Home | History | Annotate | Line # | Download | only in ic
elink3.c revision 1.151
      1 /*	$NetBSD: elink3.c,v 1.151 2020/02/04 05:25:39 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
     35  * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *      This product includes software developed by Herb Peyerl.
     49  * 4. The name of Herb Peyerl may not be used to endorse or promote products
     50  *    derived from this software without specific prior written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     53  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     54  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     55  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     56  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     57  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     61  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.151 2020/02/04 05:25:39 thorpej Exp $");
     66 
     67 #include "opt_inet.h"
     68 
     69 #include <sys/param.h>
     70 #include <sys/systm.h>
     71 #include <sys/callout.h>
     72 #include <sys/kernel.h>
     73 #include <sys/mbuf.h>
     74 #include <sys/socket.h>
     75 #include <sys/ioctl.h>
     76 #include <sys/errno.h>
     77 #include <sys/syslog.h>
     78 #include <sys/select.h>
     79 #include <sys/device.h>
     80 #include <sys/rndsource.h>
     81 
     82 #include <net/if.h>
     83 #include <net/if_dl.h>
     84 #include <net/if_ether.h>
     85 #include <net/if_media.h>
     86 #include <net/bpf.h>
     87 
     88 #include <sys/cpu.h>
     89 #include <sys/bus.h>
     90 #include <sys/intr.h>
     91 
     92 #include <dev/mii/mii.h>
     93 #include <dev/mii/miivar.h>
     94 #include <dev/mii/mii_bitbang.h>
     95 
     96 #include <dev/ic/elink3var.h>
     97 #include <dev/ic/elink3reg.h>
     98 
     99 #ifdef DEBUG
    100 int epdebug = 0;
    101 #endif
    102 
    103 /*
    104  * XXX endian workaround for big-endian CPUs  with pcmcia:
    105  * if stream methods for bus_space_multi are not provided, define them
    106  * using non-stream bus_space_{read,write}_multi_.
    107  * Assumes host CPU is same endian-ness as bus.
    108  */
    109 #ifndef __BUS_SPACE_HAS_STREAM_METHODS
    110 #define bus_space_read_multi_stream_2	bus_space_read_multi_2
    111 #define bus_space_read_multi_stream_4	bus_space_read_multi_4
    112 #define bus_space_write_multi_stream_2	bus_space_write_multi_2
    113 #define bus_space_write_multi_stream_4	bus_space_write_multi_4
    114 #endif /* __BUS_SPACE_HAS_STREAM_METHODS */
    115 
    116 /*
    117  * Structure to map media-present bits in boards to ifmedia codes and
    118  * printable media names. Used for table-driven ifmedia initialization.
    119  */
    120 struct ep_media {
    121 	int	epm_mpbit;		/* media present bit */
    122 	const char *epm_name;		/* name of medium */
    123 	int	epm_ifmedia;		/* ifmedia word for medium */
    124 	int	epm_epmedia;		/* ELINKMEDIA_* constant */
    125 };
    126 
    127 /*
    128  * Media table for the Demon/Vortex/Boomerang chipsets.
    129  *
    130  * Note that MII on the Demon and Vortex (3c59x) indicates an external
    131  * MII connector (for connecting an external PHY) ... I think.  Treat
    132  * it as `manual' on these chips.
    133  *
    134  * Any Boomerang (3c90x) chips with MII really do have an internal
    135  * MII and real PHYs attached; no `native' media.
    136  */
    137 const struct ep_media ep_vortex_media[] = {
    138 	{ ELINK_PCI_10BASE_T,	"10baseT",	IFM_ETHER | IFM_10_T,
    139 	  ELINKMEDIA_10BASE_T },
    140 	{ ELINK_PCI_10BASE_T,	"10baseT-FDX",	IFM_ETHER | IFM_10_T | IFM_FDX,
    141 	  ELINKMEDIA_10BASE_T },
    142 	{ ELINK_PCI_AUI,	"10base5",	IFM_ETHER | IFM_10_5,
    143 	  ELINKMEDIA_AUI },
    144 	{ ELINK_PCI_BNC,	"10base2",	IFM_ETHER | IFM_10_2,
    145 	  ELINKMEDIA_10BASE_2 },
    146 	{ ELINK_PCI_100BASE_TX,	"100baseTX",	IFM_ETHER | IFM_100_TX,
    147 	  ELINKMEDIA_100BASE_TX },
    148 	{ ELINK_PCI_100BASE_TX,	"100baseTX-FDX",IFM_ETHER | IFM_100_TX|IFM_FDX,
    149 	  ELINKMEDIA_100BASE_TX },
    150 	{ ELINK_PCI_100BASE_FX,	"100baseFX",	IFM_ETHER | IFM_100_FX,
    151 	  ELINKMEDIA_100BASE_FX },
    152 	{ ELINK_PCI_100BASE_MII,"manual",	IFM_ETHER | IFM_MANUAL,
    153 	  ELINKMEDIA_MII },
    154 	{ ELINK_PCI_100BASE_T4,	"100baseT4",	IFM_ETHER | IFM_100_T4,
    155 	  ELINKMEDIA_100BASE_T4 },
    156 	{ 0,			NULL,		0,
    157 	  0 },
    158 };
    159 
    160 /*
    161  * Media table for the older 3Com Etherlink III chipset, used
    162  * in the 3c509, 3c579, and 3c589.
    163  */
    164 const struct ep_media ep_509_media[] = {
    165 	{ ELINK_W0_CC_UTP,	"10baseT",	IFM_ETHER | IFM_10_T,
    166 	  ELINKMEDIA_10BASE_T },
    167 	{ ELINK_W0_CC_AUI,	"10base5",	IFM_ETHER | IFM_10_5,
    168 	  ELINKMEDIA_AUI },
    169 	{ ELINK_W0_CC_BNC,	"10base2",	IFM_ETHER | IFM_10_2,
    170 	  ELINKMEDIA_10BASE_2 },
    171 	{ 0,			NULL,		0,
    172 	  0 },
    173 };
    174 
    175 void	ep_internalconfig(struct ep_softc *sc);
    176 void	ep_vortex_probemedia(struct ep_softc *sc);
    177 void	ep_509_probemedia(struct ep_softc *sc);
    178 
    179 static void eptxstat(struct ep_softc *);
    180 static int epstatus(struct ep_softc *);
    181 int	epinit(struct ifnet *);
    182 void	epstop(struct ifnet *, int);
    183 int	epioctl(struct ifnet *, u_long, void *);
    184 void	epstart(struct ifnet *);
    185 void	epwatchdog(struct ifnet *);
    186 void	epreset(struct ep_softc *);
    187 static bool epshutdown(device_t, int);
    188 void	epread(struct ep_softc *);
    189 struct mbuf *epget(struct ep_softc *, int);
    190 void	epmbuffill(void *);
    191 void	epmbufempty(struct ep_softc *);
    192 void	epsetfilter(struct ep_softc *);
    193 void	ep_roadrunner_mii_enable(struct ep_softc *);
    194 void	epsetmedia(struct ep_softc *);
    195 
    196 /* ifmedia callbacks */
    197 int	ep_media_change(struct ifnet *ifp);
    198 void	ep_media_status(struct ifnet *ifp, struct ifmediareq *req);
    199 
    200 /* MII callbacks */
    201 int	ep_mii_readreg(device_t, int, int, uint16_t *);
    202 int	ep_mii_writereg(device_t, int, int, uint16_t);
    203 void	ep_statchg(struct ifnet *);
    204 
    205 void	ep_tick(void *);
    206 
    207 static int epbusyeeprom(struct ep_softc *);
    208 u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
    209 static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
    210 static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
    211 static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
    212 static inline int ep_w1_reg(struct ep_softc *, int);
    213 
    214 /*
    215  * MII bit-bang glue.
    216  */
    217 u_int32_t ep_mii_bitbang_read(device_t);
    218 void ep_mii_bitbang_write(device_t, u_int32_t);
    219 
    220 const struct mii_bitbang_ops ep_mii_bitbang_ops = {
    221 	ep_mii_bitbang_read,
    222 	ep_mii_bitbang_write,
    223 	{
    224 		PHYSMGMT_DATA,		/* MII_BIT_MDO */
    225 		PHYSMGMT_DATA,		/* MII_BIT_MDI */
    226 		PHYSMGMT_CLK,		/* MII_BIT_MDC */
    227 		PHYSMGMT_DIR,		/* MII_BIT_DIR_HOST_PHY */
    228 		0,			/* MII_BIT_DIR_PHY_HOST */
    229 	}
    230 };
    231 
    232 /*
    233  * Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
    234  * Window 1 registers offset!
    235  */
    236 static inline int
    237 ep_w1_reg(struct ep_softc *sc, int reg)
    238 {
    239 
    240 	switch (sc->ep_chipset) {
    241 	case ELINK_CHIPSET_CORKSCREW:
    242 		return (reg + 0x10);
    243 
    244 	case ELINK_CHIPSET_ROADRUNNER:
    245 		switch (reg) {
    246 		case ELINK_W1_FREE_TX:
    247 		case ELINK_W1_RUNNER_RDCTL:
    248 		case ELINK_W1_RUNNER_WRCTL:
    249 			return (reg);
    250 		}
    251 		return (reg + 0x10);
    252 	}
    253 
    254 	return (reg);
    255 }
    256 
    257 /*
    258  * Wait for any pending reset to complete.
