elink3.c revision 1.19 1 /* $NetBSD: elink3.c,v 1.19 1997/02/16 04:09:18 jonathan Exp $ */
2
3 /*
4 * Copyright (c) 1996, 1997 Jonathan Stone <jonathan (at) NetBSD.org>
5 * Copyright (c) 1994 Herb Peyerl <hpeyerl (at) beer.org>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Herb Peyerl.
19 * 4. The name of Herb Peyerl may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include "bpfilter.h"
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/mbuf.h>
39 #include <sys/socket.h>
40 #include <sys/ioctl.h>
41 #include <sys/errno.h>
42 #include <sys/syslog.h>
43 #include <sys/select.h>
44 #include <sys/device.h>
45
46 #include <net/if.h>
47 #include <net/netisr.h>
48 #include <net/if_dl.h>
49 #include <net/if_types.h>
50 #include <net/netisr.h>
51
52 #ifdef INET
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57 #include <netinet/if_ether.h>
58 #endif
59
60 #ifdef NS
61 #include <netns/ns.h>
62 #include <netns/ns_if.h>
63 #endif
64
65 #if NBPFILTER > 0
66 #include <net/bpf.h>
67 #include <net/bpfdesc.h>
68 #endif
69
70 #include <machine/cpu.h>
71 #include <machine/bus.h>
72 #include <machine/intr.h>
73
74 #include <dev/ic/elink3var.h>
75 #include <dev/ic/elink3reg.h>
76
77 #define ETHER_MIN_LEN 64
78 #define ETHER_MAX_LEN 1518
79 #define ETHER_ADDR_LEN 6
80
81 struct cfdriver ep_cd = {
82 NULL, "ep", DV_IFNET
83 };
84
85 void ep_internalconfig __P((struct ep_softc *sc));
86 void ep_vortex_internalconfig __P((struct ep_softc *sc));
87 static void eptxstat __P((struct ep_softc *));
88 static int epstatus __P((struct ep_softc *));
89 void epinit __P((struct ep_softc *));
90 int epioctl __P((struct ifnet *, u_long, caddr_t));
91 void epstart __P((struct ifnet *));
92 void epwatchdog __P((struct ifnet *));
93 void epreset __P((struct ep_softc *));
94 static void epshutdown __P((void *));
95 void epread __P((struct ep_softc *));
96 struct mbuf *epget __P((struct ep_softc *, int));
97 void epmbuffill __P((void *));
98 void epmbufempty __P((struct ep_softc *));
99 void epsetfilter __P((struct ep_softc *));
100 void epsetlink __P((struct ep_softc *));
101
102 static int epbusyeeprom __P((struct ep_softc *));
103 static inline void ep_complete_cmd __P((struct ep_softc *sc,
104 u_int cmd, u_int arg));
105
106
107 /*
108 * Issue a (reset) command, and be sure it has completed.
109 * Used for commands that reset part or all of the board.
110 * On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
111 * but older hardware doesn't implement it and we must delay.
112 * It's easiest to just delay always.
113 */
114 static inline void
115 ep_complete_cmd(sc, cmd, arg)
116 struct ep_softc *sc;
117 u_int cmd, arg;
118 {
119 register bus_space_tag_t iot = sc->sc_iot;
120 register bus_space_handle_t ioh = sc->sc_ioh;
121
122 bus_space_write_2(iot, ioh, cmd, arg);
123
124 #ifdef notyet
125 /* if this adapter family has S_COMMAND_IN_PROGRESS, use it */
126 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
127 ;
128 else
129 #else
130 DELAY(100000); /* need at least 1 ms, but be generous. */
131 #endif
132 }
133
134
135
136 void
137 epconfig(sc, conn)
138 struct ep_softc *sc;
139 u_int conn;
140 {
141 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
142 bus_space_tag_t iot = sc->sc_iot;
143 bus_space_handle_t ioh = sc->sc_ioh;
144 u_int16_t i;
145
146 printf("%s: ", sc->sc_dev.dv_xname);
147
148
149 /* print RAM size */
150 ep_internalconfig(sc);
151 GO_WINDOW(0);
152
153 /* determine connectors available */
154 sc->ep_connectors = 0;
155 if (conn & IS_AUI) {
156 printf("aui");
157 sc->ep_connectors |= AUI;
158 }
159 if (conn & IS_BNC) {
160 if (sc->ep_connectors)
161 printf("/");
162 printf("bnc");
163 sc->ep_connectors |= BNC;
164 }
165 if (conn & IS_UTP) {
166 if (sc->ep_connectors)
167 printf("/");
168 printf("10baseT");
169 sc->ep_connectors |= UTP;
170 }
171 if (conn & IS_100BASE_TX) {
172 if (sc->ep_connectors)
173 printf("/");
174 printf("100base-TX");
175 sc->ep_connectors |= TX;
176 }
177 if (conn & IS_100BASE_T4) {
178 if (sc->ep_connectors)
179 printf("/");
180 printf("100base-T4");
181 sc->ep_connectors |= T4;
182 }
183 if (conn & IS_100BASE_FX) {
184 if (sc->ep_connectors)
185 printf("/");
186 printf("100base-FX");
187 sc->ep_connectors |= FX;
188 }
189 if (conn & IS_100BASE_MII) {
190 if (sc->ep_connectors)
191 printf("/");
192 printf("MII");
193 sc->ep_connectors |= MII;
194 }
195
196 if (!sc->ep_connectors)
197 printf("no connectors!");
198 printf("\n");
199
200 /*
201 * Read the station address from the eeprom
202 */
203 for (i = 0; i < 3; i++) {
204 u_int16_t x;
205 if (epbusyeeprom(sc))
206 return;
207 bus_space_write_2(iot, ioh, EP_W0_EEPROM_COMMAND,
208 READ_EEPROM | i);
209 if (epbusyeeprom(sc))
210 return;
211 x = bus_space_read_2(iot, ioh, EP_W0_EEPROM_DATA);
212 sc->sc_arpcom.ac_enaddr[(i << 1)] = x >> 8;
213 sc->sc_arpcom.ac_enaddr[(i << 1) + 1] = x;
214 }
215
216 printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
217 ether_sprintf(sc->sc_arpcom.ac_enaddr));
218
219 /*
220 * Vortex-based (3c59x, eisa)? and Boomerang (3c900)cards allow
221 * FDDI-sized (4500) byte packets. Commands only take an 11-bit
222 * parameter, and 11 bits isn't enough to hold a full-size pkt length.
