elink3.c revision 1.18 1 /* $NetBSD: elink3.c,v 1.18 1996/12/31 21:36:30 jonathan Exp $ */
2
3 /*
4 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by Herb Peyerl.
18 * 4. The name of Herb Peyerl may not be used to endorse or promote products
19 * derived from this software without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #include "bpfilter.h"
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/mbuf.h>
38 #include <sys/socket.h>
39 #include <sys/ioctl.h>
40 #include <sys/errno.h>
41 #include <sys/syslog.h>
42 #include <sys/select.h>
43 #include <sys/device.h>
44
45 #include <net/if.h>
46 #include <net/netisr.h>
47 #include <net/if_dl.h>
48 #include <net/if_types.h>
49 #include <net/netisr.h>
50
51 #ifdef INET
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 #include <netinet/if_ether.h>
57 #endif
58
59 #ifdef NS
60 #include <netns/ns.h>
61 #include <netns/ns_if.h>
62 #endif
63
64 #if NBPFILTER > 0
65 #include <net/bpf.h>
66 #include <net/bpfdesc.h>
67 #endif
68
69 #include <machine/cpu.h>
70 #include <machine/bus.h>
71 #include <machine/intr.h>
72
73 #include <dev/ic/elink3var.h>
74 #include <dev/ic/elink3reg.h>
75
76 #define ETHER_MIN_LEN 64
77 #define ETHER_MAX_LEN 1518
78 #define ETHER_ADDR_LEN 6
79
80 struct cfdriver ep_cd = {
81 NULL, "ep", DV_IFNET
82 };
83
84 void ep_internalconfig __P((struct ep_softc *sc));
85 void ep_vortex_internalconfig __P((struct ep_softc *sc));
86 static void eptxstat __P((struct ep_softc *));
87 static int epstatus __P((struct ep_softc *));
88 void epinit __P((struct ep_softc *));
89 int epioctl __P((struct ifnet *, u_long, caddr_t));
90 void epstart __P((struct ifnet *));
91 void epwatchdog __P((struct ifnet *));
92 void epreset __P((struct ep_softc *));
93 static void epshutdown __P((void *));
94 void epread __P((struct ep_softc *));
95 struct mbuf *epget __P((struct ep_softc *, int));
96 void epmbuffill __P((void *));
97 void epmbufempty __P((struct ep_softc *));
98 void epsetfilter __P((struct ep_softc *));
99 void epsetlink __P((struct ep_softc *));
100
101 static int epbusyeeprom __P((struct ep_softc *));
102
103
104 void
105 epconfig(sc, conn)
106 struct ep_softc *sc;
107 u_int conn;
108 {
109 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
110 bus_space_tag_t iot = sc->sc_iot;
111 bus_space_handle_t ioh = sc->sc_ioh;
112 u_int16_t i;
113
114 printf("%s: ", sc->sc_dev.dv_xname);
115
116
117 /* print RAM size */
118 ep_internalconfig(sc);
119 GO_WINDOW(0);
120
121 /* determine connectors available */
122 sc->ep_connectors = 0;
123 if (conn & IS_AUI) {
124 printf("aui");
125 sc->ep_connectors |= AUI;
126 }
127 if (conn & IS_BNC) {
128 if (sc->ep_connectors)
129 printf("/");
130 printf("bnc");
131 sc->ep_connectors |= BNC;
132 }
133 if (conn & IS_UTP) {
134 if (sc->ep_connectors)
135 printf("/");
136 printf("10baseT");
137 sc->ep_connectors |= UTP;
138 }
139 if (conn & IS_100BASE_TX) {
140 if (sc->ep_connectors)
141 printf("/");
142 printf("100base-TX");
143 sc->ep_connectors |= TX;
144 }
145 if (conn & IS_100BASE_T4) {
146 if (sc->ep_connectors)
147 printf("/");
148 printf("100base-T4");
149 sc->ep_connectors |= T4;
150 }
151 if (conn & IS_100BASE_FX) {
152 if (sc->ep_connectors)
153 printf("/");
154 printf("100base-FX");
155 sc->ep_connectors |= FX;
156 }
157 if (conn & IS_100BASE_MII) {
158 if (sc->ep_connectors)
159 printf("/");
160 printf("MII");
161 sc->ep_connectors |= MII;
162 }
163
164 if (!sc->ep_connectors)
165 printf("no connectors!");
166 printf("\n");
167
168 /*
169 * Read the station address from the eeprom
170 */
171 for (i = 0; i < 3; i++) {
172 u_int16_t x;
173 if (epbusyeeprom(sc))
174 return;
175 bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
176 READ_EEPROM | i);
177 if (epbusyeeprom(sc))
178 return;
179 x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
180 sc->sc_arpcom.ac_enaddr[(i << 1)] = x >> 8;
181 sc->sc_arpcom.ac_enaddr[(i << 1) + 1] = x;
182 }
183
184 printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
185 ether_sprintf(sc->sc_arpcom.ac_enaddr));
186
187 /*
188 * Vortex-based (3c59x, eisa)? and Boomerang (3c900)cards allow
189 * FDDI-sized (4500) byte packets. Commands only take an 11-bit
190 * parameter, and 11 bits isn't enough to hold a full-size pkt length.