    259  * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
    260  * but older hardware doesn't implement it and we must delay.
    261  */
    262 static inline void
    263 ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
    264 {
    265 	int i;
    266 
    267 	for (i = 0; i < 10000; i++) {
    268 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    269 		    COMMAND_IN_PROGRESS) == 0)
    270 			break;
    271 		DELAY(10);
    272 	}
    273 }
    274 
    275 /*
    276  * Issue a (reset) command, and be sure it has completed.
    277  * Used for global reset, TX_RESET, RX_RESET.
    278  */
    279 static inline void
    280 ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
    281 {
    282 	bus_space_tag_t iot = sc->sc_iot;
    283 	bus_space_handle_t ioh = sc->sc_ioh;
    284 
    285 	bus_space_write_2(iot, ioh, cmd, arg);
    286 	ep_finish_reset(iot, ioh);
    287 }
    288 
    289 
    290 static inline void
    291 ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
    292 {
    293 	int i;
    294 
    295 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);
    296 
    297         /*
    298 	 * Spin for about 1 msec, to avoid forcing a DELAY() between
    299 	 * every received packet (adding latency and  limiting pkt-recv rate).
    300 	 * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
    301 	 * is about right.
    302 	 */
    303 	for (i = 0; i < 8000; i++) {
    304 		if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
    305 		    COMMAND_IN_PROGRESS) == 0)
    306 		    return;
    307 	}
    308 
    309 	/*  Didn't complete in a hurry. Do DELAY()s. */
    310 	ep_finish_reset(iot, ioh);
    311 }
    312 
    313 /*
    314  * Back-end attach and configure.
    315  */
    316 int
    317 epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
    318 {
    319 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    320 	bus_space_tag_t iot = sc->sc_iot;
    321 	bus_space_handle_t ioh = sc->sc_ioh;
    322 	struct mii_data *mii = &sc->sc_mii;
    323 	u_int16_t i;
    324 	u_int8_t myla[ETHER_ADDR_LEN];
    325 
    326 	callout_init(&sc->sc_mii_callout, 0);
    327 	callout_init(&sc->sc_mbuf_callout, 0);
    328 
    329 	sc->ep_chipset = chipset;
    330 
    331 	/*
    332 	 * We could have been groveling around in other register
    333 	 * windows in the front-end; make sure we're in window 0
    334 	 * to read the EEPROM.
    335 	 */
    336 	GO_WINDOW(0);
    337 
    338 	if (enaddr == NULL) {
    339 		/*
    340 		 * Read the station address from the eeprom.
    341 		 */
    342 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
    343 			u_int16_t x = ep_read_eeprom(sc, i);
    344 			myla[(i << 1)] = x >> 8;
    345 			myla[(i << 1) + 1] = x;
    346 		}
    347 		enaddr = myla;
    348 	}
    349 
    350 	/*
    351 	 * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
    352 	 * allow FDDI-sized (4500) byte packets.  Commands only take an
    353 	 * 11-bit parameter, and  11 bits isn't enough to hold a full-size
    354 	 * packet length.
    355 	 * Commands to these cards implicitly upshift a packet size
    356 	 * or threshold by 2 bits.
    357 	 * To detect  cards with large-packet support, we probe by setting
    358 	 * the transmit threshold register, then change windows and
    359 	 * read back the threshold register directly, and see if the
    360 	 * threshold value was shifted or not.
    361 	 */
    362 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    363 	    SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
    364 	GO_WINDOW(5);
    365 	i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
    366 	GO_WINDOW(1);
    367 	switch (i) {
    368 	case ELINK_LARGEWIN_PROBE:
    369 	case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
    370 		sc->ep_pktlenshift = 0;
    371 		break;
    372 
    373 	case (ELINK_LARGEWIN_PROBE << 2):
    374 		sc->ep_pktlenshift = 2;
    375 		break;
    376 
    377 	default:
    378 		aprint_error_dev(sc->sc_dev,
    379 		    "wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
    380 		    "Interface disabled\n",
    381 		    ELINK_LARGEWIN_PROBE, (int) i);
    382 		return (1);
    383 	}
    384 
    385 	/*
    386 	 * Ensure Tx-available interrupts are enabled for
    387 	 * start the interface.
    388 	 * XXX should be in epinit()?
    389 	 */
    390 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    391 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    392 
    393 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    394 	ifp->if_softc = sc;
    395 	ifp->if_start = epstart;
    396 	ifp->if_ioctl = epioctl;
    397 	ifp->if_watchdog = epwatchdog;
    398 	ifp->if_init = epinit;
    399 	ifp->if_stop = epstop;
    400 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    401 	IFQ_SET_READY(&ifp->if_snd);
    402 
    403 	if_attach(ifp);
    404 	ether_ifattach(ifp, enaddr);
    405 
    406 	/*
    407 	 * Finish configuration:
    408 	 * determine chipset if the front-end couldn't do so,
    409 	 * show board details, set media.
    410 	 */
    411 
    412 	/*
    413 	 * Print RAM size.  We also print the Ethernet address in here.
    414 	 * It's extracted from the ifp, so we have to make sure it's
    415 	 * been attached first.
    416 	 */
    417 	ep_internalconfig(sc);
    418 	GO_WINDOW(0);
    419 
    420 	/*
    421 	 * Display some additional information, if pertinent.
    422 	 */
    423 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
    424 		aprint_normal_dev(sc->sc_dev, "RoadRunner FIFO buffer enabled\n");
    425 
    426 	/*
    427 	 * Initialize our media structures and MII info.  We'll
    428 	 * probe the MII if we discover that we have one.
    429 	 */
    430 	mii->mii_ifp = ifp;
    431 	mii->mii_readreg = ep_mii_readreg;
    432 	mii->mii_writereg = ep_mii_writereg;
    433 	mii->mii_statchg = ep_statchg;
    434 	sc->sc_ethercom.ec_mii = mii;
    435 	ifmedia_init(&mii->mii_media, IFM_IMASK, ep_media_change,
    436 	    ep_media_status);
    437 
    438 	/*
    439 	 * All CORKSCREW chips have MII.
    440 	 */
    441 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
    442 		sc->ep_flags |= ELINK_FLAGS_MII;
    443 
    444 	/*
    445 	 * Now, determine which media we have.
    446 	 */
    447 	switch (sc->ep_chipset) {
    448 	case ELINK_CHIPSET_ROADRUNNER:
    449 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    450 			ep_roadrunner_mii_enable(sc);
    451 			GO_WINDOW(0);
    452 		}
    453 		/* FALLTHROUGH */
    454 
    455 	case ELINK_CHIPSET_CORKSCREW:
    456 	case ELINK_CHIPSET_BOOMERANG:
    457 		/*
    458 		 * If the device has MII, probe it.  We won't be using
    459 		 * any `native' media in this case, only PHYs.  If
    460 		 * we don't, just treat the Boomerang like the Vortex.
    461 		 */
    462 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    463 			mii_attach(sc->sc_dev, mii, 0xffffffff,
    464 			    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    465 			if (LIST_FIRST(&mii->mii_phys) == NULL) {
    466 				ifmedia_add(&mii->mii_media,
    467 				    IFM_ETHER | IFM_NONE, 0, NULL);
    468 				ifmedia_set(&mii->mii_media,
    469 				    IFM_ETHER | IFM_NONE);
    470 			} else {
    471 				ifmedia_set(&mii->mii_media,
    472 				    IFM_ETHER | IFM_AUTO);
    473 			}
    474 			break;
    475 		}
    476 		/* FALLTHROUGH */
    477 
    478 	case ELINK_CHIPSET_VORTEX:
    479 		ep_vortex_probemedia(sc);
    480 		break;
    481 
    482 	default:
    483 		ep_509_probemedia(sc);
    484 		break;
    485 	}
    486 
    487 	GO_WINDOW(1);		/* Window 1 is operating window */
    488 
    489 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    490 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    491 
    492 	sc->tx_start_thresh = 20;	/* probably a good starting point. */
    493 
    494 	/*  Establish callback to reset card when we reboot. */
    495 	if (pmf_device_register1(sc->sc_dev, NULL, NULL, epshutdown))
    496 		pmf_class_network_register(sc->sc_dev, ifp);
    497 	else
    498 		aprint_error_dev(sc->sc_dev,
    499 		    "couldn't establish power handler\n");
    500 
    501 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    502 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    503 
    504 	/* The attach is successful. */
    505 	sc->sc_flags |= ELINK_FLAGS_ATTACHED;
    506 	return (0);
    507 }
    508 
    509 
    510 /*
    511  * Show interface-model-independent info from window 3
    512  * internal-configuration register.
    513  */
    514 void
    515 ep_internalconfig(struct ep_softc *sc)
    516 {
    517 	bus_space_tag_t iot = sc->sc_iot;
    518 	bus_space_handle_t ioh = sc->sc_ioh;
    519 
    520 	u_int config0;
    521 	u_int config1;
    522 
    523 	int  ram_size, ram_width, ram_split;
    524 	/*
    525 	 * NVRAM buffer Rx:Tx config names for busmastering cards
    526 	 * (Demon, Vortex, and later).