223 * Commands to these cards implicitly upshift a packet size
224 * or threshold by 2 bits.
225 * To detect cards with large-packet support, we probe by setting
226 * the transmit threshold register, then change windows and
227 * read back the threshold register directly, and see if the
228 * threshold value was shifted or not.
229 */
230 bus_space_write_2(iot, ioh, EP_COMMAND,
231 SET_TX_AVAIL_THRESH | EP_LARGEWIN_PROBE );
232 GO_WINDOW(5);
233 i = bus_space_read_2(iot, ioh, EP_W5_TX_AVAIL_THRESH);
234 GO_WINDOW(1);
235 switch (i) {
236 case EP_LARGEWIN_PROBE:
237 case (EP_LARGEWIN_PROBE & EP_LARGEWIN_MASK):
238 sc->ep_pktlenshift = 0;
239 break;
240
241 case (EP_LARGEWIN_PROBE << 2):
242 sc->ep_pktlenshift = 2;
243 /* XXX do 3c579, 3c515 support Vortex-style RESET_OPTIONS? */
244 if (sc->bustype == EP_BUS_PCI)
245 ep_vortex_internalconfig(sc);
246 break;
247
248 default:
249 printf("%s: wrote %d to TX_AVAIL_THRESH, read back %d. "
250 "Interface disabled\n",
251 sc->sc_dev.dv_xname, EP_THRESH_DISABLE, (int) i);
252 return;
253 }
254 /*
255 * Ensure Tx-available interrupts are enabled for
256 * start the interface.
257 * XXX should be in epinit().
258 */
259 bus_space_write_2(iot, ioh, EP_COMMAND,
260 SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));
261
262 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
263 ifp->if_softc = sc;
264 ifp->if_start = epstart;
265 ifp->if_ioctl = epioctl;
266 ifp->if_watchdog = epwatchdog;
267 ifp->if_flags =
268 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
269
270 if_attach(ifp);
271 ether_ifattach(ifp);
272
273 #if NBPFILTER > 0
274 bpfattach(&sc->sc_arpcom.ac_if.if_bpf, ifp, DLT_EN10MB,
275 sizeof(struct ether_header));
276 #endif
277
278 sc->tx_start_thresh = 20; /* probably a good starting point. */
279
280 /* Establish callback to reset card when we reboot. */
281 shutdownhook_establish(epshutdown, sc);
282
283 #if 1
284 /* XXX */
285 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
286 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
287 #else
288 epinit(sc); /*XXX fix up after probe */
289 DELAY(5000);
290 epstop(sc); /*XXX reset after probe, stop interface. */
291 DELAY(5000);
292 #endif
293 }
294
295 /*
296 * Show interface-model-independent info from window 3
297 * internal-configuration register.
298 */
299 void
300 ep_internalconfig(sc)
301 struct ep_softc *sc;
302 {
303 bus_space_tag_t iot = sc->sc_iot;
304 bus_space_handle_t ioh = sc->sc_ioh;
305
306 u_int config0;
307 u_int config1;
308
309 int ram_size, ram_width, ram_speed, rom_size, ram_split;
310 /*
311 * NVRAM buffer Rx:Tx config names for busmastering cards
312 * (Demon, Vortex, and later).
313 */
314 const char *onboard_ram_config[] = {
315 "5:3", "3:1", "1:1", "(undefined)" };
316
317 GO_WINDOW(3);
318 config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
319 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG+2);
320 GO_WINDOW(0);
321
322 ram_size = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
323 ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;
324 ram_speed = (config0 & CONFIG_RAMSPEED) >> CONFIG_RAMSPEED_SHIFT;
325 rom_size = (config0 & CONFIG_ROMSIZE) >> CONFIG_ROMSIZE_SHIFT;
326
327 ram_split = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;
328
329 printf("%dKB %s-wide FIFO, %s Rx:Tx split, ",
330 8 << ram_size,
331 (ram_width) ? "word" : "byte",
332 onboard_ram_config[ram_split]);
333 }
334
335
336 /*
337 * Show onboard configuration of large-packet-capable elink3 devices (Demon,
338 * Vortex, Boomerang), using media and card-version info in window 3.
339 *
340 * XXX how much of this works with 3c515, pcmcia 10/100? With 3c509, 3c589?
