319 * Back-end attach and configure.
320 */
321 int
322 epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
323 {
324 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
325 bus_space_tag_t iot = sc->sc_iot;
326 bus_space_handle_t ioh = sc->sc_ioh;
327 u_int16_t i;
328 u_int8_t myla[ETHER_ADDR_LEN];
329
330 callout_init(&sc->sc_mii_callout, 0);
331 callout_init(&sc->sc_mbuf_callout, 0);
332
333 sc->ep_chipset = chipset;
334
335 /*
336 * We could have been groveling around in other register
337 * windows in the front-end; make sure we're in window 0
338 * to read the EEPROM.
339 */
340 GO_WINDOW(0);
341
342 if (enaddr == NULL) {
343 /*
344 * Read the station address from the eeprom.
345 */
346 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
347 u_int16_t x = ep_read_eeprom(sc, i);
348 myla[(i << 1)] = x >> 8;
349 myla[(i << 1) + 1] = x;
350 }
351 enaddr = myla;
352 }
353
354 /*
355 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
356 * allow FDDI-sized (4500) byte packets. Commands only take an
357 * 11-bit parameter, and 11 bits isn't enough to hold a full-size
358 * packet length.
359 * Commands to these cards implicitly upshift a packet size
360 * or threshold by 2 bits.
361 * To detect cards with large-packet support, we probe by setting
362 * the transmit threshold register, then change windows and
363 * read back the threshold register directly, and see if the
364 * threshold value was shifted or not.
365 */
366 bus_space_write_2(iot, ioh, ELINK_COMMAND,
367 SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
368 GO_WINDOW(5);
369 i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
370 GO_WINDOW(1);
371 switch (i) {
372 case ELINK_LARGEWIN_PROBE:
373 case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
374 sc->ep_pktlenshift = 0;
375 break;
376
377 case (ELINK_LARGEWIN_PROBE << 2):
378 sc->ep_pktlenshift = 2;
379 break;
380
381 default:
382 aprint_error_dev(sc->sc_dev,
383 "wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
384 "Interface disabled\n",
385 ELINK_LARGEWIN_PROBE, (int) i);
386 return (1);
387 }
388
389 /*
390 * Ensure Tx-available interrupts are enabled for
391 * start the interface.
392 * XXX should be in epinit()?
393 */
394 bus_space_write_2(iot, ioh, ELINK_COMMAND,
395 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
396
397 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
398 ifp->if_softc = sc;
399 ifp->if_start = epstart;
400 ifp->if_ioctl = epioctl;
401 ifp->if_watchdog = epwatchdog;
402 ifp->if_init = epinit;
403 ifp->if_stop = epstop;
404 ifp->if_flags =
405 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
406 IFQ_SET_READY(&ifp->if_snd);
407
408 if_attach(ifp);
409 ether_ifattach(ifp, enaddr);
410
411 /*
412 * Finish configuration:
413 * determine chipset if the front-end couldn't do so,
414 * show board details, set media.
415 */
416
417 /*
418 * Print RAM size. We also print the Ethernet address in here.
419 * It's extracted from the ifp, so we have to make sure it's
420 * been attached first.
421 */
422 ep_internalconfig(sc);
423 GO_WINDOW(0);
424
425 /*
426 * Display some additional information, if pertinent.
427 */
428 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
429 aprint_normal_dev(sc->sc_dev, "RoadRunner FIFO buffer enabled\n");
430
431 /*
432 * Initialize our media structures and MII info. We'll
433 * probe the MII if we discover that we have one.
434 */
435 sc->sc_mii.mii_ifp = ifp;
436 sc->sc_mii.mii_readreg = ep_mii_readreg;
437 sc->sc_mii.mii_writereg = ep_mii_writereg;
438 sc->sc_mii.mii_statchg = ep_statchg;
439 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ep_media_change,
440 ep_media_status);
441
442 /*
443 * All CORKSCREW chips have MII.
444 */
445 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
446 sc->ep_flags |= ELINK_FLAGS_MII;
447
448 /*
449 * Now, determine which media we have.
450 */
451 switch (sc->ep_chipset) {
452 case ELINK_CHIPSET_ROADRUNNER:
453 if (sc->ep_flags & ELINK_FLAGS_MII) {
454 ep_roadrunner_mii_enable(sc);
455 GO_WINDOW(0);
456 }
457 /* FALLTHROUGH */
458
459 case ELINK_CHIPSET_CORKSCREW:
460 case ELINK_CHIPSET_BOOMERANG:
461 /*
462 * If the device has MII, probe it. We won't be using
463 * any `native' media in this case, only PHYs. If
464 * we don't, just treat the Boomerang like the Vortex.
465 */
466 if (sc->ep_flags & ELINK_FLAGS_MII) {
467 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff,
468 MII_PHY_ANY, MII_OFFSET_ANY, 0);
469 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
470 ifmedia_add(&sc->sc_mii.mii_media,
471 IFM_ETHER|IFM_NONE, 0, NULL);
472 ifmedia_set(&sc->sc_mii.mii_media,
473 IFM_ETHER|IFM_NONE);
474 } else {
475 ifmedia_set(&sc->sc_mii.mii_media,
476 IFM_ETHER|IFM_AUTO);
477 }
478 break;
479 }
480 /* FALLTHROUGH */
481
482 case ELINK_CHIPSET_VORTEX:
483 ep_vortex_probemedia(sc);
484 break;
485
486 default:
487 ep_509_probemedia(sc);
488 break;
489 }
490
491 GO_WINDOW(1); /* Window 1 is operating window */
492
493 #if NRND > 0
494 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
495 RND_TYPE_NET, 0);
496 #endif
497
498 sc->tx_start_thresh = 20; /* probably a good starting point. */
499
500 /* Establish callback to reset card when we reboot. */
501 if (pmf_device_register1(sc->sc_dev, NULL, NULL, epshutdown))
502 pmf_class_network_register(sc->sc_dev, ifp);
503 else
504 aprint_error_dev(sc->sc_dev,
505 "couldn't establish power handler\n");
506
507 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
508 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
509
510 /* The attach is successful. */
511 sc->sc_flags |= ELINK_FLAGS_ATTACHED;
512 return (0);
513 }
514
515
516 /*
517 * Show interface-model-independent info from window 3
518 * internal-configuration register.
519 */
520 void
521 ep_internalconfig(struct ep_softc *sc)
522 {
523 bus_space_tag_t iot = sc->sc_iot;
524 bus_space_handle_t ioh = sc->sc_ioh;
525
526 u_int config0;
527 u_int config1;
528
529 int ram_size, ram_width, ram_split;
530 /*
531 * NVRAM buffer Rx:Tx config names for busmastering cards
532 * (Demon, Vortex, and later).