    527 	 */
    528 	const char *const onboard_ram_config[] = {
    529 		"5:3", "3:1", "1:1", "3:5" };
    530 
    531 	GO_WINDOW(3);
    532 	config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
    533 	config1 = (u_int)bus_space_read_2(iot, ioh,
    534 	    ELINK_W3_INTERNAL_CONFIG + 2);
    535 	GO_WINDOW(0);
    536 
    537 	ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
    538 	ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
    539 
    540 	ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
    541 
    542 	aprint_normal_dev(sc->sc_dev, "address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
    543 	       ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
    544 	       8 << ram_size,
    545 	       (ram_width) ? "word" : "byte",
    546 	       onboard_ram_config[ram_split]);
    547 }
    548 
    549 
    550 /*
    551  * Find supported media on 3c509-generation hardware that doesn't have
    552  * a "reset_options" register in window 3.
    553  * Use the config_cntrl register  in window 0 instead.
    554  * Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
    555  * that implement  CONFIG_CTRL.  We don't have a good way to set the
    556  * default active medium; punt to ifconfig  instead.
    557  */
    558 void
    559 ep_509_probemedia(struct ep_softc *sc)
    560 {
    561 	bus_space_tag_t iot = sc->sc_iot;
    562 	bus_space_handle_t ioh = sc->sc_ioh;
    563 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    564 	u_int16_t ep_w0_config, port;
    565 	const struct ep_media *epm;
    566 	const char *sep = "", *defmedianame = NULL;
    567 	int defmedia = 0;
    568 
    569 	GO_WINDOW(0);
    570 	ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);
    571 
    572 	aprint_normal_dev(sc->sc_dev, "");
    573 
    574 	/* Sanity check that there are any media! */
    575 	if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
    576 		aprint_error("no media present!\n");
    577 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    578 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    579 		return;
    580 	}
    581 
    582 	/*
    583 	 * Get the default media from the EEPROM.
    584 	 */
    585 	port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;
    586 
    587 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
    588 
    589 	for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
    590 		if (ep_w0_config & epm->epm_mpbit) {
    591 			/*
    592 			 * This simple test works because 509 chipsets
    593 			 * don't do full-duplex.
    594 			 */
    595 			if (epm->epm_epmedia == port || defmedia == 0) {
    596 				defmedia = epm->epm_ifmedia;
    597 				defmedianame = epm->epm_name;
    598 			}
    599 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    600 			    NULL);
    601 			PRINT(epm->epm_name);
    602 		}
    603 	}
    604 
    605 #undef PRINT
    606 
    607 #ifdef DIAGNOSTIC
    608 	if (defmedia == 0)
    609 		panic("ep_509_probemedia: impossible");
    610 #endif
    611 
    612 	aprint_normal(" (default %s)\n", defmedianame);
    613 	ifmedia_set(ifm, defmedia);
    614 }
    615 
    616 /*
    617  * Find media present on large-packet-capable elink3 devices.
    618  * Show onboard configuration of large-packet-capable elink3 devices
    619  * (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
    620  * Use media and card-version info in window 3 instead.
    621  */
    622 void
    623 ep_vortex_probemedia(struct ep_softc *sc)
    624 {
    625 	bus_space_tag_t iot = sc->sc_iot;
    626 	bus_space_handle_t ioh = sc->sc_ioh;
    627 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
    628 	const struct ep_media *epm;
    629 	u_int config1;
    630 	int reset_options;
    631 	int default_media;	/* 3-bit encoding of default (EEPROM) media */
    632 	int defmedia = 0;
    633 	const char *sep = "", *defmedianame = NULL;
    634 
    635 	GO_WINDOW(3);
    636 	config1 = (u_int)bus_space_read_2(iot, ioh,
    637 	    ELINK_W3_INTERNAL_CONFIG + 2);
    638 	reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
    639 	GO_WINDOW(0);
    640 
    641 	default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
    642 
    643 	aprint_normal_dev(sc->sc_dev, "");
    644 
    645 	/* Sanity check that there are any media! */
    646 	if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
    647 		aprint_error("no media present!\n");
    648 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
    649 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
    650 		return;
    651 	}
    652 
    653 #define	PRINT(str)	aprint_normal("%s%s", sep, str); sep = ", "
    654 
    655 	for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
    656 		if (reset_options & epm->epm_mpbit) {
    657 			/*
    658 			 * Default media is a little more complicated
    659 			 * on the Vortex.  We support full-duplex which
    660 			 * uses the same reset options bit.
    661 			 *
    662 			 * XXX Check EEPROM for default to FDX?
    663 			 */
    664 			if (epm->epm_epmedia == default_media) {
    665 				if ((epm->epm_ifmedia & IFM_FDX) == 0) {
    666 					defmedia = epm->epm_ifmedia;
    667 					defmedianame = epm->epm_name;
    668 				}
    669 			} else if (defmedia == 0) {
    670 				defmedia = epm->epm_ifmedia;
    671 				defmedianame = epm->epm_name;
    672 			}
    673 			ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
    674 			    NULL);
    675 			PRINT(epm->epm_name);
    676 		}
    677 	}
    678 
    679 #undef PRINT
    680 
    681 #ifdef DIAGNOSTIC
    682 	if (defmedia == 0)
    683 		panic("ep_vortex_probemedia: impossible");
    684 #endif
    685 
    686 	aprint_normal(" (default %s)\n", defmedianame);
    687 	ifmedia_set(ifm, defmedia);
    688 }
    689 
    690 /*
    691  * One second timer, used to tick the MII.
    692  */
    693 void
    694 ep_tick(void *arg)
    695 {
    696 	struct ep_softc *sc = arg;
    697 	int s;
    698 
    699 #ifdef DIAGNOSTIC
    700 	if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
    701 		panic("ep_tick");
    702 #endif
    703 
    704 	if (!device_is_active(sc->sc_dev))
    705 		return;
    706 
    707 	s = splnet();
    708 	mii_tick(&sc->sc_mii);
    709 	splx(s);
    710 
    711 	callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
    712 }
    713 
    714 /*
    715  * Bring device up.
    716  *
    717  * The order in here seems important. Otherwise we may not receive
    718  * interrupts. ?!
    719  */
    720 int
    721 epinit(struct ifnet *ifp)
    722 {
    723 	struct ep_softc *sc = ifp->if_softc;
    724 	bus_space_tag_t iot = sc->sc_iot;
    725 	bus_space_handle_t ioh = sc->sc_ioh;
    726 	int i, error;
    727 	const u_int8_t *addr;
    728 
    729 	if (!sc->enabled && (error = epenable(sc)) != 0)
    730 		return (error);
    731 
    732 	/* Make sure any pending reset has completed before touching board */
    733 	ep_finish_reset(iot, ioh);
    734 
    735 	/*
    736 	 * Cancel any pending I/O.
    737 	 */
    738 	epstop(ifp, 0);
    739 
    740 	if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
    741 	    && sc->bustype != ELINK_BUS_MCA) {
    742 		GO_WINDOW(0);
    743 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
    744 		bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
    745 		    ENABLE_DRQ_IRQ);
    746 	}
    747 
    748 	if (sc->bustype == ELINK_BUS_PCMCIA) {
    749 		bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
    750 	}
    751 
    752 	GO_WINDOW(2);
    753 	/* Reload the ether_addr. */
    754 	addr = CLLADDR(ifp->if_sadl);
    755 	for (i = 0; i < 6; i += 2)
    756 		bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
    757 		    (addr[i] << 0) | (addr[i + 1] << 8));
    758 
    759 	/*
    760 	 * Reset the station-address receive filter.
    761 	 * A bug workaround for busmastering (Vortex, Demon) cards.
    762 	 */
    763 	for (i = 0; i < 6; i += 2)
    764 		bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
    765 
    766 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    767 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    768 
    769 	GO_WINDOW(1);		/* Window 1 is operating window */
    770 	for (i = 0; i < 31; i++)
    771 		(void)bus_space_read_2(iot, ioh,
    772 				       ep_w1_reg(sc, ELINK_W1_TX_STATUS));
    773 
    774 	/* Set threshold for Tx-space available interrupt. */
    775 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    776 	    SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
    777 
    778 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    779 		/*
    780 		 * Enable options in the PCMCIA LAN COR register, via
    781 		 * RoadRunner Window 1.
    782 		 *
    783 		 * XXX MAGIC CONSTANTS!
    784 		 */
    785 		u_int16_t cor;
    786 
    787 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));
    788 
    789 		cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
    790 		if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
    791 			cor |= 0x10;
    792 		if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
    793 			cor |= 0x20;
    794 		bus_space_write_2(iot, ioh, 0, cor);
    795 
    796 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
    797 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
    798 
    799 		if (sc->ep_flags & ELINK_FLAGS_MII) {
    800 			ep_roadrunner_mii_enable(sc);
    801 			GO_WINDOW(1);
    802 		}
    803 	}
    804 
    805 	/* Enable interrupts. */
    806 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    807 	    SET_RD_0_MASK | WATCHED_INTERRUPTS);
    808 	bus_space_write_2(iot, ioh, ELINK_COMMAND,
    809 	    SET_INTR_MASK | WATCHED_INTERRUPTS);
    810 
    811 	/*
    812 	 * Attempt to get rid of any stray interrupts that occurred during
    813 	 * configuration.  On the i386 this isn't possible because one may
    814 	 * already be queued.  However, a single stray interrupt is
    815 	 * unimportant.