341 */
342 void
343 ep_vortex_internalconfig(sc)
344 struct ep_softc *sc;
345 {
346 bus_space_tag_t iot = sc->sc_iot;
347 bus_space_handle_t ioh = sc->sc_ioh;
348 u_int config0;
349 u_int config1;
350 int reset_options;
351
352 int media_mask, autoselect;
353 /* Names for media in the media bitmask field. */
354 const char *medium_name;
355 const char *media_names[8] ={
356 "10baseT",
357 "10base AUI",
358 "undefined",
359 "10base2",
360 "100baseTX",
361 "100baseFX",
362 "MII",
363 "100baseT4"};
364
365 GO_WINDOW(3);
366 config0 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG);
367 config1 = (u_int)bus_space_read_2(iot, ioh, EP_W3_INTERNAL_CONFIG+2);
368 reset_options = (int)bus_space_read_1(iot, ioh, EP_W3_RESET_OPTIONS);
369 GO_WINDOW(0);
370
371 media_mask = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
372 autoselect = (config1 & CONFIG_AUTOSELECT) >> CONFIG_AUTOSELECT_SHIFT;
373
374 medium_name = (media_mask > 8) ? "(unknown/impossible media)"
375 : media_names[media_mask];
376
377 media_mask = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
378 autoselect = (config1 & CONFIG_AUTOSELECT) >> CONFIG_AUTOSELECT_SHIFT;
379
380
381 printf("%s: default medium %s, autoselect %s\n",
382 sc->sc_dev.dv_xname,
383 medium_name, (autoselect)? "on" : "off" );
384 }
385
386 /*
387 * The order in here seems important. Otherwise we may not receive
388 * interrupts. ?!
389 */
390 void
391 epinit(sc)
392 register struct ep_softc *sc;
393 {
394 register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
395 bus_space_tag_t iot = sc->sc_iot;
396 bus_space_handle_t ioh = sc->sc_ioh;
397 int i;
398
399 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
400 ;
401
402 if (sc->bustype != EP_BUS_PCI) {
403 GO_WINDOW(0);
404 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, 0);
405 bus_space_write_2(iot, ioh, EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
406 }
407
408 if (sc->bustype == EP_BUS_PCMCIA) {
409 #ifdef EP_COAX_DEFAULT
410 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
411 #else
412 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,0<<14);
413 #endif
414 bus_space_write_2(iot, ioh, EP_W0_RESOURCE_CFG, 0x3f00);
415 }
416
417 GO_WINDOW(2);
418 for (i = 0; i < 6; i++) /* Reload the ether_addr. */
419 bus_space_write_1(iot, ioh, EP_W2_ADDR_0 + i,
420 sc->sc_arpcom.ac_enaddr[i]);
421
422 /*
423 * Reset the station-address receive filter.
424 * A bug workaround for busmastering (Vortex, Demon) cards.
425 */
426 for (i = 0; i < 6; i++)
427 bus_space_write_1(iot, ioh, EP_W2_RECVMASK_0 + i, 0);
428
429 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
430 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
431
432 GO_WINDOW(1); /* Window 1 is operating window */
433 for (i = 0; i < 31; i++)
434 bus_space_read_1(iot, ioh, EP_W1_TX_STATUS);
435
436 /* Enable interrupts. */
437 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK | S_CARD_FAILURE |
438 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
439 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK | S_CARD_FAILURE |
440 S_RX_COMPLETE | S_TX_COMPLETE | S_TX_AVAIL);
441
442 /*
443 * Attempt to get rid of any stray interrupts that occured during
444 * configuration. On the i386 this isn't possible because one may
445 * already be queued. However, a single stray interrupt is
446 * unimportant.
447 */
448 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | 0xff);
449
450 epsetfilter(sc);
451 epsetlink(sc);
452
453 bus_space_write_2(iot, ioh, EP_COMMAND, RX_ENABLE);
454 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
455
456 epmbuffill(sc);
457
458 /* Interface is now `running', with no output active. */
459 ifp->if_flags |= IFF_RUNNING;
460 ifp->if_flags &= ~IFF_OACTIVE;
461
462 /* Attempt to start output, if any. */
463 epstart(ifp);
464 }
465
466 void
467 epsetfilter(sc)
468 register struct ep_softc *sc;
469 {
470 register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
471
472 GO_WINDOW(1); /* Window 1 is operating window */
473 bus_space_write_2(sc->sc_iot, sc->sc_ioh, EP_COMMAND, SET_RX_FILTER |
474 FIL_INDIVIDUAL | FIL_BRDCST |
475 ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0 ) |
476 ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0 ));
477 }
478
479 /*
480 * select media based on link{0,1,2} switches.
481 * Assumes 10Mbit interface, totatlly broken for 10/100 adaptors.
482 */
483 void
484 epsetlink(sc)
485 register struct ep_softc *sc;
486 {
487 register struct ifnet *ifp = &sc->sc_arpcom.ac_if;
488 bus_space_tag_t iot = sc->sc_iot;
489 bus_space_handle_t ioh = sc->sc_ioh;
490
491 /*
492 * you can `ifconfig (link0|-link0) ep0' to get the following
493 * behaviour:
494 * -link0 disable AUI/UTP. enable BNC.
495 * link0 disable BNC. enable AUI.
496 * link1 if the card has a UTP connector, and link0 is
497 * set too, then you get the UTP port.
498 */
499 GO_WINDOW(4);
500 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, DISABLE_UTP);
501 if (!(ifp->if_flags & IFF_LINK0) && (sc->ep_connectors & BNC)) {
502 if (sc->bustype == EP_BUS_PCMCIA) {
503 GO_WINDOW(0);
504 bus_space_write_2(iot, ioh, EP_W0_ADDRESS_CFG,3<<14);
505 GO_WINDOW(1);
506 }
507 bus_space_write_2(iot, ioh, EP_COMMAND, START_TRANSCEIVER);
508 delay(1000);
509 }
510 if (ifp->if_flags & IFF_LINK0) {
511 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
512 delay(1000);
513 if ((ifp->if_flags & IFF_LINK1) && (sc->ep_connectors & UTP)) {
514 if (sc->bustype == EP_BUS_PCMCIA) {
515 GO_WINDOW(0);
516 bus_space_write_2(iot, ioh,
517 EP_W0_ADDRESS_CFG,0<<14);
518 GO_WINDOW(4);
519 }
520 bus_space_write_2(iot, ioh, EP_W4_MEDIA_TYPE, ENABLE_UTP);
521 }
522 }
523 GO_WINDOW(1);
524 }
525
526 /*
527 * Start outputting on the interface.