533 */
534 const char *const onboard_ram_config[] = {
535 "5:3", "3:1", "1:1", "3:5" };
536
537 GO_WINDOW(3);
538 config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
539 config1 = (u_int)bus_space_read_2(iot, ioh,
540 ELINK_W3_INTERNAL_CONFIG + 2);
541 GO_WINDOW(0);
542
543 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
544 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
545
546 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
547
548 aprint_normal_dev(sc->sc_dev, "address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
549 ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
550 8 << ram_size,
551 (ram_width) ? "word" : "byte",
552 onboard_ram_config[ram_split]);
553 }
554
555
556 /*
557 * Find supported media on 3c509-generation hardware that doesn't have
558 * a "reset_options" register in window 3.
559 * Use the config_cntrl register in window 0 instead.
560 * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
561 * that implement CONFIG_CTRL. We don't have a good way to set the
562 * default active medium; punt to ifconfig instead.
563 */
564 void
565 ep_509_probemedia(struct ep_softc *sc)
566 {
567 bus_space_tag_t iot = sc->sc_iot;
568 bus_space_handle_t ioh = sc->sc_ioh;
569 struct ifmedia *ifm = &sc->sc_mii.mii_media;
570 u_int16_t ep_w0_config, port;
571 const struct ep_media *epm;
572 const char *sep = "", *defmedianame = NULL;
573 int defmedia = 0;
574
575 GO_WINDOW(0);
576 ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
577
578 aprint_normal_dev(sc->sc_dev, "");
579
580 /* Sanity check that there are any media! */
581 if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
582 aprint_error("no media present!\n");
583 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
584 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
585 return;
586 }
587
588 /*
589 * Get the default media from the EEPROM.
590 */
591 port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
592
593 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
594
595 for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
596 if (ep_w0_config & epm->epm_mpbit) {
597 /*
598 * This simple test works because 509 chipsets
599 * don't do full-duplex.
600 */
601 if (epm->epm_epmedia == port || defmedia == 0) {
602 defmedia = epm->epm_ifmedia;
603 defmedianame = epm->epm_name;
604 }
605 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
606 NULL);
607 PRINT(epm->epm_name);
608 }
609 }
610
611 #undef PRINT
612
613 #ifdef DIAGNOSTIC
614 if (defmedia == 0)
615 panic("ep_509_probemedia: impossible");
616 #endif
617
618 aprint_normal(" (default %s)\n", defmedianame);
619 ifmedia_set(ifm, defmedia);
620 }
621
622 /*
623 * Find media present on large-packet-capable elink3 devices.
624 * Show onboard configuration of large-packet-capable elink3 devices
625 * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
626 * Use media and card-version info in window 3 instead.
627 */
628 void
629 ep_vortex_probemedia(struct ep_softc *sc)
630 {
631 bus_space_tag_t iot = sc->sc_iot;
632 bus_space_handle_t ioh = sc->sc_ioh;
633 struct ifmedia *ifm = &sc->sc_mii.mii_media;
634 const struct ep_media *epm;
635 u_int config1;
636 int reset_options;
637 int default_media; /* 3-bit encoding of default (EEPROM) media */
638 int defmedia = 0;
639 const char *sep = "", *defmedianame = NULL;
640
641 GO_WINDOW(3);
642 config1 = (u_int)bus_space_read_2(iot, ioh,
643 ELINK_W3_INTERNAL_CONFIG + 2);
644 reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
645 GO_WINDOW(0);
646
647 default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
648
649 aprint_normal_dev(sc->sc_dev, "");
650
651 /* Sanity check that there are any media! */
652 if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
653 aprint_error("no media present!\n");
654 ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
655 ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
656 return;
657 }
658
659 #define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
660
661 for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
662 if (reset_options & epm->epm_mpbit) {
663 /*
664 * Default media is a little more complicated
665 * on the Vortex. We support full-duplex which
666 * uses the same reset options bit.
667 *
668 * XXX Check EEPROM for default to FDX?
669 */
670 if (epm->epm_epmedia == default_media) {
671 if ((epm->epm_ifmedia & IFM_FDX) == 0) {
672 defmedia = epm->epm_ifmedia;
673 defmedianame = epm->epm_name;
674 }
675 } else if (defmedia == 0) {
676 defmedia = epm->epm_ifmedia;
677 defmedianame = epm->epm_name;
678 }
679 ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
680 NULL);
681 PRINT(epm->epm_name);
682 }
683 }
684
685 #undef PRINT
686
687 #ifdef DIAGNOSTIC
688 if (defmedia == 0)
689 panic("ep_vortex_probemedia: impossible");
690 #endif
691
692 aprint_normal(" (default %s)\n", defmedianame);
693 ifmedia_set(ifm, defmedia);
694 }
695
696 /*
697 * One second timer, used to tick the MII.
698 */
699 void
700 ep_tick(void *arg)
701 {
702 struct ep_softc *sc = arg;
703 int s;
704
705 #ifdef DIAGNOSTIC
706 if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
707 panic("ep_tick");
708 #endif
709
710 if (!device_is_active(sc->sc_dev))
711 return;
712
713 s = splnet();
714 mii_tick(&sc->sc_mii);
715 splx(s);
716
717 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
718 }
719
720 /*
721 * Bring device up.
722 *
723 * The order in here seems important. Otherwise we may not receive
724 * interrupts. ?!
725 */
726 int
727 epinit(struct ifnet *ifp)
728 {
729 struct ep_softc *sc = ifp->if_softc;
730 bus_space_tag_t iot = sc->sc_iot;
731 bus_space_handle_t ioh = sc->sc_ioh;
732 int i, error;
733 const u_int8_t *addr;
734
735 if (!sc->enabled && (error = epenable(sc)) != 0)
736 return (error);
737
738 /* Make sure any pending reset has completed before touching board */
739 ep_finish_reset(iot, ioh);
740
741 /*
742 * Cancel any pending I/O.
743 */
744 epstop(ifp, 0);
745
746 if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
747 && sc->bustype != ELINK_BUS_MCA) {
748 GO_WINDOW(0);
749 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
750 bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
751 ENABLE_DRQ_IRQ);
752 }
753
754 if (sc->bustype == ELINK_BUS_PCMCIA) {
755 bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
756 }
757
758 GO_WINDOW(2);
759 /* Reload the ether_addr. */
760 addr = CLLADDR(ifp->if_sadl);
761 for (i = 0; i < 6; i += 2)
762 bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
763 (addr[i] << 0) | (addr[i + 1] << 8));
764
765 /*
766 * Reset the station-address receive filter.
767 * A bug workaround for busmastering (Vortex, Demon) cards.
768 */
769 for (i = 0; i < 6; i += 2)
770 bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
771
772 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
773 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
774
775 GO_WINDOW(1); /* Window 1 is operating window */
776 for (i = 0; i < 31; i++)
777 (void)bus_space_read_2(iot, ioh,
778 ep_w1_reg(sc, ELINK_W1_TX_STATUS));
779
780 /* Set threshold for Tx-space available interrupt. */
781 bus_space_write_2(iot, ioh, ELINK_COMMAND,
782 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
783
784 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
785 /*
786 * Enable options in the PCMCIA LAN COR register, via
787 * RoadRunner Window 1.