    816 	 */
    817 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
    818 
    819 	epsetfilter(sc);
    820 	epsetmedia(sc);
    821 
    822 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
    823 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
    824 
    825 	epmbuffill(sc);
    826 
    827 	/* Interface is now `running', with no output active. */
    828 	ifp->if_flags |= IFF_RUNNING;
    829 	ifp->if_flags &= ~IFF_OACTIVE;
    830 
    831 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    832 		/* Start the one second clock. */
    833 		callout_reset(&sc->sc_mii_callout, hz, ep_tick, sc);
    834 	}
    835 
    836 	/* Attempt to start output, if any. */
    837 	epstart(ifp);
    838 
    839 	return (0);
    840 }
    841 
    842 
    843 /*
    844  * Set multicast receive filter.
    845  * elink3 hardware has no selective multicast filter in hardware.
    846  * Enable reception of all multicasts and filter in software.
    847  */
    848 void
    849 epsetfilter(struct ep_softc *sc)
    850 {
    851 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    852 
    853 	GO_WINDOW(1);		/* Window 1 is operating window */
    854 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
    855 	    SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
    856 	    ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
    857 	    ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
    858 }
    859 
    860 int
    861 ep_media_change(struct ifnet *ifp)
    862 {
    863 	struct ep_softc *sc = ifp->if_softc;
    864 
    865 	if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
    866 		epreset(sc);
    867 
    868 	return (0);
    869 }
    870 
    871 /*
    872  * Reset and enable the MII on the RoadRunner.
    873  */
    874 void
    875 ep_roadrunner_mii_enable(struct ep_softc *sc)
    876 {
    877 	bus_space_tag_t iot = sc->sc_iot;
    878 	bus_space_handle_t ioh = sc->sc_ioh;
    879 
    880 	GO_WINDOW(3);
    881 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    882 	    ELINK_PCI_100BASE_MII | ELINK_RUNNER_ENABLE_MII);
    883 	delay(1000);
    884 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    885 	    ELINK_PCI_100BASE_MII | ELINK_RUNNER_MII_RESET |
    886 	    ELINK_RUNNER_ENABLE_MII);
    887 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
    888 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
    889 	delay(1000);
    890 	bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    891 	    ELINK_PCI_100BASE_MII | ELINK_RUNNER_ENABLE_MII);
    892 }
    893 
    894 /*
    895  * Set the card to use the specified media.
    896  */
    897 void
    898 epsetmedia(struct ep_softc *sc)
    899 {
    900 	bus_space_tag_t iot = sc->sc_iot;
    901 	bus_space_handle_t ioh = sc->sc_ioh;
    902 
    903 	/* Turn everything off.  First turn off linkbeat and UTP. */
    904 	GO_WINDOW(4);
    905 	bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);
    906 
    907 	/* Turn off coax */
    908 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
    909 	delay(1000);
    910 
    911 	/*
    912 	 * If the device has MII, select it, and then tell the
    913 	 * PHY which media to use.
    914 	 */
    915 	if (sc->ep_flags & ELINK_FLAGS_MII) {
    916 		int config0, config1;
    917 
    918 		GO_WINDOW(3);
    919 
    920 		if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
    921 			int resopt;
    922 
    923 			resopt = bus_space_read_2(iot, ioh,
    924 			    ELINK_W3_RESET_OPTIONS);
    925 			bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
    926 			    resopt | ELINK_RUNNER_ENABLE_MII);
    927 		}
    928 
    929 		config0 = (u_int)bus_space_read_2(iot, ioh,
    930 		    ELINK_W3_INTERNAL_CONFIG);
    931 		config1 = (u_int)bus_space_read_2(iot, ioh,
    932 		    ELINK_W3_INTERNAL_CONFIG + 2);
    933 
    934 		config1 = config1 & ~CONFIG_MEDIAMASK;
    935 		config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);
    936 
    937 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
    938 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
    939 		    config1);
    940 		GO_WINDOW(1);	/* back to operating window */
    941 
    942 		mii_mediachg(&sc->sc_mii);
    943 		return;
    944 	}
    945 
    946 	/*
    947 	 * Now turn on the selected media/transceiver.
    948 	 */
    949 	GO_WINDOW(4);
    950 	switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
    951 	case IFM_10_T:
    952 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    953 		    JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
    954 		break;
    955 
    956 	case IFM_10_2:
    957 		bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
    958 		DELAY(1000);	/* 50ms not enmough? */
    959 		break;
    960 
    961 	case IFM_100_TX:
    962 	case IFM_100_FX:
    963 	case IFM_100_T4:		/* XXX check documentation */
    964 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    965 		    LINKBEAT_ENABLE);
    966 		DELAY(1000);	/* not strictly necessary? */
    967 		break;
    968 
    969 	case IFM_10_5:
    970 		bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
    971 		    SQE_ENABLE);
    972 		DELAY(1000);	/* not strictly necessary? */
    973 		break;
    974 
    975 	case IFM_MANUAL:
    976 		/*
    977 		 * Nothing to do here; we are actually enabling the
    978 		 * external PHY on the MII port.
    979 		 */
    980 		break;
    981 
    982 	case IFM_NONE:
    983 		printf("%s: interface disabled\n", device_xname(sc->sc_dev));
    984 		return;
    985 
    986 	default:
    987 		panic("epsetmedia: impossible");
    988 	}
    989 
    990 	/*
    991 	 * Tell the chip which port to use.
    992 	 */
    993 	switch (sc->ep_chipset) {
    994 	case ELINK_CHIPSET_VORTEX:
    995 	case ELINK_CHIPSET_BOOMERANG:
    996 	    {
    997 		int mctl, config0, config1;
    998 
    999 		GO_WINDOW(3);
   1000 		config0 = (u_int)bus_space_read_2(iot, ioh,
   1001 		    ELINK_W3_INTERNAL_CONFIG);
   1002 		config1 = (u_int)bus_space_read_2(iot, ioh,
   1003 		    ELINK_W3_INTERNAL_CONFIG + 2);
   1004 
   1005 		config1 = config1 & ~CONFIG_MEDIAMASK;
   1006 		config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
   1007 		    CONFIG_MEDIAMASK_SHIFT);
   1008 
   1009 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
   1010 		bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
   1011 		    config1);
   1012 
   1013 		mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   1014 		if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
   1015 			mctl |= MAC_CONTROL_FDX;
   1016 		else
   1017 			mctl &= ~MAC_CONTROL_FDX;
   1018 		bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   1019 		break;
   1020 	    }
   1021 	default:
   1022 	    {
   1023 		int w0_addr_cfg;
   1024 
   1025 		GO_WINDOW(0);
   1026 		w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
   1027 		w0_addr_cfg &= 0x3fff;
   1028 		bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
   1029 		    (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
   1030 		DELAY(1000);
   1031 		break;
   1032 	    }
   1033 	}
   1034 
   1035 	GO_WINDOW(1);		/* Window 1 is operating window */
   1036 }
   1037 
   1038 /*
   1039  * Get currently-selected media from card.
   1040  * (if_media callback, may be called before interface is brought up).
   1041  */
   1042 void
   1043 ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
   1044 {
   1045 	struct ep_softc *sc = ifp->if_softc;
   1046 	bus_space_tag_t iot = sc->sc_iot;
   1047 	bus_space_handle_t ioh = sc->sc_ioh;
   1048 
   1049 	if (sc->enabled == 0) {
   1050 		req->ifm_active = IFM_ETHER | IFM_NONE;
   1051 		req->ifm_status = 0;
   1052 		return;
   1053 	}
   1054 
   1055 	/*
   1056 	 * If we have MII, go ask the PHY what's going on.
   1057 	 */
   1058 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1059 		mii_pollstat(&sc->sc_mii);
   1060 		req->ifm_active = sc->sc_mii.mii_media_active;
   1061 		req->ifm_status = sc->sc_mii.mii_media_status;
   1062 		return;
   1063 	}
   1064 
   1065 	/*
   1066 	 * Ok, at this point we claim that our active media is
   1067 	 * the currently selected media.  We'll update our status
   1068 	 * if our chipset allows us to detect link.
   1069 	 */
   1070 	req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
   1071 	req->ifm_status = 0;
   1072 
   1073 	switch (sc->ep_chipset) {
   1074 	case ELINK_CHIPSET_VORTEX:
   1075 	case ELINK_CHIPSET_BOOMERANG:
   1076 		GO_WINDOW(4);
   1077 		req->ifm_status = IFM_AVALID;
   1078 		if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
   1079 		    LINKBEAT_DETECT)
   1080 			req->ifm_status |= IFM_ACTIVE;
   1081 		GO_WINDOW(1);	/* back to operating window */
   1082 		break;
   1083 	}
   1084 }
   1085 
   1086 
   1087 
   1088 /*
   1089  * Start outputting on the interface.