528 * Always called as splnet().
529 */
530 void
531 epstart(ifp)
532 struct ifnet *ifp;
533 {
534 register struct ep_softc *sc = ifp->if_softc;
535 bus_space_tag_t iot = sc->sc_iot;
536 bus_space_handle_t ioh = sc->sc_ioh;
537 struct mbuf *m, *m0;
538 int sh, len, pad;
539
540 /* Don't transmit if interface is busy or not running */
541 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
542 return;
543
544 startagain:
545 /* Sneak a peek at the next packet */
546 m0 = ifp->if_snd.ifq_head;
547 if (m0 == 0)
548 return;
549
550 /* We need to use m->m_pkthdr.len, so require the header */
551 if ((m0->m_flags & M_PKTHDR) == 0)
552 panic("epstart: no header mbuf");
553 len = m0->m_pkthdr.len;
554
555 pad = (4 - len) & 3;
556
557 /*
558 * The 3c509 automatically pads short packets to minimum ethernet
559 * length, but we drop packets that are too large. Perhaps we should
560 * truncate them instead?
561 */
562 if (len + pad > ETHER_MAX_LEN) {
563 /* packet is obviously too large: toss it */
564 ++ifp->if_oerrors;
565 IF_DEQUEUE(&ifp->if_snd, m0);
566 m_freem(m0);
567 goto readcheck;
568 }
569
570 if (bus_space_read_2(iot, ioh, EP_W1_FREE_TX) < len + pad + 4) {
571 bus_space_write_2(iot, ioh, EP_COMMAND,
572 SET_TX_AVAIL_THRESH |
573 ((len + pad + 4) >> sc->ep_pktlenshift));
574 /* not enough room in FIFO */
575 ifp->if_flags |= IFF_OACTIVE;
576 return;
577 } else {
578 bus_space_write_2(iot, ioh, EP_COMMAND,
579 SET_TX_AVAIL_THRESH | EP_THRESH_DISABLE );
580 }
581
582 IF_DEQUEUE(&ifp->if_snd, m0);
583 if (m0 == 0) /* not really needed */
584 return;
585
586 bus_space_write_2(iot, ioh, EP_COMMAND, SET_TX_START_THRESH |
587 ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/) );
588
589 #if NBPFILTER > 0
590 if (ifp->if_bpf)
591 bpf_mtap(ifp->if_bpf, m0);
592 #endif
593
594 /*
595 * Do the output at splhigh() so that an interrupt from another device
596 * won't cause a FIFO underrun.
597 */
598 sh = splhigh();
599
600 bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1, len);
601 bus_space_write_2(iot, ioh, EP_W1_TX_PIO_WR_1,
602 0xffff); /* Second dword meaningless */
603 if (EP_IS_BUS_32(sc->bustype)) {
604 for (m = m0; m; ) {
605 if (m->m_len > 3) {
606 /* align our reads from core */
607 if (mtod(m, u_long) & 3) {
608 u_long count =
609 4 - (mtod(m, u_long) & 3);
610 bus_space_write_multi_1(iot, ioh,
611 EP_W1_TX_PIO_WR_1,
612 mtod(m, u_int8_t *), count);
613 m->m_data =
614 (void *)(mtod(m, u_long) + count);
615 m->m_len -= count;
616 }
617 bus_space_write_multi_4(iot, ioh,
618 EP_W1_TX_PIO_WR_1,
619 mtod(m, u_int32_t *), m->m_len >> 2);
620 m->m_data = (void *)(mtod(m, u_long) +
621 (u_long)(m->m_len & ~3));
622 m->m_len -= m->m_len & ~3;
623 }
624 if (m->m_len) {
625 bus_space_write_multi_1(iot, ioh,
626 EP_W1_TX_PIO_WR_1,
627 mtod(m, u_int8_t *), m->m_len);
628 }
629 MFREE(m, m0);
630 m = m0;
631 }
632 } else {
633 for (m = m0; m; ) {
634 if (m->m_len > 1) {
635 if (mtod(m, u_long) & 1) {
636 bus_space_write_1(iot, ioh,
637 EP_W1_TX_PIO_WR_1,
638 *(mtod(m, u_int8_t *)));
639 m->m_data =
640 (void *)(mtod(m, u_long) + 1);
641 m->m_len -= 1;
642 }
643 bus_space_write_multi_2(iot, ioh,
644 EP_W1_TX_PIO_WR_1, mtod(m, u_int16_t *),
645 m->m_len >> 1);
646 }
647 if (m->m_len & 1) {
648 bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1,
649 *(mtod(m, u_int8_t *) + m->m_len - 1));
650 }
651 MFREE(m, m0);
652 m = m0;
653 }
654 }
655 while (pad--)
656 bus_space_write_1(iot, ioh, EP_W1_TX_PIO_WR_1, 0);
657
658 splx(sh);
659
660 ++ifp->if_opackets;
661
662 readcheck:
663 if ((bus_space_read_2(iot, ioh, EP_W1_RX_STATUS) & ERR_INCOMPLETE) == 0) {
664 /* We received a complete packet. */
665 u_int16_t status = bus_space_read_2(iot, ioh, EP_STATUS);
666
667 if ((status & S_INTR_LATCH) == 0) {
668 /*
669 * No interrupt, read the packet and continue
670 * Is this supposed to happen? Is my motherboard
671 * completely busted?