788 *
789 * XXX MAGIC CONSTANTS!
790 */
791 u_int16_t cor;
792
793 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
794
795 cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
796 if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
797 cor |= 0x10;
798 if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
799 cor |= 0x20;
800 bus_space_write_2(iot, ioh, 0, cor);
801
802 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
803 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
804
805 if (sc->ep_flags & ELINK_FLAGS_MII) {
806 ep_roadrunner_mii_enable(sc);
807 GO_WINDOW(1);
808 }
809 }
810
811 /* Enable interrupts. */
812 bus_space_write_2(iot, ioh, ELINK_COMMAND,
813 SET_RD_0_MASK | WATCHED_INTERRUPTS);
814 bus_space_write_2(iot, ioh, ELINK_COMMAND,
815 SET_INTR_MASK | WATCHED_INTERRUPTS);
816
817 /*
818 * Attempt to get rid of any stray interrupts that occurred during
819 * configuration. On the i386 this isn't possible because one may
820 * already be queued. However, a single stray interrupt is
821 * unimportant.
822 */
823 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
824
825 epsetfilter(sc);
826 epsetmedia(sc);
827
828 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
829 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
830
831 epmbuffill(sc);
832
833 /* Interface is now `running', with no output active. */
834 ifp->if_flags |= IFF_RUNNING;
835 ifp->if_flags &= ~IFF_OACTIVE;
836
837 if (sc->ep_flags & ELINK_FLAGS_MII) {
838 /* Start the one second clock. */
839 callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
840 }
841
842 /* Attempt to start output, if any. */
843 epstart(ifp);
844
845 return (0);
846 }
847
848
849 /*
850 * Set multicast receive filter.
851 * elink3 hardware has no selective multicast filter in hardware.
852 * Enable reception of all multicasts and filter in software.
853 */
854 void
855 epsetfilter(struct ep_softc *sc)
856 {
857 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
858
859 GO_WINDOW(1); /* Window 1 is operating window */
860 bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
861 SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
862 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
863 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
864 }
865
866 int
867 ep_media_change(struct ifnet *ifp)
868 {
869 struct ep_softc *sc = ifp->if_softc;
870
871 if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
872 epreset(sc);
873
874 return (0);
875 }
876
877 /*
878 * Reset and enable the MII on the RoadRunner.
879 */
880 void
881 ep_roadrunner_mii_enable(struct ep_softc *sc)
882 {
883 bus_space_tag_t iot = sc->sc_iot;
884 bus_space_handle_t ioh = sc->sc_ioh;
885
886 GO_WINDOW(3);
887 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
888 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
889 delay(1000);
890 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
891 ELINK_PCI_100BASE_MII|ELINK_RUNNER_MII_RESET|
892 ELINK_RUNNER_ENABLE_MII);
893 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
894 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
895 delay(1000);
896 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
897 ELINK_PCI_100BASE_MII|ELINK_RUNNER_ENABLE_MII);
898 }
899
900 /*
901 * Set the card to use the specified media.
902 */
903 void
904 epsetmedia(struct ep_softc *sc)
905 {
906 bus_space_tag_t iot = sc->sc_iot;
907 bus_space_handle_t ioh = sc->sc_ioh;
908
909 /* Turn everything off. First turn off linkbeat and UTP. */
910 GO_WINDOW(4);
911 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
912
913 /* Turn off coax */
914 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
915 delay(1000);
916
917 /*
918 * If the device has MII, select it, and then tell the
919 * PHY which media to use.
920 */
921 if (sc->ep_flags & ELINK_FLAGS_MII) {
922 int config0, config1;
923
924 GO_WINDOW(3);
925
926 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
927 int resopt;
928
929 resopt = bus_space_read_2(iot, ioh,
930 ELINK_W3_RESET_OPTIONS);
931 bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
932 resopt | ELINK_RUNNER_ENABLE_MII);
933 }
934
935 config0 = (u_int)bus_space_read_2(iot, ioh,
936 ELINK_W3_INTERNAL_CONFIG);
937 config1 = (u_int)bus_space_read_2(iot, ioh,
938 ELINK_W3_INTERNAL_CONFIG + 2);
939
940 config1 = config1 & ~CONFIG_MEDIAMASK;
941 config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
942
943 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
944 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
945 config1);
946 GO_WINDOW(1); /* back to operating window */
947
948 mii_mediachg(&sc->sc_mii);
949 return;
950 }
951
952 /*
953 * Now turn on the selected media/transceiver.
954 */
955 GO_WINDOW(4);
956 switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
957 case IFM_10_T:
958 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
959 JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
960 break;
961
962 case IFM_10_2:
963 bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
964 DELAY(1000); /* 50ms not enmough? */
965 break;
966
967 case IFM_100_TX:
968 case IFM_100_FX:
969 case IFM_100_T4: /* XXX check documentation */
970 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
971 LINKBEAT_ENABLE);
972 DELAY(1000); /* not strictly necessary? */
973 break;
974
975 case IFM_10_5:
976 bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
977 SQE_ENABLE);
978 DELAY(1000); /* not strictly necessary? */
979 break;
980
981 case IFM_MANUAL:
982 /*
983 * Nothing to do here; we are actually enabling the
984 * external PHY on the MII port.
985 */
986 break;
987
988 case IFM_NONE:
989 printf("%s: interface disabled\n", device_xname(sc->sc_dev));
990 return;
991
992 default:
993 panic("epsetmedia: impossible");
994 }
995
996 /*
997 * Tell the chip which port to use.
998 */
999 switch (sc->ep_chipset) {
1000 case ELINK_CHIPSET_VORTEX:
1001 case ELINK_CHIPSET_BOOMERANG:
1002 {
1003 int mctl, config0, config1;
1004
1005 GO_WINDOW(3);
1006 config0 = (u_int)bus_space_read_2(iot, ioh,
1007 ELINK_W3_INTERNAL_CONFIG);
1008 config1 = (u_int)bus_space_read_2(iot, ioh,
1009 ELINK_W3_INTERNAL_CONFIG + 2);
1010
1011 config1 = config1 & ~CONFIG_MEDIAMASK;
1012 config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
1013 CONFIG_MEDIAMASK_SHIFT);
1014
1015 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
1016 bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
1017 config1);
1018
1019 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
1020 if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
1021 mctl |= MAC_CONTROL_FDX;
1022 else
1023 mctl &= ~MAC_CONTROL_FDX;
1024 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
1025 break;
1026 }
1027 default:
1028 {
1029 int w0_addr_cfg;
1030
1031 GO_WINDOW(0);
1032 w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
1033 w0_addr_cfg &= 0x3fff;
1034 bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
1035 (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
1036 DELAY(1000);
1037 break;
1038 }
1039 }
1040
1041 GO_WINDOW(1); /* Window 1 is operating window */
1042 }
1043
1044 /*
1045 * Get currently-selected media from card.