   1090  * Always called as splnet().
   1091  */
   1092 void
   1093 epstart(struct ifnet *ifp)
   1094 {
   1095 	struct ep_softc *sc = ifp->if_softc;
   1096 	bus_space_tag_t iot = sc->sc_iot;
   1097 	bus_space_handle_t ioh = sc->sc_ioh;
   1098 	struct mbuf *m, *m0;
   1099 	int sh, len, pad;
   1100 	bus_size_t txreg;
   1101 
   1102 	/* Don't transmit if interface is busy or not running */
   1103 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1104 		return;
   1105 
   1106 startagain:
   1107 	/* Sneak a peek at the next packet */
   1108 	IFQ_POLL(&ifp->if_snd, m0);
   1109 	if (m0 == 0)
   1110 		return;
   1111 
   1112 	/* We need to use m->m_pkthdr.len, so require the header */
   1113 	if ((m0->m_flags & M_PKTHDR) == 0)
   1114 		panic("epstart: no header mbuf");
   1115 	len = m0->m_pkthdr.len;
   1116 
   1117 	pad = (4 - len) & 3;
   1118 
   1119 	/*
   1120 	 * The 3c509 automatically pads short packets to minimum ethernet
   1121 	 * length, but we drop packets that are too large. Perhaps we should
   1122 	 * truncate them instead?
   1123 	 */
   1124 	if (len + pad > ETHER_MAX_LEN) {
   1125 		/* packet is obviously too large: toss it */
   1126 		if_statinc(ifp, if_oerrors);
   1127 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1128 		m_freem(m0);
   1129 		goto readcheck;
   1130 	}
   1131 
   1132 	if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
   1133 	    len + pad + 4) {
   1134 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1135 		    SET_TX_AVAIL_THRESH |
   1136 		    ((len + pad + 4) >> sc->ep_pktlenshift));
   1137 		/* not enough room in FIFO */
   1138 		ifp->if_flags |= IFF_OACTIVE;
   1139 		return;
   1140 	} else {
   1141 		bus_space_write_2(iot, ioh, ELINK_COMMAND,
   1142 		    SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
   1143 	}
   1144 
   1145 	IFQ_DEQUEUE(&ifp->if_snd, m0);
   1146 	if (m0 == 0)		/* not really needed */
   1147 		return;
   1148 
   1149 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
   1150 	    ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));
   1151 
   1152 	bpf_mtap(ifp, m0, BPF_D_OUT);
   1153 
   1154 	/*
   1155 	 * Do the output at a high interrupt priority level so that an
   1156 	 * interrupt from another device won't cause a FIFO underrun.
   1157 	 * We choose splsched() since that blocks essentially everything
   1158 	 * except for interrupts from serial devices (which typically
   1159 	 * lose data if their interrupt isn't serviced fast enough).
   1160 	 *
   1161 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
   1162 	 */
   1163 	sh = splsched();
   1164 
   1165 	txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);
   1166 
   1167 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1168 		/*
   1169 		 * Prime the FIFO buffer counter (number of 16-bit
   1170 		 * words about to be written to the FIFO).
   1171 		 *
   1172 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1173 		 * COUNTER IS NON-ZERO!
   1174 		 */
   1175 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
   1176 		    (len + pad) >> 1);
   1177 	}
   1178 
   1179 	bus_space_write_2(iot, ioh, txreg, len);
   1180 	bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
   1181 	if (ELINK_IS_BUS_32(sc->bustype)) {
   1182 		for (m = m0; m;) {
   1183 			if (m->m_len > 3) {
   1184 				/* align our reads from core */
   1185 				if (mtod(m, u_long) & 3) {
   1186 					u_long count =
   1187 					    4 - (mtod(m, u_long) & 3);
   1188 					bus_space_write_multi_1(iot, ioh,
   1189 					    txreg, mtod(m, u_int8_t *), count);
   1190 					m->m_data =
   1191 					    (void *)(mtod(m, u_long) + count);
   1192 					m->m_len -= count;
   1193 				}
   1194 				bus_space_write_multi_stream_4(iot, ioh,
   1195 				    txreg, mtod(m, u_int32_t *), m->m_len >> 2);
   1196 				m->m_data = (void *)(mtod(m, u_long) +
   1197 					(u_long)(m->m_len & ~3));
   1198 				m->m_len -= m->m_len & ~3;
   1199 			}
   1200 			if (m->m_len) {
   1201 				bus_space_write_multi_1(iot, ioh,
   1202 				    txreg, mtod(m, u_int8_t *), m->m_len);
   1203 			}
   1204 			m = m0 = m_free(m);
   1205 		}
   1206 	} else {
   1207 		for (m = m0; m;) {
   1208 			if (m->m_len > 1) {
   1209 				if (mtod(m, u_long) & 1) {
   1210 					bus_space_write_1(iot, ioh,
   1211 					    txreg, *(mtod(m, u_int8_t *)));
   1212 					m->m_data =
   1213 					    (void *)(mtod(m, u_long) + 1);
   1214 					m->m_len -= 1;
   1215 				}
   1216 				bus_space_write_multi_stream_2(iot, ioh,
   1217 				    txreg, mtod(m, u_int16_t *),
   1218 				    m->m_len >> 1);
   1219 			}
   1220 			if (m->m_len & 1) {
   1221 				bus_space_write_1(iot, ioh, txreg,
   1222 				     *(mtod(m, u_int8_t *) + m->m_len - 1));
   1223 			}
   1224 			m = m0 = m_free(m);
   1225 		}
   1226 	}
   1227 	while (pad--)
   1228 		bus_space_write_1(iot, ioh, txreg, 0);
   1229 
   1230 	splx(sh);
   1231 
   1232 	if_statinc(ifp, if_opackets);
   1233 
   1234 readcheck:
   1235 	if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
   1236 	    ERR_INCOMPLETE) == 0) {
   1237 		/* We received a complete packet. */
   1238 		u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1239 
   1240 		if ((status & INTR_LATCH) == 0) {
   1241 			/*
   1242 			 * No interrupt, read the packet and continue
   1243 			 * Is  this supposed to happen? Is my motherboard
   1244 			 * completely busted?
   1245 			 */
   1246 			epread(sc);
   1247 		} else {
   1248 			/* Got an interrupt, return so that it gets serviced. */
   1249 			return;
   1250 		}
   1251 	} else {
   1252 		/* Check if we are stuck and reset [see XXX comment] */
   1253 		if (epstatus(sc)) {
   1254 			if (ifp->if_flags & IFF_DEBUG)
   1255 				printf("%s: adapter reset\n",
   1256 				    device_xname(sc->sc_dev));
   1257 			epreset(sc);
   1258 		}
   1259 	}
   1260 
   1261 	goto startagain;
   1262 }
   1263 
   1264 
   1265 /*
   1266  * XXX: The 3c509 card can get in a mode where both the fifo status bit
   1267  *	FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
   1268  *	We detect this situation and we reset the adapter.
   1269  *	It happens at times when there is a lot of broadcast traffic
   1270  *	on the cable (once in a blue moon).
   1271  */
   1272 static int
   1273 epstatus(struct ep_softc *sc)
   1274 {
   1275 	bus_space_tag_t iot = sc->sc_iot;
   1276 	bus_space_handle_t ioh = sc->sc_ioh;
   1277 	u_int16_t fifost;
   1278 
   1279 	/*
   1280 	 * Check the FIFO status and act accordingly
   1281 	 */
   1282 	GO_WINDOW(4);
   1283 	fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
   1284 	GO_WINDOW(1);
   1285 
   1286 	if (fifost & FIFOS_RX_UNDERRUN) {
   1287 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1288 			printf("%s: RX underrun\n", device_xname(sc->sc_dev));
   1289 		epreset(sc);
   1290 		return 0;
   1291 	}
   1292 
   1293 	if (fifost & FIFOS_RX_STATUS_OVERRUN) {
   1294 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1295 			printf("%s: RX Status overrun\n", device_xname(sc->sc_dev));
   1296 		return 1;
   1297 	}
   1298 
   1299 	if (fifost & FIFOS_RX_OVERRUN) {
   1300 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1301 			printf("%s: RX overrun\n", device_xname(sc->sc_dev));
   1302 		return 1;
   1303 	}
   1304 
   1305 	if (fifost & FIFOS_TX_OVERRUN) {
   1306 		if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1307 			printf("%s: TX overrun\n", device_xname(sc->sc_dev));
   1308 		epreset(sc);
   1309 		return 0;
   1310 	}
   1311 
   1312 	return 0;
   1313 }
   1314 
   1315 
   1316 static void
   1317 eptxstat(struct ep_softc *sc)
   1318 {
   1319 	bus_space_tag_t iot = sc->sc_iot;
   1320 	bus_space_handle_t ioh = sc->sc_ioh;
   1321 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1322 	int i;
   1323 
   1324 	/*
   1325 	 * We need to read+write TX_STATUS until we get a 0 status
   1326 	 * in order to turn off the interrupt flag.