672 */
673 epread(sc);
674 }
675 else
676 /* Got an interrupt, return so that it gets serviced. */
677 return;
678 }
679 else {
680 /* Check if we are stuck and reset [see XXX comment] */
681 if (epstatus(sc)) {
682 if (ifp->if_flags & IFF_DEBUG)
683 printf("%s: adapter reset\n",
684 sc->sc_dev.dv_xname);
685 epreset(sc);
686 }
687 }
688
689 goto startagain;
690 }
691
692
693 /*
694 * XXX: The 3c509 card can get in a mode where both the fifo status bit
695 * FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
696 * We detect this situation and we reset the adapter.
697 * It happens at times when there is a lot of broadcast traffic
698 * on the cable (once in a blue moon).
699 */
700 static int
701 epstatus(sc)
702 register struct ep_softc *sc;
703 {
704 bus_space_tag_t iot = sc->sc_iot;
705 bus_space_handle_t ioh = sc->sc_ioh;
706 u_int16_t fifost;
707
708 /*
709 * Check the FIFO status and act accordingly
710 */
711 GO_WINDOW(4);
712 fifost = bus_space_read_2(iot, ioh, EP_W4_FIFO_DIAG);
713 GO_WINDOW(1);
714
715 if (fifost & FIFOS_RX_UNDERRUN) {
716 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
717 printf("%s: RX underrun\n", sc->sc_dev.dv_xname);
718 epreset(sc);
719 return 0;
720 }
721
722 if (fifost & FIFOS_RX_STATUS_OVERRUN) {
723 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
724 printf("%s: RX Status overrun\n", sc->sc_dev.dv_xname);
725 return 1;
726 }
727
728 if (fifost & FIFOS_RX_OVERRUN) {
729 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
730 printf("%s: RX overrun\n", sc->sc_dev.dv_xname);
731 return 1;
732 }
733
734 if (fifost & FIFOS_TX_OVERRUN) {
735 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
736 printf("%s: TX overrun\n", sc->sc_dev.dv_xname);
737 epreset(sc);
738 return 0;
739 }
740
741 return 0;
742 }
743
744
745 static void
746 eptxstat(sc)
747 register struct ep_softc *sc;
748 {
749 bus_space_tag_t iot = sc->sc_iot;
750 bus_space_handle_t ioh = sc->sc_ioh;
751 int i;
752
753 /*
754 * We need to read+write TX_STATUS until we get a 0 status
755 * in order to turn off the interrupt flag.
756 */
757 while ((i = bus_space_read_1(iot, ioh, EP_W1_TX_STATUS)) & TXS_COMPLETE) {
758 bus_space_write_1(iot, ioh, EP_W1_TX_STATUS, 0x0);
759
760 if (i & TXS_JABBER) {
761 ++sc->sc_arpcom.ac_if.if_oerrors;
762 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
763 printf("%s: jabber (%x)\n",
764 sc->sc_dev.dv_xname, i);
765 epreset(sc);
766 } else if (i & TXS_UNDERRUN) {
767 ++sc->sc_arpcom.ac_if.if_oerrors;
768 if (sc->sc_arpcom.ac_if.if_flags & IFF_DEBUG)
769 printf("%s: fifo underrun (%x) @%d\n",
770 sc->sc_dev.dv_xname, i,
771 sc->tx_start_thresh);
772 if (sc->tx_succ_ok < 100)
773 sc->tx_start_thresh = min(ETHER_MAX_LEN,
774 sc->tx_start_thresh + 20);
775 sc->tx_succ_ok = 0;
776 epreset(sc);
777 } else if (i & TXS_MAX_COLLISION) {
778 ++sc->sc_arpcom.ac_if.if_collisions;
779 bus_space_write_2(iot, ioh, EP_COMMAND, TX_ENABLE);
780 sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
781 } else
782 sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
783 }
784 }
785
786 int
787 epintr(arg)
788 void *arg;
789 {
790 register struct ep_softc *sc = arg;
791 bus_space_tag_t iot = sc->sc_iot;
792 bus_space_handle_t ioh = sc->sc_ioh;
793 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
794 u_int16_t status;
795 int ret = 0;
796
797 for (;;) {
798 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
799
800 status = bus_space_read_2(iot, ioh, EP_STATUS);
801
802 if ((status & (S_TX_COMPLETE | S_TX_AVAIL |
803 S_RX_COMPLETE | S_CARD_FAILURE)) == 0)
804 break;
805
806 ret = 1;
807
808 /*
809 * Acknowledge any interrupts. It's important that we do this
810 * first, since there would otherwise be a race condition.
811 * Due to the i386 interrupt queueing, we may get spurious
812 * interrupts occasionally.