1046 * (if_media callback, may be called before interface is brought up).
1047 */
1048 void
1049 ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
1050 {
1051 struct ep_softc *sc = ifp->if_softc;
1052 bus_space_tag_t iot = sc->sc_iot;
1053 bus_space_handle_t ioh = sc->sc_ioh;
1054
1055 if (sc->enabled == 0) {
1056 req->ifm_active = IFM_ETHER|IFM_NONE;
1057 req->ifm_status = 0;
1058 return;
1059 }
1060
1061 /*
1062 * If we have MII, go ask the PHY what's going on.
1063 */
1064 if (sc->ep_flags & ELINK_FLAGS_MII) {
1065 mii_pollstat(&sc->sc_mii);
1066 req->ifm_active = sc->sc_mii.mii_media_active;
1067 req->ifm_status = sc->sc_mii.mii_media_status;
1068 return;
1069 }
1070
1071 /*
1072 * Ok, at this point we claim that our active media is
1073 * the currently selected media. We'll update our status
1074 * if our chipset allows us to detect link.
1075 */
1076 req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
1077 req->ifm_status = 0;
1078
1079 switch (sc->ep_chipset) {
1080 case ELINK_CHIPSET_VORTEX:
1081 case ELINK_CHIPSET_BOOMERANG:
1082 GO_WINDOW(4);
1083 req->ifm_status = IFM_AVALID;
1084 if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
1085 LINKBEAT_DETECT)
1086 req->ifm_status |= IFM_ACTIVE;
1087 GO_WINDOW(1); /* back to operating window */
1088 break;
1089 }
1090 }
1091
1092
1093
1094 /*
1095 * Start outputting on the interface.
1096 * Always called as splnet().
1097 */
1098 void
1099 epstart(struct ifnet *ifp)
1100 {
1101 struct ep_softc *sc = ifp->if_softc;
1102 bus_space_tag_t iot = sc->sc_iot;
1103 bus_space_handle_t ioh = sc->sc_ioh;
1104 struct mbuf *m, *m0;
1105 int sh, len, pad;
1106 bus_size_t txreg;
1107
1108 /* Don't transmit if interface is busy or not running */
1109 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1110 return;
1111
1112 startagain:
1113 /* Sneak a peek at the next packet */
1114 IFQ_POLL(&ifp->if_snd, m0);
1115 if (m0 == 0)
1116 return;
1117
1118 /* We need to use m->m_pkthdr.len, so require the header */
1119 if ((m0->m_flags & M_PKTHDR) == 0)
1120 panic("epstart: no header mbuf");
1121 len = m0->m_pkthdr.len;
1122
1123 pad = (4 - len) & 3;
1124
1125 /*
1126 * The 3c509 automatically pads short packets to minimum ethernet
1127 * length, but we drop packets that are too large. Perhaps we should
1128 * truncate them instead?
1129 */
1130 if (len + pad > ETHER_MAX_LEN) {
1131 /* packet is obviously too large: toss it */
1132 ++ifp->if_oerrors;
1133 IFQ_DEQUEUE(&ifp->if_snd, m0);
1134 m_freem(m0);
1135 goto readcheck;
1136 }
1137
1138 if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
1139 len + pad + 4) {
1140 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1141 SET_TX_AVAIL_THRESH |
1142 ((len + pad + 4) >> sc->ep_pktlenshift));
1143 /* not enough room in FIFO */
1144 ifp->if_flags |= IFF_OACTIVE;
1145 return;
1146 } else {
1147 bus_space_write_2(iot, ioh, ELINK_COMMAND,
1148 SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
1149 }
1150
1151 IFQ_DEQUEUE(&ifp->if_snd, m0);
1152 if (m0 == 0) /* not really needed */
1153 return;
1154
1155 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
1156 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
1157
1158 bpf_mtap(ifp, m0);
1159
1160 /*
1161 * Do the output at a high interrupt priority level so that an
1162 * interrupt from another device won't cause a FIFO underrun.
1163 * We choose splsched() since that blocks essentially everything
1164 * except for interrupts from serial devices (which typically
1165 * lose data if their interrupt isn't serviced fast enough).
1166 *
1167 * XXX THIS CAN CAUSE CLOCK DRIFT!
1168 */
1169 sh = splsched();
1170
1171 txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
1172
1173 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1174 /*
1175 * Prime the FIFO buffer counter (number of 16-bit
1176 * words about to be written to the FIFO).
1177 *
1178 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1179 * COUNTER IS NON-ZERO!
1180 */
1181 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
1182 (len + pad) >> 1);
1183 }
1184
1185 bus_space_write_2(iot, ioh, txreg, len);
1186 bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
1187 if (ELINK_IS_BUS_32(sc->bustype)) {
1188 for (m = m0; m;) {
1189 if (m->m_len > 3) {
1190 /* align our reads from core */
1191 if (mtod(m, u_long) & 3) {
1192 u_long count =
1193 4 - (mtod(m, u_long) & 3);
1194 bus_space_write_multi_1(iot, ioh,
1195 txreg, mtod(m, u_int8_t *), count);
1196 m->m_data =
1197 (void *)(mtod(m, u_long) + count);
1198 m->m_len -= count;
1199 }
1200 bus_space_write_multi_stream_4(iot, ioh,
1201 txreg, mtod(m, u_int32_t *), m->m_len >> 2);
1202 m->m_data = (void *)(mtod(m, u_long) +
1203 (u_long)(m->m_len & ~3));
1204 m->m_len -= m->m_len & ~3;
1205 }
1206 if (m->m_len) {
1207 bus_space_write_multi_1(iot, ioh,
1208 txreg, mtod(m, u_int8_t *), m->m_len);
1209 }
1210 MFREE(m, m0);
1211 m = m0;
1212 }
1213 } else {
1214 for (m = m0; m;) {
1215 if (m->m_len > 1) {
1216 if (mtod(m, u_long) & 1) {
1217 bus_space_write_1(iot, ioh,
1218 txreg, *(mtod(m, u_int8_t *)));
1219 m->m_data =
1220 (void *)(mtod(m, u_long) + 1);
1221 m->m_len -= 1;
1222 }
1223 bus_space_write_multi_stream_2(iot, ioh,
1224 txreg, mtod(m, u_int16_t *),
1225 m->m_len >> 1);
1226 }
1227 if (m->m_len & 1) {
1228 bus_space_write_1(iot, ioh, txreg,
1229 *(mtod(m, u_int8_t *) + m->m_len - 1));
1230 }
1231 MFREE(m, m0);
1232 m = m0;
1233 }
1234 }
1235 while (pad--)
1236 bus_space_write_1(iot, ioh, txreg, 0);
1237
1238 splx(sh);
1239
1240 ++ifp->if_opackets;
1241
1242 readcheck:
1243 if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
1244 ERR_INCOMPLETE) == 0) {
1245 /* We received a complete packet. */
1246 u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1247
1248 if ((status & INTR_LATCH) == 0) {
1249 /*
1250 * No interrupt, read the packet and continue
1251 * Is this supposed to happen? Is my motherboard
1252 * completely busted?