191 * Commands to these cards implicitly upshift a packet size
192 * or threshold by 2 bits.
193 * To detect cards with large-packet support, we probe by setting
194 * the transmit threshold register, then change windows and
195 * read back the threshold register directly, and see if the
196 * threshold value was shifted or not.
197 */
198 bus_space_write_2(iot, ioh, EP_COMMAND,
199 SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
200 GO_WINDOW(5);
201 i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
202 GO_WINDOW(1);
203 switch (i) {
204 case EP_LARGEWIN_PROBE:
205 case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
206 sc->ep_pktlenshift = 0;
207 break;
208
209 case (EP_LARGEWIN_PROBE << 2):
210 sc->ep_pktlenshift = 2;
211 /* XXX do 3c579, 3c515 support Vortex-style RESET_OPTIONS? */
212 if (sc->bustype == EP_BUS_PCI)
213 ep_vortex_internalconfig(sc);
214 break;
215
216 default:
217 printf("%s: wrote %d to TX_AVAIL_THRESH, read back %d. "
218 "Interface disabled\n",
219 sc->sc_dev.dv_xname, EP_THRESH_DISABLE, (int) i);
220 return;
221 }
222 /*
223 * Ensure Tx-available interrupts are enabled for
224 * start the interface.
225 * XXX should be in epinit().
226 */
227 bus_space_write_2(iot, ioh, EP_COMMAND,
228 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
229
230 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
231 ifp->if_softc = sc;
232 ifp->if_start = epstart;
233 ifp->if_ioctl = epioctl;
234 ifp->if_watchdog = epwatchdog;
235 ifp->if_flags =
236 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
237
238 if_attach(ifp);
239 ether_ifattach(ifp);
240
241 #if NBPFILTER > 0
242 bpfattach(&sc->sc_arpcom.ac_if.if_bpf, ifp, DLT_EN10MB,
243 sizeof(struct ether_header));
244 #endif
245
246 sc->tx_start_thresh = 20; /* probably a good starting point. */
247
248 /* Establish callback to reset card when we reboot. */
249 shutdownhook_establish(epshutdown, sc);
250
251 #if 0
252 /* XXX */
253 bus_space_write_2(iot, ioh, EP_COMMAND, RX_RESET);
254 bus_space_write_2(iot, ioh, EP_COMMAND, TX_RESET);
255 #else
256
257 epinit(sc); /*XXX fix up after probe */
258 DELAY(20000);
259 epstop(sc); /*XXX reset after probe, stop interface. */
260 DELAY(20000);
261 #endif
262 }
263
264 /*
265 * Show interface-model-independent info from window 3
266 * internal-configuration register.
267 */
268 void
269 ep_internalconfig(sc)
270 struct ep_softc *sc;
271 {
272 bus_space_tag_t iot = sc->sc_iot;
273 bus_space_handle_t ioh = sc->sc_ioh;
274
275 u_int config0;
276 u_int config1;
277
278 int ram_size, ram_width, ram_speed, rom_size, ram_split;
279 /*
280 * NVRAM buffer Rx:Tx config names for busmastering cards
281 * (Demon, Vortex, and later).
282 */
283 const char *onboard_ram_config[] = {
284 "5:3", "3:1", "1:1", "(undefined)" };
285
286 GO_WINDOW(3);
287 config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
288 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG+2);
289 GO_WINDOW(0);
290
291 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
292 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
293 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
294 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
295
296 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
297
298 printf("%dKB %s-wide FIFO, %s Rx:Tx split, ",
299 8 << ram_size,
300 (ram_width) ? "word" : "byte",
301 onboard_ram_config[ram_split]);
302 }
303
304
305 /*
306 * Show onboard configuration of large-packet-capable elink3 devices (Demon,
307 * Vortex, Boomerang), using media and card-version info in window 3.
308 *
309 * XXX how much of this works with 3c515, pcmcia 10/100? With 3c509, 3c589?
310 */
311 void
312 ep_vortex_internalconfig(sc)
313 struct ep_softc *sc;
314 {
315 bus_space_tag_t iot = sc->sc_iot;
316 bus_space_handle_t ioh = sc->sc_ioh;
317 u_int config0;
318 u_int config1;
319 int reset_options;
320
321 int media_mask, autoselect;
322 /* Names for media in the media bitmask field. */
323 const char *medium_name;
324 const char *media_names[8] ={
325 "10baseT",
326 "10base AUI",
327 "undefined",
328 "10base2",
329 "100baseTX",
330 "100baseFX",
331 "MII",
332 "100baseT4"};
333
334 GO_WINDOW(3);
335 config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
336 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG+2);
337 reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
338 GO_WINDOW(0);
339
340 media_mask = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
341 autoselect = (config1 & CONFIG_AUTOSELECT) >> CONFIG_AUTOSELECT_SHIFT;
342
343 medium_name = (media_mask > 8) ? "(unknown/impossible media)"
344 : media_names[media_mask];
345
346 media_mask = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
347 autoselect = (config1 & CONFIG_AUTOSELECT) >> CONFIG_AUTOSELECT_SHIFT;
348
349
350 printf("%s: default medium %s, autoselect %s\n",
351 sc->sc_dev.dv_xname,
352 medium_name, (autoselect)? "on" : "off" );
353 }
354
355 /*
356 * The order in here seems important. Otherwise we may not receive
357 * interrupts. ?!