   1327 	 */
   1328 	while ((i = bus_space_read_2(iot, ioh,
   1329 	     ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
   1330 		bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
   1331 		    0x0);
   1332 
   1333 		if (i & TXS_JABBER) {
   1334 			if_statinc(ifp, if_oerrors);
   1335 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1336 				printf("%s: jabber (%x)\n",
   1337 				       device_xname(sc->sc_dev), i);
   1338 			epreset(sc);
   1339 		} else if (i & TXS_UNDERRUN) {
   1340 			if_statinc(ifp, if_oerrors);
   1341 			if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
   1342 				printf("%s: fifo underrun (%x) @%d\n",
   1343 				       device_xname(sc->sc_dev), i,
   1344 				       sc->tx_start_thresh);
   1345 			if (sc->tx_succ_ok < 100)
   1346 				    sc->tx_start_thresh = uimin(ETHER_MAX_LEN,
   1347 					    sc->tx_start_thresh + 20);
   1348 			sc->tx_succ_ok = 0;
   1349 			epreset(sc);
   1350 		} else if (i & TXS_MAX_COLLISION) {
   1351 			if_statinc(ifp, if_collisions);
   1352 			bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
   1353 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1354 		} else
   1355 			sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
   1356 	}
   1357 }
   1358 
   1359 int
   1360 epintr(void *arg)
   1361 {
   1362 	struct ep_softc *sc = arg;
   1363 	bus_space_tag_t iot = sc->sc_iot;
   1364 	bus_space_handle_t ioh = sc->sc_ioh;
   1365 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1366 	u_int16_t status;
   1367 	int ret = 0;
   1368 
   1369 	if (sc->enabled == 0 || !device_is_active(sc->sc_dev))
   1370 		return (0);
   1371 
   1372 
   1373 	for (;;) {
   1374 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1375 
   1376 		if ((status & WATCHED_INTERRUPTS) == 0) {
   1377 			if ((status & INTR_LATCH) == 0) {
   1378 #if 0
   1379 				printf("%s: intr latch cleared\n",
   1380 				       device_xname(sc->sc_dev));
   1381 #endif
   1382 				break;
   1383 			}
   1384 		}
   1385 
   1386 		ret = 1;
   1387 
   1388 		/*
   1389 		 * Acknowledge any interrupts.  It's important that we do this
   1390 		 * first, since there would otherwise be a race condition.
   1391 		 * Due to the i386 interrupt queueing, we may get spurious
   1392 		 * interrupts occasionally.
   1393 		 */
   1394 		bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
   1395 		    (status & (INTR_LATCH | ALL_INTERRUPTS)));
   1396 
   1397 #if 0
   1398 		status = bus_space_read_2(iot, ioh, ELINK_STATUS);
   1399 
   1400 		printf("%s: intr%s%s%s%s\n", device_xname(sc->sc_dev),
   1401 		       (status & RX_COMPLETE)?" RX_COMPLETE":"",
   1402 		       (status & TX_COMPLETE)?" TX_COMPLETE":"",
   1403 		       (status & TX_AVAIL)?" TX_AVAIL":"",
   1404 		       (status & CARD_FAILURE)?" CARD_FAILURE":"");
   1405 #endif
   1406 
   1407 		if (status & RX_COMPLETE) {
   1408 			epread(sc);
   1409 		}
   1410 		if (status & TX_AVAIL) {
   1411 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
   1412 			epstart(&sc->sc_ethercom.ec_if);
   1413 		}
   1414 		if (status & CARD_FAILURE) {
   1415 			printf("%s: adapter failure (%x)\n",
   1416 			    device_xname(sc->sc_dev), status);
   1417 #if 1
   1418 			epinit(ifp);
   1419 #else
   1420 			epreset(sc);
   1421 #endif
   1422 			return (1);
   1423 		}
   1424 		if (status & TX_COMPLETE) {
   1425 			eptxstat(sc);
   1426 			epstart(ifp);
   1427 		}
   1428 
   1429 		if (status)
   1430 			rnd_add_uint32(&sc->rnd_source, status);
   1431 	}
   1432 
   1433 	/* no more interrupts */
   1434 	return (ret);
   1435 }
   1436 
   1437 void
   1438 epread(struct ep_softc *sc)
   1439 {
   1440 	bus_space_tag_t iot = sc->sc_iot;
   1441 	bus_space_handle_t ioh = sc->sc_ioh;
   1442 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1443 	struct mbuf *m;
   1444 	int len;
   1445 
   1446 	len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1447 
   1448 again:
   1449 	if (ifp->if_flags & IFF_DEBUG) {
   1450 		int err = len & ERR_MASK;
   1451 		const char *s = NULL;
   1452 
   1453 		if (len & ERR_INCOMPLETE)
   1454 			s = "incomplete packet";
   1455 		else if (err == ERR_OVERRUN)
   1456 			s = "packet overrun";
   1457 		else if (err == ERR_RUNT)
   1458 			s = "runt packet";
   1459 		else if (err == ERR_ALIGNMENT)
   1460 			s = "bad alignment";
   1461 		else if (err == ERR_CRC)
   1462 			s = "bad crc";
   1463 		else if (err == ERR_OVERSIZE)
   1464 			s = "oversized packet";
   1465 		else if (err == ERR_DRIBBLE)
   1466 			s = "dribble bits";
   1467 
   1468 		if (s)
   1469 			printf("%s: %s\n", device_xname(sc->sc_dev), s);
   1470 	}
   1471 
   1472 	if (len & ERR_INCOMPLETE)
   1473 		return;
   1474 
   1475 	if (len & ERR_RX) {
   1476 		if_statinc(ifp, if_ierrors);
   1477 		goto abort;
   1478 	}
   1479 
   1480 	len &= RX_BYTES_MASK;	/* Lower 11 bits = RX bytes. */
   1481 
   1482 	/* Pull packet off interface. */
   1483 	m = epget(sc, len);
   1484 	if (m == 0) {
   1485 		if_statinc(ifp, if_ierrors);
   1486 		goto abort;
   1487 	}
   1488 
   1489 	if_percpuq_enqueue(ifp->if_percpuq, m);
   1490 
   1491 	/*
   1492 	 * In periods of high traffic we can actually receive enough
   1493 	 * packets so that the fifo overrun bit will be set at this point,
   1494 	 * even though we just read a packet. In this case we
   1495 	 * are not going to receive any more interrupts. We check for
   1496 	 * this condition and read again until the fifo is not full.
   1497 	 * We could simplify this test by not using epstatus(), but
   1498 	 * rechecking the RX_STATUS register directly. This test could
   1499 	 * result in unnecessary looping in cases where there is a new
   1500 	 * packet but the fifo is not full, but it will not fix the
   1501 	 * stuck behavior.
   1502 	 *
   1503 	 * Even with this improvement, we still get packet overrun errors
   1504 	 * which are hurting performance. Maybe when I get some more time
   1505 	 * I'll modify epread() so that it can handle RX_EARLY interrupts.
   1506 	 */
   1507 	if (epstatus(sc)) {
   1508 		len = bus_space_read_2(iot, ioh,
   1509 		    ep_w1_reg(sc, ELINK_W1_RX_STATUS));
   1510 		/* Check if we are stuck and reset [see XXX comment] */
   1511 		if (len & ERR_INCOMPLETE) {
   1512 			if (ifp->if_flags & IFF_DEBUG)
   1513 				printf("%s: adapter reset\n",
   1514 				    device_xname(sc->sc_dev));
   1515 			epreset(sc);
   1516 			return;
   1517 		}
   1518 		goto again;
   1519 	}
   1520 
   1521 	return;
   1522 
   1523 abort:
   1524 	ep_discard_rxtop(iot, ioh);
   1525 
   1526 }
   1527 
   1528 struct mbuf *
   1529 epget(struct ep_softc *sc, int totlen)
   1530 {
   1531 	bus_space_tag_t iot = sc->sc_iot;
   1532 	bus_space_handle_t ioh = sc->sc_ioh;
   1533 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1534 	struct mbuf *m;
   1535 	bus_size_t rxreg;
   1536 	int len, remaining;
   1537 	int s;
   1538 	void *newdata;
   1539 	u_long offset;
   1540 
   1541 	m = sc->mb[sc->next_mb];
   1542 	sc->mb[sc->next_mb] = 0;
   1543 	if (m == 0) {
   1544 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1545 		if (m == 0)
   1546 			return 0;
   1547 	} else {
   1548 		/* If the queue is no longer full, refill. */
   1549 		if (sc->last_mb == sc->next_mb)
   1550 			callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
   1551 
   1552 		/* Convert one of our saved mbuf's. */
   1553 		sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
   1554 		m->m_data = m->m_pktdat;
   1555 		m->m_flags = M_PKTHDR;
   1556 		memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
   1557 	}
   1558 	m_set_rcvif(m, ifp);
   1559 	m->m_pkthdr.len = totlen;
   1560 	len = MHLEN;
   1561 
   1562 	/*
   1563 	 * Allocate big enough space to hold whole packet, to avoid
   1564 	 * allocating new mbufs on splsched().