1253 */
1254 epread(sc);
1255 } else {
1256 /* Got an interrupt, return so that it gets serviced. */
1257 return;
1258 }
1259 } else {
1260 /* Check if we are stuck and reset [see XXX comment] */
1261 if (epstatus(sc)) {
1262 if (ifp->if_flags & IFF_DEBUG)
1263 printf("%s: adapter reset\n",
1264 device_xname(sc->sc_dev));
1265 epreset(sc);
1266 }
1267 }
1268
1269 goto startagain;
1270 }
1271
1272
1273 /*
1274 * XXX: The 3c509 card can get in a mode where both the fifo status bit
1275 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
1276 * We detect this situation and we reset the adapter.
1277 * It happens at times when there is a lot of broadcast traffic
1278 * on the cable (once in a blue moon).
1279 */
1280 static int
1281 epstatus(struct ep_softc *sc)
1282 {
1283 bus_space_tag_t iot = sc->sc_iot;
1284 bus_space_handle_t ioh = sc->sc_ioh;
1285 u_int16_t fifost;
1286
1287 /*
1288 * Check the FIFO status and act accordingly
1289 */
1290 GO_WINDOW(4);
1291 fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
1292 GO_WINDOW(1);
1293
1294 if (fifost & FIFOS_RX_UNDERRUN) {
1295 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1296 printf("%s: RX underrun\n", device_xname(sc->sc_dev));
1297 epreset(sc);
1298 return 0;
1299 }
1300
1301 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
1302 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1303 printf("%s: RX Status overrun\n", device_xname(sc->sc_dev));
1304 return 1;
1305 }
1306
1307 if (fifost & FIFOS_RX_OVERRUN) {
1308 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1309 printf("%s: RX overrun\n", device_xname(sc->sc_dev));
1310 return 1;
1311 }
1312
1313 if (fifost & FIFOS_TX_OVERRUN) {
1314 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1315 printf("%s: TX overrun\n", device_xname(sc->sc_dev));
1316 epreset(sc);
1317 return 0;
1318 }
1319
1320 return 0;
1321 }
1322
1323
1324 static void
1325 eptxstat(struct ep_softc *sc)
1326 {
1327 bus_space_tag_t iot = sc->sc_iot;
1328 bus_space_handle_t ioh = sc->sc_ioh;
1329 int i;
1330
1331 /*
1332 * We need to read+write TX_STATUS until we get a 0 status
1333 * in order to turn off the interrupt flag.
1334 */
1335 while ((i = bus_space_read_2(iot, ioh,
1336 ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
1337 bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
1338 0x0);
1339
1340 if (i & TXS_JABBER) {
1341 ++sc->sc_ethercom.ec_if.if_oerrors;
1342 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1343 printf("%s: jabber (%x)\n",
1344 device_xname(sc->sc_dev), i);
1345 epreset(sc);
1346 } else if (i & TXS_UNDERRUN) {
1347 ++sc->sc_ethercom.ec_if.if_oerrors;
1348 if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
1349 printf("%s: fifo underrun (%x) @%d\n",
1350 device_xname(sc->sc_dev), i,
1351 sc->tx_start_thresh);
1352 if (sc->tx_succ_ok < 100)
1353 sc->tx_start_thresh = min(ETHER_MAX_LEN,
1354 sc->tx_start_thresh + 20);
1355 sc->tx_succ_ok = 0;
1356 epreset(sc);
1357 } else if (i & TXS_MAX_COLLISION) {
1358 ++sc->sc_ethercom.ec_if.if_collisions;
1359 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
1360 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1361 } else
1362 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
1363 }
1364 }
1365
1366 int
1367 epintr(void *arg)
1368 {
1369 struct ep_softc *sc = arg;
1370 bus_space_tag_t iot = sc->sc_iot;
1371 bus_space_handle_t ioh = sc->sc_ioh;
1372 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1373 u_int16_t status;
1374 int ret = 0;
1375
1376 if (sc->enabled == 0 || !device_is_active(sc->sc_dev))
1377 return (0);
1378
1379
1380 for (;;) {
1381 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1382
1383 if ((status & WATCHED_INTERRUPTS) == 0) {
1384 if ((status & INTR_LATCH) == 0) {
1385 #if 0
1386 printf("%s: intr latch cleared\n",
1387 device_xname(&sc->sc_dev));
1388 #endif
1389 break;
1390 }
1391 }
1392
1393 ret = 1;
1394
1395 /*
1396 * Acknowledge any interrupts. It's important that we do this
1397 * first, since there would otherwise be a race condition.
1398 * Due to the i386 interrupt queueing, we may get spurious
1399 * interrupts occasionally.
1400 */
1401 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
1402 (status & (INTR_LATCH | ALL_INTERRUPTS)));
1403
1404 #if 0
1405 status = bus_space_read_2(iot, ioh, ELINK_STATUS);
1406
1407 printf("%s: intr%s%s%s%s\n", device_xname(&sc->sc_dev),
1408 (status & RX_COMPLETE)?" RX_COMPLETE":"",
1409 (status & TX_COMPLETE)?" TX_COMPLETE":"",
1410 (status & TX_AVAIL)?" TX_AVAIL":"",
1411 (status & CARD_FAILURE)?" CARD_FAILURE":"");
1412 #endif
1413
1414 if (status & RX_COMPLETE) {
1415 epread(sc);
1416 }
1417 if (status & TX_AVAIL) {
1418 sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1419 epstart(&sc->sc_ethercom.ec_if);
1420 }
1421 if (status & CARD_FAILURE) {
1422 printf("%s: adapter failure (%x)\n",
1423 device_xname(sc->sc_dev), status);
1424 #if 1
1425 epinit(ifp);
1426 #else
1427 epreset(sc);
1428 #endif
1429 return (1);
1430 }
1431 if (status & TX_COMPLETE) {
1432 eptxstat(sc);
1433 epstart(ifp);
1434 }
1435
1436 #if NRND > 0
1437 if (status)
1438 rnd_add_uint32(&sc->rnd_source, status);
1439 #endif
1440 }
1441
1442 /* no more interrupts */
1443 return (ret);
1444 }
1445
1446 void
1447 epread(struct ep_softc *sc)
1448 {
1449 bus_space_tag_t iot = sc->sc_iot;
1450 bus_space_handle_t ioh = sc->sc_ioh;
1451 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1452 struct mbuf *m;
1453 int len;
1454
1455 len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1456
1457 again:
1458 if (ifp->if_flags & IFF_DEBUG) {
1459 int err = len & ERR_MASK;
1460 const char *s = NULL;
1461
1462 if (len & ERR_INCOMPLETE)
1463 s = "incomplete packet";
1464 else if (err == ERR_OVERRUN)
1465 s = "packet overrun";
1466 else if (err == ERR_RUNT)
1467 s = "runt packet";
1468 else if (err == ERR_ALIGNMENT)
1469 s = "bad alignment";
1470 else if (err == ERR_CRC)
1471 s = "bad crc";
1472 else if (err == ERR_OVERSIZE)
1473 s = "oversized packet";
1474 else if (err == ERR_DRIBBLE)
1475 s = "dribble bits";
1476
1477 if (s)
1478 printf("%s: %s\n", device_xname(sc->sc_dev), s);
1479 }
1480
1481 if (len & ERR_INCOMPLETE)
1482 return;
1483
1484 if (len & ERR_RX) {
1485 ++ifp->if_ierrors;
1486 goto abort;
1487 }
1488
1489 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
1490
1491 /* Pull packet off interface. */
1492 m = epget(sc, len);
1493 if (m == 0) {
1494 ifp->if_ierrors++;
1495 goto abort;
1496 }
1497
1498 ++ifp->if_ipackets;
1499
1500 /*
1501 * Check if there's a BPF listener on this interface.