813 */
814 bus_space_write_2(iot, ioh, EP_COMMAND, ACK_INTR | status);
815
816 if (status & S_RX_COMPLETE)
817 epread(sc);
818 if (status & S_TX_AVAIL) {
819 sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
820 epstart(&sc->sc_arpcom.ac_if);
821 }
822 if (status & S_CARD_FAILURE) {
823 printf("%s: adapter failure (%x)\n",
824 sc->sc_dev.dv_xname, status);
825 epreset(sc);
826 return (1);
827 }
828 if (status & S_TX_COMPLETE) {
829 eptxstat(sc);
830 epstart(ifp);
831 }
832 }
833
834 /* no more interrupts */
835 return (ret);
836 }
837
838 void
839 epread(sc)
840 register struct ep_softc *sc;
841 {
842 bus_space_tag_t iot = sc->sc_iot;
843 bus_space_handle_t ioh = sc->sc_ioh;
844 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
845 struct mbuf *m;
846 struct ether_header *eh;
847 int len;
848
849 len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
850
851 again:
852 if (ifp->if_flags & IFF_DEBUG) {
853 int err = len & ERR_MASK;
854 char *s = NULL;
855
856 if (len & ERR_INCOMPLETE)
857 s = "incomplete packet";
858 else if (err == ERR_OVERRUN)
859 s = "packet overrun";
860 else if (err == ERR_RUNT)
861 s = "runt packet";
862 else if (err == ERR_ALIGNMENT)
863 s = "bad alignment";
864 else if (err == ERR_CRC)
865 s = "bad crc";
866 else if (err == ERR_OVERSIZE)
867 s = "oversized packet";
868 else if (err == ERR_DRIBBLE)
869 s = "dribble bits";
870
871 if (s)
872 printf("%s: %s\n", sc->sc_dev.dv_xname, s);
873 }
874
875 if (len & ERR_INCOMPLETE)
876 return;
877
878 if (len & ERR_RX) {
879 ++ifp->if_ierrors;
880 goto abort;
881 }
882
883 len &= RX_BYTES_MASK; /* Lower 11 bits = RX bytes. */
884
885 /* Pull packet off interface. */
886 m = epget(sc, len);
887 if (m == 0) {
888 ifp->if_ierrors++;
889 goto abort;
890 }
891
892 ++ifp->if_ipackets;
893
894 /* We assume the header fit entirely in one mbuf. */
895 eh = mtod(m, struct ether_header *);
896
897 #if NBPFILTER > 0
898 /*
899 * Check if there's a BPF listener on this interface.
900 * If so, hand off the raw packet to BPF.
901 */
902 if (ifp->if_bpf) {
903 bpf_mtap(ifp->if_bpf, m);
904
905 /*
906 * Note that the interface cannot be in promiscuous mode if
907 * there are no BPF listeners. And if we are in promiscuous
908 * mode, we have to check if this packet is really ours.
909 */
910 if ((ifp->if_flags & IFF_PROMISC) &&
911 (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
912 bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
913 sizeof(eh->ether_dhost)) != 0) {
914 m_freem(m);
915 return;
916 }
917 }
918 #endif
919
920 /* We assume the header fit entirely in one mbuf. */
921 m_adj(m, sizeof(struct ether_header));
922 ether_input(ifp, eh, m);
923
924 /*
925 * In periods of high traffic we can actually receive enough
926 * packets so that the fifo overrun bit will be set at this point,
927 * even though we just read a packet. In this case we
928 * are not going to receive any more interrupts. We check for
929 * this condition and read again until the fifo is not full.
930 * We could simplify this test by not using epstatus(), but
931 * rechecking the RX_STATUS register directly. This test could
932 * result in unnecessary looping in cases where there is a new
933 * packet but the fifo is not full, but it will not fix the
934 * stuck behavior.
935 *
936 * Even with this improvement, we still get packet overrun errors
937 * which are hurting performance. Maybe when I get some more time
938 * I'll modify epread() so that it can handle RX_EARLY interrupts.
939 */
940 if (epstatus(sc)) {
941 len = bus_space_read_2(iot, ioh, EP_W1_RX_STATUS);
942 /* Check if we are stuck and reset [see XXX comment] */
943 if (len & ERR_INCOMPLETE) {
944 if (ifp->if_flags & IFF_DEBUG)
945 printf("%s: adapter reset\n",
946 sc->sc_dev.dv_xname);
947 epreset(sc);
948 return;
949 }
950 goto again;
951 }
952
953 return;
954
955 abort:
956 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
957 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
958 ;
959 }
960
961 struct mbuf *
962 epget(sc, totlen)
963 struct ep_softc *sc;
964 int totlen;
965 {
966 bus_space_tag_t iot = sc->sc_iot;
967 bus_space_handle_t ioh = sc->sc_ioh;
968 struct ifnet *ifp = &sc->sc_arpcom.ac_if;
969 struct mbuf *top, **mp, *m;
970 int len, remaining;
971 int sh;
972
973 m = sc->mb[sc->next_mb];
974 sc->mb[sc->next_mb] = 0;
975 if (m == 0) {
976 MGETHDR(m, M_DONTWAIT, MT_DATA);
977 if (m == 0)
978 return 0;
979 } else {
980 /* If the queue is no longer full, refill. */
981 if (sc->last_mb == sc->next_mb)
982 timeout(epmbuffill, sc, 1);
983 /* Convert one of our saved mbuf's. */
984 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
985 m->m_data = m->m_pktdat;
986 m->m_flags = M_PKTHDR;
987 }
988 m->m_pkthdr.rcvif = ifp;
989 m->m_pkthdr.len = totlen;
990 len = MHLEN;
991 top = 0;
992 mp = ⊤
993
994 /*
995 * We read the packet at splhigh() so that an interrupt from another
996 * device doesn't cause the card's buffer to overflow while we're
997 * reading it. We may still lose packets at other times.
998 */
999 sh = splhigh();
1000
1001 while (totlen > 0) {
1002 if (top) {
1003 m = sc->mb[sc->next_mb];
1004 sc->mb[sc->next_mb] = 0;
1005 if (m == 0) {
1006 MGET(m, M_DONTWAIT, MT_DATA);
1007 if (m == 0) {
1008 splx(sh);
1009 m_freem(top);
1010 return 0;
1011 }
1012 } else {
1013 sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
1014 }
1015 len = MLEN;
1016 }
1017 if (totlen >= MINCLSIZE) {
1018 MCLGET(m, M_DONTWAIT);
1019 if (m->m_flags & M_EXT)
1020 len = MCLBYTES;
1021 }
1022 if (EP_IS_BUS_32(sc->bustype) ) {
1023 u_long pad;
1024 if (top == 0) {
1025 /* align the struct ip header */
1026 pad = ALIGN(sizeof(struct ether_header))
1027 - sizeof(struct ether_header);
1028 } else {
1029 /* XXX do we really need this? */
1030 pad = ALIGN(m->m_data) - (u_long) m->m_data;
1031 }
1032 m->m_data += pad;
1033 len -= pad;
1034 }
1035 remaining = len = min(totlen, len);
1036 if (EP_IS_BUS_32(sc->bustype)) {
1037 u_long offset = mtod(m, u_long);
1038 /*
1039 * Read bytes up to the point where we are aligned.