358 */
359 void
360 epinit(sc)
361 register struct ep_softc *sc;
362 {
363 register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
364 bus_space_tag_t iot = sc->sc_iot;
365 bus_space_handle_t ioh = sc->sc_ioh;
366 int i;
367
368 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
369 ;
370
371 if (sc->bustype != EP_BUS_PCI) {
372 GO_WINDOW(0);
373 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
374 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
375 }
376
377 if (sc->bustype == EP_BUS_PCMCIA) {
378 #ifdef EP_COAX_DEFAULT
379 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
380 #else
381 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,0<<14);
382 #endif
383 bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
384 }
385
386 GO_WINDOW(2);
387 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
388 bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
389 sc->sc_arpcom.ac_enaddr[i]);
390
391 /*
392 * Reset the station-address receive filter.
393 * A bug workaround for busmastering (Vortex, Demon) cards.
394 */
395 for (i = 0; i < 6; i++)
396 bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
397
398 bus_space_write_2(iot, ioh, EP_COMMAND, RX_RESET);
399 DELAY(100000); /* need at least 1 ms, but be generous. */
400 bus_space_write_2(iot, ioh, EP_COMMAND, TX_RESET);
401 DELAY(100000); /* need at least 1 ms, but be generous. */
402
403 GO_WINDOW(1); /* Window 1 is operating window */
404 for (i = 0; i < 31; i++)
405 bus_space_read_1(iot, ioh, EP_W1_TX_STATUS);
406
407 /* Enable interrupts. */
408 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
409 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
410 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
411 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
412
413 /*
414 * Attempt to get rid of any stray interrupts that occured during
415 * configuration. On the i386 this isn't possible because one may
416 * already be queued. However, a single stray interrupt is
417 * unimportant.
418 */
419 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
420
421 epsetfilter(sc);
422 epsetlink(sc);
423
424 bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
425 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
426
427 epmbuffill(sc);
428
429 /* Interface is now `running', with no output active. */
430 ifp->if_flags |= IFF_RUNNING;
431 ifp->if_flags &= ~IFF_OACTIVE;
432
433 /* Attempt to start output, if any. */
434 epstart(ifp);
435 }
436
437 void
438 epsetfilter(sc)
439 register struct ep_softc *sc;
440 {
441 register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
442
443 GO_WINDOW(1); /* Window 1 is operating window */
444 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
445 FIL_INDIVIDUAL | FIL_BRDCST |
446 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
447 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
448 }
449
450 /*
451 * select media based on link{0,1,2} switches.
452 * Assumes 10Mbit interface, totatlly broken for 10/100 adaptors.
453 */
454 void
455 epsetlink(sc)
456 register struct ep_softc *sc;
457 {
458 register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
459 bus_space_tag_t iot = sc->sc_iot;
460 bus_space_handle_t ioh = sc->sc_ioh;
461
462 /*
463 * you can `ifconfig (link0|-link0) ep0' to get the following
464 * behaviour:
465 * -link0 disable AUI/UTP. enable BNC.
466 * link0 disable BNC. enable AUI.
467 * link1 if the card has a UTP connector, and link0 is
468 * set too, then you get the UTP port.
469 */
470 GO_WINDOW(4);
471 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, DISABLE_UTP);
472 if (!(ifp->if_flags & IFF_LINK0) && (sc->ep_connectors & BNC)) {
473 if (sc->bustype == EP_BUS_PCMCIA) {
474 GO_WINDOW(0);
475 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
476 GO_WINDOW(1);
477 }
478 bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
479 delay(1000);
480 }
481 if (ifp->if_flags & IFF_LINK0) {
482 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
483 delay(1000);
484 if ((ifp->if_flags & IFF_LINK1) && (sc->ep_connectors & UTP)) {
485 if (sc->bustype == EP_BUS_PCMCIA) {
486 GO_WINDOW(0);
487 bus_space_write_2(iot, ioh,
488 EP_W0_ADDRESS_CFG,0<<14);
489 GO_WINDOW(4);
490 }
491 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, ENABLE_UTP);
492 }
493 }
494 GO_WINDOW(1);
495 }
496
497 /*
498 * Start outputting on the interface.
499 * Always called as splnet().
500 */
501 void
502 epstart(ifp)
503 struct ifnet *ifp;
504 {
505 register struct ep_softc *sc = ifp->if_softc;
506 bus_space_tag_t iot = sc->sc_iot;
507 bus_space_handle_t ioh = sc->sc_ioh;
508 struct mbuf *m, *m0;
509 int sh, len, pad;
510
511 /* Don't transmit if interface is busy or not running */
512 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
513 return;
514
515 startagain:
516 /* Sneak a peek at the next packet */
517 m0 = ifp->if_snd.ifq_head;
518 if (m0 == 0)
519 return;
520
521 /* We need to use m->m_pkthdr.len, so require the header */
522 if ((m0->m_flags & M_PKTHDR) == 0)
523 panic("epstart: no header mbuf");
524 len = m0->m_pkthdr.len;
525
526 pad = (4 - len) & 3;
527
528 /*
529 * The 3c509 automatically pads short packets to minimum ethernet
530 * length, but we drop packets that are too large. Perhaps we should
531 * truncate them instead?