1502 * If so, hand off the raw packet to BPF.
1503 */
1504 bpf_mtap(ifp, m);
1505
1506 (*ifp->if_input)(ifp, m);
1507
1508 /*
1509 * In periods of high traffic we can actually receive enough
1510 * packets so that the fifo overrun bit will be set at this point,
1511 * even though we just read a packet. In this case we
1512 * are not going to receive any more interrupts. We check for
1513 * this condition and read again until the fifo is not full.
1514 * We could simplify this test by not using epstatus(), but
1515 * rechecking the RX_STATUS register directly. This test could
1516 * result in unnecessary looping in cases where there is a new
1517 * packet but the fifo is not full, but it will not fix the
1518 * stuck behavior.
1519 *
1520 * Even with this improvement, we still get packet overrun errors
1521 * which are hurting performance. Maybe when I get some more time
1522 * I'll modify epread() so that it can handle RX_EARLY interrupts.
1523 */
1524 if (epstatus(sc)) {
1525 len = bus_space_read_2(iot, ioh,
1526 ep_w1_reg(sc, ELINK_W1_RX_STATUS));
1527 /* Check if we are stuck and reset [see XXX comment] */
1528 if (len & ERR_INCOMPLETE) {
1529 if (ifp->if_flags & IFF_DEBUG)
1530 printf("%s: adapter reset\n",
1531 device_xname(sc->sc_dev));
1532 epreset(sc);
1533 return;
1534 }
1535 goto again;
1536 }
1537
1538 return;
1539
1540 abort:
1541 ep_discard_rxtop(iot, ioh);
1542
1543 }
1544
1545 struct mbuf *
1546 epget(struct ep_softc *sc, int totlen)
1547 {
1548 bus_space_tag_t iot = sc->sc_iot;
1549 bus_space_handle_t ioh = sc->sc_ioh;
1550 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1551 struct mbuf *m;
1552 bus_size_t rxreg;
1553 int len, remaining;
1554 int s;
1555 void *newdata;
1556 u_long offset;
1557
1558 m = sc->mb[sc->next_mb];
1559 sc->mb[sc->next_mb] = 0;
1560 if (m == 0) {
1561 MGETHDR(m, M_DONTWAIT, MT_DATA);
1562 if (m == 0)
1563 return 0;
1564 } else {
1565 /* If the queue is no longer full, refill. */
1566 if (sc->last_mb == sc->next_mb)
1567 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1568
1569 /* Convert one of our saved mbuf's. */
1570 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1571 m->m_data = m->m_pktdat;
1572 m->m_flags = M_PKTHDR;
1573 memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1574 }
1575 m->m_pkthdr.rcvif = ifp;
1576 m->m_pkthdr.len = totlen;
1577 len = MHLEN;
1578
1579 /*
1580 * Allocate big enough space to hold whole packet, to avoid
1581 * allocating new mbufs on splsched().
1582 */
1583 if (totlen + ALIGNBYTES > len) {
1584 if (totlen + ALIGNBYTES > MCLBYTES) {
1585 len = ALIGN(totlen + ALIGNBYTES);
1586 MEXTMALLOC(m, len, M_DONTWAIT);
1587 } else {
1588 len = MCLBYTES;
1589 MCLGET(m, M_DONTWAIT);
1590 }
1591 if ((m->m_flags & M_EXT) == 0) {
1592 m_free(m);
1593 return 0;
1594 }
1595 }
1596
1597 /* align the struct ip header */
1598 newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
1599 - sizeof(struct ether_header);
1600 m->m_data = newdata;
1601 m->m_len = totlen;
1602
1603 rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
1604 remaining = totlen;
1605 offset = mtod(m, u_long);
1606
1607 /*
1608 * We read the packet at a high interrupt priority level so that
1609 * an interrupt from another device won't cause the card's packet
1610 * buffer to overflow. We choose splsched() since that blocks
1611 * essentially everything except for interrupts from serial
1612 * devices (which typically lose data if their interrupt isn't
1613 * serviced fast enough).
1614 *
1615 * XXX THIS CAN CAUSE CLOCK DRIFT!
1616 */
1617 s = splsched();
1618
1619 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
1620 /*
1621 * Prime the FIFO buffer counter (number of 16-bit
1622 * words about to be read from the FIFO).
1623 *
1624 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
1625 * COUNTER IS NON-ZERO!
1626 */
1627 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
1628 }
1629
1630 if (ELINK_IS_BUS_32(sc->bustype)) {
1631 /*
1632 * Read bytes up to the point where we are aligned.
1633 * (We can align to 4 bytes, rather than ALIGNBYTES,
1634 * here because we're later reading 4-byte chunks.)