   1565 	 */
   1566 	if (totlen + ALIGNBYTES > len) {
   1567 		if (totlen + ALIGNBYTES > MCLBYTES) {
   1568 			len = ALIGN(totlen + ALIGNBYTES);
   1569 			MEXTMALLOC(m, len, M_DONTWAIT);
   1570 		} else {
   1571 			len = MCLBYTES;
   1572 			MCLGET(m, M_DONTWAIT);
   1573 		}
   1574 		if ((m->m_flags & M_EXT) == 0) {
   1575 			m_free(m);
   1576 			return 0;
   1577 		}
   1578 	}
   1579 
   1580 	/* align the struct ip header */
   1581 	newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
   1582 	    - sizeof(struct ether_header);
   1583 	m->m_data = newdata;
   1584 	m->m_len = totlen;
   1585 
   1586 	rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
   1587 	remaining = totlen;
   1588 	offset = mtod(m, u_long);
   1589 
   1590 	/*
   1591 	 * We read the packet at a high interrupt priority level so that
   1592 	 * an interrupt from another device won't cause the card's packet
   1593 	 * buffer to overflow.  We choose splsched() since that blocks
   1594 	 * essentially everything except for interrupts from serial
   1595 	 * devices (which typically lose data if their interrupt isn't
   1596 	 * serviced fast enough).
   1597 	 *
   1598 	 * XXX THIS CAN CAUSE CLOCK DRIFT!
   1599 	 */
   1600 	s = splsched();
   1601 
   1602 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
   1603 		/*
   1604 		 * Prime the FIFO buffer counter (number of 16-bit
   1605 		 * words about to be read from the FIFO).
   1606 		 *
   1607 		 * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
   1608 		 * COUNTER IS NON-ZERO!
   1609 		 */
   1610 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
   1611 	}
   1612 
   1613 	if (ELINK_IS_BUS_32(sc->bustype)) {
   1614 		/*
   1615 		 * Read bytes up to the point where we are aligned.
   1616 		 * (We can align to 4 bytes, rather than ALIGNBYTES,
   1617 		 * here because we're later reading 4-byte chunks.)
   1618 		 */
   1619 		if ((remaining > 3) && (offset & 3)) {
   1620 			int count = (4 - (offset & 3));
   1621 			bus_space_read_multi_1(iot, ioh,
   1622 			    rxreg, (u_int8_t *) offset, count);
   1623 			offset += count;
   1624 			remaining -= count;
   1625 		}
   1626 		if (remaining > 3) {
   1627 			bus_space_read_multi_stream_4(iot, ioh,
   1628 			    rxreg, (u_int32_t *) offset,
   1629 				    remaining >> 2);
   1630 			offset += remaining & ~3;
   1631 			remaining &= 3;
   1632 		}
   1633 		if (remaining) {
   1634 			bus_space_read_multi_1(iot, ioh,
   1635 			    rxreg, (u_int8_t *) offset, remaining);
   1636 		}
   1637 	} else {
   1638 		if ((remaining > 1) && (offset & 1)) {
   1639 			bus_space_read_multi_1(iot, ioh,
   1640 			    rxreg, (u_int8_t *) offset, 1);
   1641 			remaining -= 1;
   1642 			offset += 1;
   1643 		}
   1644 		if (remaining > 1) {
   1645 			bus_space_read_multi_stream_2(iot, ioh,
   1646 			    rxreg, (u_int16_t *) offset,
   1647 			    remaining >> 1);
   1648 			offset += remaining & ~1;
   1649 		}
   1650 		if (remaining & 1) {
   1651 				bus_space_read_multi_1(iot, ioh,
   1652 			    rxreg, (u_int8_t *) offset, remaining & 1);
   1653 		}
   1654 	}
   1655 
   1656 	ep_discard_rxtop(iot, ioh);
   1657 
   1658 	if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
   1659 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1660 	splx(s);
   1661 
   1662 	return (m);
   1663 }
   1664 
   1665 int
   1666 epioctl(struct ifnet *ifp, u_long cmd, void *data)
   1667 {
   1668 	struct ep_softc *sc = ifp->if_softc;
   1669 	int s, error = 0;
   1670 
   1671 	s = splnet();
   1672 
   1673 	switch (cmd) {
   1674 	case SIOCADDMULTI:
   1675 	case SIOCDELMULTI:
   1676 		if (sc->enabled == 0) {
   1677 			error = EIO;
   1678 			break;
   1679 		}
   1680 
   1681 		/* FALLTHROUGH */
   1682 	default:
   1683 		error = ether_ioctl(ifp, cmd, data);
   1684 
   1685 		if (error == ENETRESET) {
   1686 			/*
   1687 			 * Multicast list has changed; set the hardware filter
   1688 			 * accordingly.
   1689 			 */
   1690 			if (ifp->if_flags & IFF_RUNNING)
   1691 				epreset(sc);
   1692 			error = 0;
   1693 		}
   1694 		break;
   1695 	}
   1696 
   1697 	splx(s);
   1698 	return (error);
   1699 }
   1700 
   1701 void
   1702 epreset(struct ep_softc *sc)
   1703 {
   1704 	int s;
   1705 
   1706 	s = splnet();
   1707 	epinit(&sc->sc_ethercom.ec_if);
   1708 	splx(s);
   1709 }
   1710 
   1711 void
   1712 epwatchdog(struct ifnet *ifp)
   1713 {
   1714 	struct ep_softc *sc = ifp->if_softc;
   1715 
   1716 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
   1717 	if_statinc(ifp, if_oerrors);
   1718 
   1719 	epreset(sc);
   1720 }
   1721 
   1722 void
   1723 epstop(struct ifnet *ifp, int disable)
   1724 {
   1725 	struct ep_softc *sc = ifp->if_softc;
   1726 	bus_space_tag_t iot = sc->sc_iot;
   1727 	bus_space_handle_t ioh = sc->sc_ioh;
   1728 
   1729 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   1730 		/* Stop the one second clock. */
   1731 		callout_stop(&sc->sc_mbuf_callout);
   1732 
   1733 		/* Down the MII. */
   1734 		mii_down(&sc->sc_mii);
   1735 	}
   1736 
   1737 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
   1738 		/*
   1739 		 * Clear the FIFO buffer count, thus halting
   1740 		 * any currently-running transactions.
   1741 		 */
   1742 		GO_WINDOW(1);		/* sanity */
   1743 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
   1744 		bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
   1745 	}
   1746 
   1747 	bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
   1748 	ep_discard_rxtop(iot, ioh);
   1749 
   1750 	bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
   1751 	bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
   1752 
   1753 	ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
   1754 	ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
   1755 
   1756 	bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
   1757 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
   1758 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
   1759 	bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);
   1760 
   1761 	epmbufempty(sc);
   1762 
   1763 	if (disable)
   1764 		epdisable(sc);
   1765 
   1766 	ifp->if_flags &= ~IFF_RUNNING;
   1767 }
   1768 
   1769 
   1770 /*
   1771  * Before reboots, reset card completely.
   1772  */
   1773 static bool
   1774 epshutdown(device_t self, int howto)
   1775 {
   1776 	struct ep_softc *sc = device_private(self);
   1777 	int s = splnet();
   1778 
   1779 	if (sc->enabled) {
   1780 		epstop(&sc->sc_ethercom.ec_if, 0);
   1781 		ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
   1782 		epdisable(sc);
   1783 		sc->enabled = 0;
   1784 	}
   1785 	splx(s);
   1786 
   1787 	return true;
   1788 }
   1789 
   1790 /*
   1791  * We get eeprom data from the id_port given an offset into the
   1792  * eeprom.  Basically; after the ID_sequence is sent to all of
   1793  * the cards; they enter the ID_CMD state where they will accept
   1794  * command requests. 0x80-0xbf loads the eeprom data.  We then
   1795  * read the port 16 times and with every read; the cards check
   1796  * for contention (ie: if one card writes a 0 bit and another
   1797  * writes a 1 bit then the host sees a 0. At the end of the cycle;
   1798  * each card compares the data on the bus; if there is a difference
   1799  * then that card goes into ID_WAIT state again). In the meantime;
   1800  * one bit of data is returned in the AX register which is conveniently
   1801  * returned to us by bus_space_read_2().  Hence; we read 16 times getting one
   1802  * bit of data with each read.