532 */
533 if (len + pad > ETHER_MAX_LEN) {
534 /* packet is obviously too large: toss it */
535 ++ifp->if_oerrors;
536 IF_DEQUEUE(&ifp->if_snd, m0);
537 m_freem(m0);
538 goto readcheck;
539 }
540
541 if (bus_space_read_2(iot, ioh, EP_W1_FREE_TX) < len + pad + 4) {
542 bus_space_write_2(iot, ioh, EP_COMMAND,
543 SET_TX_AVAIL_THRESH |
544 ((len + pad + 4) >> sc->ep_pktlenshift));
545 /* not enough room in FIFO */
546 ifp->if_flags |= IFF_OACTIVE;
547 return;
548 } else {
549 bus_space_write_2(iot, ioh, EP_COMMAND,
550 SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
551 }
552
553 IF_DEQUEUE(&ifp->if_snd, m0);
554 if (m0 == 0) /* not really needed */
555 return;
556
557 bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
558 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
559
560 #if NBPFILTER > 0
561 if (ifp->if_bpf)
562 bpf_mtap(ifp->if_bpf, m0);
563 #endif
564
565 /*
566 * Do the output at splhigh() so that an interrupt from another device
567 * won't cause a FIFO underrun.
568 */
569 sh = splhigh();
570
571 bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1, len);
572 bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1,
573 0xffff); /* Second dword meaningless */
574 if (EP_IS_BUS_32(sc->bustype)) {
575 for (m = m0; m; ) {
576 if (m->m_len > 3) {
577 /* align our reads from core */
578 if (mtod(m, u_long) & 3) {
579 u_long count =
580 4 - (mtod(m, u_long) & 3);
581 bus_space_write_multi_1(iot, ioh,
582 EP_W1_TX_PIO_WR_1,
583 mtod(m, u_int8_t *), count);
584 m->m_data =
585 (void *)(mtod(m, u_long) + count);
586 m->m_len -= count;
587 }
588 bus_space_write_multi_4(iot, ioh,
589 EP_W1_TX_PIO_WR_1,
590 mtod(m, u_int32_t *), m->m_len >> 2);
591 m->m_data = (void *)(mtod(m, u_long) +
592 (u_long)(m->m_len & ~3));
593 m->m_len -= m->m_len & ~3;
594 }
595 if (m->m_len) {
596 bus_space_write_multi_1(iot, ioh,
597 EP_W1_TX_PIO_WR_1,
598 mtod(m, u_int8_t *), m->m_len);
599 }
600 MFREE(m, m0);
601 m = m0;
602 }
603 } else {
604 for (m = m0; m; ) {
605 if (m->m_len > 1) {
606 if (mtod(m, u_long) & 1) {
607 bus_space_write_1(iot, ioh,
608 EP_W1_TX_PIO_WR_1,
609 *(mtod(m, u_int8_t *)));
610 m->m_data =
611 (void *)(mtod(m, u_long) + 1);
612 m->m_len -= 1;
613 }
614 bus_space_write_multi_2(iot, ioh,
615 EP_W1_TX_PIO_WR_1, mtod(m, u_int16_t *),
616 m->m_len >> 1);
617 }
618 if (m->m_len & 1) {
619 bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1,
620 *(mtod(m, u_int8_t *) + m->m_len - 1));
621 }
622 MFREE(m, m0);
623 m = m0;
624 }
625 }
626 while (pad--)
627 bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1, 0);
628
629 splx(sh);
630
631 ++ifp->if_opackets;
632
633 readcheck:
634 if ((bus_space_read_2(iot, ioh, EP_W1_RX_STATUS) & ERR_INCOMPLETE) == 0) {
635 /* We received a complete packet. */
636 u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
637
638 if ((status & S_INTR_LATCH) == 0) {
639 /*
640 * No interrupt, read the packet and continue
641 * Is this supposed to happen? Is my motherboard
642 * completely busted?
643 */
644 epread(sc);
645 }
646 else
647 /* Got an interrupt, return so that it gets serviced. */
648 return;
649 }
650 else {
651 /* Check if we are stuck and reset [see XXX comment] */
652 if (epstatus(sc)) {
653 if (ifp->if_flags & IFF_DEBUG)
654 printf("%s: adapter reset\n",
655 sc->sc_dev.dv_xname);
656 epreset(sc);
657 }
658 }
659
660 goto startagain;
661 }
662
663
664 /*
665 * XXX: The 3c509 card can get in a mode where both the fifo status bit
666 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
667 * We detect this situation and we reset the adapter.
668 * It happens at times when there is a lot of broadcast traffic
669 * on the cable (once in a blue moon).