1040 * (We can align to 4 bytes, rather than ALIGNBYTES,
1041 * here because we're later reading 4-byte chunks.)
1042 */
1043 if ((remaining > 3) && (offset & 3)) {
1044 int count = (4 - (offset & 3));
1045 bus_space_read_multi_1(iot, ioh,
1046 EP_W1_RX_PIO_RD_1,
1047 (u_int8_t *) offset, count);
1048 offset += count;
1049 remaining -= count;
1050 }
1051 if (remaining > 3) {
1052 bus_space_read_multi_4(iot, ioh,
1053 EP_W1_RX_PIO_RD_1,
1054 (u_int32_t *) offset, remaining >> 2);
1055 offset += remaining & ~3;
1056 remaining &= 3;
1057 }
1058 if (remaining) {
1059 bus_space_read_multi_1(iot, ioh,
1060 EP_W1_RX_PIO_RD_1,
1061 (u_int8_t *) offset, remaining);
1062 }
1063 } else {
1064 u_long offset = mtod(m, u_long);
1065 if ((remaining > 1) && (offset & 1)) {
1066 bus_space_read_multi_1(iot, ioh,
1067 EP_W1_RX_PIO_RD_1,
1068 (u_int8_t *) offset, 1);
1069 remaining -= 1;
1070 offset += 1;
1071 }
1072 if (remaining > 1) {
1073 bus_space_read_multi_2(iot, ioh,
1074 EP_W1_RX_PIO_RD_1,
1075 (u_int16_t *) offset, remaining >> 1);
1076 offset += remaining & ~1;
1077 }
1078 if (remaining & 1) {
1079 bus_space_read_multi_1(iot, ioh,
1080 EP_W1_RX_PIO_RD_1,
1081 (u_int8_t *) offset, remaining & 1);
1082 }
1083 }
1084 m->m_len = len;
1085 totlen -= len;
1086 *mp = m;
1087 mp = &m->m_next;
1088 }
1089
1090 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1091 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1092 ;
1093
1094 splx(sh);
1095
1096 return top;
1097 }
1098
1099 int
1100 epioctl(ifp, cmd, data)
1101 register struct ifnet *ifp;
1102 u_long cmd;
1103 caddr_t data;
1104 {
1105 struct ep_softc *sc = ifp->if_softc;
1106 struct ifaddr *ifa = (struct ifaddr *)data;
1107 struct ifreq *ifr = (struct ifreq *)data;
1108 int s, error = 0;
1109
1110 s = splnet();
1111
1112 switch (cmd) {
1113
1114 case SIOCSIFADDR:
1115 ifp->if_flags |= IFF_UP;
1116
1117 switch (ifa->ifa_addr->sa_family) {
1118 #ifdef INET
1119 case AF_INET:
1120 epinit(sc);
1121 arp_ifinit(&sc->sc_arpcom, ifa);
1122 break;
1123 #endif
1124 #ifdef NS
1125 case AF_NS:
1126 {
1127 register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1128
1129 if (ns_nullhost(*ina))
1130 ina->x_host =
1131 *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
1132 else
1133 bcopy(ina->x_host.c_host,
1134 sc->sc_arpcom.ac_enaddr,
1135 sizeof(sc->sc_arpcom.ac_enaddr));
1136 /* Set new address. */
1137 epinit(sc);
1138 break;
1139 }
1140 #endif
1141 default:
1142 epinit(sc);
1143 break;
1144 }
1145 break;
1146
1147 case SIOCSIFFLAGS:
1148 if ((ifp->if_flags & IFF_UP) == 0 &&
1149 (ifp->if_flags & IFF_RUNNING) != 0) {
1150 /*
1151 * If interface is marked down and it is running, then
1152 * stop it.
1153 */
1154 epstop(sc);
1155 ifp->if_flags &= ~IFF_RUNNING;
1156 } else if ((ifp->if_flags & IFF_UP) != 0 &&
1157 (ifp->if_flags & IFF_RUNNING) == 0) {
1158 /*
1159 * If interface is marked up and it is stopped, then
1160 * start it.
1161 */
1162 epinit(sc);
1163 } else {
1164 /*
1165 * deal with flags changes:
1166 * IFF_MULTICAST, IFF_PROMISC,
1167 * IFF_LINK0, IFF_LINK1,
1168 */
1169 epsetfilter(sc);
1170 epsetlink(sc);
1171 }
1172 break;
1173
1174 case SIOCADDMULTI:
1175 case SIOCDELMULTI:
1176 error = (cmd == SIOCADDMULTI) ?
1177 ether_addmulti(ifr, &sc->sc_arpcom) :
1178 ether_delmulti(ifr, &sc->sc_arpcom);
1179
1180 if (error == ENETRESET) {
1181 /*
1182 * Multicast list has changed; set the hardware filter
1183 * accordingly.