   1803  *
   1804  * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
   1805  */
   1806 u_int16_t
   1807 epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
   1808 {
   1809 	u_int16_t data = 0;
   1810 	int i;
   1811 
   1812 	bus_space_write_2(iot, ioh, 0, 0x80 + offset);
   1813 	delay(1000);
   1814 	for (i = 0; i < 16; i++)
   1815 		data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
   1816 	return (data);
   1817 }
   1818 
   1819 static int
   1820 epbusyeeprom(struct ep_softc *sc)
   1821 {
   1822 	bus_space_tag_t iot = sc->sc_iot;
   1823 	bus_space_handle_t ioh = sc->sc_ioh;
   1824 	bus_size_t eecmd;
   1825 	int i = 100, j;
   1826 	uint16_t busybit;
   1827 
   1828 	if (sc->bustype == ELINK_BUS_PCMCIA) {
   1829 		delay(1000);
   1830 		return 0;
   1831 	}
   1832 
   1833 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
   1834 		eecmd = CORK_ASIC_EEPROM_COMMAND;
   1835 		busybit = CORK_EEPROM_BUSY;
   1836 	} else {
   1837 		eecmd = ELINK_W0_EEPROM_COMMAND;
   1838 		busybit = EEPROM_BUSY;
   1839 	}
   1840 
   1841 	j = 0;		/* bad GCC flow analysis */
   1842 	while (i--) {
   1843 		j = bus_space_read_2(iot, ioh, eecmd);
   1844 		if (j & busybit)
   1845 			delay(100);
   1846 		else
   1847 			break;
   1848 	}
   1849 	if (i == 0) {
   1850 		aprint_normal("\n");
   1851 		aprint_error_dev(sc->sc_dev, "eeprom failed to come ready\n");
   1852 		return (1);
   1853 	}
   1854 	if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
   1855 	    (j & EEPROM_TST_MODE) != 0) {
   1856 		/* XXX PnP mode? */
   1857 		printf("\n%s: erase pencil mark!\n", device_xname(sc->sc_dev));
   1858 		return (1);
   1859 	}
   1860 	return (0);
   1861 }
   1862 
   1863 u_int16_t
   1864 ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
   1865 {
   1866 	bus_size_t eecmd, eedata;
   1867 	u_int16_t readcmd;
   1868 
   1869 	if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
   1870 		eecmd = CORK_ASIC_EEPROM_COMMAND;
   1871 		eedata = CORK_ASIC_EEPROM_DATA;
   1872 	} else {
   1873 		eecmd = ELINK_W0_EEPROM_COMMAND;
   1874 		eedata = ELINK_W0_EEPROM_DATA;
   1875 	}
   1876 
   1877 	/*
   1878 	 * RoadRunner has a larger EEPROM, so a different read command
   1879 	 * is required.
   1880 	 */
   1881 	if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
   1882 		readcmd = READ_EEPROM_RR;
   1883 	else
   1884 		readcmd = READ_EEPROM;
   1885 
   1886 	if (epbusyeeprom(sc))
   1887 		return (0);		/* XXX why is eeprom busy? */
   1888 
   1889 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);
   1890 
   1891 	if (epbusyeeprom(sc))
   1892 		return (0);		/* XXX why is eeprom busy? */
   1893 
   1894 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
   1895 }
   1896 
   1897 void
   1898 epmbuffill(void *v)
   1899 {
   1900 	struct ep_softc *sc = v;
   1901 	struct mbuf *m;
   1902 	int s, i;
   1903 
   1904 	s = splnet();
   1905 	i = sc->last_mb;
   1906 	do {
   1907 		if (sc->mb[i] == 0) {
   1908 			MGET(m, M_DONTWAIT, MT_DATA);
   1909 			if (m == 0)
   1910 				break;
   1911 			sc->mb[i] = m;
   1912 		}
   1913 		i = (i + 1) % MAX_MBS;
   1914 	} while (i != sc->next_mb);
   1915 	sc->last_mb = i;
   1916 	/* If the queue was not filled, try again. */
   1917 	if (sc->last_mb != sc->next_mb)
   1918 		callout_reset(&sc->sc_mbuf_callout, 1, epmbuffill, sc);
   1919 	splx(s);
   1920 }
   1921 
   1922 void
   1923 epmbufempty(struct ep_softc *sc)
   1924 {
   1925 	int s, i;
   1926 
   1927 	s = splnet();
   1928 	for (i = 0; i < MAX_MBS; i++) {
   1929 		if (sc->mb[i]) {
   1930 			m_freem(sc->mb[i]);
   1931 			sc->mb[i] = NULL;
   1932 		}
   1933 	}
   1934 	sc->last_mb = sc->next_mb = 0;
   1935 	callout_stop(&sc->sc_mbuf_callout);
   1936 	splx(s);
   1937 }
   1938 
   1939 int
   1940 epenable(struct ep_softc *sc)
   1941 {
   1942 
   1943 	if (sc->enabled == 0 && sc->enable != NULL) {
   1944 		if ((*sc->enable)(sc) != 0) {
   1945 			aprint_error_dev(sc->sc_dev, "device enable failed\n");
   1946 			return (EIO);
   1947 		}
   1948 	}
   1949 
   1950 	sc->enabled = 1;
   1951 	return (0);
   1952 }
   1953 
   1954 void
   1955 epdisable(struct ep_softc *sc)
   1956 {
   1957 
   1958 	if (sc->enabled != 0 && sc->disable != NULL) {
   1959 		(*sc->disable)(sc);
   1960 		sc->enabled = 0;
   1961 	}
   1962 }
   1963 
   1964 /*
   1965  * ep_activate:
   1966  *
   1967  *	Handle device activation/deactivation requests.
   1968  */
   1969 int
   1970 ep_activate(device_t self, enum devact act)
   1971 {
   1972 	struct ep_softc *sc = device_private(self);
   1973 
   1974 	switch (act) {
   1975 	case DVACT_DEACTIVATE:
   1976 		if_deactivate(&sc->sc_ethercom.ec_if);
   1977 		return 0;
   1978 	default:
   1979 		return EOPNOTSUPP;
   1980 	}
   1981 }
   1982 
   1983 /*
   1984  * ep_detach:
   1985  *
   1986  *	Detach a elink3 interface.
   1987  */
   1988 int
   1989 ep_detach(device_t self, int flags)
   1990 {
   1991 	struct ep_softc *sc = device_private(self);
   1992 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1993 
   1994 	/* Succeed now if there's no work to do. */
   1995 	if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
   1996 		return (0);
   1997 
   1998 	epdisable(sc);
   1999 
   2000 	callout_stop(&sc->sc_mii_callout);
   2001 	callout_stop(&sc->sc_mbuf_callout);
   2002 
   2003 	if (sc->ep_flags & ELINK_FLAGS_MII) {
   2004 		/* Detach all PHYs */
   2005 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
   2006 	}
   2007 
   2008 	rnd_detach_source(&sc->rnd_source);
   2009 	ether_ifdetach(ifp);
   2010 	if_detach(ifp);
   2011 
   2012 	/* Delete all remaining media. */
   2013 	ifmedia_fini(&sc->sc_mii.mii_media);
   2014 
   2015 	pmf_device_deregister(sc->sc_dev);
   2016 
   2017 	return (0);
   2018 }
   2019 
   2020 u_int32_t
   2021 ep_mii_bitbang_read(device_t self)
   2022 {
   2023 	struct ep_softc *sc = device_private(self);
   2024 
   2025 	/* We're already in Window 4. */
   2026 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
   2027 	    ELINK_W4_BOOM_PHYSMGMT));
   2028 }
   2029 
   2030 void
   2031 ep_mii_bitbang_write(device_t self, u_int32_t val)
   2032 {
   2033 	struct ep_softc *sc = device_private(self);
   2034 
   2035 	/* We're already in Window 4. */
   2036 	bus_space_write_2(sc->sc_iot, sc->sc_ioh,
   2037 	    ELINK_W4_BOOM_PHYSMGMT, val);
   2038 }
   2039 
   2040 int
   2041 ep_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   2042 {
   2043 	struct ep_softc *sc = device_private(self);
   2044 	int rv;
   2045 
   2046 	GO_WINDOW(4);
   2047 
   2048 	rv = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg, val);
   2049 
   2050 	GO_WINDOW(1);
   2051 
   2052 	return rv;
   2053 }
   2054 
   2055 int
   2056 ep_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   2057 {
   2058 	struct ep_softc *sc = device_private(self);
   2059 	int rv;
   2060 
   2061 	GO_WINDOW(4);
   2062 
   2063 	rv = mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);
   2064 
   2065 	GO_WINDOW(1);
   2066 
   2067 	return rv;
   2068 }
   2069 
   2070 void
   2071 ep_statchg(struct ifnet *ifp)
   2072 {
   2073 	struct ep_softc *sc = ifp->if_softc;
   2074 	bus_space_tag_t iot = sc->sc_iot;
   2075 	bus_space_handle_t ioh = sc->sc_ioh;
   2076 	int mctl;
   2077 
   2078 	GO_WINDOW(3);
   2079 	mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
   2080 	if (sc->sc_mii.mii_media_active & IFM_FDX)
   2081 		mctl |= MAC_CONTROL_FDX;
   2082 	else
   2083 		mctl &= ~MAC_CONTROL_FDX;
   2084 	bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
   2085 	GO_WINDOW(1);	/* back to operating window */
   2086 }
   2087 
   2088 void
   2089 ep_power(int why, void *arg)
   2090 {
   2091 	struct ep_softc *sc = arg;
   2092 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2093 	int s;
   2094 
   2095 	s = splnet();
   2096 	switch (why) {
   2097 	case PWR_SUSPEND:
   2098 	case PWR_STANDBY:
   2099 		epstop(ifp, 1);
   2100 		break;
   2101 	case PWR_RESUME:
   2102 		if (ifp->if_flags & IFF_UP) {
   2103 			(void)epinit(ifp);
   2104 		}
   2105 		break;
   2106 	case PWR_SOFTSUSPEND:
   2107 	case PWR_SOFTSTANDBY:
   2108 	case PWR_SOFTRESUME:
   2109 		break;
   2110 	}
   2111 	splx(s);
   2112 }
   2113