670 */
671 static int
672 epstatus(sc)
673 register struct ep_softc *sc;
674 {
675 bus_space_tag_t iot = sc->sc_iot;
676 bus_space_handle_t ioh = sc->sc_ioh;
677 u_int16_t fifost;
678
679 /*
680 * Check the FIFO status and act accordingly
681 */
682 GO_WINDOW(4);
683 fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
684 GO_WINDOW(1);
685
686 if (fifost & FIFOS_RX_UNDERRUN) {
687 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
688 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
689 epreset(sc);
690 return 0;
691 }
692
693 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
694 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
695 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
696 return 1;
697 }
698
699 if (fifost & FIFOS_RX_OVERRUN) {
700 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
701 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
702 return 1;
703 }
704
705 if (fifost & FIFOS_TX_OVERRUN) {
706 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
707 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
708 epreset(sc);
709 return 0;
710 }
711
712 return 0;
713 }
714
715
716 static void
717 eptxstat(sc)
718 register struct ep_softc *sc;
719 {
720 bus_space_tag_t iot = sc->sc_iot;
721 bus_space_handle_t ioh = sc->sc_ioh;
722 int i;
723
724 /*
725 * We need to read+write TX_STATUS until we get a 0 status
726 * in order to turn off the interrupt flag.
727 */
728 while ((i = bus_space_read_1(iot, ioh, EP_W1_TX_STATUS)) & TXS_COMPLETE) {
729 bus_space_write_1(iot, ioh, EP_W1_TX_STATUS, 0x0);
730
731 if (i & TXS_JABBER) {
732 ++sc->sc_arpcom.ac_if.if_oerrors;
733 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
734 printf("%s: jabber (%x)\n",
735 sc->sc_dev.dv_xname, i);
736 epreset(sc);
737 } else if (i & TXS_UNDERRUN) {
738 ++sc->sc_arpcom.ac_if.if_oerrors;
739 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
740 printf("%s: fifo underrun (%x) @%d\n",
741 sc->sc_dev.dv_xname, i,
742 sc->tx_start_thresh);
743 if (sc->tx_succ_ok < 100)
744 sc->tx_start_thresh = min(ETHER_MAX_LEN,
745 sc->tx_start_thresh + 20);
746 sc->tx_succ_ok = 0;
747 epreset(sc);
748 } else if (i & TXS_MAX_COLLISION) {
749 ++sc->sc_arpcom.ac_if.if_collisions;
750 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
751 sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
752 } else
753 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
754 }
755 }
756
757 int
758 epintr(arg)
759 void *arg;
760 {
761 register struct ep_softc *sc = arg;
762 bus_space_tag_t iot = sc->sc_iot;
763 bus_space_handle_t ioh = sc->sc_ioh;
764 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
765 u_int16_t status;
766 int ret = 0;
767
768 for (;;) {
769 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
770
771 status = bus_space_read_2(iot, ioh, EP_STATUS);
772
773 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
774 S_RX_COMPLETE | S_CARD_FAILURE)) == 0)
775 break;
776
777 ret = 1;
778
779 /*
780 * Acknowledge any interrupts. It's important that we do this
781 * first, since there would otherwise be a race condition.
782 * Due to the i386 interrupt queueing, we may get spurious
783 * interrupts occasionally.
784 */
785 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | status);
786
787 if (status & S_RX_COMPLETE)
788 epread(sc);
789 if (status & S_TX_AVAIL) {
790 sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
791 epstart(&sc->sc_arpcom.ac_if);
792 }
793 if (status & S_CARD_FAILURE) {
794 printf("%s: adapter failure (%x)\n",
795 sc->sc_dev.dv_xname, status);
796 epreset(sc);
797 return (1);
798 }
799 if (status & S_TX_COMPLETE) {
800 eptxstat(sc);
801 epstart(ifp);
802 }
803 }
804
805 /* no more interrupts */
806 return (ret);
807 }
808
809 void
810 epread(sc)
811 register struct ep_softc *sc;
812 {
813 bus_space_tag_t iot = sc->sc_iot;
814 bus_space_handle_t ioh = sc->sc_ioh;
815 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
816 struct mbuf *m;
817 struct ether_header *eh;
818 int len;
819
820 len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
821
822 again:
823 if (ifp->if_flags & IFF_DEBUG) {
824 int err = len & ERR_MASK;
825 char *s = NULL;
826
827 if (len & ERR_INCOMPLETE)
828 s = "incomplete packet";
829 else if (err == ERR_OVERRUN)
830 s = "packet overrun";
831 else if (err == ERR_RUNT)
832 s = "runt packet";
833 else if (err == ERR_ALIGNMENT)
834 s = "bad alignment";
835 else if (err == ERR_CRC)
836 s = "bad crc";
837 else if (err == ERR_OVERSIZE)
838 s = "oversized packet";
839 else if (err == ERR_DRIBBLE)
840 s = "dribble bits";
841
842 if (s)
843 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
844 }
845
846 if (len & ERR_INCOMPLETE)
847 return;
848
849 if (len & ERR_RX) {
850 ++ifp->if_ierrors;
851 goto abort;
852 }
853
854 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
855
856 /* Pull packet off interface. */
857 m = epget(sc, len);
858 if (m == 0) {
859 ifp->if_ierrors++;
860 goto abort;
861 }
862
863 ++ifp->if_ipackets;
864
865 /* We assume the header fit entirely in one mbuf. */
866 eh = mtod(m, struct ether_header *);
867
868 #if NBPFILTER > 0
869 /*
870 * Check if there's a BPF listener on this interface.