1184 */
1185 epreset(sc);
1186 error = 0;
1187 }
1188 break;
1189
1190 default:
1191 error = EINVAL;
1192 break;
1193 }
1194
1195 splx(s);
1196 return (error);
1197 }
1198
1199 void
1200 epreset(sc)
1201 struct ep_softc *sc;
1202 {
1203 int s;
1204
1205 s = splnet();
1206 epstop(sc);
1207 epinit(sc);
1208 splx(s);
1209 }
1210
1211 void
1212 epwatchdog(ifp)
1213 struct ifnet *ifp;
1214 {
1215 struct ep_softc *sc = ifp->if_softc;
1216
1217 log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1218 ++sc->sc_arpcom.ac_if.if_oerrors;
1219
1220 epreset(sc);
1221 }
1222
1223 void
1224 epstop(sc)
1225 register struct ep_softc *sc;
1226 {
1227 bus_space_tag_t iot = sc->sc_iot;
1228 bus_space_handle_t ioh = sc->sc_ioh;
1229
1230 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISABLE);
1231 bus_space_write_2(iot, ioh, EP_COMMAND, RX_DISCARD_TOP_PACK);
1232 while (bus_space_read_2(iot, ioh, EP_STATUS) & S_COMMAND_IN_PROGRESS)
1233 ;
1234 bus_space_write_2(iot, ioh, EP_COMMAND, TX_DISABLE);
1235 bus_space_write_2(iot, ioh, EP_COMMAND, STOP_TRANSCEIVER);
1236
1237 ep_complete_cmd(sc, EP_COMMAND, RX_RESET);
1238 ep_complete_cmd(sc, EP_COMMAND, TX_RESET);
1239
1240 bus_space_write_2(iot, ioh, EP_COMMAND, C_INTR_LATCH);
1241 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RD_0_MASK);
1242 bus_space_write_2(iot, ioh, EP_COMMAND, SET_INTR_MASK);
1243 bus_space_write_2(iot, ioh, EP_COMMAND, SET_RX_FILTER);
1244
1245 epmbufempty(sc);
1246 }
1247
1248
1249 /*
1250 * Before reboots, reset card completely.
1251 */
1252 static void
1253 epshutdown(arg)
1254 void *arg;
1255 {
1256 register struct ep_softc *sc = arg;
1257
1258 epstop(sc);
1259 ep_complete_cmd(sc, EP_COMMAND, GLOBAL_RESET);
1260 }
1261
1262
1263 /*
1264 * We get eeprom data from the id_port given an offset into the
1265 * eeprom. Basically; after the ID_sequence is sent to all of
1266 * the cards; they enter the ID_CMD state where they will accept
1267 * command requests. 0x80-0xbf loads the eeprom data. We then
1268 * read the port 16 times and with every read; the cards check
1269 * for contention (ie: if one card writes a 0 bit and another
1270 * writes a 1 bit then the host sees a 0. At the end of the cycle;
1271 * each card compares the data on the bus; if there is a difference
1272 * then that card goes into ID_WAIT state again). In the meantime;
1273 * one bit of data is returned in the AX register which is conveniently
1274 * returned to us by bus_space_read_1(). Hence; we read 16 times getting one
1275 * bit of data with each read.
1276 *
1277 * NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
1278 */
1279 u_int16_t
1280 epreadeeprom(iot, ioh, offset)
1281 bus_space_tag_t iot;
1282 bus_space_handle_t ioh;
1283 int offset;
1284 {
1285 u_int16_t data = 0;
1286 int i;
1287
1288 bus_space_write_1(iot, ioh, 0, 0x80 + offset);
1289 delay(1000);
1290 for (i = 0; i < 16; i++)
1291 data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
1292 return (data);
1293 }
1294
1295 static int
1296 epbusyeeprom(sc)
1297 struct ep_softc *sc;
1298 {
1299 bus_space_tag_t iot = sc->sc_iot;
1300 bus_space_handle_t ioh = sc->sc_ioh;
1301 int i = 100, j;
1302
1303 if (sc->bustype == EP_BUS_PCMCIA) {
1304 delay(1000);
1305 return 0;
1306 }
1307
1308 while (i--) {
1309 j = bus_space_read_2(iot, ioh, EP_W0_EEPROM_COMMAND);
1310 if (j & EEPROM_BUSY)
1311 delay(100);
1312 else
1313 break;
1314 }
1315 if (!i) {
1316 printf("\n%s: eeprom failed to come ready\n",
1317 sc->sc_dev.dv_xname);
1318 return (1);
1319 }
1320 if (j & EEPROM_TST_MODE) {
1321 printf("\n%s: erase pencil mark, or disable plug-n-play mode!\n",
1322 sc->sc_dev.dv_xname);
1323 return (1);
1324 }
1325 return (0);
1326 }
1327
1328 void
1329 epmbuffill(v)
1330 void *v;
1331 {
1332 struct ep_softc *sc = v;
1333 int s, i;
1334
1335 s = splnet();
1336 i = sc->last_mb;
1337 do {
1338 if (sc->mb[i] == NULL)
1339 MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
1340 if (sc->mb[i] == NULL)
1341 break;
1342 i = (i + 1) % MAX_MBS;
1343 } while (i != sc->next_mb);
1344 sc->last_mb = i;
1345 /* If the queue was not filled, try again. */
1346 if (sc->last_mb != sc->next_mb)
1347 timeout(epmbuffill, sc, 1);
1348 splx(s);
1349 }
1350
1351 void
1352 epmbufempty(sc)
1353 struct ep_softc *sc;
1354 {
1355 int s, i;
1356
1357 s = splnet();
1358 for (i = 0; i<MAX_MBS; i++) {
1359 if (sc->mb[i]) {
1360 m_freem(sc->mb[i]);
1361 sc->mb[i] = NULL;
1362 }
1363 }
1364 sc->last_mb = sc->next_mb = 0;
1365 untimeout(epmbuffill, sc);
1366 splx(s);
1367 }
1368