1635 */
1636 if ((remaining > 3) && (offset & 3)) {
1637 int count = (4 - (offset & 3));
1638 bus_space_read_multi_1(iot, ioh,
1639 rxreg, (u_int8_t *) offset, count);
1640 offset += count;
1641 remaining -= count;
1642 }
1643 if (remaining > 3) {
1644 bus_space_read_multi_stream_4(iot, ioh,
1645 rxreg, (u_int32_t *) offset,
1646 remaining >> 2);
1647 offset += remaining & ~3;
1648 remaining &= 3;
1649 }
1650 if (remaining) {
1651 bus_space_read_multi_1(iot, ioh,
1652 rxreg, (u_int8_t *) offset, remaining);
1653 }
1654 } else {
1655 if ((remaining > 1) && (offset & 1)) {
1656 bus_space_read_multi_1(iot, ioh,
1657 rxreg, (u_int8_t *) offset, 1);
1658 remaining -= 1;
1659 offset += 1;
1660 }
1661 if (remaining > 1) {
1662 bus_space_read_multi_stream_2(iot, ioh,
1663 rxreg, (u_int16_t *) offset,
1664 remaining >> 1);
1665 offset += remaining & ~1;
1666 }
1667 if (remaining & 1) {
1668 bus_space_read_multi_1(iot, ioh,
1669 rxreg, (u_int8_t *) offset, remaining & 1);
1670 }
1671 }
1672
1673 ep_discard_rxtop(iot, ioh);
1674
1675 if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
1676 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1677 splx(s);
1678
1679 return (m);
1680 }
1681
1682 int
1683 epioctl(struct ifnet *ifp, u_long cmd, void *data)
1684 {
1685 struct ep_softc *sc = ifp->if_softc;
1686 struct ifreq *ifr = (struct ifreq *)data;
1687 int s, error = 0;
1688
1689 s = splnet();
1690
1691 switch (cmd) {
1692
1693 case SIOCSIFMEDIA:
1694 case SIOCGIFMEDIA:
1695 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1696 break;
1697
1698 case SIOCADDMULTI:
1699 case SIOCDELMULTI:
1700 if (sc->enabled == 0) {
1701 error = EIO;
1702 break;
1703 }
1704
1705 default:
1706 error = ether_ioctl(ifp, cmd, data);
1707
1708 if (error == ENETRESET) {
1709 /*
1710 * Multicast list has changed; set the hardware filter
1711 * accordingly.
1712 */
1713 if (ifp->if_flags & IFF_RUNNING)
1714 epreset(sc);
1715 error = 0;
1716 }
1717 break;
1718 }
1719
1720 splx(s);
1721 return (error);
1722 }
1723
1724 void
1725 epreset(struct ep_softc *sc)
1726 {
1727 int s;
1728
1729 s = splnet();
1730 epinit(&sc->sc_ethercom.ec_if);
1731 splx(s);
1732 }
1733
1734 void
1735 epwatchdog(struct ifnet *ifp)
1736 {
1737 struct ep_softc *sc = ifp->if_softc;
1738
1739 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1740 ++sc->sc_ethercom.ec_if.if_oerrors;
1741
1742 epreset(sc);
1743 }
1744
1745 void
1746 epstop(struct ifnet *ifp, int disable)
1747 {
1748 struct ep_softc *sc = ifp->if_softc;
1749 bus_space_tag_t iot = sc->sc_iot;
1750 bus_space_handle_t ioh = sc->sc_ioh;
1751
1752 if (sc->ep_flags & ELINK_FLAGS_MII) {
1753 /* Stop the one second clock. */
1754 callout_stop(&sc->sc_mbuf_callout);
1755
1756 /* Down the MII. */
1757 mii_down(&sc->sc_mii);
1758 }
1759
1760 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
1761 /*
1762 * Clear the FIFO buffer count, thus halting
1763 * any currently-running transactions.
1764 */
1765 GO_WINDOW(1); /* sanity */
1766 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
1767 bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
1768 }
1769
1770 bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
1771 ep_discard_rxtop(iot, ioh);
1772
1773 bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
1774 bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
1775
1776 ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
1777 ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
1778
1779 bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
1780 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
1781 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
1782 bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
1783
1784 epmbufempty(sc);
1785
1786 if (disable)
1787 epdisable(sc);
1788
1789 ifp->if_flags &= ~IFF_RUNNING;
1790 }
1791
1792
1793 /*
1794 * Before reboots, reset card completely.
1795 */
1796 static bool
1797 epshutdown(device_t self, int howto)
1798 {
1799 struct ep_softc *sc = device_private(self);
1800 int s = splnet();
1801
1802 if (sc->enabled) {
1803 epstop(&sc->sc_ethercom.ec_if, 0);
1804 ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
1805 epdisable(sc);
1806 sc->enabled = 0;
1807 }
1808 splx(s);
1809
1810 return true;
1811 }
1812
1813 /*
1814 * We get eeprom data from the id_port given an offset into the
1815 * eeprom. Basically; after the ID_sequence is sent to all of
1816 * the cards; they enter the ID_CMD state where they will accept
1817 * command requests. 0x80-0xbf loads the eeprom data. We then
1818 * read the port 16 times and with every read; the cards check
1819 * for contention (ie: if one card writes a 0 bit and another
1820 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1821 * each card compares the data on the bus; if there is a difference
1822 * then that card goes into ID_WAIT state again). In the meantime;
1823 * one bit of data is returned in the AX register which is conveniently
1824 * returned to us by bus_space_read_2(). Hence; we read 16 times getting one
1825 * bit of data with each read.
1826 *
1827 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1828 */
1829 u_int16_t
1830 epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
1831 {
1832 u_int16_t data = 0;
1833 int i;
1834
1835 bus_space_write_2(iot, ioh, 0, 0x80 + offset);
1836 delay(1000);
1837 for (i = 0; i < 16; i++)
1838 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1839 return (data);
1840 }
1841
1842 static int
1843 epbusyeeprom(struct ep_softc *sc)
1844 {
1845 bus_space_tag_t iot = sc->sc_iot;
1846 bus_space_handle_t ioh = sc->sc_ioh;
1847 bus_size_t eecmd;
1848 int i = 100, j;
1849 uint16_t busybit;
1850
1851 if (sc->bustype == ELINK_BUS_PCMCIA) {
1852 delay(1000);
1853 return 0;
1854 }
1855
1856 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1857 eecmd = CORK_ASIC_EEPROM_COMMAND;
1858 busybit = CORK_EEPROM_BUSY;
1859 } else {
1860 eecmd = ELINK_W0_EEPROM_COMMAND;
1861 busybit = EEPROM_BUSY;
1862 }
1863
1864 j = 0; /* bad GCC flow analysis */
1865 while (i--) {
1866 j = bus_space_read_2(iot, ioh, eecmd);
1867 if (j & busybit)
1868 delay(100);
1869 else
1870 break;
1871 }
1872 if (i == 0) {
1873 aprint_normal("\n");
1874 aprint_error_dev(sc->sc_dev, "eeprom failed to come ready\n");
1875 return (1);
1876 }
1877 if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
1878 (j & EEPROM_TST_MODE) != 0) {
1879 /* XXX PnP mode? */
1880 printf("\n%s: erase pencil mark!\n", device_xname(sc->sc_dev));
1881 return (1);
1882 }
1883 return (0);
1884 }
1885
1886 u_int16_t
1887 ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
1888 {
1889 bus_size_t eecmd, eedata;
1890 u_int16_t readcmd;
1891
1892 if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
1893 eecmd = CORK_ASIC_EEPROM_COMMAND;
1894 eedata = CORK_ASIC_EEPROM_DATA;
1895 } else {
1896 eecmd = ELINK_W0_EEPROM_COMMAND;
1897 eedata = ELINK_W0_EEPROM_DATA;
1898 }
1899
1900 /*
1901 * RoadRunner has a larger EEPROM, so a different read command
1902 * is required.