871 * If so, hand off the raw packet to BPF.
872 */
873 if (ifp->if_bpf) {
874 bpf_mtap(ifp->if_bpf, m);
875
876 /*
877 * Note that the interface cannot be in promiscuous mode if
878 * there are no BPF listeners. And if we are in promiscuous
879 * mode, we have to check if this packet is really ours.
880 */
881 if ((ifp->if_flags & IFF_PROMISC) &&
882 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
883 bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
884 sizeof(eh->ether_dhost)) != 0) {
885 m_freem(m);
886 return;
887 }
888 }
889 #endif
890
891 /* We assume the header fit entirely in one mbuf. */
892 m_adj(m, sizeof(struct ether_header));
893 ether_input(ifp, eh, m);
894
895 /*
896 * In periods of high traffic we can actually receive enough
897 * packets so that the fifo overrun bit will be set at this point,
898 * even though we just read a packet. In this case we
899 * are not going to receive any more interrupts. We check for
900 * this condition and read again until the fifo is not full.
901 * We could simplify this test by not using epstatus(), but
902 * rechecking the RX_STATUS register directly. This test could
903 * result in unnecessary looping in cases where there is a new
904 * packet but the fifo is not full, but it will not fix the
905 * stuck behavior.
906 *
907 * Even with this improvement, we still get packet overrun errors
908 * which are hurting performance. Maybe when I get some more time
909 * I'll modify epread() so that it can handle RX_EARLY interrupts.
910 */
911 if (epstatus(sc)) {
912 len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
913 /* Check if we are stuck and reset [see XXX comment] */
914 if (len & ERR_INCOMPLETE) {
915 if (ifp->if_flags & IFF_DEBUG)
916 printf("%s: adapter reset\n",
917 sc->sc_dev.dv_xname);
918 epreset(sc);
919 return;
920 }
921 goto again;
922 }
923
924 return;
925
926 abort:
927 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
928 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
929 ;
930 }
931
932 struct mbuf *
933 epget(sc, totlen)
934 struct ep_softc *sc;
935 int totlen;
936 {
937 bus_space_tag_t iot = sc->sc_iot;
938 bus_space_handle_t ioh = sc->sc_ioh;
939 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
940 struct mbuf *top, **mp, *m;
941 int len, remaining;
942 int sh;
943
944 m = sc->mb[sc->next_mb];
945 sc->mb[sc->next_mb] = 0;
946 if (m == 0) {
947 MGETHDR(m, M_DONTWAIT, MT_DATA);
948 if (m == 0)
949 return 0;
950 } else {
951 /* If the queue is no longer full, refill. */
952 if (sc->last_mb == sc->next_mb)
953 timeout(epmbuffill, sc, 1);
954 /* Convert one of our saved mbuf's. */
955 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
956 m->m_data = m->m_pktdat;
957 m->m_flags = M_PKTHDR;
958 }
959 m->m_pkthdr.rcvif = ifp;
960 m->m_pkthdr.len = totlen;
961 len = MHLEN;
962 top = 0;
963 mp = ⊤
964
965 /*
966 * We read the packet at splhigh() so that an interrupt from another
967 * device doesn't cause the card's buffer to overflow while we're
968 * reading it. We may still lose packets at other times.
969 */
970 sh = splhigh();
971
972 while (totlen > 0) {
973 if (top) {
974 m = sc->mb[sc->next_mb];
975 sc->mb[sc->next_mb] = 0;
976 if (m == 0) {
977 MGET(m, M_DONTWAIT, MT_DATA);
978 if (m == 0) {
979 splx(sh);
980 m_freem(top);
981 return 0;
982 }
983 } else {
984 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
985 }
986 len = MLEN;
987 }
988 if (totlen >= MINCLSIZE) {
989 MCLGET(m, M_DONTWAIT);
990 if (m->m_flags & M_EXT)
991 len = MCLBYTES;
992 }
993 if (EP_IS_BUS_32(sc->bustype) ) {
994 u_long pad;
995 if (top == 0) {
996 /* align the struct ip header */
997 pad = ALIGN(sizeof(struct ether_header))
998 - sizeof(struct ether_header);
999 } else {
1000 /* XXX do we really need this? */
1001 pad = ALIGN(m->m_data) - (u_long) m->m_data;
1002 }
1003 m->m_data += pad;
1004 len -= pad;
1005 }
1006 remaining = len = min(totlen, len);
1007 if (EP_IS_BUS_32(sc->bustype)) {
1008 u_long offset = mtod(m, u_long);
1009 /*
1010 * Read bytes up to the point where we are aligned.
1011 * (We can align to 4 bytes, rather than ALIGNBYTES,
1012 * here because we're later reading 4-byte chunks.)
1013 */
1014 if ((remaining > 3) && (offset & 3)) {
1015 int count = (4 - (offset & 3));
1016 bus_space_read_multi_1(iot, ioh,
1017 EP_W1_RX_PIO_RD_1,
1018 (u_int8_t *) offset, count);
1019 offset += count;
1020 remaining -= count;
1021 }
1022 if (remaining > 3) {
1023 bus_space_read_multi_4(iot, ioh,
1024 EP_W1_RX_PIO_RD_1,
1025 (u_int32_t *) offset, remaining >> 2);
1026 offset += remaining & ~3;
1027 remaining &= 3;
1028 }
1029 if (remaining) {
1030 bus_space_read_multi_1(iot, ioh,
1031 EP_W1_RX_PIO_RD_1,
1032 (u_int8_t *) offset, remaining);
1033 }
1034 } else {
1035 u_long offset = mtod(m, u_long);
1036 if ((remaining > 1) && (offset & 1)) {
1037 bus_space_read_multi_1(iot, ioh,
1038 EP_W1_RX_PIO_RD_1,
1039 (u_int8_t *) offset, 1);
1040 remaining -= 1;
1041 offset += 1;
1042 }
1043 if (remaining > 1) {
1044 bus_space_read_multi_2(iot, ioh,
1045 EP_W1_RX_PIO_RD_1,
1046 (u_int16_t *) offset, remaining >> 1);
1047 offset += remaining & ~1;
1048 }
1049 if (remaining & 1) {
1050 bus_space_read_multi_1(iot, ioh,
1051 EP_W1_RX_PIO_RD_1,
1052 (u_int8_t *) offset, remaining & 1);
1053 }
1054 }
1055 m->m_len = len;
1056 totlen -= len;
1057 *mp = m;
1058 mp = &m->m_next;
1059 }
1060
1061 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1062 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1063 ;
1064
1065 splx(sh);
1066
1067 return top;
1068 }
1069
1070 int
1071 epioctl(ifp, cmd, data)
1072 register struct ifnet *ifp;
1073 u_long cmd;
1074 caddr_t data;
1075 {
1076 struct ep_softc *sc = ifp->if_softc;
1077 struct ifaddr *ifa = (struct ifaddr *)data;
1078 struct ifreq *ifr = (struct ifreq *)data;
1079 int s, error = 0;
1080
1081 s = splnet();
1082
1083 switch (cmd) {
1084
1085 case SIOCSIFADDR:
1086 ifp->if_flags |= IFF_UP;
1087
1088 switch (ifa->ifa_addr->sa_family) {
1089 #ifdef INET
1090 case AF_INET:
1091 epinit(sc);
1092 arp_ifinit(&sc->sc_arpcom, ifa);
1093 break;
1094 #endif
1095 #ifdef NS
1096 case AF_NS:
1097 {
1098 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1099
1100 if (ns_nullhost(*ina))
1101 ina->x_host =
1102 *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
1103 else
1104 bcopy(ina->x_host.c_host,
1105 sc->sc_arpcom.ac_enaddr,
1106 sizeof(sc->sc_arpcom.ac_enaddr));
1107 /* Set new address. */
1108 epinit(sc);
1109 break;
1110 }
1111 #endif
1112 default:
1113 epinit(sc);
1114 break;
1115 }
1116 break;
1117
1118 case SIOCSIFFLAGS:
1119 if ((ifp->if_flags & IFF_UP) == 0 &&
1120 (ifp->if_flags & IFF_RUNNING) != 0) {
1121 /*
1122 * If interface is marked down and it is running, then
1123 * stop it.
1124 */
1125 epstop(sc);
1126 ifp->if_flags &= ~IFF_RUNNING;
1127 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1128 (ifp->if_flags & IFF_RUNNING) == 0) {
1129 /*
1130 * If interface is marked up and it is stopped, then
1131 * start it.
1132 */
1133 epinit(sc);
1134 } else {
1135 /*
1136 * deal with flags changes:
1137 * IFF_MULTICAST, IFF_PROMISC,
1138 * IFF_LINK0, IFF_LINK1,
1139 */
1140 epsetfilter(sc);
1141 epsetlink(sc);
1142 }
1143 break;
1144
1145 case SIOCADDMULTI:
1146 case SIOCDELMULTI:
1147 error = (cmd == SIOCADDMULTI) ?
1148 ether_addmulti(ifr, &sc->sc_arpcom) :
1149 ether_delmulti(ifr, &sc->sc_arpcom);
1150
1151 if (error == ENETRESET) {
1152 /*
1153 * Multicast list has changed; set the hardware filter
1154 * accordingly.