1903 */
1904 if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
1905 readcmd = READ_EEPROM_RR;
1906 else
1907 readcmd = READ_EEPROM;
1908
1909 if (epbusyeeprom(sc))
1910 return (0); /* XXX why is eeprom busy? */
1911
1912 bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
1913
1914 if (epbusyeeprom(sc))
1915 return (0); /* XXX why is eeprom busy? */
1916
1917 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
1918 }
1919
1920 void
1921 epmbuffill(void *v)
1922 {
1923 struct ep_softc *sc = v;
1924 struct mbuf *m;
1925 int s, i;
1926
1927 s = splnet();
1928 i = sc->last_mb;
1929 do {
1930 if (sc->mb[i] == 0) {
1931 MGET(m, M_DONTWAIT, MT_DATA);
1932 if (m == 0)
1933 break;
1934 sc->mb[i] = m;
1935 }
1936 i = (i + 1) % MAX_MBS;
1937 } while (i != sc->next_mb);
1938 sc->last_mb = i;
1939 /* If the queue was not filled, try again. */
1940 if (sc->last_mb != sc->next_mb)
1941 callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
1942 splx(s);
1943 }
1944
1945 void
1946 epmbufempty(struct ep_softc *sc)
1947 {
1948 int s, i;
1949
1950 s = splnet();
1951 for (i = 0; i < MAX_MBS; i++) {
1952 if (sc->mb[i]) {
1953 m_freem(sc->mb[i]);
1954 sc->mb[i] = NULL;
1955 }
1956 }
1957 sc->last_mb = sc->next_mb = 0;
1958 callout_stop(&sc->sc_mbuf_callout);
1959 splx(s);
1960 }
1961
1962 int
1963 epenable(struct ep_softc *sc)
1964 {
1965
1966 if (sc->enabled == 0 && sc->enable != NULL) {
1967 if ((*sc->enable)(sc) != 0) {
1968 aprint_error_dev(sc->sc_dev, "device enable failed\n");
1969 return (EIO);
1970 }
1971 }
1972
1973 sc->enabled = 1;
1974 return (0);
1975 }
1976
1977 void
1978 epdisable(struct ep_softc *sc)
1979 {
1980
1981 if (sc->enabled != 0 && sc->disable != NULL) {
1982 (*sc->disable)(sc);
1983 sc->enabled = 0;
1984 }
1985 }
1986
1987 /*
1988 * ep_activate:
1989 *
1990 * Handle device activation/deactivation requests.
1991 */
1992 int
1993 ep_activate(device_t self, enum devact act)
1994 {
1995 struct ep_softc *sc = device_private(self);
1996
1997 switch (act) {
1998 case DVACT_DEACTIVATE:
1999 if_deactivate(&sc->sc_ethercom.ec_if);
2000 return 0;
2001 default:
2002 return EOPNOTSUPP;
2003 }
2004 }
2005
2006 /*
2007 * ep_detach:
2008 *
2009 * Detach a elink3 interface.
2010 */
2011 int
2012 ep_detach(device_t self, int flags)
2013 {
2014 struct ep_softc *sc = device_private(self);
2015 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2016
2017 /* Succeed now if there's no work to do. */
2018 if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
2019 return (0);
2020
2021 epdisable(sc);
2022
2023 callout_stop(&sc->sc_mii_callout);
2024 callout_stop(&sc->sc_mbuf_callout);
2025
2026 if (sc->ep_flags & ELINK_FLAGS_MII) {
2027 /* Detach all PHYs */
2028 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
2029 }
2030
2031 /* Delete all remaining media. */
2032 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
2033
2034 #if NRND > 0
2035 rnd_detach_source(&sc->rnd_source);
2036 #endif
2037 ether_ifdetach(ifp);
2038 if_detach(ifp);
2039
2040 pmf_device_deregister(sc->sc_dev);
2041
2042 return (0);
2043 }
2044
2045 u_int32_t
2046 ep_mii_bitbang_read(device_t self)
2047 {
2048 struct ep_softc *sc = device_private(self);
2049
2050 /* We're already in Window 4. */
2051 return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
2052 ELINK_W4_BOOM_PHYSMGMT));
2053 }
2054
2055 void
2056 ep_mii_bitbang_write(device_t self, u_int32_t val)
2057 {
2058 struct ep_softc *sc = device_private(self);
2059
2060 /* We're already in Window 4. */
2061 bus_space_write_2(sc->sc_iot, sc->sc_ioh,
2062 ELINK_W4_BOOM_PHYSMGMT, val);
2063 }
2064
2065 int
2066 ep_mii_readreg(device_t self, int phy, int reg)
2067 {
2068 struct ep_softc *sc = device_private(self);
2069 int val;
2070
2071 GO_WINDOW(4);
2072
2073 val = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg);
2074
2075 GO_WINDOW(1);
2076
2077 return (val);
2078 }
2079
2080 void
2081 ep_mii_writereg(device_t self, int phy, int reg, int val)
2082 {
2083 struct ep_softc *sc = device_private(self);
2084
2085 GO_WINDOW(4);
2086
2087 mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
2088
2089 GO_WINDOW(1);
2090 }
2091
2092 void
2093 ep_statchg(device_t self)
2094 {
2095 struct ep_softc *sc = device_private(self);
2096 bus_space_tag_t iot = sc->sc_iot;
2097 bus_space_handle_t ioh = sc->sc_ioh;
2098 int mctl;
2099
2100 GO_WINDOW(3);
2101 mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
2102 if (sc->sc_mii.mii_media_active & IFM_FDX)
2103 mctl |= MAC_CONTROL_FDX;
2104 else
2105 mctl &= ~MAC_CONTROL_FDX;
2106 bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
2107 GO_WINDOW(1); /* back to operating window */
2108 }
2109
2110 void
2111 ep_power(int why, void *arg)
2112 {
2113 struct ep_softc *sc = arg;
2114 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2115 int s;
2116
2117 s = splnet();
2118 switch (why) {
2119 case PWR_SUSPEND:
2120 case PWR_STANDBY:
2121 epstop(ifp, 1);
2122 break;
2123 case PWR_RESUME:
2124 if (ifp->if_flags & IFF_UP) {
2125 (void)epinit(ifp);
2126 }
2127 break;
2128 case PWR_SOFTSUSPEND:
2129 case PWR_SOFTSTANDBY:
2130 case PWR_SOFTRESUME:
2131 break;
2132 }
2133 splx(s);
2134 }
2135