1155 */
1156 epreset(sc);
1157 error = 0;
1158 }
1159 break;
1160
1161 default:
1162 error = EINVAL;
1163 break;
1164 }
1165
1166 splx(s);
1167 return (error);
1168 }
1169
1170 void
1171 epreset(sc)
1172 struct ep_softc *sc;
1173 {
1174 int s;
1175
1176 s = splnet();
1177 epstop(sc);
1178 epinit(sc);
1179 splx(s);
1180 }
1181
1182 void
1183 epwatchdog(ifp)
1184 struct ifnet *ifp;
1185 {
1186 struct ep_softc *sc = ifp->if_softc;
1187
1188 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1189 ++sc->sc_arpcom.ac_if.if_oerrors;
1190
1191 epreset(sc);
1192 }
1193
1194 void
1195 epstop(sc)
1196 register struct ep_softc *sc;
1197 {
1198 bus_space_tag_t iot = sc->sc_iot;
1199 bus_space_handle_t ioh = sc->sc_ioh;
1200
1201 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
1202 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1203 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1204 ;
1205 bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
1206 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
1207
1208 bus_space_write_2(iot, ioh, EP_COMMAND, RX_RESET);
1209 DELAY(100000); /* need at least 1 ms, but be generous. */
1210
1211 bus_space_write_2(iot, ioh, EP_COMMAND, TX_RESET);
1212 DELAY(100000); /* need at least 1 ms, but be generous. */
1213
1214 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1215 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
1216 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
1217 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
1218
1219 epmbufempty(sc);
1220 }
1221
1222
1223 /*
1224 * Before reboots, reset card completely.
1225 */
1226 static void
1227 epshutdown(arg)
1228 void *arg;
1229 {
1230 register struct ep_softc *sc = arg;
1231 bus_space_tag_t iot = sc->sc_iot;
1232 bus_space_handle_t ioh = sc->sc_ioh;
1233
1234 epstop(sc);
1235 bus_space_write_2(iot, ioh, EP_COMMAND, GLOBAL_RESET);
1236 /*
1237 * should loop waiting for CMD_COMPLETE but some earlier cards
1238 * may not support that properly.
1239 */
1240 DELAY(20000); /* need at least 1 ms, but be generous. */
1241 }
1242
1243
1244 /*
1245 * We get eeprom data from the id_port given an offset into the
1246 * eeprom. Basically; after the ID_sequence is sent to all of
1247 * the cards; they enter the ID_CMD state where they will accept
1248 * command requests. 0x80-0xbf loads the eeprom data. We then
1249 * read the port 16 times and with every read; the cards check
1250 * for contention (ie: if one card writes a 0 bit and another
1251 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1252 * each card compares the data on the bus; if there is a difference
1253 * then that card goes into ID_WAIT state again). In the meantime;
1254 * one bit of data is returned in the AX register which is conveniently
1255 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1256 * bit of data with each read.
1257 *
1258 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1259 */
1260 u_int16_t
1261 epreadeeprom(iot, ioh, offset)
1262 bus_space_tag_t iot;
1263 bus_space_handle_t ioh;
1264 int offset;
1265 {
1266 u_int16_t data = 0;
1267 int i;
1268
1269 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1270 delay(1000);
1271 for (i = 0; i < 16; i++)
1272 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1273 return (data);
1274 }
1275
1276 static int
1277 epbusyeeprom(sc)
1278 struct ep_softc *sc;
1279 {
1280 bus_space_tag_t iot = sc->sc_iot;
1281 bus_space_handle_t ioh = sc->sc_ioh;
1282 int i = 100, j;
1283
1284 if (sc->bustype == EP_BUS_PCMCIA) {
1285 delay(1000);
1286 return 0;
1287 }
1288
1289 while (i--) {
1290 j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
1291 if (j & EEPROM_BUSY)
1292 delay(100);
1293 else
1294 break;
1295 }
1296 if (!i) {
1297 printf("\n%s: eeprom failed to come ready\n",
1298 sc->sc_dev.dv_xname);
1299 return (1);
1300 }
1301 if (j & EEPROM_TST_MODE) {
1302 printf("\n%s: erase pencil mark, or disable plug-n-play mode!\n",
1303 sc->sc_dev.dv_xname);
1304 return (1);
1305 }
1306 return (0);
1307 }
1308
1309 void
1310 epmbuffill(v)
1311 void *v;
1312 {
1313 struct ep_softc *sc = v;
1314 int s, i;
1315
1316 s = splnet();
1317 i = sc->last_mb;
1318 do {
1319 if (sc->mb[i] == NULL)
1320 MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
1321 if (sc->mb[i] == NULL)
1322 break;
1323 i = (i + 1) % MAX_MBS;
1324 } while (i != sc->next_mb);
1325 sc->last_mb = i;
1326 /* If the queue was not filled, try again. */
1327 if (sc->last_mb != sc->next_mb)
1328 timeout(epmbuffill, sc, 1);
1329 splx(s);
1330 }
1331
1332 void
1333 epmbufempty(sc)
1334 struct ep_softc *sc;
1335 {
1336 int s, i;
1337
1338 s = splnet();
1339 for (i = 0; i<MAX_MBS; i++) {
1340 if (sc->mb[i]) {
1341 m_freem(sc->mb[i]);
1342 sc->mb[i] = NULL;
1343 }
1344 }
1345 sc->last_mb = sc->next_mb = 0;
1346 untimeout(epmbuffill, sc);
1347 splx(s);
1348 }
1349